COMPOSITIO MATHEMATICA

On Berman-Gibbs stability and K-stability of \mathbb{Q}-Fano varieties

Kento Fujita

Compositio Math. 152 (2016), 288-298.

doi:10.1112/S0010437X1500768X

On Berman-Gibbs stability and K-stability of \mathbb{Q}-Fano varieties

Kento Fujita

Abstract

The notion of Berman-Gibbs stability was originally introduced by Berman for \mathbb{Q}-Fano varieties X. We show that the pair $\left(X,-K_{X}\right)$ is K -stable (respectively K -semistable) provided that X is Berman-Gibbs stable (respectively semistable).

1. Introduction

One of the most important problems for the study of \mathbb{Q}-Fano varieties X (i.e., projective logterminal varieties with $-K_{X}$ ample \mathbb{Q}-Cartier) is to determine whether the pairs ($X,-K_{X}$) are K-stable or not (for the notion of K-stability, see $\S 2.1$). Recently, Berman introduced a new stability of X, which he calls Gibbs stability, and its variants. The main purpose of this paper is to show that, slightly modifying the definition (we rename it as Berman-Gibbs stability), it implies the K-stability in Donaldson's [Don02] and Tian's [Tia97] sense. In particular, by [CDS15a, CDS15b, CDS15c, Tia15], it implies the existence of a Kähler-Einstein metric if X is smooth and the base field is the complex number field. We remark that Berman showed in [Ber13, Theorem 7.3] that strongly Gibbs stable Fano manifolds defined over the complex number field admit Kähler-Einstein metrics, where the notion of strong Gibbs stability is stronger than the notion of Berman-Gibbs stability. Now we define the notion of Berman-Gibbs stability. (We remark that the notion of Berman-Gibbs stability is slightly weaker than the notion of uniform Gibbs stability. For detail, see [Ber13, §7].)

Definition 1.1. Let X be a projective variety and L be a globally generated Cartier divisor on X. Set $N:=h^{0}\left(X, \mathcal{O}_{X}(L)\right)$ and $\phi:=\phi_{|L|}: X \rightarrow \mathbb{P}^{N-1}$, where $\phi_{|L|}$ is a morphism defined by the complete linear system $|L|$. Consider the morphism $\Phi: X^{N} \rightarrow\left(\mathbb{P}^{N-1}\right)^{N}$ defined by the copies of ϕ, that is, $\Phi\left(x_{1}, \ldots, x_{N}\right):=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{N}\right)\right)$ for $x_{1}, \ldots, x_{N} \in X$. Let $\operatorname{Det}_{N} \subset\left(\mathbb{P}^{N-1}\right)^{N}$ be the divisor defined by the equation $\operatorname{det}\left(x_{i j}\right)_{1 \leqslant i, j \leqslant N}=0$, where

$$
\left(x_{11}: \cdots: x_{1 N} ; \cdots ; x_{N 1}: \cdots: x_{N N}\right)
$$

are the multi-homogeneous coordinates of $\left(\mathbb{P}^{N-1}\right)^{N}$. We set the divisor $D_{X, L} \subset X^{N}$ defined by $D_{X, L}:=\Phi^{*} \operatorname{Det}_{N}$.

Remark 1.2. The divisor $D_{X, L} \subset X^{N}$ is defined uniquely by X and the linear equivalence class of L. In particular, the definition is independent of the choice of the basis of $H^{0}\left(X, \mathcal{O}_{X}(L)\right)$.

[^0]Definition 1.3 [Ber13, (7.2)]. Let X be a \mathbb{Q}-Fano variety. For $k \in \mathbb{Z}_{>0}$ with $-k K_{X}$ Cartier and globally generated, we set $N:=N_{k}:=h^{0}\left(X, \mathcal{O}_{X}\left(-k K_{X}\right)\right)$ and $D_{k}:=D_{X,-k K_{X}} \subset X^{N}$. Set

$$
\gamma(X):=\underset{\substack{k \rightarrow \infty \\-k K_{X}: \text { Cartier }}}{\liminf ^{2}}\left(\operatorname{lct}_{\Delta_{X}}\left(X^{N}, \frac{1}{k} D_{k}\right)\right),
$$

where $\Delta_{X}(\simeq X)$ is the diagonal, that is,

$$
\Delta_{X}:=\left\{(x, \ldots, x) \in X^{N} \mid x \in X\right\} \subset X^{N}
$$

and $\operatorname{lct}_{\Delta_{X}}\left(X^{N},(1 / k) D_{k}\right)$ is the log-canonical threshold (see [Laz04, §9]) of the pair (X^{N}, $\left.(1 / k) D_{k}\right)$ around Δ_{X}, that is,

$$
\operatorname{lct}_{\Delta_{X}}\left(X^{N}, \frac{1}{k} D_{k}\right):=\sup \left\{c \in \mathbb{Q}_{>0} \left\lvert\,\left(X^{N}, \frac{c}{k} D_{k}\right)\right.: \begin{array}{l}
\text { log-canonical } \\
\text { around } \Delta_{X}
\end{array}\right\} .
$$

We say that X is Berman-Gibbs stable (respectively Berman-Gibbs semistable) if $\gamma(X)>1$ (respectively $\gamma(X) \geqslant 1$).

We show in this paper that Berman-Gibbs stability implies K-stability for any \mathbb{Q}-Fano variety. More precisely, we show the following.

Theorem 1.4 (Main theorem). Let X be a \mathbb{Q}-Fano variety. If X is Berman-Gibbs stable (respectively Berman-Gibbs semistable), then the pair ($X,-K_{X}$) is K-stable (respectively K semistable).

Now we explain how this article is organized. In § 2.1, we recall the notion and basic properties of K-stability. In $\S 2.2$, we recall the notion and basic properties of multiplier ideal sheaves, which is a powerful tool to determine how much the singularities of given divisors or given ideal sheaves are mild. In $\S 3$, we determine whether the projective line \mathbb{P}^{1} is Berman-Gibbs stable or not. We will see that \mathbb{P}^{1} is Berman-Gibbs semistable but is not Berman-Gibbs stable. In §4, we prove the key propositions in order to prove Theorem 1.4. We will prove in Proposition 4.2 that Berman-Gibbs stability of X implies that the singularity of a given certain ideal sheaf on $X \times \mathbb{A}^{1}$ is somewhat mild. The strategy of the proof of Proposition 4.2 is to see their multiplier ideal sheaves in detail. In §5, we prove Theorem 1.4. By combining the results in [OS12], Proposition 4.2, and by some numerical arguments, we can prove Theorem 1.4.

Throughout this paper, we work in the category of algebraic (separated and of finite type) scheme over a fixed algebraically closed field \mathbb{k} of characteristic zero. A variety means a reduced and irreducible algebraic scheme. For the theory of minimal model program, we refer the readers to [KM98]; for the theory of multiplier ideal sheaves, we refer the readers to [Laz04]. For varieties X_{1}, \ldots, X_{N}, let $p_{j}: \prod_{1 \leqslant i \leqslant N} X_{i} \rightarrow X_{j}$ be the j th projection morphism for any $1 \leqslant j \leqslant N$.

2. Preliminaries

In this section, we correct some definitions.

2.1 K-stability

We quickly recall the definition and basic properties of K-stability. For detail, for example, see [Oda13] and references therein.

K. Fujita

Definition 2.1 (See [Tia97, Don02, RT07, Oda13, LX14]). Let X be a \mathbb{Q}-Fano variety of dimension n.
(1) A flag ideal \mathscr{I} is an ideal sheaf $\mathscr{I} \subset \mathcal{O}_{X \times \mathbb{A}_{t}^{1}}$ of the form

$$
\mathscr{I}=I_{M}+I_{M-1} t+\cdots+I_{1} t^{M-1}+\left(t^{M}\right) \subset \mathcal{O}_{X \times \mathbb{A}_{t}^{1}}
$$

where $\mathcal{O}_{X} \supset I_{1} \supset \cdots \supset I_{M}$ is a sequence of coherent ideal sheaves.
(2) Let \mathscr{I} be a flag ideal and let $s \in \mathbb{Q}>0$. A normal \mathbb{Q}-semi test configuration $(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}$ of $\left(X,-K_{X}\right)$ obtained by \mathscr{I} and s is defined by the following datum:

- $\Pi: \mathcal{B} \rightarrow X \times \mathbb{A}^{1}$ is the blowing up along \mathscr{I}, and let E be the exceptional divisor, that is, $\mathcal{O}_{\mathcal{B}}(-E):=\mathscr{I} \mathcal{O}_{\mathcal{B}}$;
- $\mathcal{L}:=\Pi^{*} p_{1}^{*}\left(-K_{X}\right)-s E$,
and we require the following conditions:
- \mathcal{B} is normal and the morphism Π is not an isomorphism;
- $\quad \mathcal{L}$ is semiample over \mathbb{A}^{1}.
(3) Let $\pi:(\mathcal{B}, \mathcal{L}) \rightarrow \mathbb{A}^{1}$ be a normal \mathbb{Q}-semi test configuration of $\left(X,-K_{X}\right)$ obtained by \mathscr{I} and s. For a sufficiently divisible positive integer k, the multiplicative group \mathbb{G}_{m} naturally acts on $\left(\mathcal{B}, \mathcal{O}_{\mathcal{B}}(k \mathcal{L})\right)$ and the morphism π is \mathbb{G}_{m}-equivariant, where the action $\mathbb{G}_{m} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is in a standard way $(a, t) \mapsto a t$. Let $w(k)$ be the total weight of the induced action on $\left.\left(\pi_{*} \mathcal{O}_{\mathcal{B}}(k \mathcal{L})\right)\right|_{\{0\}}$ and set $N_{k}:=h^{0}\left(X, \mathcal{O}_{X}\left(-k K_{X}\right)\right)$. Then N_{k} (respectively $w(k)$) is a polynomial in variable k of degree n (respectively at most $n+1$) for $k \gg 0$. Consider the expansion

$$
\frac{w(k)}{k N_{k}}=F_{0}+F_{1} k^{-1}+F_{2} k^{-2}+\cdots
$$

Let $\operatorname{DF}(\mathcal{B}, \mathcal{L}):=-F_{1}$ be the Donaldson-Futaki invariant of $(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}$. We set $\mathrm{DF}_{0}:=2(n+$ $1)^{2}\left(\left(-K_{X}\right)^{-n}\right) \operatorname{DF}(\mathcal{B}, \mathcal{L})$ for simplicity.
(4) The pair $\left(X,-K_{X}\right)$ is said to be K-stable (respectively K-semistable) if $\operatorname{DF}(\mathcal{B}, \mathcal{L})>0$ (respectively $\operatorname{DF}(\mathcal{B}, \mathcal{L}) \geqslant 0$) holds for any normal \mathbb{Q}-semi test configuration $(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}$ of $\left(X,-K_{X}\right)$ obtained by \mathscr{I} and s.

The following is a fundamental result.
Theorem 2.2 [OS12, Oda13]. Let X be a \mathbb{Q}-Fano variety of dimension $n,(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}$ be a normal \mathbb{Q}-semi test configuration of $\left(X,-K_{X}\right)$ obtained by \mathscr{I} and s, and $(\overline{\mathcal{B}}, \overline{\mathcal{L}}) / \mathbb{P}^{1}$ be its natural compactification to \mathbb{P}^{1}, that is, $\Pi: \overline{\mathcal{B}} \rightarrow X \times \mathbb{P}^{1}$ be the blowing up along \mathscr{I} and $\overline{\mathcal{L}}:=\Pi^{*} p_{1}^{*}\left(-K_{X}\right)-$ $s E$ on $\overline{\mathcal{B}}$. Then the following holds.
(1) For a sufficiently divisible positive integer k, we have

$$
w(k)=\chi\left(\overline{\mathcal{B}}, \mathcal{O}_{\overline{\mathcal{B}}}(k \overline{\mathcal{L}})\right)-\chi\left(\overline{\mathcal{B}}, \Pi^{*} p_{1}^{*} \mathcal{O}_{X}\left(-k K_{X}\right)\right)+O\left(k^{n-1}\right) .
$$

In particular, we have

$$
\lim _{k \rightarrow \infty} \frac{w(k)}{k N_{k}}=\frac{\left(\overline{\mathcal{L}}^{n+1}\right)}{(n+1)\left(\left(-K_{X}\right)^{\cdot n}\right)} .
$$

(2) We have

$$
\begin{aligned}
\mathrm{DF}_{0} & =\frac{n}{n+1}\left(\overline{\mathcal{L}}^{n+1}\right)+\left(\overline{\mathcal{L}}^{n} \cdot K_{\overline{\mathcal{B}} / \mathbb{P}^{1}}\right) \\
& =-\frac{1}{n+1}\left(\overline{\mathcal{L}}^{n+1}\right)+\left(\overline{\mathcal{L}}^{n} \cdot K_{\overline{\mathcal{B}} / X \times \mathbb{P}^{1}}-s E\right) .
\end{aligned}
$$

(3) We have $\left(\overline{\mathcal{L}}^{n} \cdot E\right)>0$.
(4) If $K_{\overline{\mathcal{B}} / X \times \mathbb{P}^{1}}-s E \geqslant 0$, then $\mathrm{DF}_{0}>0$.

Proof. Parts (1) and (2) follow from [Oda13, Proof of Theorem 3.2], part (3) follows from [OS12, Lemma 4.5], and part (4) follows from [OS12, Proposition 4.4].

2.2 Multiplier ideal sheaves

We recall the definition and basic properties of multiplier ideal sheaves.
Definition 2.3. Let Y be a normal \mathbb{Q}-Gorenstein variety, $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{l} \subset \mathcal{O}_{Y}$ be coherent ideal sheaves and $c_{1}, \ldots, c_{l} \in \mathbb{Q} \geqslant 0$. The multiplier ideal sheaf $\mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right) \subset \mathcal{O}_{Y}$ of the pair (Y, $\left.\mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right)$ is defined by the following. Take a common \log resolution $\mu: \hat{Y} \rightarrow Y$ of $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{l}$, i.e., \hat{Y} is smooth, $\mathfrak{a}_{i} \mathcal{O}_{\hat{Y}}=\mathcal{O}_{\hat{Y}}\left(-F_{i}\right)$ and $\operatorname{Exc}(\mu), \operatorname{Exc}(\mu)+\sum_{1 \leqslant i \leqslant l} F_{i}$ are divisors with simple normal crossing supports. Then we set

$$
\mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right):=\mu_{*} \mathcal{O}_{\hat{Y}}\left(\left\lceil K_{\hat{Y} / Y}-\sum_{1 \leqslant i \leqslant l} c_{i} F_{i}\right\rceil\right)
$$

where $\left\lceil K_{\hat{Y} / Y}-\sum_{1 \leqslant i \leqslant l} c_{i} F_{i}\right\rceil$ is the smallest \mathbb{Z}-divisor which contains $K_{\hat{Y} / Y}-\sum_{1 \leqslant i \leqslant l} c_{i} F_{i}$.
The following proposition can be proved in essentially the same way as in the proofs in [Laz04, §9]. We omit the proof.

Proposition 2.4 (See [Laz04, §9]). Under the hypotheses of Definition 2.3, we have the following.
(1) $\mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right)$ does not depend on the choice of μ.
(2) For an effective Cartier divisor D on Y, we have

$$
\mathcal{I}\left(Y, \mathcal{O}_{Y}(-D)^{1} \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right)=\mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right) \otimes \mathcal{O}_{Y}(-D)
$$

(3) If coherent ideal sheaves $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{l} \subset \mathcal{O}_{Y}$ satisfy that $\mathfrak{a}_{i} \subset \mathfrak{b}_{i}$ for all $1 \leqslant i \leqslant l$, then

$$
\mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right) \subset \mathcal{I}\left(Y, \mathfrak{b}_{1}^{c_{1}} \cdots \mathfrak{b}_{l}^{c_{l}}\right)
$$

(4) Let Y^{\prime} be another normal \mathbb{Q}-Gorenstein variety, $\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{l^{\prime}} \subset \mathcal{O}_{Y^{\prime}}$ be coherent ideal sheaves and $c_{1}^{\prime}, \ldots, c_{l^{\prime}}^{\prime} \in \mathbb{Q} \geqslant 0$. Then we have

$$
\begin{aligned}
& \mathcal{I}\left(Y \times Y^{\prime}, p_{1}^{-1} \mathfrak{a}_{1}^{c_{1}} \cdots p_{1}^{-1} \mathfrak{a}_{l}^{c_{l}} \cdot p_{2}^{-1} \mathfrak{b}_{1}^{c_{1}^{\prime}} \cdots p_{2}^{-1} \mathfrak{b}_{l^{\prime}}^{c_{\prime^{\prime}}^{\prime}}\right) \\
& \quad=p_{1}^{-1} \mathcal{I}\left(Y, \mathfrak{a}_{1}^{c_{1}} \cdots \mathfrak{a}_{l}^{c_{l}}\right) \cdot p_{2}^{-1} \mathcal{I}\left(Y^{\prime}, \mathfrak{b}_{1}^{c_{1}^{\prime}} \cdots \mathfrak{b}_{l^{\prime}}^{c_{l^{\prime}}^{\prime}}\right) .
\end{aligned}
$$

The following theorem is a singular version of Mustaţă's summation formula [Mus02, Corollary 1.4] due to Takagi.

Theorem 2.5 [Tak06, Theorem 3.2]. Let Y be a normal \mathbb{Q}-Gorenstein variety, let $\mathfrak{a}_{0}, \mathfrak{a}_{1}, \ldots$, $\mathfrak{a}_{l} \subset \mathcal{O}_{Y}$ be coherent ideal sheaves and let $c_{0}, c \in \mathbb{Q} \geqslant 0$. Then we have

$$
\mathcal{I}\left(Y, \mathfrak{a}_{0}^{c_{0}} \cdot\left(\sum_{i=1}^{l} \mathfrak{a}_{i}\right)^{c}\right)=\sum_{\substack{c_{1}+\ldots+c_{l}=c \\ c_{1}, \ldots, c_{l} \in \mathbb{Q} \geqslant 0}} \mathcal{I}\left(Y, \mathfrak{a}_{0}^{c_{0}} \cdot \prod_{i=1}^{l} \mathfrak{a}_{i}^{c_{i}}\right)
$$

K. Fujita

3. The projective line case

In this section, we see whether the projective line \mathbb{P}^{1} is Berman-Gibbs stable or not. For any $k \in \mathbb{Z}_{>0}$, we have $N_{k}=2 k+1$ and the morphism associated to the complete linear system $\left|-k K_{\mathbb{P}^{1}}\right|$ is the $(2 k)$ th Veronese embedding $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2 k}$. If the multi-homogeneous coordinates of $\left(\mathbb{P}^{1}\right)^{2 k+1}$ are denoted by

$$
\left(t_{1,0}: t_{1,1} ; \cdots ; t_{2 k+1,0}: t_{2 k+1,1}\right)
$$

then the divisor $D_{k} \subset\left(\mathbb{P}^{1}\right)^{2 k+1}$ corresponds to the following section:

$$
\operatorname{det}\left(\begin{array}{ccccc}
t_{1,0}^{2 k} & t_{1,0}^{2 k-1} t_{1,1}^{1} & \cdots & t_{1,0}^{1} t_{1,1}^{2 k-1} & t_{1,1}^{2 k} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
t_{2 k+1,0}^{2 k} & t_{2 k+1,0}^{2 k-1} t_{2 k+1,1}^{1} & \cdots & t_{2 k+1,0}^{1} t_{2 k+1,1}^{2 k-1} & t_{2 k+1,1}^{2 k}
\end{array}\right)
$$

The above matrix is so-called the Vandermonde matrix. Thus, around $0 \in \mathbb{A}_{u_{1}, \ldots, u_{2 k+1}}^{2 k+1} \subset\left(\mathbb{P}^{1}\right)^{2 k+1}$, the divisor $D_{k} \subset \mathbb{A}_{u_{1}, \ldots, u_{2 k+1}}^{2 k+1}$ is defined by the polynomial $f_{k} \in \mathbb{k}\left[u_{1}, \ldots, u_{2 k+1}\right]$, where

$$
f_{k}:=\prod_{1 \leqslant i<j \leqslant 2 k+1}\left(u_{i}-u_{j}\right) .
$$

By Lemma 3.1, $\operatorname{lct}_{0}\left(\mathbb{A}^{2 k+1},\left(f_{k}=0\right)\right)=2 /(2 k+1)$. Thus

$$
\operatorname{lct}_{\Delta_{\mathbb{P}}}\left(\left(\mathbb{P}^{1}\right)^{N},(1 / k) D_{k}\right)=2 k /(2 k+1)
$$

Hence $\gamma\left(\mathbb{P}^{1}\right)=1$. As a consequence, the projective line \mathbb{P}^{1} is Berman-Gibbs semistable but is not Berman-Gibbs stable.

Lemma 3.1 [Mus06]. For $g \geqslant 2$, we have

$$
\operatorname{lct}_{0}\left(\mathbb{A}_{u_{1}, \ldots, u_{g}}^{g},\left(\prod_{1 \leqslant i<j \leqslant g}\left(u_{i}-u_{j}\right)=0\right)\right)=2 / g
$$

Proof. Set $D:=\left(\prod_{1 \leqslant i<j \leqslant g}\left(u_{i}-u_{j}\right)=0\right) \subset \mathbb{A}^{g}$. Let $\tau: V \rightarrow \mathbb{A}^{g}$ be the blowing up along the line $\left(u_{1}=\cdots=u_{g}\right)$ and let F be its exceptional divisor. For $c \in \mathbb{Q}_{>0}$, the discrepancy $a\left(F, \mathbb{A}^{g}, c D\right)$ is equal to $g-2-c g(g-1) / 2$. Thus $\operatorname{lct}_{0}\left(\mathbb{A}^{g}, D\right) \leqslant 2 / g$. Hence it is enough to show that $\operatorname{lct}\left(\mathbb{A}^{g}, D\right) \geqslant 2 / g$.

Let $H_{i j} \subset \mathbb{A}^{g}$ be the hyperplane defined by $u_{i}-u_{j}=0$ and set $\mathcal{A}:=\left\{H_{i j}\right\}_{1 \leqslant i, j \leqslant g, i \neq j}$. We set

$$
L(\mathcal{A}):=\left\{W \subset \mathbb{A}^{g} \mid{ }^{\exists} \mathcal{A}^{\prime} \subset \mathcal{A} ; W=\bigcap_{H \in \mathcal{A}^{\prime}} H\right\} .
$$

For $W \in L(\mathcal{A})$, set $s(W):=\#\{H \in \mathcal{A} \mid W \subset H\}$ and $r(W):=\operatorname{codim}_{\mathbb{A}^{g}} W$. By [Mus06, Corollary 0.3],

$$
\operatorname{lct}\left(\mathbb{A}^{g}, D\right)=\min _{W \in L(\mathcal{A}) \backslash\left\{\mathbb{A}^{g}\right\}}\left\{\frac{r(W)}{s(W)}\right\} .
$$

Pick any $W \in L(\mathcal{A}) \backslash\left\{\mathbb{A}^{g}\right\}$ and set $r:=r(W)$. It is enough to show that $s(W) \leqslant r(r+1) / 2$. If $r=1$, then $s(W)=1$. Thus we can assume that $r \geqslant 2$. There exist distinct $H_{i_{1} j_{1}}, \ldots, H_{i_{r} j_{r}} \in \mathcal{A}$ such that $W=H_{i_{1} j_{1}} \cap \cdots \cap H_{i_{r} j_{r}}$.

Assume that $i_{1}, j_{1} \notin\left\{i_{2}, j_{2}, \ldots, i_{r}, j_{r}\right\}$. For any $H_{i j} \in L(\mathcal{A})$, if $W \subset H_{i j}$ then $H_{i_{1} j_{1}}=H_{i j}$ or $H_{i_{2} j_{2}} \cap \cdots \cap H_{i_{r} j_{r}} \subset H_{i j}$. Thus $s(W)=1+s\left(H_{i_{2} j_{2}} \cap \cdots \cap H_{i_{r} j_{r}}\right) \leqslant 1+r(r-1) / 2<r(r+1) / 2$ by induction on r. Hence we can assume that $\left(i_{0}:=\right) i_{1}=i_{2}$.

Assume that $i_{0}, j_{1}, j_{2} \notin\left\{i_{3}, j_{3}, \ldots, i_{r}, j_{r}\right\}$. For any $H_{i j} \in L(\mathcal{A})$, if $W \subset H_{i j}$ then $H_{i_{0} j_{1}} \cap$ $H_{i_{0} j_{2}} \subset H_{i j}$ or $H_{i_{3} j_{3}} \cap \cdots \cap H_{i_{r} j_{r}} \subset H_{i j}$. Thus $s(W)=s\left(H_{i_{0} j_{1}} \cap H_{i_{0} j_{2}}\right)+s\left(H_{i_{3} j_{3}} \cap \cdots \cap H_{i_{r} j_{r}}\right) \leqslant$ $2 \cdot 3 / 2+(r-1)(r-2) / 2<r(r+1) / 2$ by induction on r. Hence we can assume that $i_{3} \in\left\{i_{0}, j_{1}, j_{2}\right\}$. If $i_{3}=j_{1}$, then $H_{i_{0} j_{1}} \cap H_{j_{1} j_{3}}=H_{i_{0} j_{1}} \cap H_{i_{0} j_{3}}$. By replacing $H_{j_{1} j_{3}}$ to $H_{i_{0} j_{3}}$, we can assume that $\left(i_{0}=\right) i_{1}=i_{2}=i_{3}$.

We repeat this process. (We note that, for any $1 \leqslant j \leqslant r-1, j(j+1) / 2+(r-j)(r-j+1) / 2<$ $r(r+1) / 2$.) We can assume that $\left(i_{0}=\right) i_{1}=\cdots=i_{r}$. For any $H_{i j} \in L(\mathcal{A})$, the condition $W \subset H_{i j}$ is equivalent to the condition $\{i, j\} \subset\left\{i_{0}, j_{1}, \ldots, j_{r}\right\}$. Thus $s(W)=r(r+1) / 2$. Therefore we have proved that $s(W) \leqslant r(r+1) / 2$.

4. Key propositions

In this section, we see the key propositions in order to prove Theorem 1.4. Throughout the section, let X be a \mathbb{Q}-Fano variety of dimension n and let $(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}, \mathscr{I}, s$, and so on are as in § 2.1.

Lemma 4.1. Let k be a sufficiently divisible positive integer.
(1) Set $I_{0}:=\mathcal{O}_{X}$ (cf. [RT07, $\S \S 3$ and 4]). We also set

$$
\tilde{I}_{j}:=\sum_{\substack{j_{1}+\cdots+j_{k s}=j \\ 0 \leqslant j_{1}, \ldots, j_{k s} \leqslant M}} I_{j_{1}} \cdots I_{j_{k s}}
$$

for all $0 \leqslant j \leqslant M k s$. Then $\mathscr{I}^{k s}=\tilde{I}_{M k s}+\tilde{I}_{M k s-1} t+\cdots+\tilde{I}_{1} t^{M k s-1}+\left(t^{M k s}\right)$. Consider the filtration

$$
H^{0}\left(X, \mathcal{O}_{X}\left(-k K_{X}\right)\right)=\mathcal{F}_{0} \supset \mathcal{F}_{1} \supset \cdots \supset \mathcal{F}_{M k s} \supset 0
$$

defined by $\mathcal{F}_{j}:=H^{0}\left(X, \mathcal{O}_{X}\left(-k K_{X}\right) \cdot \tilde{I}_{j}\right)$. Set $m:=\sum_{j=1}^{M k s} \operatorname{dim} \mathcal{F}_{j}$. Then $m=N M k s+w$ holds, where $w=w(k)$ and $N=N_{k}$ are as in Definition 2.1(3).
(2) Let $\tilde{I}_{i, j} \subset \mathcal{O}_{X_{i}}$ be the copies of $\tilde{I}_{j} \subset \mathcal{O}_{X}\left(X_{i}:=X\right)$ for all $1 \leqslant i \leqslant N$ and set

$$
J_{j}:=\sum_{\substack{j_{1}+\cdots+j_{N}=j \\ 0 \leqslant j_{1}, \ldots, j_{N} \leqslant M k s}} p_{1}^{-1} \tilde{I}_{1, j_{1}} \cdots p_{N}^{-1} \tilde{I}_{N, j_{N}} \subset \mathcal{O}_{X^{N}}
$$

for all $0 \leqslant j \leqslant N M k s$. Then $\mathcal{O}_{X^{N}}\left(-D_{k}\right) \subset J_{m}$ holds.
Proof. (1) By $[\mathrm{RT} 07, \S \S 3$ and 4$],\left.\left(\pi_{*} \mathcal{O}_{\mathcal{B}}(k \mathcal{L})\right)\right|_{\{0\}}$ is equal to

$$
H^{0}\left(X \times \mathbb{A}_{t}^{1}, \mathcal{O}\left(-k K_{X \times \mathbb{A}^{1}}\right) \cdot \mathscr{I}^{k s}\right) / t \cdot H^{0}\left(X \times \mathbb{A}_{t}^{1}, \mathcal{O}\left(-k K_{X \times \mathbb{A}^{1}}\right) \cdot \mathscr{I}^{k s}\right)
$$

and is also equal to

$$
\mathcal{F}_{M k s} \oplus \bigoplus_{j=1}^{M k s} t^{j} \cdot\left(\mathcal{F}_{M k s-j} / \mathcal{F}_{M k s-j+1}\right)
$$

K. Fujita

Thus $w=\sum_{j=1}^{M k s}(-j)\left(\operatorname{dim} \mathcal{F}_{M k s-j}-\operatorname{dim} \mathcal{F}_{M k s-j+1}\right)=-M k s \operatorname{dim} \mathcal{F}_{0}+\sum_{j=1}^{M k s} \operatorname{dim} \mathcal{F}_{j}$. This implies that $m=N M k s+w$.
(2) Choose a basis $s_{1}, \ldots, s_{N} \in H^{0}\left(X, \mathcal{O}_{X}\left(-k K_{X}\right)\right)$ along the filtration $\left\{\mathcal{F}_{j}\right\}_{0 \leqslant j \leqslant M k s}$. For $1 \leqslant j \leqslant N$, set

$$
f(j):=\max \left\{0 \leqslant i \leqslant M k s \mid s_{j} \in \mathcal{F}_{i}\right\} .
$$

Let $s_{i 1}, \ldots, s_{i N} \in H^{0}\left(X_{i}, \mathcal{O}_{X_{i}}\left(-k K_{X_{i}}\right)\right)$ be the i th copies of s_{1}, \ldots, s_{N} for all $1 \leqslant i \leqslant N$. Then the divisor $D_{k} \subset X^{N}$ corresponds to the section

$$
\sum_{\sigma \in \mathfrak{G}_{N}} \operatorname{sgn} \sigma \cdot s_{1 \sigma(1)} \cdots s_{N \sigma(N)} \in H^{0}\left(X^{N}, \mathcal{O}_{X^{N}}\left(-k K_{X^{N}}\right)\right)
$$

where \mathfrak{S}_{N} is the N th symmetric group. Take any $\sigma \in \mathfrak{S}_{N}$. Since $s_{i, j} \in p_{i}^{-1} \tilde{I}_{i, f(j)}$, we have

$$
s_{1 \sigma(1)} \cdots s_{N \sigma(N)} \in p_{1}^{-1} \tilde{I}_{1, f(\sigma(1))} \cdots p_{N}^{-1} \tilde{I}_{N, f(\sigma(N))}
$$

Note that $\sum_{i=1}^{N} f(\sigma(i))=\sum_{i=1}^{N} f(i)=\sum_{j=0}^{M k s} j\left(\operatorname{dim} \mathcal{F}_{j}-\operatorname{dim} \mathcal{F}_{j+1}\right)=m$, where $\mathcal{F}_{M k s+1}:=0$. Thus $\mathcal{O}_{X^{N}}\left(-D_{k}\right) \subset J_{m}$.

Proposition 4.2. Assume that a positive rational number $\gamma \in \mathbb{Q}_{>0}$ satisfies that, for a sufficiently divisible positive integer k, the pair $\left(X^{N},(\gamma / k) D_{k}\right)$ is log-canonical around Δ_{X}. Then for any $\varepsilon \in(0,1) \cap \mathbb{Q}$ and any sufficiently big positive integer P, the structure sheaf $\mathcal{O}_{X \times \mathbb{A}^{1}}$ is contained in the sheaf

$$
\mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1+\gamma w /(k N))+P} \cdot \mathscr{I}^{(1-\varepsilon) \gamma s}\right) \otimes \mathcal{O}_{X \times \mathbb{A}^{1}}(P \cdot(t=0))
$$

(that is, the pair $\left(X \times \mathbb{A}^{1},(t)^{(1+\gamma w /(k N))} \cdot \mathscr{I}^{\gamma s}\right)$ is 'sub-log-canonical'), where $w=w(k)$ and $N=N_{k}$ are as in Definition 2.1(3).

Proof. We set

$$
\begin{aligned}
& \Theta:=\left\{\begin{array}{l|l}
\vec{j}=\left(j_{1}, \ldots, j_{N}\right) & \begin{array}{c}
j_{1}+\cdots+j_{N}=m, \\
0 \leqslant j_{1}, \ldots, j_{N} \leqslant M k s
\end{array}
\end{array}\right\}, \\
& A:=\left\{\begin{array}{l|l}
\vec{\alpha}=\left(\alpha_{\vec{j}}\right)_{\vec{j} \in \Theta} & \begin{array}{c}
\sum_{\vec{j} \in \Theta} \alpha_{\vec{j}}=(1-\varepsilon) \gamma / k, \\
\forall \alpha_{j} \in \mathbb{Q} \geqslant 0
\end{array}
\end{array}\right\}, \\
& B:=\left\{\begin{array}{l|l}
\vec{\beta}=\left(\beta_{0}, \ldots, \beta_{M k s}\right) & \begin{array}{c}
\beta_{0}, \ldots, \beta_{M k s} \in \mathbb{Q}_{20}, \\
\sum_{j=0}^{M k s_{j}} \beta_{j}=(1-\varepsilon) \gamma / k
\end{array}
\end{array}\right\}, \\
& \Xi:=\left\{\begin{array}{l|l}
\vec{\xi}=\left(\xi_{0}, \ldots, \xi_{M k s}\right) & \begin{array}{c}
\xi_{0}, \ldots, \xi_{M k s} \in \mathbb{Q} \geqslant 0, \\
\sum_{j=0}^{M k s s_{M}} \xi_{j}=(1-\varepsilon) \gamma / k, \\
\sum_{j=0}^{M k s} j \xi_{j} \geqslant(1-\varepsilon) \gamma m /(k N)
\end{array}
\end{array}\right\}
\end{aligned}
$$

for simplicity.
Claim 4.3. We have the equality

$$
\mathcal{O}_{X}=\sum_{\vec{\xi} \in \Xi} \mathcal{I}\left(X, \prod_{i=0}^{M k s} \tilde{I}_{i}^{\xi_{i}}\right)
$$

Berman-Gibbs stability

Proof of Claim 4.3. By Proposition 2.4, Theorem 2.5 and Lemma 4.1, around Δ_{X}, we have

$$
\begin{aligned}
\mathcal{O}_{X^{N}} & =\mathcal{I}\left(X^{N}, \mathcal{O}_{X^{N}}\left(-D_{k}\right)^{(1-\varepsilon) \gamma / k}\right) \\
& \subset \mathcal{I}\left(X^{N}, J_{m}^{(1-\varepsilon) \gamma / k}\right) \\
& =\mathcal{I}\left(X^{N},\left(\sum_{\vec{j} \in \Theta} p_{1}^{-1} \tilde{I}_{1, j_{1}} \cdots p_{N}^{-1} \tilde{I}_{N, j_{N}}\right)^{(1-\varepsilon) \gamma / k}\right) \\
& =\sum_{\vec{\alpha} \in A} \mathcal{I}\left(X^{N}, \prod_{\vec{j} \in \Theta}\left(p_{1}^{-1} \tilde{I}_{1, j_{1}} \cdots p_{N}^{-1} \tilde{I}_{N, j_{N}}\right)^{\alpha_{\vec{j}}}\right) \\
& =\sum_{\vec{\alpha} \in A} p_{1}^{-1} \mathcal{I}\left(X_{1}, \prod_{\vec{j} \in \Theta} \tilde{I}_{1, j_{1}}^{\alpha_{\vec{j}}}\right) \cdots p_{N}^{-1} \mathcal{I}\left(X_{N}, \prod_{\vec{j} \in \Theta} \tilde{I}_{N, j_{N}}^{\alpha_{\vec{J}}}\right) .
\end{aligned}
$$

Restricting to Δ_{X}, we have

$$
\mathcal{O}_{X}=\sum_{\vec{\alpha} \in A} \mathcal{I}\left(X, \prod_{\vec{j} \in \Theta} \tilde{I}_{j_{1}}^{\alpha_{\vec{j}}}\right) \cdots \mathcal{I}\left(X, \prod_{\vec{j} \in \Theta} \tilde{I}_{j_{N}}^{\alpha_{\vec{j}}}\right)
$$

Fix an arbitrary $\vec{\alpha} \in A$. Since

$$
\sum_{\vec{j} \in \Theta} \alpha_{\vec{j}} j_{1}+\cdots+\sum_{\vec{j} \in \Theta} \alpha_{\vec{j}} j_{N}=(1-\varepsilon) \gamma m / k,
$$

we have $\sum_{\vec{j} \in \Theta} \alpha_{\vec{j}} j_{q} \geqslant(1-\varepsilon) \gamma m /(k N)$ for some $1 \leqslant q \leqslant N$. We set

$$
\xi_{i}:=\sum_{\vec{j} \in \Theta ; j_{q}=i} \alpha_{\vec{j}}
$$

for $0 \leqslant i \leqslant M k s$. Then $\vec{\xi}:=\left(\xi_{0}, \ldots, \xi_{M k s}\right) \in \Xi$ and

$$
\mathcal{I}\left(X, \prod_{\vec{j} \in \Theta} \tilde{I}_{j_{q}}^{\alpha_{\vec{j}}}\right)=\mathcal{I}\left(X, \prod_{i=0}^{M k s} \tilde{I}_{i}^{\xi_{i}}\right)
$$

Therefore we have proved Claim 4.3.
By Proposition 2.4(4) and Claim 4.3, we have

$$
\mathcal{O}_{X \times \mathbb{A}^{1}}(-P \cdot(t=0))=\sum_{\vec{\xi} \in \Xi} \mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{1-\varepsilon+P} \cdot \prod_{i=0}^{M k s} \tilde{I}_{i}^{\xi_{i}}\right) .
$$

For any $\vec{\xi} \in \Xi$, since $(1-\varepsilon)(1+\gamma m /(k N))+P-\sum_{i=0}^{M k s} i \xi_{i} \leqslant 1-\varepsilon+P$, we have

$$
\begin{aligned}
& \mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{1-\varepsilon+P} \cdot \prod_{i=0}^{M k s} \tilde{I}_{i}^{\xi_{i}}\right) \\
& \quad \subset \mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1+\gamma m /(k N))+P-\sum_{i=0}^{M k s} i \xi_{i}} \cdot \prod_{i=0}^{M k s} \tilde{I}_{i}^{\xi_{i}}\right)
\end{aligned}
$$

On the other hand, by Lemma 4.1(1) and Theorem 2.5, we have

K. Fujita

$$
\begin{aligned}
\mathcal{I} & \left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1+\gamma w /(k N))+P} \cdot \mathscr{I}^{(1-\varepsilon) \gamma s}\right) \\
& =\mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1-\gamma(M s-m /(k N)))+P} \cdot\left(\sum_{i=0}^{M k s}(t)^{M k s-i} \tilde{I}_{i}\right)^{(1-\varepsilon) \gamma / k}\right) \\
& =\sum_{\vec{\beta} \in B} \mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1-\gamma(M s-m /(k N)))+P} \cdot \prod_{i=0}^{M k s}\left((t)^{M k s-i} \tilde{I}_{i}\right)^{\beta_{i}}\right) \\
& =\sum_{\vec{\beta} \in B} \mathcal{I}\left(X \times \mathbb{A}^{1},(t)^{(1-\varepsilon)(1+\gamma m /(k N))+P-\sum_{i=0}^{M k s} i \beta_{i}} \cdot \prod_{i=0}^{M k s} \tilde{I}_{i}^{\beta_{i}}\right) .
\end{aligned}
$$

Since $\Xi \subset B$, we have proved Proposition 4.2.

5. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let X be a \mathbb{Q}-Fano variety of dimension n and set $\gamma:=\gamma(X)$. We assume that $\gamma \geqslant 1$. Let $(\mathcal{B}, \mathcal{L}) / \mathbb{A}^{1}$ be a normal \mathbb{Q}-semi test configuration of $\left(X,-K_{X}\right)$ obtained by \mathscr{I} and s, and let $E, \overline{\mathcal{B}}, \overline{\mathcal{L}}$ and so on be as in $\S 2.1$. Let $\left\{E_{\lambda}\right\}_{\lambda \in \Lambda}$ be the set of Π-exceptional prime divisors. We note that $\Lambda \neq \emptyset$, since the morphism Π is not an isomorphism. We set

$$
\begin{aligned}
& \sum_{\lambda \in \Lambda} a_{\lambda} E_{\lambda}:=K_{\overline{\mathcal{B}} / X \times \mathbb{P}^{1}} \\
& \sum_{\lambda \in \Lambda} b_{\lambda} E_{\lambda}:=\Pi^{*} X_{0}-\hat{X}_{0} \\
& \sum_{\lambda \in \Lambda} c_{\lambda} E_{\lambda}:=E
\end{aligned}
$$

as in [OS12], where X_{0} is the fiber of $p_{2}: X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ at $0 \in \mathbb{P}^{1}$ and \hat{X}_{0} is the strict transform of X_{0} in $\overline{\mathcal{B}}$. We note that $b_{\lambda}, c_{\lambda} \in \mathbb{Z}_{>0}$ and $a_{\lambda}-b_{\lambda}+1>0$ for any $\lambda \in \Lambda$ since the pair $\left(X \times \mathbb{P}^{1}, X_{0}\right)$ is purely-log-terminal. We set

$$
d:=\max _{\lambda \in \Lambda}\left\{\frac{\gamma s c_{\lambda}-\left(a_{\lambda}-b_{\lambda}+1\right)}{\gamma b_{\lambda}}\right\}
$$

By Theorem 2.2(4), we can assume that $d>0$.
Claim 5.1. We have the inequality:

$$
\frac{-\left(\overline{\mathcal{L}}^{\cdot n+1}\right)}{(n+1)\left(\left(-K_{X}\right)^{\cdot n}\right)} \geqslant d
$$

Proof of Claim 5.1. For any sufficiently small positive rational numbers ε and ε^{\prime}, by Proposition 4.2, the coefficient of

$$
K_{\overline{\mathcal{B}} / X \times \mathbb{P}^{1}}-(1-\varepsilon)\left(1+\left(\gamma-\varepsilon^{\prime}\right) w /(k N)\right) \Pi^{*} X_{0}-(1-\varepsilon)\left(\gamma-\varepsilon^{\prime}\right) s E
$$

at E_{λ} is strictly bigger than -1 for any $\lambda \in \Lambda$ and for any sufficiently divisible positive integer k. Thus, by Theorem 2.2(1), we have

$$
-1 \leqslant a_{\lambda}-\left(1-\gamma \frac{-\left(\overline{\mathcal{L}}^{\cdot n+1}\right)}{(n+1)\left(\left(-K_{X}\right)^{\cdot n}\right)}\right) b_{\lambda}-\gamma s c_{\lambda}
$$

for any $\lambda \in \Lambda$. Hence we have proved Claim 5.1.

By Claim 5.1, we have the inequalities:

$$
\begin{aligned}
\mathrm{DF}_{0} & =\frac{-\left(\overline{\mathcal{L}}^{\cdot n+1}\right)}{n+1}+\left(\overline{\mathcal{L}}^{\cdot n} \cdot \sum_{\lambda \in \Lambda}\left(a_{\lambda}-s c_{\lambda}\right) E_{\lambda}\right) \\
& \geqslant\left(\overline{\mathcal{L}}^{\cdot n} \cdot d \Pi^{*} X_{0}+\sum_{\lambda \in \Lambda}\left(a_{\lambda}-s c_{\lambda}\right) E_{\lambda}\right) \\
& =d\left(\overline{\mathcal{L}}^{\cdot n} \cdot \hat{X}_{0}\right)+\left(\overline{\mathcal{L}}^{\cdot n} \cdot \sum_{\lambda \in \Lambda}\left(d b_{\lambda}+a_{\lambda}-s c_{\lambda}\right) E_{\lambda}\right) \\
& \geqslant\left(\overline{\mathcal{L}}^{\cdot n} \cdot \sum_{\lambda \in \Lambda}\left(d b_{\lambda}+a_{\lambda}-s c_{\lambda}\right) E_{\lambda}\right) .
\end{aligned}
$$

For any $\lambda \in \Lambda$,

$$
\begin{aligned}
d b_{\lambda}+a_{\lambda}-s c_{\lambda} & \geqslant \frac{1}{\gamma}\left(\gamma s c_{\lambda}-\left(a_{\lambda}-b_{\lambda}+1\right)\right)+a_{\lambda}-s c_{\lambda} \\
& =\frac{\gamma-1}{\gamma}\left(a_{\lambda}-b_{\lambda}+1\right)+b_{\lambda}-1 \geqslant \frac{\gamma-1}{\gamma}\left(a_{\lambda}-b_{\lambda}+1\right)
\end{aligned}
$$

holds. Hence

$$
\mathrm{DF}_{0} \geqslant \frac{\gamma-1}{\gamma}\left(\overline{\mathcal{L}}^{\cdot n} \cdot \sum_{\lambda \in \Lambda}\left(a_{\lambda}-b_{\lambda}+1\right) E_{\lambda}\right)
$$

By Theorem 2.2(3), $\left(\overline{\mathcal{L}}^{n} \cdot \sum_{\lambda \in \Lambda}\left(a_{\lambda}-b_{\lambda}+1\right) E_{\lambda}\right)>0$ holds. Therefore, $\mathrm{DF}_{0} \geqslant 0$ holds. Moreover, if $\gamma>1$, then $\mathrm{DF}_{0}>0$ holds.

As a consequence, we have proved Theorem 1.4.
Remark 5.2. Berman pointed out to the author that there is an analogy between the argument after Claim 5.1 and the argument in [Ber12, Lemma 3.4]. In fact, the argument in [Ber12, Lemma 3.4] gives the inequality

$$
\frac{\mathrm{DF}_{0}}{\left(\left(-K_{X}\right)^{\cdot n}\right)} \geqslant \frac{-\left(\overline{\mathcal{L}}^{\cdot n+1}\right)}{(n+1)\left(\left(-K_{X}\right)^{\cdot n}\right)}-d_{0}
$$

where

$$
d_{0}:=\max \left\{0, \max _{\lambda \in \Lambda}\left\{\frac{s c_{\lambda}-a_{\lambda}}{b_{\lambda}}\right\}\right\}
$$

Acknowledgements

The author would like to thank Professor Berman and Doctor Yuji Odaka for their helpful comments. Especially, Doctor Yuji Odaka informed him of the interesting paper [Ber13] and Professor Berman pointed out Remark 5.2. The author is partially supported by a JSPS Fellowship for Young Scientists.

References

Ber12 R. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., to appear, arXiv:1205.6214 [math.DG].
Ber13 R. Berman, Kähler-Einstein metrics, canonical random point processes and birational geometry, Preprint (2013), arXiv:1307.3634 [math.DG].
CDS15a X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), 183-197.

Berman-Gibbs stability

CDS15b X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, II: limits with cone angle less than 2π, J. Amer. Math. Soc. 28 (2015), 199-234.
CDS15c X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc. 28 (2015), 235-278.
Don02 S. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289-349.
KM98 J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).
Laz04 R. Lazarsfeld, Positivity in algebraic geometry, II: Positivity for Vector Bundles, and Multiplier Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) vol. 49 (Springer, Berlin, 2004).
LX14 C. Li and C. Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), 197-232.
Mus02 M. Mustaţă, The multiplier ideals of a sum of ideals, Trans. Amer. Math. Soc. 354 (2002), 205-217.
Mus06 M. Mustaţă, Multiplier ideals of hyperplane arrangements, Trans. Amer. Math. Soc. 358 (2006), 5015-5023.
Oda13 Y. Odaka, A generalization of the Ross-Thomas slope theory, Osaka. J. Math. 50 (2013), 171-185.
OS12 Y. Odaka and Y. Sano, Alpha invariant and K-stability of \mathbb{Q}-Fano varieties, Adv. Math. 229 (2012), 2818-2834.

RT07 J. Ross and R. Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), 201-255.
Tak06 S. Takagi, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006), 1345-1362.
Tia97 G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1-37.
Tia15 G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 1085-1156.

Kento Fujita fujita@math.kyoto-u.ac.jp
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

[^0]: Received 31 December 2014, accepted in final form 9 July 2015, published online 26 November 2015. 2010 Mathematics Subject Classification 14L24 (primary), 14J17 (secondary). Keywords: Fano varieties, K-stability, multiplier ideal sheaves, Kähler-Einstein metrics. This journal is © Foundation Compositio Mathematica 2015.

