Bull. Aust. Math. Soc. **99** (2019), 362–368 doi:10.1017/S0004972718001156

CONGRUENCES FOR THE (p – 1)TH APÉRY NUMBER

JI-CAI LIU[™] and CHEN WANG

(Received 5 September 2018; accepted 28 September 2018; first published online 28 November 2018)

Abstract

We prove two conjectural congruences on the (p-1)th Apéry number, which were recently proposed by Z.-H. Sun.

2010 *Mathematics subject classification*: primary 11A07; secondary 05A19, 11B68. *Keywords and phrases*: Apéry numbers, congruences, Bernoulli numbers.

1. Introduction

In 1979, Apéry [2] introduced the numbers

$$A_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$$
 and $A'_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}$

in his ingenious proof of the irrationality of $\zeta(2)$ and $\zeta(3)$. These numbers are now known as Apéry numbers. Since the appearance of the Apéry numbers, their interesting arithmetic properties have been gradually discovered. For instance, Beukers [3] showed that for primes $p \ge 5$ and positive integers m, r,

$$\begin{aligned} A_{mp^{r}-1} &\equiv A_{mp^{r-1}-1} \pmod{p^{3r}}, \\ A'_{mp^{r}-1} &\equiv A'_{mp^{r-1}-1} \pmod{p^{3r}}. \end{aligned}$$

In 2012, Sun [13] proved that, for any prime $p \ge 5$,

$$\sum_{k=0}^{p-1} (2k+1)A_k \equiv p + \frac{7}{6}p^4 B_{p-3} \pmod{p^5}.$$

Here the *n*th Bernoulli number B_n is defined as

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}$$

In the past two decades, congruence properties for Apéry numbers and similar numbers have been widely studied (see, for example, [3–7, 11, 13–16]).

The first author was supported by the National Natural Science Foundation of China (grant 11801417). © 2018 Australian Mathematical Publishing Association Inc.

Our interest concerns two conjectural congruences on the (p - 1)th Apéry number, which were recently proposed by Sun [16, Conjectures 2.1 and 2.2].

CONJECTURE 1.1 (Z.-H. Sun). For any prime $p \ge 5$,

$$A_{p-1} \equiv 1 + \frac{2}{3}p^3 B_{p-3} \pmod{p^4}, \tag{1.1}$$

$$A'_{p-1} \equiv 1 + \frac{5}{3}p^3 B_{p-3} \pmod{p^4}.$$
 (1.2)

The aim of this paper is to prove (1.1) and (1.2) by establishing the following generalisations.

THEOREM 1.2. Let $p \ge 7$ be a prime. Then

$$A_{p-1} \equiv 1 + p^3 (\frac{4}{3}B_{p-3} - \frac{1}{2}B_{2p-4}) + \frac{1}{9}p^4 B_{p-3} \pmod{p^5}.$$
 (1.3)

THEOREM 1.3. Let $p \ge 7$ be a prime. Then

$$A'_{p-1} \equiv 1 + p^3 \left(\frac{10}{3}B_{p-3} - \frac{5}{4}B_{2p-4}\right) + \frac{5}{18}p^4 B_{p-3} \pmod{p^5}.$$
 (1.4)

By taking k = 1 and b = p - 3 in Kummer's congruence,

$$\frac{B_{k(p-1)+b}}{k(p-1)+b} \equiv \frac{B_b}{b} \pmod{p}$$

(see [12, page 193]), we obtain

$$B_{2p-4} \equiv \frac{4}{3}B_{p-3} \pmod{p}.$$
 (1.5)

Substituting (1.5) into (1.3) and (1.4) gives (1.1) and (1.2) for primes $p \ge 7$. It is routine to check that (1.1) and (1.2) also hold for p = 5.

We prove Theorem 1.2 in Section 2 and Theorem 1.3 in Section 3.

2. Proof of Theorem 1.2

Since

$$\binom{p-1+k}{k} = \frac{p}{p+k} \binom{p+k}{k},\tag{2.1}$$

we have

$$A_{p-1} = \sum_{k=0}^{p-1} \frac{p^2}{(p+k)^2} {\binom{p-1}{k}}^2 {\binom{p+k}{k}}^2.$$
(2.2)

Note that

$$\binom{p-1}{k}\binom{p+k}{k} = \frac{(p^2 - 1^2)(p^2 - 2^2)\cdots(p^2 - k^2)}{k!^2}$$
$$\equiv (-1)^k (1 - p^2 H_k^{(2)}) \pmod{p^4}, \tag{2.3}$$

where $H_n^{(r)}$ denotes the *n*th generalised harmonic number of order *r*,

$$H_n^{(r)} = \sum_{k=1}^n \frac{1}{k^r},$$

with the convention that $H_n = H_n^{(1)}$. It follows from (2.2) and (2.3) that

$$A_{p-1} = 1 + \sum_{k=1}^{p-1} \frac{p^2}{(p+k)^2} {\binom{p-1}{k}}^2 {\binom{p+k}{k}}^2$$
$$\equiv 1 + p^2 \sum_{k=1}^{p-1} \frac{1 - 2p^2 H_k^{(2)}}{(p+k)^2} \pmod{p^6}.$$
(2.4)

Furthermore,

$$\frac{1}{(p+k)^2} \equiv \frac{1}{k^2} - \frac{2p}{k^3} + \frac{3p^2}{k^4} \pmod{p^3}.$$
 (2.5)

Substituting (2.5) into (2.4) gives

$$A_{p-1} \equiv 1 + p^2 H_{p-1}^{(2)} - 2p^3 H_{p-1}^{(3)} + 3p^4 H_{p-1}^{(4)} - 2p^4 \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k^2} \pmod{p^5}.$$
 (2.6)

For $1 \le k \le p - 1$,

$$\begin{aligned} H_k^{(2)} + H_{p-k}^{(2)} &\equiv H_k^{(2)} + \sum_{i=1}^{p-k} \frac{1}{(p-i)^2} \; (\text{mod } p) \\ &= H_{p-1}^{(2)} + \frac{1}{k^2} \\ &\equiv \frac{1}{k^2} \; (\text{mod } p), \end{aligned}$$

and so

$$\frac{H_k^{(2)}}{k^2} + \frac{H_{p-k}^{(2)}}{(p-k)^2} \equiv \frac{1}{k^4} \pmod{p}.$$

It follows that

$$\sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k^2} = \sum_{k=1}^{(p-1)/2} \left(\frac{H_k^{(2)}}{k^2} + \frac{H_{p-k}^{(2)}}{(p-k)^2} \right) \equiv \sum_{k=1}^{(p-1)/2} \frac{1}{k^4} \pmod{p}.$$
 (2.7)

By [12, Theorem 5.2(a)],

$$\sum_{k=1}^{(p-1)/2} \frac{1}{k^4} \equiv 0 \pmod{p}$$
(2.8)

for any prime $p \ge 7$. From (2.7) and (2.8),

$$\sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k^2} \equiv 0 \pmod{p}.$$
(2.9)

The following two congruences are special cases of results of Lehmer [8, page 353]:

$$H_{p-1}^{(3)} \equiv 0 \pmod{p^2},$$
(2.10)

$$H_{p-1}^{(4)} \equiv 0 \pmod{p},\tag{2.11}$$

364

for any prime $p \ge 7$. Combining (2.6) and (2.9)–(2.11) gives

$$A_{p-1} \equiv 1 + p^2 H_{p-1}^{(2)} \pmod{p^5}.$$
(2.12)

Taking k = 2 in [12, Theorem 5.1(a)] and simplifying,

$$H_{p-1}^{(2)} \equiv \left(\frac{4}{3}B_{p-3} - \frac{1}{2}B_{2p-4}\right)p + \left(\frac{4}{9}B_{p-3} - \frac{1}{4}B_{2p-4}\right)p^2 \pmod{p^3}.$$
 (2.13)

Substituting (1.5) into (2.13) yields

$$H_{p-1}^{(2)} \equiv \left(\frac{4}{3}B_{p-3} - \frac{1}{2}B_{2p-4}\right)p + \frac{1}{9}p^2 B_{p-3} \pmod{p^3}.$$
 (2.14)

Now (1.3) follows from (2.12) and (2.14).

3. Proof of Theorem 1.3

In order to prove Theorem 1.3, we need the following combinatorial identity.

LEMMA 3.1. For any nonnegative integer n,

$$\sum_{k=1}^{n} \frac{(-1)^{k}}{k} \binom{n}{k} \binom{n+1+k}{k} = -2H_{n} + \frac{(-1)^{n}-1}{n+1}.$$
(3.1)

PROOF. Since

$$\binom{n+1+k}{k} = \frac{n+1+k}{n+1}\binom{n+k}{k},$$

we have

$$\sum_{k=1}^{n} \frac{(-1)^{k}}{k} \binom{n}{k} \binom{n+1+k}{k} = \sum_{k=1}^{n} \frac{(-1)^{k}}{k} \binom{n}{k} \binom{n+k}{k} + \frac{1}{n+1} \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \binom{n+k}{k}.$$
 (3.2)

By the Chu-Vandermonde identity,

$$\sum_{k=1}^{n} (-1)^{k} \binom{n}{k} \binom{n+k}{k} = \sum_{k=0}^{n} \binom{n}{n-k} \binom{-n-1}{k} - 1 = (-1)^{n} - 1.$$
(3.3)

On the other hand, by [1, (2.2)],

$$\sum_{k=1}^{n} \frac{(-1)^{k}}{k} \binom{n}{k} \binom{n+k}{k} = -2H_{n}.$$
(3.4)

Now (3.1) follows from (3.2)–(3.4).

PROOF OF THEOREM 1.3. By (2.1) and (2.3),

$$A'_{p-1} = 1 + \sum_{k=1}^{p-1} \frac{p}{p+k} {p-1 \choose k}^2 {p+k \choose k}$$
$$\equiv 1 + p \sum_{k=1}^{p-1} \frac{(-1)^k}{p+k} {p-1 \choose k} (1 - p^2 H_k^{(2)}) \pmod{p^5}.$$
(3.5)

365

Taking n = p - 1 and x = p in the partial fraction decomposition

$$\sum_{k=0}^{n} \frac{(-1)^{k}}{x+k} \binom{n}{k} = \frac{n!}{x(x+1)\cdots(x+n)},$$

we arrive at

$$\sum_{k=0}^{p-1} \frac{(-1)^k}{p+k} \binom{p-1}{k} = \frac{1}{p\binom{2p-1}{p-1}}.$$

It follows that

$$p\sum_{k=1}^{p-1} \frac{(-1)^k}{p+k} \binom{p-1}{k} = p\sum_{k=0}^{p-1} \frac{(-1)^k}{p+k} \binom{p-1}{k} - 1 = \frac{1}{\binom{2p-1}{p-1}} - 1.$$
(3.6)

We need the following congruence of McIntosh (see [9, (6)]):

$$\binom{2p-1}{p-1} \equiv 1 - p^2 H_{p-1}^{(2)} \pmod{p^5}$$
(3.7)

for any prime $p \ge 7$. Substituting (3.7) into (3.6) and using the fact that $H_{p-1}^{(2)} \equiv 0 \pmod{p}$, we arrive at

$$p\sum_{k=1}^{p-1} \frac{(-1)^k}{p+k} {p-1 \choose k} \equiv p^2 H_{p-1}^{(2)} \pmod{p^5}.$$
(3.8)

On the other hand, using $\binom{p-1}{k} \equiv (-1)^k (1 - pH_k) \pmod{p^2}$,

$$p^{3} \sum_{k=1}^{p-1} \frac{(-1)^{k}}{p+k} {p-1 \choose k} H_{k}^{(2)} \equiv p^{3} \sum_{k=1}^{p-1} \frac{H_{k}^{(2)}}{p+k} - p^{4} \sum_{k=1}^{p-1} \frac{H_{k} H_{k}^{(2)}}{p+k} \pmod{p^{5}}.$$
 (3.9)

By [10, (55)],

$$\sum_{k=1}^{p-1} \frac{H_k H_k^{(2)}}{p+k} \equiv \sum_{k=1}^{p-1} \frac{H_k H_k^{(2)}}{k} \equiv 0 \pmod{p}.$$
(3.10)

Since

$$\frac{1}{p+k} \equiv \frac{1}{k} - \frac{p}{k^2} \pmod{p^2},$$

by (2.9), we arrive at

$$\sum_{k=1}^{p-1} \frac{H_k^{(2)}}{p+k} \equiv \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} - p \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k^2} \equiv \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} \pmod{p^2}.$$
 (3.11)

Combining (3.9)–(3.11) gives

$$p^{3} \sum_{k=1}^{p-1} \frac{(-1)^{k}}{p+k} {p-1 \choose k} H_{k}^{(2)} \equiv p^{3} \sum_{k=1}^{p-1} \frac{H_{k}^{(2)}}{k} \pmod{p^{5}}.$$
 (3.12)

[5]

Letting n = p - 1 in (3.1),

$$\sum_{k=1}^{p-1} \frac{(-1)^k}{k} \binom{p-1}{k} \binom{p+k}{k} = -2H_{p-1}.$$

It follows from (2.3) and the above that

$$\sum_{k=1}^{p-1} \frac{1 - p^2 H_k^{(2)}}{k} \equiv -2H_{p-1} \pmod{p^4}$$

and so

$$p^2 \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} \equiv 3H_{p-1} \pmod{p^4},$$

which implies that

$$\sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} \equiv \frac{3}{p^2} H_{p-1} \pmod{p^2}.$$
(3.13)

Substituting (3.13) into (3.12) gives

$$p^{3} \sum_{k=1}^{p-1} \frac{(-1)^{k}}{p+k} {p-1 \choose k} H_{k}^{(2)} \equiv 3pH_{p-1} \pmod{p^{5}}.$$
(3.14)

From [9, (6) and (7)],

$$pH_{p-1} \equiv -\frac{p^2}{2}H_{p-1}^{(2)} \pmod{p^5}.$$
 (3.15)

Finally, combining (3.5), (3.8), (3.14) and (3.15) gives

$$A'_{p-1} \equiv 1 + \frac{5}{2}p^2 H^{(2)}_{p-1} \pmod{p^5}.$$
(3.16)

Now (1.4) follows from (2.14) and (3.16).

REMARK 3.2. On WeChat, Professor Z.-W. Sun independently conjectured two extensions of (1.1) and (1.2), namely,

$$A_{p-1} \equiv 1 - 2pH_{p-1} \pmod{p^5},$$
(3.17)

$$A'_{p-1} \equiv 1 - 5pH_{p-1} \pmod{p^5}$$
(3.18)

for primes $p \ge 7$, which have simpler forms than (1.3) and (1.4). We remark that (3.17) and (3.18) can be deduced from (2.12), (3.15) and (3.16).

Acknowledgement

The authors are grateful to Professor Zhi-Hong Sun for bringing the reference [12] to their attention and for helpful conversations.

References

- [1] T. Amdeberhan and R. Tauraso, 'Supercongruences for the Almkvist–Zudilin numbers', *Acta Arith.* **173** (2016), 255–268.
- [2] R. Apéry, 'Irrationalité de $\zeta(2)$ et $\zeta(3)$ ', *Astérisque* **61** (1979), 11–13.
- [3] F. Beukers, 'Some congruences for the Apéry numbers', J. Number Theory 21 (1985), 141–155.
- [4] H. H. Chan, S. Cooper and F. Sica, 'Congruences satisfied by Apéry-like numbers', *Int. J. Number Theory* **6** (2010), 89–97.
- [5] É. Delaygue, 'Arithmetic properties of Apéry-like numbers', Compos. Math. 154 (2018), 249–274.
- [6] I. Gessel, 'Some congruences for Apéry numbers', J. Number Theory 14 (1982), 362–368.
- [7] V. J. W. Guo and J. Zeng, 'Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials', J. Number Theory 132 (2012), 1731–1740.
- [8] E. Lehmer, 'On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson', *Ann. of Math.* (2) **39** (1938), 350–360.
- [9] R. Meštrović, 'Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862–2012)', Preprint, 2011, arXiv:1111.3057.
- [10] R. Meštrović, 'An extension of a congruence by Tauraso', *Combinatorics* 2013 (2013), Article ID 363724, 7 pages.
- [11] H. Pan, 'On divisibility of sums of Apéry polynomials', J. Number Theory 143 (2014), 214–223.
- [12] Z.-H. Sun, 'Congruences concerning Bernoulli numbers and Bernoulli polynomials', *Discrete Appl. Math.* 105 (2000), 193–223.
- [13] Z.-W. Sun, 'On sums of Apéry polynomials and related congruences', J. Number Theory 132 (2012), 2673–2699.
- [14] Z.-W. Sun, 'Conjectures and results on $x^2 \mod p^2$ with $4p = x^2 + dy^2$ ', in: *Number Theory and Related Areas*, Advanced Lectures in Mathematics, 27 (eds. Y. Ouyang, C. Xing, F. Xu and P. Zhang) (Higher Education Press and International Press, Beijing, Boston, 2013), 149–197. Available at https://arxiv.org/abs/1103.4325.
- [15] Z.-W. Sun, 'Congruences involving generalized trinomial coefficients', Sci. China Math. 57 (2014), 1375–1400.
- [16] Z.-H. Sun, 'Congruences for Apéry-like numbers', Preprint, 2018, arXiv:1803.10051.

JI-CAI LIU, Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China e-mail: jcliu2016@gmail.com

CHEN WANG, Department of Mathematics, Nanjing University, Nanjing 210093, PR China e-mail: chenwjsnu@163.com