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Abstract

Given a fixed small graph H and a larger graph G, an H-factor is a collection of vertex-
disjoint subgraphs H′ ⊂ G, each isomorphic to H, that cover the vertices of G. If G is the
complete graph Kn equipped with independent U(0,1) edge weights, what is the lowest
total weight of an H-factor? This problem has previously been considered for H = K2,
for example. We show that if H contains a cycle, then the minimum weight is sharply
concentrated around some Ln = �(n1−1/d∗

) (where d∗ is the maximum 1-density of any
subgraph of H). Some of our results also hold for H-covers, where the copies of H are
not required to be vertex-disjoint.
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1. Introduction

1.1. Threshold and minimum-weight problems

Let Kn denote the complete graph on n vertices, equipped with independent and identically
distributed (i.i.d.) edge weights {Xe}e∈E(Kn). We will use the terms ‘weight’ and ‘cost’ inter-
changeably. For now, let the weight distribution be uniform on [0, 1]; it will turn out that, for
example, Exp(1) weights will give the same asymptotic behaviour. For details, see Section 2.4.
For any family F of subgraphs of Kn, there are two closely related problems.

Threshold. What is the smallest p such that an F ∈F is likely to appear in Gn,p? That is, if we
define the random variable

T := min
F∈F

max
e∈E(F)

Xe,

what is its distribution? Is it sharply concentrated around its expected value?

Minimum weight. The minimal weight of an F ∈F is a random variable

W := min
F∈F

∑
e∈E(F)

Xe.

What is its distribution? Is it sharply concentrated?
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Minimal H-factors and covers 137

This pair of problems has been studied for many families F , particularly for families where
each F ∈F is spanning, i.e. V(F) = V(Kn). Threshold problems are generally more well stud-
ied than the corresponding minimum-weight problems. It has been observed that for many
natural choices of F , the property of Gn,p containing some F ∈F exhibits the sharp threshold
phenomenon, that is, T is sharply concentrated around its mean. And for these families, this is
often true of the minimum weight W as well.

For instance, if F is the family of spanning trees, then T is the threshold for connectivity
in Gn,p, and W is the minimal cost of a spanning tree. It is well known that p = log n/n [3] is

the threshold function for connectivity, and W
P→ ζ (3) [6]. Closely related is the case when F

is the family of perfect matchings. Here the threshold is again p = log n/n [4] (in both cases

the minimal obstruction is local and it is the existence of an isolated vertex) and W
P→ ζ (2)

[1]. Similarly for Hamilton cycles, the threshold is p = ( log n + log log n)/n [9, 10, 12] and

W
P→ 2.04 . . . [16].
The goal of this paper is to consider the case when F is the family of either H-factors or

H-covers. An H-factor is a collection of vertex-disjoint subgraphs of Kn, each isomorphic to
H, which collectively cover all n vertices. H-covers are defined similarly, but the condition
that the subgraphs are vertex-disjoint is dropped. While the threshold version of the H-factor
problem has received much attention (e.g. [8], [13]), the minimum-weight version has (as far
as we are aware) not yet been studied. We prove the following, as well as a similar result for
partial factors, and weaker results for covers. These can all be found in Theorems 2 and 3.

Theorem 1. Assume H is a fixed graph with at least one cycle, d∗ > 1 is its maximum 1-density
as defined in Section 2.2, and OP is as defined in Section 2.1.

Let the random variable FH = FH(n) be the minimum weight of an H-factor on Kn

(equipped with i.i.d. uniform [0, 1] or exponential Exp(1) edge weights). Then there exists
M = �(n1−1/d∗

) such that |FH − M| = OP(M3/4), as n → ∞.

1.2. Proof strategy

Our proof follows a significantly different strategy compared to the study of the minimal
perfect matching. The condition that the graph H contains a cycle is equivalent to d∗ > 1.
For such d∗, note that the minimum weight of an H-factor scales like a positive power
of n. This scaling enables the following divide-and-conquer approach, which is the main novel
contribution of this paper. It is crucial for the two parts of our proof to work: the upper bound
and sharp concentration of FH .

A large partial H-factor Q, covering some n − k vertices, can be completed by adding the
lowest-weight H-factor Q′ on the remaining k vertices. Any such Q has a weight of order at
least n1−1/d∗

, while Q′ has a weight of order at most k1−1/d∗
. So if k � n, we can complete a

large partial factor at a relatively small extra cost. Note that for graphs H with d∗ = 1 (such as
H = K2) this does not work, since the minimum weight there instead scales like FH = �(1).

However, the Q above might have been picked based on the edge weights (e.g. as the lowest-
weight such partial factor) so that the weights of Q and Q′ are not independent. To avoid this
dependence, we employ a variant of a trick originally due to Walkup [15] in Section 4.3: split
every edge into a green and red edge, and put independent random weights on them, following
Exp(1 − t) and Exp(t) distributions respectively, for some small t > 0. This ensures indepen-
dence, and the minimum of the two weights on such a pair of edges follows the distribution
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138 J. DANIELSSON AND L. FEDERICO

Exp(1). We can now find a large partial factor on the green edges (at a slightly inflated cost),
and complete the factor using a small number of red edges (at a highly inflated cost).

For the upper bound, we use an upper bound on the cost of a partial factor (due to Ruciński
[13]), and recursively apply the red–green split to find larger partial factors on the remaining
vertices. To show concentration, we study a dual problem: For some L = L(n), how large is the
largest partial H-factor with weight at most L? We use Talagrand’s concentration inequality to
show that this size is sharply concentrated around a large value, and then the red–green split
trick to complete this large partial factor at small additional cost.

1.3. Structure of the paper

We begin with some definitions in Section 2. In Section 3 we state our main results
(Theorems 2 and 3) and one conjecture, and compare this with previous work. We then provide
proofs in Section 4 under the assumption that the edge weights follow an exponential distri-
bution. In Sections 4.1 and 4.2 we prove the lower bounds of Theorems 2 and 3 respectively.
Section 4.3 is devoted to the red–green split trick mentioned in Section 1.2. This trick is then
used in Sections 4.4 and 4.5, where we prove the upper bound and sharp concentration, respec-
tively, of Theorem 2. In Section 5 we show that the (asymptotic) distribution of the minimum
cost of an H-cover or H-factor is unchanged if the edge-weight distribution is changed from
exponential to uniform or some other distribution of pseudo-dimension 1. Finally, in Section 6
we discuss some pathological examples that illustrate why the equivalent of Theorem 2 cannot
hold for covers.

2. Definitions and notation

2.1. Notation

We will use
P→ to denote convergence in probability, and write X

d= Y if the random vari-
ables X and Y follow the same distribution. We will also use both standard and probabilistic
big-O notation. For sequences Xn, Yn of random variables, the notations Xn = OP(Yn) and
Yn = �P(Xn) are equivalent, and mean that for any ε > 0, there exists a C = C(ε) such that
P(|Xn| > C|Yn|) < ε for all sufficiently large n. Let Xn = �P(Yn) denote that Xn = OP(Yn) and
Xn = �P(Yn). Similarly, the notations Xn = oP(Yn), Yn = ωP(Xn) and Xn � Yn are equivalent,

and mean that Xn/Yn
P→ 0. When both Xn and Yn are deterministic, these definitions agree with

those for standard big-O notation.
For any graph G, we will use V(G) and E(G) to refer to its vertex set and edge set respec-

tively, while vG := |V(G)| and eG := |E(G)|. Since we will also frequently need to refer to
Euler’s number e ≈ 2.718, we will use a different font to avoid confusion: e instead of e. We
will also use exp (x) for the exponential function, and Exp(λ) for the exponential distribution.

2.2. Density and balanced graphs

For any graph H with at least two vertices we define its density as dH := eH/(vH − 1). This
quantity is sometimes called the 1-density (referring to the −1 in the denominator), but we
will refer to it simply as the density. We call H strictly balanced if dG < dH for every subgraph
G ⊂ H. Furthermore, let d∗ := max{dG : G ⊆ H}, and let H∗ ⊆ H be a subgraph which achieves
this maximal density d∗.
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2.3. Covers and factors

Definition 1. An (α, H)-cover Q is a collection of subgraphs of the complete graph Kn, each
of which is isomorphic to H, and such that at most αn vertices of Kn are not covered by any
copy H′ of H, that is, ∣∣∣∣∣

⋃
H′∈Q

V(H′)
∣∣∣∣∣ ≥ (1 − α)n.

An (α, H)-factor is an (α, H)-cover such that V(H′) and V(H′′) are disjoint for any two
H′, H′′ ∈ Q with H′ �= H′′. For α = 0 we will refer to (0, H)-covers and (0, H)-factors sim-
ply as H-covers and H-factors respectively. For α > 0, we will also refer to (α, H)-covers and
(α, H)-factors as partial covers and factors.

Note that by definition an H-factor over n vertices exists if and only if vH divides n, and
that for all the valid H-factors, |Q| = n/vH . From now on, we tacitly assume all results about
factors to hold only when vH divides n.

2.4. Edge-weight distribution

It turns out that the precise distribution of the (positive) edge weights does not matter – only
its asymptotic behaviour near 0. That is, our results will hold under the following condition: if
F is the common CDF of the edge weights, and F(x) = λx + o(x) for some λ > 0 as x → 0. This
property is sometimes referred to as F having pseudo-dimension 1. For distributions without
atoms, this corresponds to a density function tending to λ near 0. Some examples of such
distributions are Uniform U(0, 1), Exponential, and (for certain values of their parameters)
Gamma, Beta, and Chi-squared.

We will prove this later in Section 5, but for the sake of convenience we will until then
assume that the edge weights follow an exponential distribution Exp(1).

2.5. Minimum-weight covers and factors

We will also (with minor abuse of notation) let E(Q) := ⋃
H′∈Q E(H′) denote the (multi-)

set of edges that occur in some copy of H. For factors this is a set, while for covers this is a
multiset where the multiplicity of an edge counts how many copies of H it occurs in. For every
set Q of subgraphs of Kn, we define its weight as

WQ :=
∑

e∈E(Q)

Xe =
∑

H′∈Q

∑
e∈E(H′)

Xe.

Note that if an edge appears in two or more subgraphs H′ ∈ Q (copies of H), its weight is
counted again every time. We will let CH and FH denote the minimum weight of a partial
cover and factor, respectively:

CH(k, n) := min{WQ : Q is an(k/n, H)-cover},
FH(k, n) := min{WQ : Q is an(k/n, H)-factor}.

In other words, CH(k, n) (or FH(k, n)) is the minimal weight of a partial cover (or partial factor)
on Kn that leaves at most k vertices uncovered. We will also (for technical purposes) sometimes
need to keep track of upper bounds on the most expensive edge a (partial) cover or factor uses.
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We therefore define

Cε
H(k, n) := min

{
WQ : Q is an (k/n, H)-cover and max

e∈E(Q)
Xe ≤ ε

}
,

Fε
H(k, n) := min

{
WQ : Q is an (k/n, H)-factor and max

e∈E(Q)
Xe ≤ ε

}
.

Said cover (resp. factor) might not exist, in which case we set Cε
H(k, n) = ∞ (resp. Fε

H(k, n) =
∞). This means that ECε

H , EFε
H are not well-defined, and we will simply avoid them. As

we will show in the following subsection, the results from [8] allow us to determine a range
of values of ε such that Fε

H(k, n) < ∞ (and thus Cε
H(k, n) < ∞) with very high probability.

Note also that Cε
H, Fε

H are non-increasing (random) functions of ε: as ε increases, fewer edges
become ‘forbidden’, which can only decrease the minimal cost.

As every H-factor is also a valid H-cover, by definition CH(k, n) ≤ FH(k, n) and Cε
H(k, n) ≤

Fε
H(k, n). We will also let CH(n) := CH(0, n) and FH(n) := FH(0, n) denote the minimal

weight of an H-cover and H-factor, respectively, and similarly for Cε
H(n), Fε

H(n).

3. Results and conjectures

Our main results are the following two theorems, where we establish bounds on FH and CH ,
as well as prove that FH is a sharply concentrated random variable.

Theorem 2. For any graph H with d∗ > 1 and α ∈ [0, 1), there are constants 0 < a < b such
that

an1−1/d∗ ≤ FH(αn, n) ≤ bn1−1/d∗

with probability 1 − n−ω(1). Furthermore, FH(αn, n) is sharply concentrated around its median
value M:

|FH(αn, n) − M| = OP(M3/4).

Theorem 1 is a special case of this theorem, with α = 0. The two parts of the theorem are
more precise versions of the statements

FH(αn, n) = �P(n1−1/d∗
) and FH(αn, n)/E[FH(αn, n)]

P→ 1,

respectively. Note, however, that together they do not guarantee that the limit (in probability)
of FH(αn, n)/n1−1/d∗

exists.

Conjecture 1. For any graph H with at least two vertices, there is a continuous decreasing
function fH : [0, 1] →R such that

FH(αn, n)/n1−1/d∗ P→ fH(α).

See Remark 1 for a discussion of what this function fH might be.

As mentioned in the introduction, the corresponding limits do exist for several similar prob-
lems, including the travelling salesman and minimum-weight perfect matching (i.e. K2-factor)
problems. Theorems corresponding to Conjecture 1 for these two problems have been proved
using a local graph limit method in, for example, [11], [16] and [17]. In broad terms, what
these papers show is that the ‘local’ structure of the optimal solution is ‘locally’ determined.
That is, it is possible to determine with high certainty whether a given edge participates in the

https://doi.org/10.1017/jpr.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.72


Minimal H-factors and covers 141

optimal solution by only inspecting a large but bounded neighbourhood of it. Unfortunately,
this approach cannot be directly translated into our setting where H has density d∗ > 1, but it
would be interesting to see if Conjecture 1 holds for similar reasons.

Moving on to the related problem of covers, since CH ≤ FH we automatically get an upper
bound by Theorem 2 above. We also have the following lower bound.

Theorem 3. Assume H has at least two vertices and let 	 := maxH′⊂H (eH′/vH′ ). Then, for

any α ∈ [0, 1), we have CH(αn, n) = �P(n1−1/ max{dH ,	}).

Note the different exponents in the upper and lower bounds on CH . They match if (for
instance) H is balanced, so that dH = d∗. In Section 6 we discuss examples where H is not
balanced, only one of these bounds is sharp, and where CH is not sharply concentrated. We
might still conjecture that the H-cover equivalent of Theorem 2 or Conjecture 1 holds for
balanced H.

Although we work with graphs throughout this paper, in principle our proof method should
work for hypergraphs as well, under suitable conditions. However, some theorems we cite have
only been proved in the graph setting and would need to be adapted to work for hypergraphs;
see the discussion at the end of Section 3.1. Furthermore, we have not yet defined H-factors in
a hypergraph setting. For graphs, an H-factor consists of a collection of copies of H that are
vertex-disjoint and spans the vertex set of Kn. The disjointness condition can be generalized to
hypergraphs by requiring that no two copies H′, H′′ of the r-uniform hypergraph H overlap in
more than k vertices for some k < r (with ‘vertex-disjoint’ corresponding to k = 1). Similarly,
for the spanning condition we can require that the copies of H cover all the k′-sets of vertices in
K(r)

n for some k′ < r. Any pair (k, k′) leads to a different generalization of the H-factor problem.

3.1. Related work

Before we move on to the proofs, we will briefly discuss some related work. First, we
discuss a 2008 paper by Johansson, Kahn, and Vu [8] on the threshold version of the H-factor
problem. We will use one of their theorems in our proof of the upper bound in Theorem 2.
Second, we discuss a recent paper by Frankston, Kahn, Narayan, and Park [5], which provides
a general and flexible framework for proving upper bounds on both threshold and minimum-
weight problems.

In [8], the threshold function for the appearance of an H-factor for strictly balanced H was
determined (up to a constant factor), as well as slightly less precise bounds on the threshold
for general H.

Theorem 4. (Theorems 2.1 and 2.2 in [8].) Assume H has at least two vertices.

(i) If H is strictly balanced, the threshold for the appearance of a H-factor in Gn,p is thH :=
n−1/dH ( log n)1/eH . That is,

P(Gn,p contains an H-factor) =
⎧⎨
⎩

n−ω(1), if p � thH,

1 − n−ω(1), if p � thH .

(ii) For general H the threshold is n−1/d∗+o(1). More precisely, for any ε > 0,

P(Gn,p contains an H-factor) =
⎧⎨
⎩

n−ω(1), if p � n−1/d∗
,

1 − n−ω(1), if p � n−1/d∗+ε.

https://doi.org/10.1017/jpr.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.72


142 J. DANIELSSON AND L. FEDERICO

This immediately implies the following upper bound on FH , only a factor nε worse than the
upper bound in Theorem 2.

Corollary 1. For any ε > 0 and A � n−1/d∗+ε, FA
H(n) ≤ n1−1/d∗+ε with probability 1 − n−ω(1).

More recently, significant progress in the study of the general threshold type and minimum-
weight type problems discussed in Section 1.1 was made in the 2019 breakthrough paper by
Frankston, Kahn, Narayanan, and Park [5]. For a large class of families F which includes
H-factors, they proved upper bounds on both the threshold for the appearance of an F ∈F in
Gn,p as well as the minimum weight of an F ∈F in a randomly weighted Kn. Among other
applications, this leads to a much simpler proof of the upper bound in Theorem 4(i) than that
in [8] – albeit for a slightly weaker upper bound, with a larger exponent for the logarithmic
factor.

Using the results in [5], an alternative (and slightly shorter) proof of Proposition 3 can be
obtained. Interestingly, the proof in [5] also uses a sprinkling method. They essentially sprinkle
edges in multiple stages, and keep track of how many F ∈F we keep making ‘good progress’
towards building.

If the reader wants to prove Theorem 2 for some generalization of H-factors to hypergraphs,
using the results from [5] is the route we would recommend. The theorems in [5] are general
enough to be applicable to both graphs and hypergraphs directly. In comparison, our proof of
Theorem 2 depends on one theorem from the Johansson, Kahn, and Vu paper [8] and one by
Ruciński [13]. Both of these are only proved explicitly for graphs, although the former paper
mentions that its proofs remain essentially unchanged for hypergraphs.

4. Proofs

In this section we state and prove several propositions from which our main theorems
follow: Theorem 2 follows from Propositions 1, 3, and 4, and Theorem 3 follows from
Propositions 2 and 3.

4.1. Lower bound: H-factors

In this section we establish a lower bound on the minimum cost of H-factors, and then in
Section 4.2 we do the same for H-covers. Although any lower bound on CH-covers is also a
lower bound on FH , our lower bound for H-factors holds with probability 1 − 2−�(n), while
the lower bound for H-covers is only shown to hold with probability 1 − ε. For this reason we
consider it worthwhile to include both.

Proposition 1. Assume α ∈ [0, 1) is fixed (not depending on n). There exists a c > 0 such that
the minimal cost of an (α, H)-factor is FH(αn, n) ≥ cn1−1/d∗

, with probability 1 − 2−�(n).

To prove this, we need the following simple bound (which will also be useful several times
more throughout the paper).

Lemma 1. If x > 0, X1, X2, . . . Xk are i.i.d. Exp(1)-distributed random variables and
X := ∑

i Xi, then

1 − x ≤ P(X ≤ x)

xk/k! ≤ 1.
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Proof. X follows a Gamma distribution with shape parameter k and scale parameter 1, with
density function tk−1e−t/(k − 1)!. Since e−t ≥ 1 − x on the interval t ∈ [0, x],

P(X ≤ x) ≥ (1 − x)
∫ x

0

tk−1

(k − 1)!dt = (1 − x)xk/k!.

Similarly, using e−t ≤ 1 gives P(X ≤ x) ≤ xk/k!. �

We can now prove Proposition 1.

Proof of Proposition 1. Assume without loss of generality that αn is an integer multiple
of vH . Let t be the smallest number of copies of H an (α, n)-factor can have. Since (1 − α)n
vertices of Kn are covered, each by a unique copy of H, vHt = (1 − α)n.

We will first prove that FH(αn, n) ≥ cn1−1/dH with high probability by applying a first
moment method to the following random variable. For any L = L(n), let YL be the number
of (α, H)-factors Q that have precisely t copies of H and that have a weight WQ ≤ L. Note
that if YL = 0 then FH(αn, n) > L, because any (α, H)-factor that has more than t copies of H
contains one with precisely t copies.

How many (α, H)-factors in Kn with precisely t copies of H are there (regardless of weight)?
There are

( n
αn

) = 2O(n) ways to pick which αn vertices will not be covered, and then at most
(vHt)!/t! = 2O(n)n(vH−1)t ways to construct an H-factor on the remaining vHt = (1 − α)n ver-
tices. Rewriting the exponent of n as vH − 1 = eH/dH , we can upper-bound the number of such
factors by (c1n1/dH )eHt for some constant c1. Now consider an (α, H)-factor Q with t copies
of H. It consists of eHt edges, so by Lemma 1

P(WQ ≤ L) ≤ LeHt/(eHt)! ≤ (c2L/n)eHt, (1)

for some c2 > 0. We therefore obtain EYL ≤ (c1c2Ln−1+1/dH )eHt. Since c1, c2 are constants,
we can ensure that the expression within brackets is at most 1/2 by letting L := cn1−1/dH for
a sufficiently small c = c(α, H). Then EYL ≤ 2−eHt = 2−�(n), whence FH(αn, n) ≥ cn1−1/dH

with probability 2−�(n).
Now, if d∗ > dH we can improve this lower bound. Let H∗ ⊆ H be a subgraph of the max-

imal density d∗. Consider Q as above: an (α, H)-factor which consists of t copies of H, with
vHt = (1 − α)n. This partial H-factor will contain a partial H∗-factor Q∗ consisting of t copies
of H∗ and hence covering tvH∗ vertices: just remove the superfluous vertices and edges from
each copy of H in Q. This Q∗ is an (α∗, H∗)-factor, with α∗ such that the number of vertices
covered by Q∗ is (1 − α∗)n = vH∗ t = �(n). By the previous argument (and since α∗ ∈ [0, 1)),
FH(α, n) ≥ FH∗ (α∗, n) ≥ c(α∗, H∗)n1−1/d∗

with probability 2−�(n). �

In the following remark we discuss some possible optimizations of this result.

Remark 1. With some more care taken, we can find minimal c1, c2 in the proof above.
The number of H-factors is n!/(αn)!t!Aut(H)t (where Aut(H) is the number of automor-
phisms of H). Applying Stirling’s approximation to this and to (eHt)! in (1) leads to c1c2 =
(r/eH)e1−1/dH · (rα−αrAut(H))−1/eH , where r := n/t = vH/(1 − α). It is a tempting conjec-
ture that the resulting bound with c−1 := c1c2 is tight, at least for strictly balanced H. In other
words, FH(n)/n1−1/dH should converge in probability to this c.

4.2. Lower bound: H-covers

We now prove the less sharp lower bound on the minimal cost of an H-cover.
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Proposition 2. For any fixed α > 0 there exists a K > 0 such that, for any t > 0 fixed or tending
to 0 as n → ∞, we have the following.

(i) CH(α, n) ≥ tn1−1/dH with probability at least 1 − KteH .

(ii) Let 	 := maxG⊆H (eG/vG). Then CH(α, n) ≥ tn1−1/	 with probability at least 1 − KteG,
where G is the graph that attains the maximum 	.

Proof. For any b > 0, call a copy H′ ⊂ Kn of H b-cheap if W{H′} < b, i.e. if the total weight

of the edges in H′ is at most b. Let Nb be the total number of b-cheap H′. We want to estimate
E[Nb]. For a given H′, by Lemma 1 the probability that it is b-cheap is at most beH /eH !.
Furthermore, there are less than nvH copies of H in Kn. Then, by Markov’s inequality, for any
λ > 0,

P(Nb ≥ λ) ≤ E[Nb]

λ
≤ nvH beH

λeH ! . (2)

Now suppose that there exists an (α, H)-cover Q with WQ ≤ tn1−1/dH . This Q consists of at
least (α/vH)n copies of H, since each copy of H covers at most vH vertices not covered by
another copy.

The number of H′ ∈ Q that are not b-cheap can be at most WQ/b. In particular for b :=
2vHn−1/dH /α, there can be at most αn/2vH that are not b-cheap, or in other words at most half
of the H′ ∈ Q. Hence Q must contain at least (α/2vH)n b-cheap copies H′, which implies that
Nb ≥ (α/2vH)n. By (2),

P

(
Nb ≥ α

2vH
n

)
≤ 2vnvH beH

αneH ! = (2vt/α)eH

αeH ! .

This immediately implies part (i). For part (ii), consider the subgraph G that attains the max-
imum 	 := maxG⊂H (eG/vG). As noted earlier, any (α, H)-cover Q contains at least (α/vH)n
copies of H. Let H1, H2, . . . be an enumeration of them, and let Gi ⊂ Hi be copies of G in each.
Note that we might have Gi = Gj for some i �= j, as two distinct copies of H might overlap in a
copy of G. We have

WQ =
∑

i

WHi ≥
∑

i

WGi ≥ α

vH
n min WG′ , (3)

where the last minimum is taken over all copies G′ ⊂ Kn of G. Applying (3) with λ = 1, G
instead of H and b = t n−1/	 for a small t > 0, we see that P(Nb ≥ 1) is at most tvG/eG!. In
other words, with probability at least 1-tvG/eG! there is no b-cheap copy of H, from which part
(ii) follows. �

Remark 2. For strictly balanced H, Proposition 2(i) can be sharpened by a second moment
argument to hold with probability 1 − o(1) rather than 1 − KteH .

4.3. Red–green split lemma

In this section we introduce the red–green split trick mentioned in Section 1.2. This lemma
will be useful both to prove the upper bound on FH , as well as to prove that it is sharply
concentrated. It is also used in Section 5.

We state and prove Lemma 2 (as well as Proposition 3) not only for FH but for FA
H : the

minimum weight of an H-factor using no edge of weight more than A, then considering FH as
the particular case where A = ∞. Keeping track of upper bounds on the most expensive edge
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in an H-factor makes statements and proofs slightly more involved. While such bounds will
be of use in Theorem 7, they are not necessary for our main results, Theorems 2 and 3. We
therefore suggest that readers who are only interested in the latter theorems simply ignore the
superscript in FA

H , and any inequalities involving A, Ak, B, and C.

Lemma 2. Let n > m > k ≥ 0 be integer multiples of vH.

(i) For any t ∈ (0, 1), the random variables FA
H(m, n), FB

H(k, m), and FC
H(k, n) (where C ≥

max (A/t, B/(1 − t))) can be coupled such that surely

FC
H(k, n) ≤ FA

H(m, n)

t
+ FB

H(k, m)

1 − t
.

(ii) Let a, b, A, B > 0 and let C ≥ (a + b) max (A/a, B/b). Then

P
(
FC

H(k, n) > (a + b)2) ≤ P
(
FA

H(m, n) > a2) + P
(
FB

H(k, m) > b2).

Both of these inequalities also hold when A = B = C = ∞, i.e. with FH instead of FA
H, FB

H,
and FC

H.

Remark 3. The lemma also holds for H-covers, and in that case the requirement that n, m
and k are integer multiples of vH is not necessary. The proof for H-covers is identical, mutatis
mutandis. However, we will only prove and use the lemma for factors.

Proof. We will begin by proving part (i) of the lemma. Let G be the multigraph on [n]
given by connecting every pair of vertices by two parallel edges, one green and one red.
Independently for all edges, assign to each green edge an Exp(t)-distributed random weight and
to each red edge an Exp(1 − t)-distributed random weight. We will use the following properties
of the exponential distribution:

(a) if X ∼ Exp(t) and Y ∼ Exp(1 − t) are independent, then min (X, Y) ∼ Exp(1),

(b) if X ∼ Exp(t), then tX ∼ Exp(1).

Let Z be the cost of the cheapest (k/n, H)-factor in G that uses no edge more expensive
than C. (If no such factor exists, Z = ∞.) It will always use the cheaper of two parallel edges,

so by property (a) we see that Z
d= FC

H(k, n). Our aim is now to construct a fairly cheap (but
not necessarily optimal) such factor in G. First, we pick the cheapest green (m/n, H)-factor
that uses no edge more expensive than A/t, and let Zgreen be its cost. Note that by the rescaling

property (b), tZgreen
d= FA

H(m, n).
We are left with a random set of m uncovered vertices. Crucially, this random set is indepen-

dent of the weights on the red edges. Pick the cheapest red (k/m, H)-factor (i.e. a partial factor
leaving at most k out of m vertices uncovered) on this set that uses no edge more expensive

than B/(1 − t), and let its cost be Zred. Again by (b), (1 − t)Zred
d= FB

H(k, m).
Combining the green copies of H from the first step with the red copies of H in the second

step gives us a partial H-factor Q on G covering all but at most k vertices, i.e. a (k/n, H)-factor.
No edge in Q costs more than max (A/t, B/(1 − t)) ≤ C, whence Z ≤ WQ = Zgreen + Zred. Thus
(by an appropriate coupling) the following inequality holds:

FC
H(k, n) ≤ FA

H(m, n)

t
+ FB

H(k, m)

1 − t
.
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For part (ii), it follows from part (i) that if FA
H(m, n) ≤ a2 and FB

H(k, m) ≤ b2, then FC
H(k, n) ≤

a2/t + b2/(1 − t). Minimizing over t gives that the right-hand side is (a + b)2 for t = a/(a + b),
and for this t we obtain C = max (A/t, B/(1 − t)) = (a + b) max (A/a, B/b). Hence FC

H(k, n) ≤
(a + b)2, unless FA

H(m, n) > a2 or FB
H(k, m) > b2. Using the union bound on these two events

gives the inequality in part (ii).
For the case A = B = C = ∞ the proof is nearly identical, except that we do not need to

keep track of the cost of the most expensive edges. �

4.4. Upper bound

In this section we prove the following upper bound on the total cost of an H-factor, both
unconstrained and limited to using only edges of weight at most A.

Proposition 3. For any fixed graph H with d∗ > 1 and any ε > 0, there exists a c > 0 such that
if A ≥ n−1/d∗+ε, then FA

H(n) ≤ cn1−1/d∗
with probability at least 1 − n−ω(1). In particular, this

holds for A = ∞.

To prove this proposition, we will need the following theorem from [7, Theorem 4.9],
originally due to Ruciński [13].

Theorem 5. For any α ∈ (0, 1) there exist constants c, t > 0 such that Gn,p with p = cn−1/d∗

contains an (α, H)-factor with probability at least 1 − 2−tn.

In [7], the existence of such a partial factor is only stated to hold with probability 1 − o(1),
but in the proof the probability is shown to be 1 − 2−�(n).

Proof of Proposition 3. The proof strategy is essentially as follows. For some small fixed
number α > 0, we will find a cheap H-factor on n vertices by iteratively using the red–green
split trick from Lemma 2. This will give a cheap (α, H)-factor on ni vertices (starting with
n0 := n), then a cheap (α, H)-factor on the remaining ni+1 vertices, and so on, for a total of k
steps. On the remaining nk vertices, it suffices to find a not too expensive H-factor.

More precisely, pick α so that α1−1/d∗ = 1
4 (and hence α < 1

4 ). Let n0 := n and let ni be the
largest multiple of vH such that ni ≤ αni−1. Also, for some small fixed δ > 0 to be determined
later, let k be an integer such that αk ≤ n−δ ≤ αk−1. For this choice of ni and k, we have αi+1n ≤
ni ≤ αin and αn1−δ ≤ nk ≤ n1−δ . Also, 4k < nδ .

Applying part (i) of Lemma 2, with t = 1/2 and Ai := 2iA, repeatedly to FAi
H (ni) for i =

0, 1, . . . , k − 1, we find that there exists a coupling such that

FA0
H (n0) ≤ 2FA1

H (n1, n0) + 2FA1
H (n1)

≤ 2FA1
H (n1, n0) + 4FA2

H (n2, n1) + 4FA2
H (n2)

≤ 2FA1
H (n1, n0) + 4FA2

H (n2, n1) + 8FA3
H (n3, n2) + 8FA3

H (n3)

. . .

≤
k−1∑
i=0

2i+1FAi+1
H (ni+1, ni)

︸ ︷︷ ︸
(4a)

+ 2kFAk
H (nk)︸ ︷︷ ︸
(4b)

. (4)
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First we will bound the sum (4a). By Theorem 5, there exist constants c, t (depending only
on α, H) such that if Ai+1 ≥ cn−1/d∗

i then FAi+1
H (ni+1, ni) ≤ cn1−1/d∗

i with probability at least
1 − 2−tni ≥ 1 − 2−tnk . To check whether this lower bound on Ai+1 holds, note that since Ai ≥ A

and ni ≥ nk, it suffices to show that An1/d∗
k ≥ c. Using nk ≥ αk+1n and αk ≥ αn−δ , we get

An1/d∗
k = n−1/d∗+εn1/d∗

k ≥ nε(αk+1)1/d∗ ≥ nε(α2n−δ)1/d∗ � nε/2, (5)

where the last inequality holds by picking δ sufficiently small. Hence the conditions of
Theorem 5 are met, and it then follows (by a union bound) that with probability at least
1 − k2−tnk = 1 − n−ω(1), we have (4a) ≤ 2c

∑k−1
i=0 2in1−1/d∗

i . Since ni ≤ αin and α1−1/d∗ = 1
4

(by the choice of α), we can bound the terms in this sum by

2in1−1/d∗
i ≤ (2α1−1/d∗

)i · n1−1/d∗ ≤ 2−in1−1/d∗
. (6)

Hence (4a) is at most 4cn1−1/d∗
with high probability. For the term (4b) of equation

(4), the slightly rougher bound in Corollary 1 suffices: for any δ′ > 0, if Ak � n1−1/d∗+δ
′

k

then FAk
H (nk) ≤ n1−1/d∗+δ

′
k with probability n−ω(1)

k . But by (5), Ak ≥ A � n−1/d∗+ε/2
k , so the

condition on Ak is met if we pick δ′ < ε/2. Then

(4b) = 2kFAk
H (nk) ≤ 2kn1−1/d∗+δ

′
k ≤ 2−kn1−1/d∗+δ

′
,

where the last inequality uses inequality (6) and nδ
′

k ≤ nδ
′
. From the choice of k, 2−k ≤

n−δ/| log2 α|, and we can therefore ensure that the right-hand side above is o(n1−1/d∗
) by pick-

ing δ′ sufficiently small (δ′ < δ/| log2 α|). It follows that (4a) + (4b) ≤ (4c + o(1))n1−1/d∗
with

probability 1 − n−ω(1). �

Remark 4. Strictly speaking, use of the theorem from [8] is not necessary here. However, it
allows the recursion in (4) to end after fewer steps, which helps keep the error probability in
Proposition 3 low, as well as the upper bound A on the most expensive edge used.

4.5. Concentration

We will now move on to show that FH is sharply concentrated.

Proposition 4. For any graph H with dH > 1, ε > 0 and α ∈ [0, 1), there exists a c > 0 such
that if we let M = M(α, n, H) denote the median of FH(αn, n), then for all sufficiently large n
and with probability at least 1 − ε,

|FH(αn, n) − M| < cM3/4.

We will consider a dual problem: How large is the largest partial factor that costs at most L,
for some L = L(n)? More precisely, let the random variable ZH = ZH(n, L) be defined by

ZH := max{αn : there exists a (1 − α, H)-factor Q with WQ ≤ L}.
In other words, ZH is the largest number of vertices that a partial factor costing at most L
can cover. Note that ZH(n, L) ≥ n − m if and only if FH(m, n) ≤ L. Our first step is to apply
Talagrand’s concentration inequality to ZH . To do so we need the definitions of f -certifiable
and Lipschitz random variables.

Definition 2. (f-certifiable random variable.) Let X : �n →R be a random variable. For a
function f on R we say that X is f -certifiable if, for any ω ∈ �n with X(ω) ≥ s, there is a
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set I ⊆ [n] of at most f (s) coordinates such that X(ω′) ≥ s for all ω′ which agree with ω on I.
(That is, ω′

i = ωi for all i ∈ I.)

Definition 3. (Lipschitz random variable.) Let X be as above. We say that X is K-Lipschitz if,
for every ω, ω′ with ωi = ωi

′ for all but one i, |X(ω) − X(ω′)| ≤ K.

We can now state Talagrand’s inequality. While it was first established in [14], we will use
the following more ‘user-friendly’ version from [2].

Theorem 6. (Talagrand’s concentration inequality.) Assume � is a probability space. If X is a
K-Lipschitz, f-certifiable random variable X : �n →R, where �n is equipped with the product
measure, then for any b, t ≥ 0,

P(X ≤ b)P(X ≥ b + tK
√

f (b)) ≤ exp (−t2/4).

The following lemma finds the appropriate values of f and K so that we can apply this
inequality to the random variable ZH .

Lemma 3. ZH is vH-Lipschitz and f-certifiable with f (s) = eH�s/vH� ≤ (eH/vH)n.

Proof. To show that ZH is f -certifiable, pick an integer s ∈ [n] and a tuple of edge weights
ω ∈ �(n

2) such that ZH(ω) ≥ s. Then there exists a partial H-factor Q with WQ(ω) ≤ L and which
covers at least s vertices. Assume without loss of generality that Q is one of the smallest such
partial H-factors. It then contains �s/vH� copies of H and f (s) := eH�s/vH� edges. For any ω′
which agrees with ω on the f (s) edges of Q, WQ(ω′) = WQ(ω) ≤ L. Hence ZH(ω′) ≥ s. (It might
be that ZH(ω) �= ZH(ω′); here we only care whether they are ≥ s.)

To show the Lipschitz condition, pick an edge e and condition on all other edge weights.
Consider ZH as a function of just x = Xe. Note first that ZH(x) is a non-increasing function, i.e.
ZH(x) ≤ ZH(0) for any x ≥ 0. Let Q be a partial H-factor achieving the maximum size ZH(0).
That is, Q covers ZH(0) vertices and has weight WQ = WQ(x) such that WQ(0) ≤ L. Is e ∈ E(Q)?

(a) If e ∈ E(Q), let He be the copy of H in Q which contains e. Then Q − He is a partial H-
factor with weight at most WQ−He (x) < WQ(0) ≤ L (for any x), and it covers ZH(0) − vH

vertices. Hence ZH(x) ≥ ZH(0) − vH .

(b) If e /∈ E(Q), then WQ(x) is a constant function and WQ(x) = WQ(0) ≤ L. Hence ZH(x) ≥
ZH(0).

In either case, ZH(0) − vH ≤ ZH(x) ≤ ZH(0). Thus ZH is vH-Lipschitz. �

Remark 5. This is where our proof would fail for the corresponding cover problem. For cov-
ers, some edges might belong to a large number of copies of H, leading to a large Lipschitz
constant. This is the case in our example in Section 6.

Before proceeding with the proof of Proposition 4, we will need two small lemmas.

Lemma 4. If k < m < n,

FH(m, n) ≤ n − m

n − k
FH(k, n).

Proof. FH(m, n) is the lowest cost of a partial H-factor covering at least n − m vertices
of Kn. We can construct a cheap such partial factor in two steps. First, let Q be the optimal
(k/n, H)-factor (which consists of (n − k)/vH copies of H), i.e. the factor such that WQ =
FH(k, n).
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Next, let Q′ be the partial factor obtained by removing all but the (n − m)/vH cheapest
copies of H in Q, leaving a (m/n, H)-factor. Then Q′ contains a fraction (n − m)/(n − k) of the
copies of H in Q. Hence it costs

WQ′ ≤ n − m

n − k
WQ. �

Lemma 5. For any m and n, the random variable FH(m, n) follows a continuous distribution
(i.e. it has no atoms).

Proof. For any partial factor Q and t ≥ 0, P(WQ = t) = 0. And since there are only finitely
many such Q, P(FH(m, n) = t) ≤ P(∃Q : WQ = t) = 0. �

We can now finally prove that the cost of a (partial) H-factor concentrates around its median.

Proof of Proposition 4. Let m be the largest multiple of vH such that m ≤ αn. By
Lemma 5, FH(m, n) is a continuous random variable, whence we can find L such that
P(FH(m, n) ≤ L) = ε. Using the upper bound (Proposition 3) and lower bound (Proposition 1)
on FH , we see that in order for P(FH(m, n) ≤ L) = ε to hold, we must have L = �(n1−1/d∗

).
(For the lower bound, the condition α < 1 is used.) We will now apply the Talagrand inequal-
ity to the vH-Lipschitz, eHn/vH-certifiable random variable ZH(L, n). Choose t > 0 such that
exp (−t2/4) = ε2 and let b := n − m − k, where k := �t

√
eHvHn�. Then

P(ZH ≤ n − m − k) · P(ZH ≥ n − m) ≤ ε2. (7)

By the choice of L and recalling that ZH(L, n) is the largest n − m such that FH(m, n) ≤ L, the
second probability in the left-hand side of (7) is ε. Hence the first probability is

P(FH(m + k, n) ≥ L) = P(ZH ≤ n − m − k) ≤ ε. (8)

So with probability at least 1 − ε, there is a partial H-factor of cost at most L and that leaves
at most m + k vertices uncovered. What is the cost of a partial factor covering k out of the
remaining m + k vertices? By Lemma 4 and Proposition 3,

FH(m, m + k) ≤ k

m + k
FH(m + k) ≤ ck(m + k)−1/d∗ ≤ ck1−1/d∗ =: �, (9)

with probability 1 − k−ω(1) ≥ 1 − ε for some constant c (since k � 1). Using part (ii) of
Lemma 2,

P
(
FH(m, n) >

(√
L + √

�
)2) ≤ P(FH(m + k, n) > L) (10)

+P(FH(m, m + k) > �). (11)

Note that � = �(
√

L), since L = �(n1−1/d∗
), � = �(k1−1/d∗

), and k = �(
√

n). Thus
(√

L +√
�
)2 ≤ L + bL3/4 for some constant b. The right-hand side of (10) is at most ε by (8), and (11)

is at most ε by (9). Thus (10) and (11) give

P(FH(m, n) > L + bL3/4) ≤ 2ε,

and by the choice of L, P(FH(m, n) < L) = ε. Assuming without loss of generality that ε < 1/4,
this also implies that the median M of FH(m, n) lies in the interval [L, L + bL3/4], and in
particular M = �(L). Hence |FH(m, n) − M| = OP(M3/4). �
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5. Other edge-weight distributions

As mentioned in Section 2.4, the exact edge-weight distribution does not matter – only its
asymptotic behaviour near 0. Here we prove this fact.

Theorem 7. Assume Kn is equipped with positive i.i.d. edge weights Ze with some common
CDF G̃ satisfying limx→0 G̃(x)/x = 1 (i.e. G̃(x) = x + o(x)). Let F̃H(m, n) be the minimum-
weight (m/n, H)-factor with respect to these weights (and similarly for F̃H(n), C̃H(n),
C̃H(m, n)). Then these edge weights can be coupled to i.i.d. Exp(1) edge weights in

such a way that for any m = m(n) with limn→∞ m/n < 1, F̃H(m, n)/FH(m, n)
P→ 1 and

C̃H(m, n)/CH(m, n)
P→ 1.

Remark 6. If instead G̃(x) = λx + o(x) for some λ > 0, we can replace the edge weights
Ze with weights λZe. This changes the optimal cost by a factor λ, and since P(λZe ≤ x) =
G̃(x/λ) = x + o(x), we have F̃H(m, n)/FH(m, n)

P→ λ.

Proof of Theorem 7. We will prove this for m = 0 and FH ; the proof is essentially identical
for m > 0 or CH , but the notation becomes messier.

Let Xe ∼ Exp(1), and let G(x) = 1 − e−x be the CDF of this distribution. Then G(Xe) is
uniformly distributed in the interval [0,1], and we can therefore couple it to Ze by letting
Ze := G̃−1(G(Xe)).

Pick a small fixed ε > 0. Since both G̃(x) and G(x) are asymptotically x + o(x) as x → 0,
we can find a C = C(ε) > ε such that for any x ∈ [0, 3C], both G(x) ≤ G̃((1 + ε)x) and G̃(x) ≤
G((1 + ε)x) holds. So whenever either Xe or Ze is at most 2C, the other is at most 2C(1 + ε) <

3C, and hence
(1 − ε)Xe ≤ Ze ≤ (1 + ε)Xe.

We will prove that the following chain of inequalities holds with high probability:

1 − 4ε ≤ F̃H(n)

F2C
H (n)

≤ 1 + ε. (12)

For the second inequality of (12), consider F2C
H (n). This is finite if and only if there exists an

H-factor Q that uses no edge of weight more than 2C. We know from Corollary 1 that such a Q
exists with probability 1 − n−ω(1), so it is enough to prove that (12) holds with high probability
under the assumption that there is such a Q, or equivalently that F2C

H (n) < ∞. Pick Q as the
cheapest such H-factor, so that WQ = F2C

H (n). An edge e in Q has edge weight Xe ≤ 2C by
construction, whence Ze ≤ (1 + ε)Xe, and

F̃H(n) ≤
∑

e∈E(Q)

Ze ≤
∑

e∈E(Q)

(1 + ε)Xe = (1 + ε)F2C
H (n).

For the first inequality of (12), let Q instead be the optimal H-factor with respect to the edge
weights Ze, i.e.

∑
e∈E(Q) Ze = F̃H(n). We will use it to construct a cheap H-factor (with respect

to Xe). Call a copy H′ ∈ Q ‘bad’ if it contains at least one edge e with cost Ze ≥ C. The total
number of such edges in Q is at most F̃H(n)/C, so there are at most this many bad copies, and
at most vHF̃H(n)/C vertices are covered by a bad copy.

Using the second inequality of (12) together with Proposition 3, we see that F̃H(n) ≤
(1 + ε)F2C

H (n) ≤ Kn1−1/d∗
with high probability for some constant K, and then at most
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k := vH · �Kn1−1/d∗
/C� � n vertices are covered by a bad copy. Removing every bad copy

then gives a (k/n, H)-factor using no edge more expensive than C (with high probability).
Hence F̃H(n) ≥ (1 − ε)FC

H(k, n). By Lemma 2,

F2C
H (n) ≤ FC

H(k, n)

1 − ε
+ FCε

H (k)

ε
. (13)

Pick some an, bn with k1−1/d∗ � an � bn � n1−1/d∗
. The second term on the right-hand side

of (13) is by Theorem 5 at most an with high probability. On the other hand, by Proposition 2
the first term is at least bn with high probability. Hence FCε

H (k) ≤ an � bn ≤ FC
H(k, n) with high

probability, and

F2C
H (n) ≤ 1 + ε

1 − ε
FC

H(k, n) ≤ 1 + ε

(1 − ε)2
F̃H(n),

with high probability, which gives the first inequality of (12).
But since (12) is valid for any CDF G̃ with G̃(x) = x + o(x) as x → 0, in particular it

is valid for G, and thus 1 − 4ε ≤ F̃H(n)/F2C
H (n) ≤ 1 + ε as well. It follows that 1 − 6ε ≤

F̃H(n)/FH(n) ≤ 1 + 6ε with high probability. Since ε was arbitrary, F̃H(n)/FH(n) → 1 in
probability. �

6. Examples of unbalanced cover

We will conclude with examples of cover problems where the upper and lower bounds on
CH do not match, and where CH is not sharply concentrated. Recall that the lower bound on
CH was of order n1−1/ max (dH ,	), while for factors it was n1−1/d∗

(with dH, 	 ≤ d∗).
Why are the lower bounds for factors and covers different? If dH < d∗, then H has a denser

subgraph H∗, and the minimal H-cover might have many copies of H overlapping in the same
copy of H∗. In an H-factor there are at least �(n) vertices lying in some copy of H∗ (because
t disjoint copies of H contain at least t disjoint copies of H∗), while in an H-cover only one
copy of H∗ is guaranteed.

For the sake of simplicity, consider instead the threshold for the appearance of an H-cover in
Gn,p. The threshold for the existence of a collection of copies of H∗ that cover at least �(n) ver-
tices is p = n−β with β = 1/d∗ = minH′⊆H (vH − 1)/eH . But the threshold for the appearance
of at least one copy of H∗ is lower, with β = minH′⊆H vH/eH .

For example, consider H = K4 + K2 (disjoint union of the complete graph on four vertices
and an edge). Here the 1-density of H is dH = 1.4, while the maximum 1-density of a subgraph
is d∗ = 2 (the K4). The maximum 0-density is 1.5 (again, the K4). So max (dH, 	) = 1.5, and
Proposition 2 gives the lower bound CH(n) = �P(n1/3), while Proposition 3 gives the upper
bound CH(n) = OP(n1/2).

For this H, the lower bound is tight: the cheapest H-factor will typically be the cheapest
K4 together with the cheapest cover of the remaining n − 4 vertices by edges. Define the ran-
dom variable Z by the lowest weight of a copy of K4 in Kn. With a first and second moment
method counting the number of K4 cheaper than cn−2/3, one can show that Z = �P(n−2/3), but
P(Z ≤ cn−2/3) is bounded away from both 0 and 1 for any c. In other words, Z is not sharply
concentrated.

A red–green split argument as in Lemma 2 with t = 1/2 leads to a coupling such that CH ≤
(n − 4)Z + 2CK2 (where CH = CH(n) and CK2 = CK2 (n − 4)), because the smallest number of
copies of H that can overlap in the same copy of K4 while also covering all n vertices is
(n − 4)/2. For CK2 , note that CK2 ≤ FK2 = OP(1) (by [1]). On the other hand, CH(n) ≥ nZ/6,
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because any cover contains at least n/6 copies of H that each must contain a K4, and each such
copy has weight at least Z. Together this gives us that 1

6 ≤ CH(n)/nZ ≤ 1 + oP(1) with high
probability. Hence CH(n) = �P(n1/3), but since Z is not sharply concentrated, neither is CH .

One might guess that this pathological behaviour is due to H being disconnected, but it
occurs even for some connected graphs. For instance, if H is a (5,2)-lollipop graph: a complete
graph K5, with a path P2 away from one of the vertices of the clique. There are 7 vertices and 12
edges, so dH = 2. Since the densest subgraph is the K5, 	 = 2 and d∗ = 5/2. From Theorem 3,
the asymptotics of CH is then between n0.5 and n0.6. Here a near-optimal H-cover can be found
that is a single K5 together with a large collection of paths from this clique. Consider Gn,p

with p = n−1/2+ε for some small ε > 0. With high probability, this graph contains a K5 and has
diameter 2. Hence CH = OP(np) = OP(n1/2+ε), which is arbitrarily close to the lower bound
from Theorem 3.
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