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Uniqueness of the von Neumann
Continuous Factor

Pere Ara and Joan Claramunt

Abstract. For a division ring D, denote byMD the D-ring obtained as the completion of the direct
limit lim

Ð→n
M2n (D)with respect to themetric induced by its unique rank function. We prove that, for

any ultramatricial D-ring B and any non-discrete extremal pseudo-rank function N on B, there
is an isomorphism of D-rings B ≅ MD , where B stands for the completion of B with respect
to the pseudo-metric induced by N . _is generalizes a result of von Neumann. We also show a
corresponding uniqueness result for ∗-algebras over ûelds F with positive deûnite involution,where
the algebraMF is endowed with its natural involution coming from the ∗-transpose involution on
each of the factors M2n (F).

1 Introduction

Murray and vonNeumann showed [13,_eoremXII] a uniqueness result for approxi-
mately ûnite vonNeuman algebra factors of type II1. _is unique factorR is called the
hyperûnite II1-factor and plays a very important role in the theory of von Neumann
algebras. It was shown later by Alain Connes [6] that the factor R is characterized
(among II1-factors) by various other properties, such as injectivity (in the operator
space sense), semidiscreteness or Property P. In particular, it is known [18, _eorem
3.8.2] that, for an inûnite countable discrete group G whose non-trivial conjugacy
classes are all inûnite, the group von Neumann algebra N(G) is isomorphic to R if
and only if G is an amenable group. (_e groups with the above property on the con-
jugacy classes are termed ICC-groups.)

Von Neumann also considered a purely algebraic analogue of the above situation,
as follows. For a ûeld K, the direct limit limÐ→n

M2n(K)with respect to the block diago-
nal embeddings x ↦ ( x 0

0 x ) is a (von Neumann) regular ring that admits a unique
rank function (see below for the deûnition of rank function). _e completion of
limÐ→n

M2n(K)with respect to the induced rankmetric, denoted here byMK , is a com-
plete regular ring with a unique rank function that is a continuous factor, i.e., it is a
right and le� self-injective ring and the set of values of the rank function ûlls the unit
interval [0, 1]. _ere is recent evidence [7–9] that the factor MK could play a role
in algebra that is similar to the role played by the unique hyperûnite factor R in the
theory of operator algebras. In particular, Elek has shown [8] that, if Γ = Z2 ≀ Z is
the lamplighter group, then the continuous factor c(Γ) obtained by taking the rank
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completion of the ∗-regular closure ofC[Γ] in the ∗-algebraU(Γ) of unbounded op-
erators aõliated to N(Γ), is isomorphic to MC.

_is raises the question of what uniqueness properties the von Neumann factor
MK has, andwhetherwe can formulate similar characterizations to those in the sem-
inal paper by Connes [6]. As von Neumann had already shown (and was published
later by Halperin [16]),MK is isomorphic to the factor obtained from any factor se-
quence (p i), that is,MK ≅ limÐ→Mp i (K), where (p i) is a sequence of positive integers
converging to∞ and such that p i divides p i+1 for all i. Here the completion is taken
with respect to the unique rank function on the direct limit.

_e purpose of this paper is to obtain stronger uniqueness properties of the factor
MK . Speciûcally, we show that if B is an ultramatricial K-algebra and N is a non-
discrete extremal pseudo-rank function onB, then the completion ofB with respect
to N is necessarily isomorphic toMK . We also derive a characterization of the factor
MK by a local approximation property (see _eorem 2.2). _is will be used in [2]
to generalize Elek’s result to arbitrary ûelds K of characteristic /= 2, using a concrete
approximation of the group algebra K[Γ] bymatricial algebras. It is also worth men-
tioning that, as a consequence of our result and [14, _eorem 2.8], one obtains that
the center of an algebra Q satisfying properties (ii) or (iii) in _eorem 2.2 is the base
ûeld K.

Gabor Elek andAndrei Jaikin-Zapirain recently raised the question ofwhether, for
any subûeld k of C closed under complex conjugation and any countable amenable
ICC-groupG, the rank completion c(k[G]) of the ∗-regular closure of k[G] inU(G)
is either of the form Mn(D) or of the form MD ∶= D ⊗k Mk , where D is a division
ring with center k. In view of this question, it is natural to obtain uniqueness results
in the slightly more general setting of D-rings over a division ring D, and also in
the setting of rings with involution, since in the above situation, the algebras have a
natural involution which is essential even to deûne the corresponding completions.
We address these questions in the ûnal two sections.

2 von Neumann’s Continuous Factor

A ring R is said to be (von Neumann) regular in case for each x ∈ R, there exists y ∈ R
such that x = xyx. We refer the reader to [15] for the general theory of regular rings.

We recall the deûnition of a pseudo-rank function on a general unital ring.

Deûnition 2.1 A pseudo-rank function on a unital ring R is a function N ∶R → [0, 1]
satisfying the following properties:

(i) N(1) = 1.
(ii) N(a + b) ≤ N(a) + N(b), for all a, b ∈ R.
(iii) N(ab) ≤ N(a),N(b), for all a, b ∈ R.
(iv) If e , f ∈ R are orthogonal idempotents, then N(e + f ) = N(e) + N( f ).

A rank function on R is a pseudo-rank function N such that N(x) = 0 implies x = 0.

Any pseudo-rank function N on a ring R induces a pseudo-metric by d(x , y) =
N(x − y) for x , y ∈ R. If, in addition, R is regular, then the completion of R with
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respect to this pseudo-metric is again a regular ring R, and R is completewith respect
to the unique extension N of N to a rank function on R [15,_eorem 19.6]. _e space
of pseudo-rank functions P(R) on a regular ring R is a Choquet simplex [15, _eo-
rem 17.5], and the completion R of R with respect to N ∈ P(R) is a simple ring if and
only if N is an extreme point in P(R) [15,_eorem 19.14].
For a ûeld K, a matricial K-algebra is a K-algebra that is isomorphic to an alge-

bra of the form Mn(1)(K) × Mn(2)(K) × ⋅ ⋅ ⋅ × Mn(k)(K) for some positive integers
n(1), n(2), . . . , n(k). An ultramatricial K-algebra is an algebra that is isomorphic to
a direct limit limÐ→n

An of a sequence of matricial K-algebras An and unital algebra
homomorphisms φn ∶An → An+1, [15, Chapter 15].

Let K be a ûeld. Write M = MK for the rank completion of the direct limit
limÐ→n

M2n(K) with respect to its unique rank function. Von Neumann proved a
uniqueness property for M. We are going to extend it to ultramatricial algebras. _e
proof follows the steps in the paper byHalperin [16] (based on vonNeumann’s proof),
but the proof is considerably more involved. Indeed, we will obtain a uniqueness re-
sult for the class of continuous factors that have a local matricial structure.
By a continuous factorweunderstand a simple, regular, (right and le�) self-injective

ringQ of type II f (see [15, Chapter 10] for the deûnition of the types and for the struc-
ture theory of regular self-injective rings). It follows that Q admits a unique rank
function, denoted here by NQ, and that Q is complete in the NQ-metric. [15, Corol-
lary 21.14] Also, it follows easily from the structure theory of regular self-injective
rings that NQ(Q) = [0, 1] [15, Chapter 10].

_e adjective “continuous” used here refers to the fact that NQ takes a continuous
set of values, in contrast with the algebra of ûnite matrices, where the rank function
takes only a ûnite number of values. Note, however, that any regular self-injective
ring R is a right (le�) continuous regular ring, in the technical sense that the lattice
of principal right (le�) ideals is continuous [15, Chapter 13]. _e latter property will
play no explicit role in the present paper.

We will show the following result.

_eorem 2.2 Let Q be a continuous factor, and assume there exists a dense subal-
gebra (with respect to the NQ-metric topology) Q0 ⊆ Q of countable K-dimension. _e
following are equivalent.

(i) Q ≅MK .
(ii) Q ≅ B for a certain ultramatricial K-algebraB,where the completion ofB is taken

with respect to themetric induced by an extremal pseudo-rank function on B.
(iii) For every ε > 0 and x1 , . . . , xn ∈ Q, there exists a matricial K-subalgebra A of Q

and elements y1 , . . . , yn ∈ A such that NQ(x i − y i) < ε, for i = 1, . . . , k.

(i)⇒ (ii)⇒ (iii) is clear. For the proof of the implication (iii)⇒ (i) we will use
a method similar to the one used in [16]. However the technical complications are
much higher here.

We ûrst prove a lemma, and show the implication (iii)⇒ (i), assuming that the hy-
potheses of the lemma are satisûed. A�er this is done, we will show how to construct
(using (iii)) the sequences, algebras, and homomorphisms appearing in this lemma.
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Given a factor sequence (p i), the natural block-diagonal unital embeddings

Mp i (K)→ Mp i+1(K)

will be denoted by γ i+1, i . If j > i, the map γ j, i ∶Mp i (K) → Mp j(K) will denote the
composition γ j, i = γ j, j−1 ○ ⋅ ⋅ ⋅ ○γ i+1, i , and themap γ∞, i ∶Mp i (K)→ limÐ→n

Mpn(K)will
stand for the canonical map into the direct limit. By [16], there is an isomorphism
MK ≅ limÐ→n

Mpn(K), where the completion is taken with respect to the unique rank
function on the direct limit. Henceforth we will identify M = MK with the algebra
limÐ→n

Mpn(K).

Notation 2.3 Let (X , d) be ametric space, Y a subset of X, and ε > 0. For A ⊆ X,
we write A ⊆ε Y in case each element of A can be approximated by an element of Y
up to ε, that is, for each a ∈ A there exists y ∈ Y such that d(a, y) < ε.

Lemma 2.4 Let Q be a continuous factor with unique rank function NQ. Assume
that there exists a dense subalgebra Q0 of Q of countable dimension, and let {xn}n be a
K-basis of Q0.

Let θ be a real number such that 0 < θ < 1. Assume further that we have constructed
two strictly increasing sequences (q i) and (p i) of natural numbers such that p i divides
p i+1, satisfying

1 > p1

q1
> ⋅ ⋅ ⋅ > p i

q i
> p i+1

q i+1
> ⋅ ⋅ ⋅ > θ , lim

i→∞

p i

q i
= θ , p i+1

q i+1
− θ < 1

2
( p i

q i
− θ) ,

for i ≥ 0, where we set p0 = q0 = 1. Moreover, suppose that there exists a sequence
of positive numbers ε i < δ i ∶= p i

q i
− θ for each i (in which case δ i < 1

2 δ i−1 < 2−i for
all i ≥ 1), and matricial subalgebras Ai ⊆ Q together with algebra homomorphisms
ρ i ∶Mp i (K)→ Q satisfying the following properties.
(i) NQ(ρ i(1)) = p i

q i
for all i.

(ii) For each i and each x ∈ ρ i(1)Aiρ i(1), there exists y ∈ Mp i+1(K) such that

NQ(x − ρ i+1(y)) < δ i .

(iii) For each z ∈ Mp i (K), we have NQ(ρ i(z) − ρ i+1(γ i+1, i(z))) < δ i .
(iv) span{x1 , . . . , x i} ⊆ε i Ai (that is, every element of span{x1 , . . . , x i} can be ap-

proximated by an element ofAi up to ε i in rank).
_en there exists an isomorphism ψ∶M → eQe, with e ∈ Q an idempotent such that
NQ(e) = θ.

Proof For a given positive integer i, and for z ∈ Mp i (K), we consider the sequence
in Q {ρ j(γ j, i(z))} j≥i . Using (iii), it is a simple computation to show that for h > j ≥ i
we have

(2.1) NQ(ρh(γh , i(z)) − ρ j(γ j, i(z))) < δ j + ⋅ ⋅ ⋅ + δh−1 .

As a consequence, we obtain

NQ( ρh(γh , i(z)) − ρ j(γ j, i(z))) < 2− j + ⋅ ⋅ ⋅ + 2−h+1 < 2− j+1 ,
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and the sequence is Cauchy; so we can deûne ψ i ∶Mp i (K)→ Q by

ψ i(z) = lim
j

ρ j(γ j, i(z)) ∈ Q.

Note that ψ i+1(γ i+1, i(z)) = ψ i(z), so themaps {ψ i}i give a well-deûned algebra ho-
momorphism ψ∶ limÐ→i

Mp i (K)→ Q, deûned by ψ(γ∞, i(z)) = ψ i(z) for z ∈ Mp i (K).
Observe that NQ(ρ i(z)) = p i

q i
Np i (z) = p i

q i
NM(γ∞, i(z)) for z ∈ Mp i (K), where

Np i denotes the unique rank function on Mp i (K). _erefore,

NQ(ψ(γ∞, i(z))) = lim
j

NQ(ρ j(γ j, i(z))) = lim
j

p j

q j
NM(γ∞, i(z)) = θ ⋅NM(γ∞, i(z)).

It follows that NQ(ψ(x)) = θ ⋅ NM(x) for every x ∈ limÐ→i
Mp i (K), and thus ψ can

be extended to a unital algebra homomorphism ψ∶M → eQe, where e ∶= ψ(1) =
limÐ→i

ρ i(1), which satisûes the identity NQ(ψ(z)) = θ ⋅ NM(z) for all z ∈ M. In par-
ticular, NQ(e) = θ. Clearly, ψ is injective.

It remains to show that ψ is surjective onto eQe. Let x ∈ Q, and ûx η > 0. Take i
large enough so that

ε i <
η
10
, δ i <

η
5
, NQ(e − ρ i(1)) <

η
5
,

and such that there exists an element x̃ ∈ span{x1 , . . . , x i} satisfying NQ(x − x̃) < η
10 .

By (iv), there exists y ∈ Ai so that NQ(x̃ − y) < η
10 ; hence NQ(x − y) < η

5 . We thus
have

NQ(exe − ρ i(1)yρ i(1)) ≤ NQ(exe − exρ i(1)) + NQ(exρ i(1) − eyρ i(1))

+ NQ(eyρ i(1) − ρ i(1)yρ i(1)) <
3
5
η.

On the other hand, it follows from (ii) that there exists z ∈ Mp i+1(K) such that

NQ(ρ i(1)yρ i(1) − ρ i+1(z)) < δ i <
η
5
.

Also, for i + 1 < h, we get from (2.1) that

NQ(ρh(γh , i+1(z))− ρ i+1(z)) < δ i+1 + ⋅ ⋅ ⋅ + δh−1 < δ i+1(1+ ⋅ ⋅ ⋅ + 2−h+i+2) < 2δ i+1 < δ i ,

and so letting h → ∞ leads to NQ(ψ(γ∞, i+1(z)) − ρ i+1(z)) ≤ δ i < η
5 . Using the

above inequalities, we obtain

NQ( exe − ψ(γ∞, i+1(z))) ≤ NQ( exe − ρ i(1)yρ i(1)) + NQ(ρ i(1)yρ i(1) − ρ i+1(z))
+ NQ( ρ i+1(z) − ψ(γ∞, i+1(z)))

≤ 3
5
η + 1

5
η + 1

5
η = η.

By choosing a decreasing sequence ηn → 0, it follows that there is a sequence {wn}n
of elements in M such that limn ψ(wn) = exe. Since

NM(w i −w j) = θ−1 ⋅ NQ(ψ(w i) − ψ(w j)), for all i , j,
it follows that {wn}n is a Cauchy sequence in M, and hence convergent to w ∈ M

satisfying ψ(w) = exe. _is shows that ψ is surjective.

https://doi.org/10.4153/CJM-2018-010-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-010-3


966 P. Ara and J. Claramunt

We now show how_eorem 2.2 follows from Lemma 2.4, assuming we are able to
show that the hypotheses of that lemma are satisûed. _is indeed follows as in [16].
Take θ = 1/2 and apply Lemma 2.4 to obtain an isomorphism ψ∶M → eQe, where
NQ(e) = 1/2. Since eQ ≅ (1 − e)Q as right Q-modules [15, Corollary 9.16], we get
an isomorphism of K-algebras Q ≅ M2(eQe). Hence, we obtain an isomorphism
M ≅ M2(M) ≅ M2(eQe) ≅ Q.

It remains to show that the hypotheses of Lemma 2.4 are satisûed. We need a pre-
liminary lemma, which might be of independent interest.

Lemma 2.5 Let p be a positive integer. _en there exists a constant K(p), depending
only on p, such that for any ûeld K, for any ε > 0, for any pair A ⊆ B, where B is a
unital K-algebra andA is a unital regular subalgebra ofB, for any pseudo-rank function
N on B, and for every K-algebra homomorphism ρ∶Mp(K) → B such that {ρ(e i j) ∣
i , j = 1, . . . , p} ⊆ε A with respect to the N-metric, where the e i j denote the canonical
matrix units in Mp(K), there exists a K-algebra homomorphism ψ∶Mp(K) → A such
that

N(ρ(e i j) − ψ(e i j)) < K(p)ε for 1 ≤ i , j ≤ p.

Proof We proceed by induction on p. Let p = 1 and let K, ε,A,B, N , and ρ∶K → B

be as in the statement. _en ρ(1) is an idempotent in B and, by assumption, there is
x ∈ A such that N(ρ(1) − x) < ε. By [15, Lemma 19.3], there exists an idempotent
g ∈ A such x − g ∈ A(x − x2) and it follows that N(ρ(1) − g) < 4ε. _erefore we can
take K(1) = 4.

Now assume that p ≥ 2 and that there is a constant K(p− 1) satisfying the property
corresponding to p − 1. Let K, ε,A,B, N , and ρ∶Mp(K)→ B be as in the statement.
We identify Mp−1(K) with the subalgebra of Mp(K) generated by e i j with 1 ≤ i , j ≤
p−1. By the induction hypothesis, there is a set of (p−1)×(p−1)matrix units x i j ∈ A
(so that x i jxkl = δ jkx i l for 1 ≤ i , j, k, l ≤ p− 1) satisfying N(ρ(e i j)− x i j) < K(p− 1)ε
for all 1 ≤ i , j ≤ p−1. By hypothesis, there are z1p , zp1 ∈ A such that N(ρ(e1p)−z1p) < ε
and N(ρ(ep1)−zp1) < ε. Our ûrst task is tomodify z1p and zp1 in order to obtain new
elements z′1p and z′p1 such that

(2.2) z′1px i1 = 0 = x1iz′p1 , for 1 ≤ i ≤ p − 1,

with suitable bounds on the ranks. To get the desired elements, we proceed by in-
duction on i. We will only prove the result for the position (1, p). _e element in the
position (p, 1) is built in a similar way. For i = 1, we use thatA is regular to obtain an
idempotent g1 ∈ A such that z1px11A = g1A. Note that

N(g1) = N(z1px11) = N(z1px11 − ρ(e1p)ρ(e11)) < ε + K(p − 1)ε = (K(p − 1) + 1)ε.

Now take z(1)1p ∶= (1 − g1)z1p . We get that z(1)1p x11 = 0 and that

N(z(1)1p − ρ(e1p)) ≤ N(z1p − ρ(e1p)) + N(g1) < (K(p − 1) + 2)ε.

Iterating this process, we get, for each 1 ≤ i ≤ p − 1, an element z(i)1p in A such that

z(i)1p x j1 = 0 for 1 ≤ j ≤ i and N(z(i)1p − ρ(e1p)) < ((2i − 1)K(p − 1) + 2i)ε. _erefore,
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taking z′1p = z(p−1)
1p and the element z′p1 ∶= z(p−1)

p1 built in a similar fashion, we get
elements z′1p , z′p1 ∈ A satisfying (2.2) and such that

(2.3) max{N(z′1p − ρ(e1p)),N(z′p1 − ρ(ep1))} < ((2p−1 − 1)K(p − 1) + 2p−1) ε.
_e next step is to convert z′1p and z′p1 into mutually quasi-inverse elements in A.
Indeed, in addition we will replace our original elements x1i and x i1, for 1 ≤ i ≤ p − 1
in order to get a coherent family of partial matrix units y1 j , y j1 for 1 ≤ j ≤ p. For thiswe
will use [15, Lemma 19.3] and its proof. Consider the element x′11 ∶= x11z′1pz′p1x11 ∈ A,
and note that

N(x′11 − ρ(e11)) ≤ 2N(x11 − ρ(e11)) + N(z′1p − ρ(e1p)) + N(z′p1 − ρ(ep1))
< (K(p − 1) + 1)2pε,

wherewe have used the bound given by the induction hypothesis and (2.3). _erefore,
we get N(x′11−(x′11)2) < 3(K(p−1)+1)2pε. Now using [15, Lemma 19.3] and its proof,
we can ûnd an idempotent g ∈ A such that g ∈ x′11A ∩Ax′11, x′11 − g ∈ A(x′11 − (x′11)2)
and x′11g = g. It follows that g ≤ x11 and that gx′11g = g, so that we get gz′1pz′p1g = g.
Set y11 = g ≤ x11, y1i = gx1i , and y i1 = x i1g for i = 2, . . . , p − 1. Also, set y1p = gz′1p
and yp1 = z′p1g. _en we have y1i y j1 = δ i j y11 for 1 ≤ i , j ≤ p. We have

N(g − ρ(e11)) ≤ N(g − x′11) + N(x′11 − ρ(e11))
< 3(K(p − 1) + 1)2pε + (K(p − 1) + 1)2pε = (K(p − 1) + 1)2p+2ε.

Using this inequality, we obtain

N(y1p − ρ(e1p)) = N(gz′1p − ρ(e11)ρ(e1p)) ≤ N(g − ρ(e11)) + N(z′1p − ρ(e1p))
< (K(p − 1) + 1)2p+2ε + ((2p−1 − 1)K(p − 1) + 2p−1)ε
= ((2p+2 + 2p−1 − 1)K(p − 1) + 2p+2 + 2p−1) ε.

Similar computations give that

max{N(y1i − ρ(e1i)),N(y i1 − ρ(e i1)) ∶ i = 1, . . . , p}
< ((2p+2 + 2p−1 − 1)K(p − 1) + 2p+2 + 2p−1) ε.

Finally, put y i j = y i1 y1 j . We obtain that {y i j} is a complete system of p × p matrix
units in A, so that we can deûne a K-algebra homomorphism ψ∶Mp(K) → A such
that ψ(e i j) = y i j . Moreover, we have N(ρ(e i j) − ψ(e i j)) < K(p)ε, where K(p) ∶=
(2p+3 + 2p − 2)K(p − 1) + (2p+3 + 2p). _is concludes the proof.

We now show that that the hypotheses of Lemma 2.4 are satisûed (assuming condi-
tion (iii) in_eorem 2.2). _is is obtained from the next lemma by applying induction
(starting with p0 = q0 = 1 andA0 = K).

Lemma 2.6 Let Q be a continuous factor with unique rank function NQ. Assume
that there exists a dense subalgebra Q0 of Q of countable dimension, and let {xn}n be a
K-basis ofQ0. Assume thatQ satisûes_eorem 2.2 (iii), and let θ be a real number such
that 0 < θ < 1. Let p be a positive integer such that there exist an algebra homomorphism
ρ∶Mp(K)→ Q, amatricial subalgebraA ⊆ Q, a positive integer m, and ε > 0 such that
the following hold:
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(a) NQ(ρ(1)) = p
q > θ for some positive integer q.

(b) {ρ(e i j) ∣ i , j = 1, . . . , p} ⊆ε A, and span{x1 , . . . , xm} ⊆ε A.
(c) ε < 1

48K(p)p2 (
p
q − θ) , where K(p) is the constant introduced in Lemma 2.5.

_en there exist positive integers p′ , g , q′,with p′ = g p, a real number ε′ > 0, an algebra
homomorphism ρ′∶Mp′(K) → Q, and a matricial subalgebra A′ ⊆ Q such that the
following conditions hold.

(1) NQ(ρ′(1)) = p′/q′.
(2) 0 < p′

q′ − θ < 1
2 (

p
q − θ).

(3) For each x ∈ ρ(1)Aρ(1) there exists y ∈ Mp′(K) such that NQ(x − ρ′(y)) < p
q − θ.

(4) For each z ∈ Mp(K), we have NQ(ρ(z) − ρ′(γ(z))) < p
q − θ , where γ∶Mp(K) →

Mp′(K) = Mp(K) ⊗ Mg(K) is the canonical unital homomorphism sending z
to z ⊗ 1g .

(5) {ρ′(e′i j) ∣ i , j = 1, . . . , p′} ⊆ε′ A′, and span{x1 , . . . , xm , xm+1} ⊆ε′ A′, where
{e′i j ∣ i , j = 1, . . . , p′} denote the canonical matrix units in Mp′(K).

(6) ε′ < 1
48K(p′)p′2 (

p′

q′ − θ) .

Proof We denote by e i j , for 1 ≤ i , j ≤ p, the canonical matrix units in Mp(K). Set
f ′ ∶= ρ(e11),which is an idempotent inQwithNQ( f ′) = 1/q (becauseNQ(ρ(1)) = p

q ).
By (b) and Lemma 2.5, there exists a K-algebra homomorphism ψ∶Mp(K)→ A such
that NQ(ρ(e i j) − ψ(e i j)) < K(p)ε for 1 ≤ i , j ≤ p. Set f = ψ(e11) ∈ A and observe
that

(2.4) NQ( f − f ′) < K(p)ε.

Since A is matricial, we can write f = f1 + ⋅ ⋅ ⋅ + fk , where f1 , f2 , . . . , fk are nonzero
mutually orthogonal idempotents belonging to diòerent simple factors of A. We can
now consider, for each 1 ≤ i ≤ k, a set ofmatrix units { f (i)j l ∶ 1 ≤ j, l ≤ r i} inside f iA f i
such that each f (i)j j is aminimal idempotent in the simple factor to which f i belongs,
and such that ∑r i

j=1 f
(i)
j j = f i for i = 1, . . . , k. Note that NQ( f ) = ∑k

i=1 r iNQ( f (i)11 ) so
that by [15, Lemma 19.1(e)] and (2.4), we get

(2.5) ∣ 1
q
−

k

∑
i=1

r iNQ( f (i)11 )∣ = ∣NQ( f ′) − NQ( f )∣ ≤ NQ( f − f ′) < K(p)ε.

We now approximate each real number NQ( f (i)11 ) by a rational number p i/q i . Con-
cretely, we set δ ∶= 1

48p(∑k
i=1 r i)

( p
q − θ) , and take positive integers p i , q i so that 0 <

NQ( f (i)11 )− p i/q i < δ. Taking the common denominator, wemay assume that q i = q′

for i = 1, . . . , k. Let α′ be such that 1/α′ = ∑k
i=1 r i p i/q′, and observe that, by using
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(2.5), we have

∣ p
q
− p
α′

∣ ≤ p[ ∣ 1
q
−

k

∑
i=1

r iNQ( f (i)11 )∣ +
k

∑
i=1

r i(NQ( f (i)11 ) − p i

q′
)]

< K(p)pє + p(
k

∑
i=1

r i)δ <
1

48p
( p
q
− θ) + 1

48
( p
q
− θ)

≤ 1
24

( p
q
− θ) .

So in particular

(2.6) ∣ p
q
− p
α′

∣ < 1
8
( p
q
− θ) .

Now take

λ i =
α′p ir i

q′
and ε i =

λ i

pr i
( p
q
− θ) .

_en ∑k
i=1 λ i = 1. Moreover, λ i , ε i (and of course p i/q′), i = 1, . . . , k, do not depend

on replacing p i and q′ by p iN and q′N , respectively, for any integer N ≥ 1, so we can
assume that p i and q′ are arbitrarily large. Taking p i large enough,we see thatwe can
ûnd non-negative integers p′i , for 1 ≤ i ≤ k, such that

(2.7)
5ε i
8

< p i

q′
− p′i

q′
< 3ε i

4

for i = 1, . . . , k. Indeed, using (2.6), we can see that

5ε iq′

8
= 5p i

8
( α

′

p
( p
q
− θ)) < 5p i

8
8
7
= 5

7
p i < p i .

We can choose q′ big enough so that ε i q
′

8 > 1 and thus there is an integer in the open
interval ( 58 ε iq

′ , 3
4 ε iq

′). Since 5ε i q′

8 < p i , we can ûnd a non-negative integer p′i such
that (2.7) holds.

Now, using that∑k
i=1 λ i = 1, we get

5
8p

( p
q
− θ) < 1

α′
− (

k

∑
i=1

r i
p′i
q′

) < 3
4p

( p
q
− θ) .

Hence, setting g = ∑k
i=1 r i p′i and p′ = pg, we get

5
8
( p
q
− θ) < p

α′
− p′

q′
< 3

4
( p
q
− θ) .

Hence, using (2.6), we get

(2.8)
1
2
( p
q
− θ) < p

q
− p′

q′
< 7
8
( p
q
− θ) .

Now, sinceQ is continuous, there exists an idempotent e inQ such that NQ(e) = 1/q′,
and since p′i/q′ < NQ( f (i)11 ) and Q is simple and injective, we get p′i ⋅ e ≲ f (i)11 for
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i = 1, . . . , k. We can assume that e ≤ f (1)11 . _erefore we can build a system ofmatrix
units

{h(i1 , i2)( j1 , j2),(u1 ,u2) ∶ 1 ≤ i1 , i2 ≤ k, 1 ≤ j1 ≤ r i1 , 1 ≤ j2 ≤ r i2 , 1 ≤ u1 ≤ p′i1 , 1 ≤ u2 ≤ p′i2} ,

with
h(i1 , i2)( j1 , j2),(u1 ,u2)h

(i′1 , i
′

2)
( j′1 , j′2),(u′1 ,u′2)

= δ i2 , i′1 ⋅ δ j2 , j′1 ⋅ δu2 ,u′1 ⋅ h
(i1 , i′2)
( j1 , j′2),(u1 ,u′2)

,

such that
e = h(1,1)(1,1),(1,1) ,

{h(i , i)(1,1),(u1 ,u2) ∶ 1 ≤ u1 , u2 ≤ p′i} is a system of matrix units inside f (i)11 Q f (i)11 for all i,
and

h(i , i)( j1 , j2),(u1 ,u2) = f
(i)
j1 ,1 h

(i , i)
(1,1),(u1 ,u2) f

(i)
1, j2

for i = 1, . . . , k, 1 ≤ j1 , j2 ≤ r i , and 1 ≤ u1 , u2 ≤ p′i . To build such a system of matrix
units, we proceed as follows. First we construct a family

{h(1, i)(1,1),(1,u) , h
(i ,1)
(1,1),(u ,1) ∶ 1 ≤ u ≤ p′i}

so that

h(1, i)(1,1),(1,u)h
(i ,1)
(1,1),(u ,1) = h(1,1)(1,1),(1,1) = e ,

eh(1, i)(1,1),(1,u) = h(1, i)(1,1),(1,u) ,

h(i ,1)(1,1),(u ,1)e = h(i ,1)(1,1),(u ,1) ,

and such that h(i , i)(1,1),(u ,u) ∶= h(i ,1)(1,1),(u ,1)h
(1, i)
(1,1),(1,u) are pairwise orthogonal idempotents

inside f (i)11 Q f (i)11 for all i. _en deûne, for 1 ≤ i ≤ k, 1 ≤ j ≤ r i , and 1 ≤ u ≤ p′i ,

h(i ,1)( j,1),(u ,1) = f
(i)
j,1 ⋅ h(i ,1)(1,1),(u ,1) , h(1, i)(1, j),(1,u) = h(1, i)(1,1),(1,u) ⋅ f

(i)
1, j .

Finally, for 1 ≤ i1 , i2 ≤ k, 1 ≤ j1 ≤ r i1 , 1 ≤ j2 ≤ r i2 , 1 ≤ u1 ≤ p′i1 , 1 ≤ u2 ≤ p′i2 , set

h(i1 , i2)( j1 , j2),(u1 ,u2) = h(i1 ,1)( j1 ,1),(u1 ,1) ⋅ h
(1, i2)
(1, j2),(1,u2) .

It is straightforward to verify that the family {h(i1 , i2)( j1 , j2),(u1 ,u2)} satisûes the required
properties.

Recalling that g = ∑k
i=1 r i p′i ,we get that {h

(i1 , i2)
( j1 , j2),(u1 ,u2)} is a systemof g× g-matrix

units inside fQ f , and we can now deûne an algebra homomorphism ρ′∶Mp′(K) =
Mp(K)⊗Mg(K)→ Q by the rule

ρ′(e i j ⊗ e(i1 , i2)( j1 , j2),(u1 ,u2)) = ψ(e i1)h(i1 , i2)( j1 , j2),(u1 ,u2)ψ(e1 j),

where {e(i1 , i2)( j1 , j2),(u1 ,u2)} is a complete system ofmatrix units in Mg(K).
It remains to verify properties (1)–(6).
(1) We have NQ(ρ′(1)) = pgNQ(e) = p′

q′ , as desired.
(2) _is follows from (2.8).
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(3) Let x ∈ ρ(1)Aρ(1). _en we can write

x = ρ(1)x′ρ(1) =
p

∑
a ,b=1

ρ(ea1) f ′ρ(e1a)x′ρ(eb1) f ′ρ(e1b),

where x′ ∈ A. Now by (b) we can approximate each ρ(e1a), ρ(eb1) by an element
ofA:

NQ(ρ(e1a) − x1a) < ε for x1a ∈ A,
NQ(ρ(eb1) − xb1) < ε for xb1 ∈ A.

_us we can consider the element

x̃ =
p

∑
a ,b=1

ψ(ea1) f x1ax′xb1 f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xab∈ fA f

ψ(e1b) ∈ A,

so that NQ(x − x̃) < p2(4K(p) + 2)ε < 5K(p)p2ε (using that K(p) ≥ 4 for the last
inequality). Now we can write each xab in the form

xab =
k

∑
i=1

r i
∑
j, l=1

λ(a, b)(i)j l f
(i)
j l

for some scalars λ(a, b)(i)j l ∈ K.
Take

y =
p

∑
a ,b=1

eab ⊗ (
k

∑
i=1

r i
∑
j, l=1

λ(a, b)(i)j l (
p′i
∑
u=1
e(i , i)( j, l),(u ,u))) ∈ Mp′(K).

Writing cb i l = ∑p
a=1∑

r i
j=1 ψ(ea1)λ(a, b)

(i)
j l f

(i)
j1 and db i l = f (i)1 l ψ(e1b), we have

NQ(x̃ − ρ′(y)) = NQ(
p

∑
b=1

k

∑
i=1

r i
∑
l=1
cb i l( f (i)11 −

p′i
∑
u=1

h(i , i)(1,1),(u ,u))db i l)

≤ p(
k

∑
i=1

r i(NQ( f (i)11 ) − NQ(
p′i
∑
u=1

h(i , i)(1,1),(u ,u))))

= p(
k

∑
i=1

r i(NQ( f (i)11 ) − p′i
q′

))

= p(
k

∑
i=1

r iNQ( f (i)11 )) − p∑
k
i=1 r i p′i
q′

= p[
k

∑
i=1

r iNQ( f (i)11 ) − 1
q
] + ( p

q
− p′

q′
) .

Using (2.5) and (2.8), we get

NQ(x̃ − ρ′(y)) < K(p)εp + 7
8
( p
q
− θ)

≤ 1
48p

( p
q
− θ) + 7

8
( p
q
− θ) ≤ 43

48
( p
q
− θ) .
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Putting everything together,

NQ(x − ρ′(y)) < 5K(p)p2ε + 43
48

( p
q
− θ) < 5

48
( p
q
− θ) + 43

48
( p
q
− θ) = p

q
− θ .

(4) Suppose now that x = ρ(z) for z = ∑p
a ,b=1 µabeab ∈ Mp(K), with µab ∈ K.

_en we can see that, using the same construction of y given in (3), we obtain

y = z ⊗
k

∑
i=1

r i
∑
j=1

p′i
∑
u=1
e(i , i)( j, j),(u ,u) = γ(z).

To conclude the proof, just take ε′ > 0 satisfying ε′ < 1
48K(p′)p′2 (

p′

q′ −θ) and, using
_eorem 2.2 (iii), consider amatricial subalgebraA′ such that

{ρ′(e′i j) ∣ i , j = 1, . . . , p′} ⊆ε′ A′

and span{x1 , . . . , xm , xm+1} ⊆ε′ A′.

3 D-rings

We now consider a generalization of _eorem 2.2 to D-rings, where D is a division
ring. We have not found a reasonable analogue of the local condition (iii) in this
setting, but we are able to extend condition (ii).

_e reasonwe consider this generalization is thequestion raised byElek and Jaikin-
Zapirain of whether the completion of the ∗-regular closure of the group algebra of a
countable amenable ICC-group is isomorphic to either Mn(D), n ≥ 1, or to MD , for
some division ring D. HereMD is the completion of limÐ→n

M2n(D) with respect to its
unique rank function.

_roughout this section, D will denote a division ring, and K will stand for the
center of D.
A D-ring is a unital ring R together with a unital ring homomorphism ι∶D → R.

A morphism of D-rings R1 → R2 is a ring homomorphism φ∶R1 → R2 such that
ι2 = φ ○ ι1. Amatricial D-ring is a D-ring A that is isomorphic as a D-ring to a ûnite
direct product Mn1(D)× ⋅ ⋅ ⋅×Mnr(D), where the structure of the D-ring of the latter
is the canonical one. A D-ring A is an ultramatricial D-ring if it is isomorphic as
D-ring to a direct limit of a sequence (An , φn) of matricial D-rings An and D-ring
homomorphisms φn ∶An → An+1.

We start with a simple lemma.

Lemma 3.1 _ere is a unique rank function S on the (possibly non regular) simple
D-ring D ⊗K MK , and D ⊗K (limÐ→n

M2n(K)) ≅ limÐ→n
M2n(D) is dense in D ⊗K MK

with respect to the S-metric.

Proof We denote by NMK the unique rank function on MK .
_e ring D⊗KMK is simple by [5, Corollary 7.1.3]. Let x = ∑k

i=1 d i⊗x i ∈ D⊗KMK
and ε > 0. Let y i ∈ limÐ→n

M2n(K) be such that NMK (x i − y i) < ε
k , and set y ∶=
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∑k
i=1 d i ⊗ y i . _en, for any rank function S on D ⊗K MK , we have

S(x − y) ≤
k

∑
i=1

S(1⊗ (x i − y i)) =
k

∑
i=1

NMK (x i − y i) < ε.

Since there is a unique rank function on limÐ→n
M2n(D), this shows at once that there

is a unique rank function S on D ⊗K MK , and that D ⊗K (limÐ→n
M2n(K)) is dense in

D ⊗K MK with respect to the S-metric.

_eorem 3.2 Let A be an ultramatricial D-ring, and let N be an extremal pseudo-
rank function on A such that the completion Q of A with respect to N is a continuous
factor. _en there is an isomorphism of D-rings Q ≅MD .

Proof We can assume that A = limÐ→n
(An , φn), where each An is amatricial D-ring

and each map φn ∶An → An+1 is an injectivemorphism of D-rings.
WriteBn = CAn(D) for the centralizer of D inAn . _enBn is amatricial K-alge-

bra and, since K is the center of D, we have An ≅ D ⊗K Bn . Moreover, we have
φn(Bn) ⊆ Bn+1 for all n ≥ 1, andA ≅ D ⊗K B, where

B = CA(D) = limÐ→
n

(Bn , (φn)∣Bn)

is an ultramatricial K-algebra.
It is not hard now to show that the restriction map S → SB deûnes an aõne

homeomorphism P(A) ≅ P(B). Consequently, the restriction NB of N to B is
an extremal pseudo-rank function on B. Moreover, since N(A) = N(B), it fol-
lows that N(B) is a dense subset of the unit interval, which implies that the com-
pletion R of B in the NB-metric is a continuous factor over K. Now it follows from
_eorem 2.2 that there is a K-algebra isomorphism ψ′∶MK → R, which induces an
isomorphism of D-rings ψ ∶= idD ⊗ ψ′∶D ⊗K MK → D ⊗K R. Since A ⊆ D ⊗K
R = ψ(D ⊗K MK) ⊆ Q, it follows that ψ(D ⊗K MK) is dense in Q. By Lemma 3.1,
ψ(D ⊗K (limÐ→n

M2n(K))) is dense in ψ(D ⊗K MK) with respect to the restriction of
NQ to it, therefore ψ(D ⊗K (limÐ→n

M2n(K))) is dense in Q. Hence, the restriction of
ψ to D ⊗K (limÐ→n

M2n(K)) ≅ limÐ→n
M2n(D) gives a rank-preserving isomorphism of

D-rings from limÐ→n
M2n(D) onto a dense D-subring of Q, and thus it can be uniquely

extended to an isomorphism from MD onto Q.

4 Fields With Involution

In this section, we will consider the corresponding problem for ∗-algebras. Again,
themotivation comes from the theory of group algebras. If K is a subûeld ofC closed
under complex conjugation, andG is a countable discrete group, then there is anatural
involution on the group algebra K[G], and the completion of the ∗-regular closure
of K[G] in U(G) is a ∗-regular ring containing K[G] as a ∗-subalgebra. It would
be thus desirable to ûnd conditions under which this completion is ∗-isomorphic
to MK , where MK is endowed with the involution induced from the involution on
limÐ→n

M2n(K), which is in turn obtained by endowing each algebra M2n(K) with the
conjugate-transpose involution.
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We recall some facts about ∗-regular rings and their completions (see for instance
[1, 3]). A ∗-regular ring is a regular ring endowed with a proper involution, that is,
an involution ∗ such that x∗x = 0 implies x = 0. _e involution is called positive
deûnite in case the condition ∑n

i=1 x∗i x i = 0 ⇒ x i = 0 for all i = 1, . . . , n holds for
each positive integer n. If R is a ∗-regular ring with positive deûnite involution, then
Mn(R), endowed with the ∗-transpose involution, is a ∗-regular ring.

We will work with ∗-algebras over a ûeld with positive deûnite involution (F , ∗).
_e involution on Mn(F) will always be the ∗-transpose involution.

_e ∗-algebra A is standard matricial if A = Mn(1)(F) × ⋅ ⋅ ⋅ × Mn(r)(F) for some
positive integers n(1), . . . , n(r). A standard map between two standard matricial
∗-algebras A, B is a block-diagonal ∗-homomorphism A → B [1, p. 232]. A stan-
dard ultramatricial ∗-algebra is a direct limit of a sequence A1

Φ1Ð→ A2
Φ2Ð→ A3

Φ3Ð→ ⋅ ⋅ ⋅
of standardmatricial ∗-algebras An and standardmaps Φn ∶An → An+1. An ultrama-
tricial ∗-algebra is a ∗-algebra that is ∗-isomorphic to the direct limit of a sequence
of standard matricial ∗-algebras An and ∗-algebra maps Φn ∶An → An+1. Let A be
a ∗-algebra that is ∗-isomorphic to a standard matricial algebra, through a ∗-iso-
morphism γ∶A → Mn(1)(F) × ⋅ ⋅ ⋅ × Mn(r)(F). _en we say that a projection, i.e.,
a self-adjoint idempotent, p in A is standard (with respect to γ) in case, for each
i = 1, 2, . . . , r, the i-th component γ(p)i of γ(p) is a diagonal projection in Mn(i)(F).

Two idempotents e , f ∈ R are equivalent, written e ∼ f , if there are x ∈ eR f and
y ∈ f Re such that e = xy, f = yx. If e , f are projections of a ∗-ring R, then we say
that e is ∗-equivalent to f , written e ∗∼ f , if there is x ∈ eR f such that e = xx∗ and
f = x∗x.

If R is a ∗-regular ring and x ∈ R, then there exist unique projections LP(x) and
RP(x), called the le� and the right projections of x, such that xR = LP(x)R and
Rx = R ⋅ RP(x). Moreover, with e = LP(x) and f = RP(x), there exists a unique
element y ∈ f Re, the relative inverse of x, such that xy = e and yx = f . We will
denote the relative inverse of x by x.
A ∗-regular ring R satisûes the condition LP ∗∼ RP in case LP(x) ∗∼ RP(x) holds

for each x ∈ R. Observe that R satisûes LP ∗∼ RP if and only if equivalent projections
of R are ∗-equivalent [1, Lemma 1.1]. In general, this condition is not satisûed for a
∗-regular ring, but many ∗-regular rings satisfy it. It is worth mentioning that for a
ûeld F with positive deûnite involution, Mn(F) satisûes LP ∗∼ RP for all n ≥ 1 if and
only if F is ∗-Pythagorean [12,_eorem 4.9] (see also [11,_eorem 4.5], [1,_eorem
1.12]).

_e following result is relevant for our purposes.

_eorem 4.1 ([1,_eorem 3.5]) Let (F , ∗) be a ûeldwith positive deûnite involution,
letA be a standard ultramatricial ∗-algebra, and let N be a pseudo-rank function onA.
_en the type II part of the N-completion ofA is a ∗-regular ring satisfying LP ∗∼ RP.

As a consequence of this result, the ∗-algebraMF always satisûes LP ∗∼ RP, inde-
pendently of whether the ûeld F is ∗-Pythagorean or not.
For the convenience of the reader, we collect some properties of a pseudo-rank

function on a ∗-regular ring. For an element r of a ∗-regular ring R we denote by r
the relative inverse of r.
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Lemma 4.2 Let N be a pseudo-rank function on a ∗-regular ring R. _e following
hold.

(i) _e involution is isometric, that is, N(r∗) = N(r), for each r ∈ R.
(ii) N(r − s) ≤ 3N(r − s), for all r, s ∈ R.
(iii) N(LP(r) − LP(s)) ≤ 4N(r − s), and N(RP(r) − RP(s)) ≤ 4N(r − s), for all

r, s ∈ R.
(iv) Suppose that e1 , e2 , f1 , f2 are projections in R such that f1

∗∼ f2 and N(e i − f i) ≤ ε,
for i = 1, 2. _en there exist projections e′i ≤ e i such that e′1

∗∼ e′2 and N(e i − e′i) ≤
5ε for i = 1, 2.

Proof (i) See the proof of [10, Proposition 1] or [17, Proposition 5.12].
(ii) In [4, p. 310], itwas shown that N(r−s) ≤ 19N(r−s), and the authors comment

that K. R. Goodearl has reduced 19 to 5. Here we show that indeed it can be reduced
to 3.

Let e = rr, f = rr, g = ss, and h = ss. Clearly r∗r + (1 − f ) and ss∗ + (1 − g) are
invertible in R and so

(4.1) N(r − s) = N((r∗r + (1 − f ))(r − s)(ss∗ + (1 − g))) .

On the other hand, we have

N((r∗r + (1 − f ))(r − s)(ss∗ + (1 − g)))
= N(r∗ss∗ − r∗rs∗ + r∗(1 − g) − (1 − f )s∗)
≤ N(r∗ss∗ − r∗rs∗) + N(r∗(1 − g) − (1 − f )s∗)
≤ N(s − r) + N(r∗ − s∗) + N( f s∗ − r∗g)
= 2N(s − r) + N( f (s∗ − r∗)g) ≤ 3N(r − s).

By (4.1), we get N(r − s) ≤ 3N(r − s).
(iii) Using (ii), we get

N(RP(r) − RP(s)) = N(rr − ss) ≤ N((r − s)r) + N(s(r − s))
≤ 3N(r − s) + N(r − s) = 4N(r − s).

_e proof for LP is similar.
(iv) We follow the idea in the proof of [1, Lemma 2.6]. Let w ∈ f1R f2 be a partial

isometry such that f1 = ww∗ and f2 = w∗w. Consider the self-adjoint element

a = e1 − e1ww∗e1

and set p1 ∶= LP(a) = RP(a) ≤ e1. _en N(p1) = N(a) = N(e1 − e1 f1e1) ≤ ε. Set
p′1 ∶= e1 − p1. _en N(e1 − p′1) ≤ ε and, since p′1ap′1 = 0, we have p′1 = w′(w′)∗, where
w′ ∶= p′1w.

Now observe that (w′)∗w′ = w∗p′1w ≤ w∗w = f2. Consider the elements

b = e2 − e2(w′)∗w′e2 , e′′2 = LP(b) = RP(b).
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We have e′′2 ≤ e2 and
N(e′′2 ) = N(b) = N(e2 − e2(w′)∗w′e2) ≤ N(e2 − (w′)∗w′)

≤ N(e2 − f2) + N(w∗w −w∗p′1w)
≤ ε + N( f1 − p′1)
≤ ε + N( f1 − e1) + N(e1 − p′1) ≤ 3ε.

Set e′2 = e2 − e′′2 . As before, we have e′2 = (w′′)∗w′′, where w′′ = w′e′2 = p′1we′2 and
N(e2 − e′2) = N(e′′2 ) ≤ 3ε. Write e′1 = w′′(w′′)∗. _en e′1 ≤ p′1 ≤ e1, e′1

∗∼ e′2, and
N(e1 − e′1) = N(e1 − p′1) + N(p′1 − e′1) ≤ ε + N(w′ f2(w′)∗ −w′e′2(w′)∗)

≤ ε + N( f2 − e2) + N(e2 − e′2) ≤ 5ε.

Lemma 4.3 Let R be a ∗-regular ring and assume that R is complete with respect to
a rank function N. _en R satisûes LP ∗∼ RP if and only if, given equivalent projections
p, q ∈ R and ε > 0, there exist subprojections p′ ≤ p and q′ ≤ q such that p′ ∗∼ q′ and
N(p − p′) < ε, N(q − q′) < ε.

Proof _e “only if ” direction follows trivially from [1, Lemma 1.1].
To show the “if ” direction, suppose that p and q are equivalent projections of R.

Assume we have built, for some n ≥ 1, orthogonal projections p1 , . . . , pn ≤ p and
q1 , . . . , qn ≤ q such that p i

∗∼ q i , for i = 1, . . . , n, and N(p − (∑n
i=1 p i)) < 2−n ,

N(q − (∑n
i=1 q i)) < 2−n . Set p′ ∶= p − (∑n

i=1 p i) and q′ = q − (∑n
i=1 q i). _en by

[15, _eorems 19.7 and 4.14] p′ ∼ q′, so that there are subprojections pn+1 ≤ p′ and
qn+1 ≤ q′ such that pn+1

∗∼ qn+1 and N(p′ − pn+1) < 2−n−1 and N(q′ − qn+1) < 2−n−1.
_erefore we can build sequences {pn} and {qn} of orthogonal subprojections of p
and q, respectively, such that pn

∗∼ qn ,N(p−(∑n
i=1 p i)) < 2−n , andN(q−(∑n

i=1 q i)) <
2−n for all n ≥ 1. Let wn ∈ pnRqn be partial isometries such that pn = wnw∗

n and
qn = w∗

nwn . _en

N(wn) ≤ N(pn) ≤ N( p − (
n−1

∑
i=1

p i)) < 2−n+1 ,

and it follows that the sequence {∑n
i=1 w i}n converges to a partial isometry w ∈ pRq

such that p = ww∗ and q = w∗w. Hence, by [1, Lemma 1.1], R satisûes condition
LP ∗∼ RP .

In order to state the local condition in our main result of this section, we need the
following somewhat technical deûnition.

Deûnition 4.4 Let R be a unital ∗-regular ring with pseudo-rank function N , and
let A be a unital ∗-subalgebra that is ∗-isomorphic to a standardmatricial ∗-algebra.
We say that a projection p ∈ A is hereditarily quasi-standard if
(i) p is ∗-equivalent in A to a standard projection ofA,
(ii) for each subprojection p′ ≤ p, p′ ∈ A, and each ε > 0 there exists a unital ∗-sub-

algebra A′ of R and a projection p′′ ∈ A′ satisfying the following properties:
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(a) A′ is ∗-isomorphic to a standardmatricial ∗-algebra,
(b) p′′ is ∗-equivalent in A′ to a standard projection ofA′,
(c) p′′ ≤ p′ and N(p′ − p′′) < ε,
(d) A ⊆ A′.

We can now state the following analogue of_eorem 2.2. By a continuous ∗-factor
over F wemean a ∗-regular ringQ that is a ∗-algebra over F and is a continuous factor
in the sense of Section 2.

_eorem 4.5 Let (F , ∗) be a ûeldwith positive deûnite involution. Let Q be a contin-
uous ∗-factor over F, and assume that there exists a dense subalgebra (with respect to the
NQ-metric topology) Q0 ⊆ Q of countable F-dimension. _e following are equivalent.
(i) Q ≅MF as ∗-algebras.
(ii) Q is isomorphic as a ∗-algebra toB for a certain standard ultramatricial ∗-algebra

B, where the completion of B is taken with respect to the metric induced by an
extremal pseudo-rank function on B.

(iii) For every ε > 0, elements x1 , . . . , xn ∈ Q, and projections p1 , p2 ∈ Q, there exist
a ∗-subalgebra A of Q that is ∗-isomorphic to a standard matricial ∗-algebra,
elements y1 , . . . , yn ∈ A, and hereditarily quasi-standard projections q1 , q2 ∈ A

such that

NQ(p j − q j) < ε, j = 1, 2,
NQ(x i − y i) < ε, i = 1, . . . , n.

Proof Clearly, (i)⇒ (ii).
(ii)⇒ (iii). Write B = limÐ→n

(Bn ,Φn) as a direct limit of a sequence of standard
matricial ∗-algebras Bn and standardmaps Φn ∶Bn → Bn+1. Write Φ ji ∶Bi → B j for
the composition maps Φ j−1 ○ ⋅ ⋅ ⋅ ○ Φ i , for i < j, and write θ i ∶Bi → B ≅ Q for the
canonical map. We identify Q with B.

We will show that the desired ∗-subalgebraA satisfying the required conditions is
of the form θ j(B j). Since those algebras form an increasing sequence whose union
is dense in the NQ-metric topology, we see that it is enough to deal only with the
projections, and indeed that it is enough to deal with a single projection. Let p be a
projection in Q and let ε > 0.

Now there is some i ≥ 1 and an element x ∈ Bi such that NQ(p − θ i(x)) < ε/8.
Write p1 ∶= LP(x) ∈ Bi . By Lemma 4.2 (iii), we have

NQ(p − θ i(p1)) = NQ(LP(p) − θ i(LP(x))) = NQ(LP(p) − LP(θ i(x)))

≤ 4NQ(p − θ i(x)) <
ε
2
,

so that NQ(p − θ i(p1)) < ε/2.
_ere exists a standard projection g inBi such that p1 ∼ g inBi . By the proof of [1,

_eorem 3.5], there are j > i and projections p′1 , g′ ∈ B j such that p′1 ≤ Φ ji(p1), g′ ≤
Φ ji(g), g′ is a standard projection, p′1

∗∼ g′, andmoreover NQ(θ i(p1)−θ j(p′1)) < ε/2
and NQ(θ i(g)− θ j(g′)) < ε/2. _erefore, p′1 is ∗-equivalent to a standard projection
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in B j , and,moreover,

NQ(p − θ j(p′1)) ≤ NQ(p − θ i(p1)) + NQ(θ i(p1) − θ j(p′1)) < ε/2 + ε/2 = ε.
Now take A ∶= θ j(B j) and q ∶= θ j(p′1). Clearly, property (i) in Deûnition 4.4 is
satisûed. To show property (ii), take a subprojection θ j(p′) of q = θ j(p′1), where
p′ is a subprojection of p′1, and δ > 0. _en we use the same argument as above,
but now applied to the projection p′ of B j and to δ > 0. We obtain k ≥ j and a
projection θk(p′′) in the ∗-subalgebra θk(Bk) such that the pair (θk(p′), θk(Bk))
satisûes properties (a)–(d) in Deûnition 4.4 (with ε replaced with δ).

(iii)⇒ (i). We ûrst show that Q satisûes LP ∗∼ RP. Let p1 , p2 be equivalent pro-
jections of Q and ε > 0. Choose x ∈ p1Qp2 and y ∈ p2Qp1 such that p1 = xy and
p2 = yx. Observe that necessarily y = x, the relative inverse of x in Q. By (iii), there
exists a ∗-subalgebraA ofQ,which is ∗-isomorphic to a standardmatricial ∗-algebra,
projections q1 , q2 ∈ A such that NQ(p i − q i) < ε, and q i

∗∼ e i in A, i = 1, 2, for some
standard projections e1 , e2 ∈ A, and an element x1 ∈ A such that NQ(x−x1) < ε. Now
set x′1 ∶= q1x1q2 ∈ A, and note that

NQ(x − x′1) ≤ NQ(p1xp2 − q1xq2) + NQ(q1xq2 − q1x1q2) < 2ε + ε = 3ε.
It follows from Lemma 4.2 (iii) that, with q′′1 ∶= LP(x′1) ∈ A and q′′2 ∶= RP(x′1) ∈ A, we
have NQ(p i − q′′i ) < 12ε, q′′i ≤ q i , for i = 1, 2. Moreover, we have

q′′1 = LP(x′1) ∼ RP(x′1) = q′′2 .
In addition, we get NQ(q i − q′′i ) ≤ NQ(q i − p i)+NQ(p i − q′′i ) < ε + 12ε = 13ε. Write
η = 13ε. Since q i

∗∼ e i in A, in particular we obtain projections e′′i ≤ e i such that
e′′1 ∼ e′′2 (in A) and NQ(e i − e′′i ) < η. Now A is a standard matricial ∗-algebra, and
the restriction of NQ to A is a convex combination of the normalized rank functions
on the diòerent simple components ofA, so the above information enables us to build
standard projections e′i ≤ e i such that e′1

∗∼ e′2, and NQ(e i − e′i) < η, for i = 1, 2. _is
in turn gives us projections q′i ≤ q i (through the ∗-equivalences q i

∗∼ e i) such that
q′1

∗∼ q′2 and NQ(q i − q′i) < η for i = 1, 2.
_e last step is to transfer these to p1 , p2. For this, observe that

NQ(p i − q′i) ≤ NQ(p i − q i) + NQ(q i − q′i) < ε + η.
Since,moreover, q′1 and q′2 are ∗-equivalent, it follows from Lemma 4.2 (iv) that there
exist projections p′i ≤ p i such that p′1

∗∼ p′2 and NQ(p i − p′i) < 5(ε + η) = 70ε. Now
we can apply Lemma 4.3 to conclude that Q satisûes LP ∗∼ RP.

Now (i) is shown by using the samemethod employed in Section 2. We only need
to prove a variant of Lemma 2.4 with ∗-algebra homomorphisms ρ i ∶Mp i (F) → Q

instead of just algebra homomorphisms. For this, a new version of Lemmas 2.5 and
2.6 is required.

Lemma 4.6 Let p be a positive integer. _en there exists a constantK∗(p), depending
only on p, such that for any ûeld with involution F, for any ε > 0, for any pair A ⊆ B,
where B is a unital ∗-algebra over F, and A is a unital ∗-regular subalgebra of B, for
any pseudo-rank function N onB such that N(b∗) = N(b) for all b ∈ B, and for every
∗-algebra homomorphism ρ∶Mp(F)→ B such that {ρ(e i j) ∣ i , j = 1, . . . , p} ⊆ε Awith
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respect to the N-metric, where e i j denote the canonical matrix units in Mp(F), there
exists a ∗-algebra homomorphism ψ∶Mp(F)→ A such that

N(ρ(e i j) − ψ(e i j)) < K∗(p)ε for 1 ≤, i , j ≤ p.

If, in addition, we are given a projection f ∈ A such that N(ρ(e11)− f ) < ε, then the
map ψ can be built with the additional property that ψ(e11) ≤ f .

Proof _e proof follows the same steps as the proof of Lemma 2.5. _ere is only an
additional degree of approximation due to the fact thatwe need projections instead of
idempotents. Proceeding by induction on p, just as in the proof of Lemma 2.5,we start
with ∗-matrix units {x i j} for 1 ≤ i , j ≤ p − 1, so that x ji = x∗i j for all i , j, and we need
to deûne new elements y1i , for i = 1, . . . , p, so that the family y i j = y∗1i y1 j , 1 ≤ i , j ≤ p,
is the desired new family of ∗-matrix units. To this end, one only needs to replace the
idempotent g found in that proof by the projection LP(g). Using Lemma 4.2, one can
easily control the corresponding ranks.

_e last part is proved by the same kind of induction, starting with ψ(1) = f for
the case p = 1.

Lemma 4.7 Assume that Q satisûes _eorem 4.5 (iii). Let θ be a real number such
that 0 < θ < 1 and let {xn}n be a K-basis of Q0. Let p be a positive integer such
that there exist a ∗-algebra homomorphism ρ∶Mp(F) → Q, a ∗-subalgebra A ⊆ Q

that is ∗-isomorphic to a standard matricial ∗-algebra, a hereditarily quasi-standard
projection g ∈ A, a positive integer m, and ε > 0 such that
(a) NQ(ρ(1)) = p

q > θ for some positive integer q,
(b) NQ(ρ(e11) − g) < ε, where e i j are the canonical matrix units ofMp(F),
(c) {ρ(e i j) ∣ i , j = 1, . . . , p} ⊆ε A, and span{x1 , . . . , xm} ⊆ε A,
(d) ε < 1

48K∗(p)p2 (
p
q − θ) .

_en there exist positive integers p′ , t, q′, and a real number ε′ > 0 with p′ = tp, a
∗-algebra homomorphism ρ′∶Mp′(F) → Q, a ∗-subalgebra A′ ⊆ Q, which is ∗-iso-
morphic to a standardmatricial ∗-algebra, and a hereditarily quasi-standard projection
g′ ∈ A′, such that the following conditions hold:
(1) NQ(ρ′(1)) = p′/q′.
(2) 0 < p′

q′ − θ < 1
2 (

p
q − θ).

(3) For each x ∈ ρ(1)Aρ(1) there exists y ∈ Mp′(F) such that NQ(x − ρ′(y)) < p
q − θ.

(4) For each z ∈ Mp(F), we have NQ( ρ(z) − ρ′(γ(z))) < p
q − θ , where

γ∶Mp(F)→ Mp′(F) = Mp(F)⊗Mt(F)
is the canonical unital ∗-homomorphism sending z to z ⊗ 1t .

(5) NQ(ρ′(e′11) − g′) < ε′, where e′i j are the canonical matrix units ofMp′(F).
(6) {ρ′(e′i j) ∣ i , j = 1, . . . , p′} ⊆ε′ A′, and span{x1 , . . . , xm , xm+1} ⊆ε′ A′.
(7) ε′ < 1

48K∗(p′)p′2 (
p′

q′ − θ) .

Proof _e proof is very similar to the proof of Lemma 2.6. We only indicate the
points where the proof needs to bemodiûed.
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We denote by e i j , for 1 ≤ i , j ≤ p, the canonical matrix units in Mp(F). Note that
e∗i j = e ji for all i , j. Set f ′ ∶= ρ(e11), which is a projection in Q with NQ( f ′) = 1/q. By
hypothesis, there is a hereditarily quasi-standard projection g in the ∗-subalgebra A
such that NQ( f ′−g) < ε. Now by Lemma 4.6 there exists a ∗-algebra homomorphism
ψ∶Mp(F) → A such that ψ(e11) ≤ g and NQ(ρ(e i j) − ψ(e i j)) < K∗(p)ε for all i , j.
Now by Deûnition 4.4 (ii), there exists another ∗-subalgebraA′ of Q, which is ∗-iso-
morphic to a standard matricial ∗-algebra and contains A and a projection f ∈ A′,
which is ∗-equivalent in A′ to a standard projection of A′, such that f ≤ ψ(e11) and
NQ(ψ(e11) − f ) < K∗(p)ε − µ, where

µ = max{NQ(ρ(e i j) − ψ(e i j)) ∶ i , j = 1, . . . , p}.
Now, setting ψ′(e i j) = ψ(e i1) fψ(e1 j), we obtain that ψ′ is a ∗-algebra homomor-
phism from Mp(F) to A′, and that

NQ(ρ(e i j) − ψ′(e i j)) < µ + (K∗(p)ε − µ) = K∗(p)ε,
so that, a�er changing notation, wemay assume that f = ψ(e11), and that f is ∗-equi-
valent in A to a standard projection ofA.

Since A is a standard matricial ∗-algebra, we can write f = f1 + ⋅ ⋅ ⋅ + fk , where
f1 , f2 , . . . , fk are nonzeromutually orthogonal projections belonging to diòerent sim-
ple factors ofA. Since f is ∗-equivalent inA to a standard projection, there exists, for
each 1 ≤ i ≤ k, a set of matrix units { f (i)j l ∶ 1 ≤ j, l ≤ r i} inside f iA f i such that each
f (i)j j is aminimal projection in the simple factor to which f i belongs, such that

r i
∑
j=1
f (i)j j = f i

for i = 1, . . . , k and,moreover, ( f (i)j l )∗ = f (i)l j for all i , j, l .
Now the proof follows the same steps as the proof of Lemma 2.6. _e idempotent e

built in that proof can be replaced now by a projection and, since Q satisûes LP ∗∼ RP,
we have that p′i ⋅ e is ∗-equivalent to a subprojection of f (i)11 . Using this and the fact
that ( f (i)j l )∗ = f (i)l j for all i , j, l , one builds a system ofmatrix units inside fQ f

{h(i1 , i2)( j1 , j2),(u1 ,u2) ∶ 1 ≤ i1 , i2 ≤ k, 1 ≤ j1 ≤ r i1 , 1 ≤ j2 ≤ r i2 , 1 ≤ u1 ≤ p′i1 , 1 ≤ u2 ≤ p′i2} ,

satisfying all the conditions stated in the proof of Lemma 2.6, and in addition

(h(i1 , i2)( j1 , j2),(u1 ,u2))
∗ = h(i2 , i1)( j2 , j1),(u2 ,u1)

for all allowable indices.
We can now deûne a ∗-algebra homomorphism

ρ′∶Mp′(K) = Mp(K)⊗Mt(K)→ Q

by the rule
ρ′(e i j ⊗ e(i1 , i2)( j1 , j2),(u1 ,u2)) = ψ(e i1)h(i1 , i2)( j1 , j2),(u1 ,u2)ψ(e1 j),

where {e(i1 , i2)( j1 , j2),(u1 ,u2)} is a complete system of ∗-matrix units in Mt(K).
_e veriûcation of properties (1)–(7) is done in the same way, using _eorem

4.5(iii) to show that conditions (5) and (6) are satisûed.
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Lemma 4.7 enables us to build the sequence of ∗-algebra homomorphisms
ρ i ∶Mp i (F) → Q satisfying the properties stated in Lemma 2.4, and the same proof
gives a ∗-isomorphism from M to Q, as desired.

In case the base ûeldwith involution (F , ∗) is∗-Pythagorean,we can derive a result
which is completely analogous to _eorem 2.2.

Corollary 4.8 Let (F , ∗) be a ∗-Pythagorean ûeld with positive deûnite involution.
Let Q be a continuous ∗-factor over F, and assume that there exists a dense subalge-
bra (with respect to the NQ-metric topology) Q0 ⊆ Q of countable F-dimension. _e
following are equivalent.
(i) Q ≅MF as ∗-algebras.
(ii) Q is isomorphic as a ∗-algebra toB for a certain ultramatricial ∗-algebraB,where

the completion of B is taken with respect to the metric induced by an extremal
pseudo-rank function on B.

(iii) For every ε > 0 and elements x1 , . . . , xn ∈ Q, there exist a matricial ∗-subalgebra
A of Q, and elements y1 , . . . , yn ∈ A such that NQ(x i − y i) < ε for all i = 1, . . . , k.

Proof _is follows from _eorem 4.5, by using the fact that Mn(F) satisûes LP ∗∼
RP for all n [12, _eorem 4.9], [1, Proposition 3.3]. Note that, since Mn(F) satisûes
LP ∗∼ RP for all n, every projection of a standard matricial ∗-algebra is hereditarily
quasi-standard.
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