Proceedings of the Edinburgh Mathematical Society (1982) 25, 73-79 ©

EMBEDDING NEAR-RINGS INTO POLYNOMIAL NEAR-RINGS

by JOHN D. P. MELDRUM, GÜNTER PILZ and YONG-SIAN SO* (Received 9th September 1980)

In this paper we will show that large classes of near-rings are embeddable into (or even isomorphic to) near-rings $G^{\nu}[x]$ of polynomials over G in a suitably chosen variety \mathcal{V} of Ω -groups.

For near-rings see [2], for polynomials [1]; for near-rings of polynomials over Ω -groups see [3], [4], [5].

We start with the surprising result that every near-ring is a polynomial near-ring:

Theorem 1. For every near-ring N there is a variety \mathcal{V} of Ω -groups and a $G \in \mathcal{V}$ such that

$$N \hookrightarrow G[x].$$

Proof. By 1.102 of [2], N can be embedded into a near-ring \overline{N} with identity 1. Now we take \mathcal{V} as the subvariety of the variety of all near-rings with identity which is generated by \overline{N} (this last restriction is not necessary for the sequel, but seems to be natural when looking at examples). Now we can consider the map

$$\phi\colon \bar{N}\to \bar{N}^{V}[x]\colon n\to nx$$

 ϕ easily turns out to be a near-ring homomorphism if $\overline{N}^{\nu}[x]$ is considered as a near-ring w.r.t. addition and composition of polynomials. ϕ is even a monomorphism (hence an embedding map): take $n \in \text{Ker } \phi$. Then nx = 0. Suppose that $n \neq 0$. Then the polynomial function $f: \overline{N} \to \overline{N}$ induced by nx would fulfill $f(1) = n1 = n \neq 0$. Hence $f \neq 0$ (zero function), whence $nx \neq 0$, a contradiction. This proves the theorem.

Now we fix the variety $\mathcal V$ and take for $\mathcal V$ some important varieties.

We start with the variety \mathscr{G} of groups. Quite unexpectedly, we need information about the idempotents in $G^{\mathscr{G}}[x]$. G[x] as an additive group is the free sum of the group G and an infinite cyclic group generated by x. The product is composition of functions:

$$(g_0 + z_1 x + \ldots + z_n x + g_n) \cdot h = g_0 + z_1 h + \ldots + z_n h + g_n$$

* This study was kindly supported by the Austrian "Fonds zur Förderung der wissenschaftlichen Forschung" (Project Nr. 3479). and by the British Council (Academic link Edinburgh-Linz). The authors give their thanks to these organisations.

where $g_i \in G$, $0 \leq i \leq n$, $z_i \in \mathbb{Z}$, $1 \leq i \leq n$ and $h \in G[x]$. Obviously, constant elements $g \in G$ and x are idempotent. But that's all:

Theorem 2. The idempotent elements in G[x] (G a group) are x and the constants.

Proof. Let $e = g_0 + z_1 x + \ldots + z_n x + g_n$ be in reduced (normal) form. deg (e) = n is the "degree" of e. If $n \leq 1$ then it is fairly easy to see that e = x or $e = c \in G$. So suppose that $n \ge 2$.

We first remark that if a is an element of a free product of groups written in reduced normal form, then there is a unique element b of maximal length such that a =-b+c+b and this expression on the right is already in reduced form. Then the reduced form of 2c is just c+c. Note that c is the cyclically reduced form of a. The reduced form of za is then -b + zc + b. In this expression for a, b may be 0, but c never is.

From the expression for e and the assumptions, we deduce that

$$e \circ e = g_0 + z_1 e + \ldots + z_n e + g_n,$$

where g_0 or g_n or both or neither may be zero, but no other terms are zero. Let e = -a + b + a, with b the cyclically reduced form of e.

If $a \neq 0$, then $z_i e = -a + z_i b + a$ and

$$e \circ e = g_0 - a + z_1 b + a + \ldots + g_{i-1} - a + z_i b + a + g_i - a + \ldots$$

The only place where cancellations could start is at g_i for some *i*. Also *a* ends in either g_n or $z_n x_n$, so the only cancellation possible is the replacement of g_i by $g_n + g_i - g_n$ which is non-zero. There is no cancellation at the ends of the expression for $e \circ e$, except if g_0 or g_n is of order 2. In any case the degrees considered are not affected. Hence

$$\deg(e \circ e) = \sum_{i=1}^{n} \deg(z_i e) \ge 2 \deg e > \deg e$$

as $n \ge 2$, deg $e = n \ge 2$ and deg $(z, e) \ge deg e$ since $|z_i| \ge 1$. Thus in this case $e \circ e \ne e$.

Now suppose that a = 0. Then the sum e + e has no cancellations. Consider $e \circ e$ at g_i : $...+z_ie+g_i+z_{i+1}e+...$

If sgn $z_i \neq$ sgn z_{i+1} , again we have

$$\pm e + g_i \mp e$$

and, as before, the only possible change is in replacing g_i by $g_n + g_i - g_n$ or $-g_0 + g_i + g_0$. So assume that sgn $z_i = \text{sgn } z_{i+1}$. Then, at g_i we have

 $\dots + z_n x + g_n + g_i + g_0 + z_1 x + \dots$ or $\ldots -z_1x - g_0 + g_i - g_n - z_nx + \ldots$

If $g_n + g_i + g_0$ or $-g_0 + g_i - g_n$ is not zero then there is no more cancellation. If it is zero, then we have

or

$$-2(z_1x + \ldots + z_nx),$$

and the cancellation can not proceed more than halfway along the expression $\pm (z_1x + \ldots + z_nx)$. This means that each g_i can be considered separately. There is no cancellation at either end since $g_0 \neq -g_n$ apart from replacing g_0 by $2g_0$ or $g_0 - g_n$, and g_n by $2g_n$ or $-g_0 + g_n$. If g_0 or g_n is of order 2 then $2g_0$ or $2g_n$ may be 0. In any case the degrees considered are not affected. Also $\deg(\pm 2(z_1x + \ldots + z_nx)) \ge \deg(z_1x + \ldots + z_nx)$.

So unless sgn z_i is constant for all $i, 1 \le i \le n$, $|z_i| = 1$ for $1 \le i \le n$ and $g_n + g_i + g_0 = 0$ (sgn $z_i = +1$) or $-g_0 + g_i - g_n = 0$ (sgn $z_i = -1$) for $1 \le i \le n - 1$, we have

$$\deg(e \circ e) \ge 2 \deg e = 2n > \deg e = n,$$

and hence $e \circ e \neq e$. Otherwise we have

$$e \circ e = g_0 + g_0 + n(z_1x + \ldots + z_nx) + g_n + g_n \quad (\text{sgn } z_i = +1)$$

or

$$g_0 - g_n - n(z_1x + \ldots + z_nx) - g_0 + g_n$$
 (sgn $z_i = -1$)

If $e \circ e = e$, then $g_0 = g_n = 0$ and so sgn $z_1 = \text{sgn } z_n$ forces deg $n(z_1x + \ldots + z_nx) = n$ deg $(z_1x + \ldots + z_nx) = n^2 - (n-1) > n$ as $n \ge 2$. Thus in all cases it is impossible for $e \circ e = e$ to hold if $n \ge 2$. This finishes the proof.

Corollary 1. (a) If e is idempotent in $G_0[x]$ then e = 0 or e = x. (b) G[x] has exactly |G|+1 idempotents.

Corollary 2. Let N be a non-zero subnear-ring of G[x] with identity e. Then e = x.

This holds since e is zerosymmetric.

Corollary 3. Let N be a near-ring with identity $e \neq 0$ and let $\phi: N \rightarrow G_0[x]$ be an embedding map. Then $\phi(e) = x$.

Corollary 4. Let ϕ be as above. If $d \in N$ ($d \neq 0$) is distributive then there is some $g \in G$ with $\phi(d) = g + x - g$ or $N = \mathbb{Z}$ and $\phi(d) = zx$, $z \in \mathbb{Z}$.

Proof. d is zero-symmetric, hence $\phi(d)$ has the form

$$\phi(d) = \sum_{i=1}^{n} (g_i + z_i x - g_i) \quad (g_i \in G, \, z_i \in \mathbb{Z}, \, g_i \neq g_{i+1}).$$

Now

 $\phi(d) \circ (x+x) = \phi(d) \circ \phi(e+e) = \phi(d \circ (e+e)) = \phi(d \circ e + d \circ e) = \phi(d+d) = \phi(d) + \phi(d).$ Hence

$$\sum_{i=1}^{n} (g_i + 2z_i x - g_i) = \sum_{i=1}^{n} (g_i + z_i x - g_i) + \sum_{i=1}^{n} (g_i + z_i x - g_i).$$

However, this relation can only hold if the right hand side collapses, i.e. if $g_n = g_1, z_n = -z_1$, $g_{n-1} = g_2$, and so on. So the right side is either zero, whence $g_1 + 2z_1 - g_1 + \ldots + g_n + 2z_n x - g_n = 0$, a contradiction, or n = 1 in which case $\phi(d) = g_1 + z_1 x - g_1$.

Computing $\phi(d \circ (e+d))$ in two ways and comparing the results we obtain $z_1 = 1$ or $g_1 = 0$. If $z_1 = 1$, we have $\phi(d) = g + x - g$. If $g_1 = 0$, then $\phi(d) = z_1 x$. Suppose $z_1 \neq 1$ and

 $\phi(N) \supset \{zx; z \in \mathbb{Z}\}$. Then $z_1x \circ (a+b) = z_1(a+b)$, $z_1x \circ a + z_1x \circ b = z_1a + z_1b$. So $z_1(a+b) = z_1a + z_1b$. Take one of the pair a, b to be x, the other to lie in $\phi(N)$, but not of the form $zx, z \in \mathbb{Z}$. By examining the various cases that can arise it is easy to see that we get a contradiction. Thus $N = \mathbb{Z}$ and $\phi(N) = \{zx; z \in \mathbb{Z}\}$.

Now we prove one of the few existing results that certain embeddings can not take place.

Theorem 3. There exist distributively generated near-rings which cannot be embedded into some G[x].

Proof. Let N be a distributively generated near-ring such that (N, +) is not a free group (for instance, take N finite, but $\neq \{0\}$). Let ϕ be a monomorphism of N into some G[x]. Then $\phi(N) \subseteq G_0[x]$. But $(G_0[x], +)$ is a free group and hence so is $(\phi(N), +)$. As $(\phi(N), +) \cong (N, +)$ we have a contradiction.

Consequently, not every generalized distributively generated (g.d.g.) near-ring can be embedded into some G[x]. Here, a near-ring N is g.d.g. if N is (additively) generated by distributive and constant elements (see [5]). G[x] itself is g.d.g.

On the other hand we have shown in [5] that every finite near-ring can be embedded into the g.d.g. near-ring P(G) of all polynomial functions on a suitable finite, simple, non-abelian group G.

We now consider the embedding of G[x] in P(H) for a suitable group H. To do this we need some information on the structure of G[x]. From [1], each element of G[x] can be written uniquely in the form

$$g_1 + z_1 x - g_1 + \ldots + g_n + z_n x - g_n + h = \sum_{i=1}^n (g_i + x - g_i) + h,$$

where each $g_i + x - g_i$ is distributive and h is a constant element. It is immediate that

$$\operatorname{Gp} \langle g + x - g; g \in G \rangle = G_0[x],$$

is the free d.g. near-ring on the set,

$$\{g+x-g; g\in G\}$$

of distributive elements. Also

$$(g_1 + x - g_1) \circ (g_2 + x - g_2) = g_1 + g_2 + x - g_2 - g_1.$$

So the multiplicative set of distributive elements $\{g + x - g; g \in G\}$ is a group which is isomorphic as an abstract group to the additive group (G, +) under the isomorphism

$$g + x - g \rightarrow g$$
.

As an additive group (G[x], +) has $(G_0[x], +)$ as a normal subgroup and $G[x] = G_0[x] + G_c[x]$ where $G_c[x]$ is the constant subnear-ring isomorphic as an additive group to G. Also, from the normal form given above, if $h \in G_c[x]$,

$$h + (g + x - g) - h = (h + g) + x - (h + g).$$

So the automorphism induced in $(G_0[x], +)$ by conjugation by an element $h \in G_c[x]$ maps

$$g+x-g \rightarrow (h+g)+x-(h+g).$$

The automorphisms induced in $(G_0[x], +)$ by the elements of $G_c[x] \cong G$ is that induced in the free group $(G_0[x], +)$ by the permutation of the free generators of $G_0[x]$ by the left regular representation.

This determines the additive structure of G[x] completely. Now we consider the multiplicative structure. Since the right distributive law is satisfied, we only need to consider products of the form xy where y is a general element and x is either an element of the form g+x-g or h. But $h \circ y = h$ for all $y \in G[x]$. So consider

$$(g+x-g) \circ \left(\sum_{i=1}^{n} g_{i} + x - g_{i} + h\right) = g + \sum_{i=1}^{n} g_{i} + x - g_{i} + h - g$$
$$= \sum_{i=1}^{n} (g + g_{i} + x - g_{i} - g) + g + h - g.$$

We now turn to the construction of the group H which we will need. Let $G^* = \{g^*; g \in G\}$ be a set in one-one correspondence with the elements of the group G and define K to be the free group on the set G^* . Let $\tau: G \to \operatorname{Aut} K$ be defined by $\tau(g)(g_1^*) = (g+g_1)^*$ for all $g_1 \in K$. This is enough to define $\tau(g) \in \operatorname{Aut} K$ since K is a free group on G^* . Define H as the semidirect product of K by G using τ . Consider P(H) and note that $P_0(H) \cong I(H)$, the near-ring generated by $\operatorname{Inn}(H)$, the inner automorphisms of H and $P_c(H) \cong H$. Let the constant map which sends H to $h \in H$ be denoted by $\theta(h)$.

Without loss of generality, assume that $G \subseteq H$. Consider the subnear-ring N of P(H) generated by $\tau(G)$ and $\theta(G)$, where $\tau(G)$ are the inner automorphisms of H determined by G. We first show that $Gp(\tau(G))$ is a free group on $\tau(G)$.

Consider $\sum_{i=1}^{n} \varepsilon_i \tau(g_i)$ where $\varepsilon_i = \pm 1, \ 1 \leq i \leq n$. Then

$$\left(\sum_{i=1}^{n} \varepsilon_{i} \tau(g_{i})\right)(0^{*}) = \sum_{i=1}^{n} \varepsilon_{i} \tau(g_{i})(0^{*})$$
$$= \sum_{i=1}^{n} \varepsilon_{i}(g_{i}+0)^{*}$$
$$= \sum_{i=1}^{n} \varepsilon_{i}g_{i}^{*}.$$

and this is not 0 unless $\sum_{i=1}^{n} \varepsilon_i \tau(g_i)$ is the trivial word since K is free on G^* . Hence $\sum_{i=1}^{n} \varepsilon_i \tau(g_i) \neq 0$ in P(H). It is trivial to check that $\tau(g_1) \circ \tau(g_2) = \tau(g_1 + g_2)$. Also $\tau(g)0^* = g^* \neq g_1^* = \tau(g_1)0^*$ if $g \neq g_1$.

Thus $\tau(G)$ is a multiplicative group isomorphic to the additive group G and $Gp \langle \tau(G) \rangle$ is the free d.g. near-ring on $\tau(G)$. Call this near-ring N_0 . Then $N_0 \cong G_0[x]$, with $\tau(g) \to g + x - g$. Again it is trivial that $\theta(g) + \tau(g_i) - \theta(g) = \tau(g + g_i)$. Hence

 $(N, +) \cong (G[x], +)$ and $N_c \cong G_c[x], N_0 \cong G_0[x]$. Finally consider $\tau(g) \circ \left(\sum_{i=1}^n \tau(g_i) + \theta(k)\right)$ for $k \in G$. Let $h \in H$.

$$\tau(g) \circ \left(\sum_{i=1}^{n} \tau(g_i) + \theta(k)\right)(h) = \tau(g) \left(\sum_{i=1}^{n} \tau(g_i)(h) + k\right)$$
$$= \sum_{i=1}^{n} \tau(g + g_i)(h) + g + k - g = \left(\sum_{i=1}^{n} \tau(g + g_i) + \theta(g + k - g)\right)(h).$$

This is enough to complete the proof of the following theorem.

Theorem 4. Let G be a group. Then there exists a group H such that G[x] can be embedded in P(H).

Corollary 5. Let G be a group. Then there exists a group H such that $G_0[x]$ can be embedded in $P_0(H)$.

Note that $P_0(H) \cong I(H)$ and that the group H is isomorphic as a group to (G[x], +) in the construction given above.

Now we change the variety of groups to \mathcal{A} , the variety of abelian groups. If $A \in \mathcal{A}$ then $A]x[:=A^{\mathscr{A}}[x]=\{a+zx \mid a \in A, z \in \mathbb{Z}\}$ is an abstract affine near-ring.

If we look at the variety \mathcal{M}_R of *R*-modules over a ring *R* and $M \in \mathcal{M}_R$ then $\mathcal{M}_R[x] := \mathcal{M}^{\mathcal{M}_R}[x] = \{m + rx \mid m \in M, r \in R\}$ is abstract affine, too.

Hence it is natural to ask which abstract affine near-rings can be embedded into A]x[or $M_R[x]$. A]x[does not suffice, but $M_R[x]$ does an excellent job:

Theorem 5. (i) Not every abstract affine near-ring N can be embedded into some A]x[(A an abelian group)].

(ii) Every abstract affine near-ring is isomorphic to a suitably chosen $M_R[x]$ (M_R an R-module).

Proof. (i) We take $N := \mathbb{R} \times \mathbb{R}$ with + componentwise and $(r, s) \cdot (r', s') := (r + sr', ss')$. Then N is an abstract affine near-ring. Suppose that A is an abelian group with $N \hookrightarrow A]x[$ by some monomorphism ϕ . $N_0 = \{0\} \times \mathbb{R}$ will then be embedded into $(A]x[)_0 \cong \mathbb{Z}$, a contradiction.

(ii) Let N be an abstract affine near-ring. Then N_0 is a ring and the constants N_c are an N_0 -module. We consider the map $\psi: N \to (N_c)_{(N_0)}[x]: n_c + n_0 \to n_c + n_0 x$. ψ is obviously a group isomorphism. Also, for all $n, n' \in N$, $n = n_c + n_0$, $n' = n'_c + n'_0$, we get

$$\psi(nn') = \psi((n_c + n_0)(n'_c + n'_0)) = \psi(n_c + n_0n'_c + n_0n'_0).$$

Since $n_c + n_0 n'_c \in N_c$ and $n_0 n'_0 \in N_0$, this expression equals

$$(n_c + n_0 n'_c) + (n_0 n'_0) x = (n_c + n_0 x) \circ (n'_c + n'_0 x) = \psi(n) \circ \psi(n').$$

Hence we get $N \cong (N_c)_{(N_0)}[x]$.

POLYNOMIAL NEAR RINGS

The authors hope that these results will help to solve the long-standing problem whether or not every zerosymmetric near-ring can be embedded into a d.g. near-ring (see [2], p. 178).

REFERENCES

1. H. LAUSCH, and W. NÖBAUER, Algebra of polynomials (North-Holland, Amsterdam, 1973).

2. G. PILZ, Near-rings, (North-Holland, Amsterdam, 1977).

3. G.PILZ and Y. S. So, Near-rings of polynomials and polynomial functions, J. Austral. Math. Soc. (Series A) 29 (1980), 61-70.

4. G. PILZ and Y. S. So, Near-rings of polynomials over Ω -groups, submitted.

5. G. PILZ and Y. S. So, Generalized distributively generated near-rings, submitted.

Dept. of Mathematics Univ. of Edinburgh Mayfield rd Edinburgh EH9 3JZ U.K.

Institut für Mathematik Universität Linz A-4040 Linz Austria