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ON RANK NOT ONLY IN NSOP1 THEORIES

JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

Abstract. We introduce a family of local ranks DQ depending on a finite set Q of pairs of the form
(ϕ(x, y), q(y)), where ϕ(x, y) is a formula and q(y) is a global type. We prove that in any NSOP1 theory
these ranks satisfy some desirable properties; in particular,DQ(x = x) < � for any finite tuple of variables
x and any Q, if q ⊇ p is a Kim-forking extension of types, thenDQ(q) < DQ(p) for some Q, and if q ⊇ p
is a Kim-non-forking extension, thenDQ(q) = DQ(p) for every Q that involves only invariant types whose
Morley powers are |�

K -stationary. We give natural examples of families of invariant types satisfying this
property in some NSOP1 theories.

We also answer a question of Granger about equivalence of dividing and dividing finitely in the theory
T∞ of vector spaces with a generic bilinear form. We conclude that forking equals dividing in T∞,
strengthening an earlier observation that T∞ satisfies the existence axiom for forking independence.

Finally, we slightly modify our definitions and go beyond NSOP1 to find out that our local ranks
are bounded by the well-known ranks: the inp-rank (burden), and hence, in particular, by the dp-rank.
Therefore, our local ranks are finite provided that the dp-rank is finite, for example, if T is dp-minimal.
Hence, our notion of rank identifies a non-trivial class of theories containing all NSOP1 and NTP2 theories.

§1. Introduction. In the past years, we observed a rapid development of geometric
tools and techniques related to model-theoretic stability theory. After a successful
use of these techniques in the context of stable theories and remarkable applications
in algebraic geometry, studies went beyond the class of stable theories. One of the
main tools of a geometric nature in model theory is the notion of an independence
relation (cf. [2]), which plays a key role in the description of simple theories (cf.
[24]). Another important geometric tool in model theory is the notion of a rank,
which also can be used to characterize dividing lines in the stability hierarchy. For
example, a theory is simple if and only if the local rank D(x = x, ϕ, k) is finite for
every choice of a formula ϕ and every natural number k (cf. Proposition 3.13 in
[4]). Actually, in the case of simple theories there is an elegant connection between
the local rank D and forking independence |� , in short: the rank decreases in an
extension of types if and only if this extension is a forking extension (Proposition
5.22 in [4]). On top of that, the local rank in simple theories was used to develop the
theory of generics there (see [25]).

Independence relations and ranks behave less nicely in the case of non-simple
NSOP1 theories. The NSOP1 theories were defined in [17], then studied more
intensively in [11] and in [20], where also the ideas from Kim’s talk (see [23])
came to the picture (roughly speaking: Kim proposed a notion of independence
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2 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

corresponding to non-dividing along Morley sequences). Further studies on NSOP1

focused on proving desired properties of the notion of independence related to the
notion of Kim-forking as defined in [20] (where Kim-dividing and Kim-forking
were defined with the use of global invariant types), e.g., [21, 22]. A limitation
of this approach is that sometimes there are no invariant global types extending
a given type (however, everything is fine if we work only over models). Then, in
[15], the authors redefined the notions of Kim-dividing, Kim-forking, and Kim-
independence to avoid this obstacle and worked with definitions more in the spirit
of [23]. However, they needed an extra assumption, i.e., they were working in NSOP1

theories enjoying the existence axiom for forking independence. The NSOP1 theories
enjoying the existence axiom were also studied in [10], where, e.g., transitivity
of Kim-independence (as defined in [15]) was obtained over arbitrary sets. The
important question, whether every NSOP1 theory automatically enjoys the existence
axiom for forking independence remains open.

Similarly as forking independence in the case of simple theories, Kim-
independence was used to describe the class of NSOP1 theories (see [20]). Therefore
one could expect that there should also exists a good notion of a rank, which,
similarly to the situation in simple theories, is related to Kim-independence in the
context of NSOP1 theories and which also describes the class of NSOP1 theories
(i.e., the rank is finite if and only if the theory is NSOP1). Some attempts to define
such a rank for NSOP1 theories were made in [10], however they were not fully
successful in relating the rank to Kim-independence (see Question 4.9 in [10]). On
the other hand, the rank defined in [10] is finite provided T is NSOP1 with existence
and, in a private communication, Byunghan Kim informed us that SOP1 implies
that this rank is not finite (for some formula ϕ, natural number k and some type q).
Thus finiteness of the rank from [10] characterizes the class of NSOP1 theories.

Let us mention here that also the situation with generics in NSOP1 groups is
more difficult than in groups with simple theory. For example, the theory of vector
spaces with a generic bilinear form with values in an algebraically closed field, does
not have Kim-forking generics for the additive group of vector space (see [14]). The
theory of generics in NSOP1 groups is currently under development and a suitable
notion of rank could be very useful in that context.

To summarize, for us, there were three main properties expected from the new
notion of rank: being finite if and only if the theory is NSOP1, being related to Kim-
independence, and having a prospective use in the development of generics in NSOP1

groups. Here is what we managed to obtain so far. Our notion of rank (Definition
3.1) is local and depends on pairs consisting of a formula and a global type. It has
all the usual properties of a rank and it is finite, provided the theory T is NSOP1.
Nevertheless, it is also finite outside the class of NSOP1 theories (e.g., in DLO,
see Example 3.6), which was not expected, but makes the rank more interesting
outside of the class of NSOP1 theories (more on that in Section 6). To obtain a rank
which is related to the notion of Kim-independence, we follow some ideas from the
doctoral thesis of Hans Adler (see Section 2.4 in [2]). More precisely, our rank is
not a foundation rank (i.e., defined recursively), but a rank which is witnessed by
our account on dividing patterns (see [2]) related to Kim-dividing given as in [20].
In Section 3.2, we explain the connection between our rank and Kim-independence,
which depends on some notions of stationarity.
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ON RANK NOT ONLY IN NSOP1 THEORIES 3

After noticing that our notion of rank might be finite outside of NSOP1, we
investigated behaviour of the rank in the case of NTP2 theories. It turned out that
a slight modification of the main definition (compare Definition 3.1 and Definition
6.11) results in finiteness of the rank in any theory of finite dp-rank. Moreover,
the modified rank is bounded by the inp-rank and hence by the dp-rank. On top
of that, the aforementioned modification does not affect the notion of our rank in
the case of NSOP1 theories. Therefore, in this paper, we provide a notion of local
rank which shares finiteness in two opposite corners of the stability hierarchy, which
seems to be quite intriguing. Perhaps, a good notion of rank will be more suitable
to work across different dividing lines in the neo-stability hierarchy than a notion of
independence (like, for example, thorn-independence). On top of that, to provide
the definition of ranks in Section 6, we introduce semi-global types and show Kim’s
lemma for Kim-dividing witnessed via sequences in semi-global types.

In Section 4 we study forking in the theory T∞ of infinite-dimensional vector
spaces over an algebraically closed field with a generic bilinear form, which is one of
the main algebraic examples of a non-simple NSOP1 theory. We describe forking
of formulae in T∞, answering in particular a question from [18] about equivalence
of dividing and dividing finitely, and yielding, to the best of our knowledge, first
example of a non-simple NSOP1 theory in which forking and dividing coincide for
formulae.

The paper is organized as follows. In Section 2, we recall definitions and several
facts needed later. Section 3 contains the definition and some basic properties of the
new rank; then the new rank is related to the notion of Kim-independence. Section 4
is focused on forking in the theory T∞ and verifies auxiliary notions introduced in
the previous section. In Section 5, we collect more examples of NSOP1 theories and
we discuss the three relevant notions of independence. Finally, in Section 6, we go
with our rank beyond the class of NSOP1 theories.

§2. Basics about NSOP1. As usual, we work with a complete L-theory T and
with a monster model C of T, i.e., a κ-strongly homogeneous and κ-saturated model
of T for some big cardinal κ. By a small tuple/subset/substructure we mean some
tuple/subset/substructure of size strictly smaller than κ. Unless stated otherwise, all
considered tuples/subsets/substructures will be small. For example, A ⊆ C tacitly
implies that |A| < κ. In short, we follow conventions being standard in model theory,
e.g., outlined in [4, 26].

At the beginning, we need to evoke several definitions and facts about Kim-
dividing and NSOP1 theories. A reader unfamiliar with the subject may consult,
e.g., [10, 15, 20].

Definition 2.1. A formula ϕ(x; y) has SOP1 (Strict Order Property of the first
kind) if there exists a collection of tuples (a�)�∈2<� such that:

(1) {ϕ(x; a�|α ) | α < �} is consistent for every � ∈ 2� ,
(2) if � ∈ 2<� and � � � � 〈0〉, then {ϕ(x; a�), ϕ(x; a��〈1〉)} is inconsistent,

where � denotes the tree partial order on 2<� . The theory T has SOP1 if there is a
formula which has SOP1. Otherwise we say that T is NSOP1.
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4 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

Definition 2.2. We say that T enjoys the existence axiom for forking independence
if for each set A and each tuple b we have that b |�A

A. If T is NSOP1 and enjoys
the existence axiom for forking independence, then we say that T is NSOP1 with
existence.

Definition 2.3 (Morley sequence in a type). Let A ⊆ C, p(y) ∈ S(A), and let
(I,<) be a linearly ordered set. We call a sequence (bi)i∈I a Morley sequence in p if:

(1) bi |�A
b<i for each i ∈ I ,

(2) (bi)i∈I is A-indiscernible,
(3) bi |= p for each i ∈ I .

Definition 2.4 (Morley sequence in an invariant global type). Assume that
q(y) ∈ S(C) (i.e., q is a global type) is A-invariant and let (I,<) be a linearly
ordered set. By a Morley sequence in q over A (of order type I) we understand a
sequence b̄ = (bi)i∈I such that bi |= q|Ab<i for each i ∈ I . By q⊗I we indicate the
global A-invariant type in variables (xi)i∈I such that for any B ⊇ A, if b̄ |= q⊗I |B
then then bi |= q|Bb<i for all i ∈ I .

Therefore, if q(y) ∈ S(C) is A-invariant, we have two possible notions of a Morley
sequence: a Morley sequence in q|A and a Morley sequence in q over A. Of course,
a Morley sequence in q over A is a Morley sequence in q|A. The converse does not
hold in general.

Definition 2.5. Let q(y) be an A-invariant global type. We say that a formula
ϕ(x; y) q-divides over A if for some (equivalently: any) Morley sequence (bi)i<� in
q over A, the set {ϕ(x, bi) | i < �} is inconsistent.

We have the following two notions of Kim-dividing, (A) appears in [15] and (B)
appear in [20]. For us notion (A) is the one which we will use here. However, Theorem
7.7 from [20] implies that (A) and (B) coincide over a model (i.e., if A =M � C)
provided T is NSOP1, and therefore we will switch very often to notion (B) if the
situation is placed over a model.

Definition 2.6. Let A ⊆ C.

(A) Assume that k ∈ N \ {0}. We say that ϕ(x, b) k-Kim-divides over A if there
exists a Morley sequence (bi)i<� in tp(b/A) such that {ϕ(x, bi) | i < �} is k-
inconsistent. We say thatϕ(x, b) Kim-divides over A if there exists k ∈ N \ {0}
such that ϕ(x, b) k-Kim-divides over A.

(B) We say that ϕ(x; b) Kim-divides over A if there exists an A-invariant global
type q(y) ⊇ tp(b/A) such that ϕ(x; y) q-divides over A. Equivalently, we say
that ϕ(x; b) Kim-divides over A if there exists an A-invariant global type
q(y) ⊇ tp(b/A) and a Morley sequence (bi)i<� |= q⊗�|A such that b0 = b
and the set {ϕ(x, bi) | i < �} is inconsistent.

Fact 2.7 (Kim’s lemma over models). Assume that T has NSOP1 and letM � C.
The following are equivalent:

(1) ϕ(x; b) Kim-divides over M,
(2) for any M-invariant global type q(y) ⊇ tp(b/M ) and any Morley sequence

(bi)i<� |= q⊗�|M we have that the set {ϕ(x, bi) | i < �} is inconsistent.
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ON RANK NOT ONLY IN NSOP1 THEORIES 5

Later on, we will define a local rank related to the notion of Kim-dividing. Our
rank will focus on Kim-dividing over models, so one could ask how much of the
picture is lost if we restrict our attention only to Kim-dividing over models. First, let
us make an observation easily following from the definition: if ϕ(x, b) Kim-divides
over A with respect to definition (B) and A ⊆ B then there exists c ≡A b such that
c |�A

B and such that ϕ(x, c) Kim-divides over B with respect to definition (B).
This means that passing to Kim-dividing over models is not so harmful if we decide
to work with the definition (B). The following lemma shows the same for the notion
of Kim-dividing from the definition (A). The proof is not a surprise in any meaning,
but let us follow the argument for a little warm-up.

Lemma 2.8 (any T). Let A ⊆ B , ϕ(x; y) ∈ L(A). If ϕ(x, a) k-Kim-divides over
A, then there exists c ≡A a such that c |�A

B and ϕ(x, c) k-Kim-divides over B.

Proof. By the definition of k-Kim-dividing, there exists an A-indiscernible
sequence (ai)i<� such that a0 = a, for each i < � we have ai |�A

Aa<i and
{ϕ(x, ai) | i < �} is k-inconsistent. We will use several properties of |� , which
hold in any theory T, these are listed, e.g., in Remark 5.3 in [4].

Step 1: Increase the length of (ai)i<� to a big cardinal 	 (big enough for the use of
Erdős–Rado theorem for B-indiscernibility, see, e.g., Proposition 1.6 in [4]). To do it,
consider:

p(x̄) = p
(
(xα)α<	

)
:=

⋃
n<�

α0<···<αn<	

tp(a0 ... an/Aa0)[xα0 , ... , xαn ].

Let b̄ = (bα)α<	 |= p(x̄), then b̄ is A-indiscernible, b0 = a0 = a, {ϕ(x, bα) | α < 	}
is k-inconsistent. Invariance and finite character of |� imply that also bα |�A

Ab<α
for each α < 	.

Step 2: Force |� -independence over B. We define recursively partial elementary
over A maps fα : dcl(Ab�α) → C, where α < 	, such that:

• fα+1|dcl(Ab�α) = fα |dcl(Ab�α),
• fα(bα) |�ABfα(b<α),

for each α < 	. We start with obtaining f0. Since b0 |�A
A, tp(b0/A) does not fork

over A and so there exists a non-forking extension:

tp(b0/A) ⊆ tp(b′0/B).

Let f0 be determined by f0(b0) = b′0 and f0|A = idA. Now, we deal with the
successor step α � α + 1. Let f′

α ∈ Aut(C) extend fα . Because bα+1 |�A
Ab�α ,

we have that f′
α(bα+1) |�A

Afα(b�α). There exists an extension

tp
(
f′
α(bα+1)/Afα(b�α)

)
⊆ tp

(
b′α+1/Bfα(b�α)

)
,

which does not fork over A, i.e., b′α+1 |�A
Bfα(b�α). Let fα+1 be determined

by fα+1(bα+1) = b′α+1 and fα+1|dcl(Ab�α) = fα |dcl(Ab�α). We move on to the
limit ordinal step: 
 < 	 and 
 ∈ Lim. Let f–


 ∈ Aut(C) extend
⋃
α<
 fα . From

b
 |�A
Ab<
 we obtain f–


(b
) |�A
A(fα(bα))α<
 , so, again, we can find an
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6 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

extension

tp
(
f–

(b
)/A(fα(bα))α<


)
⊆ tp(b′
/B(fα(bα))α<


)

which does not fork over A, i.e., b′
 |�A
B(fα(bα))α<
 . Let f
 be determined by

f
(b
) = b′
 and f
 |dcl(Ab<
 ) = f–

 |dcl(Ab<
 ). After the recursion is done, we take

f ∈ Aut(C) which extends
⋃
α<	 fα and set (b′α)α<	 = (f(bα))α<	.

Step 3: Erdős–Rado. By Erdős–Rado theorem (e.g., Proposition 1.6 in [4]), there
exists a B-indiscernible sequence (ci)i<� such that for each n < � there exist α0 <
··· < αn < 	 satisfying

c0 ... cn ≡B b′α0
... b′αn .

Thus:

• c0 ≡B b′α0
≡A b′0 ≡A b0 = a,

• {ϕ(x, ci ) | i < �} is k-inconsistent (since b̄′ ≡A b̄ and {ϕ(x, bα) | α < 	} is
k-inconsistent),

• cn |�B Bc0 ... cn–1 (because c0 ... cn ≡B b′α0
... b′αn and b′αn |�ABb

′
<αn , and |�

satisfies monotonicity, base-monotonicity, and invariance).

Therefore ϕ(x, c0) k-Kim-divides over B and c0 ≡A a.
For some α0 < 	 we have that c0 ≡B b′α0

. Then, because b′α0
|�A
Bb′<α0

and
because |� satisfies monotonicity and invariance, we obtain that also c0 |�A

B . 

Definition 2.9.

(1) A partial type �(x) Kim-forks over A if

�(x) �
∨
j�n
�j(x; bj)

for some n < � and �j(x; bj) Kim-divides over A for each j � n.
(2) Let a be a tuple from C and let A,B ⊆ C. We say that a is Kim-independent

from B over A, denoted by a |�
K

A
B , if tp(a/AB) does not Kim-fork over A.

One could redefine the notions of Kim-forking and Kim-independence using Kim-
dividing with respect to definition (B). In such a case, we will always indicate that
we work with Kim-forking with respect to definition (B) or use |�

K,q to denote
Kim-independence defined with Kim-dividing with respect to definition (B).

The previous lemma easily leads to the following.

Corollary 2.10. Let A ⊆ B , a, d ∈ C.

(1) If ϕ(x, a) Kim-divides over A, then there exists c ≡A a such that c |�A
B and

ϕ(x, c) Kim-divides over B.
(2) If for all c ≡A a such that c |�A

B , the formula ϕ(x, c) does not Kim-divide
over B, then ϕ(x, a) does not Kim-divide over A.

(3) If for all d ′ ≡A d and all c ≡A a such that c |�A
B we have d ′ |�

K

B
c then

d |�
K

A
a.

The following characterization of NSOP1 proved much more useful in studying
Kim-independence than the original definition of NSOP1 introduced in [17].
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ON RANK NOT ONLY IN NSOP1 THEORIES 7

Theorem 2.11 (Theorem 8.1 in [20]). The following are equivalent:

(1) T is NSOP1.
(2) Kim’s lemma for Kim-dividing: For anyM � C and any ϕ(x; b), if ϕ(x; y) q-

divides over M for some M-invariant q(y) ∈ S(C) with tp(b/M ) ⊆ q(y), then
ϕ(x; y) q-divides over M for any M-invariant q(y) ∈ S(C) with tp(b/M ) ⊆
q(y).

Fact 2.7 has a generalization to Kim-dividing over arbitrary sets:

Theorem 2.12 (Theorem 3.5 in [15]). Let T be NSOP1 with existence. Then T
satisfies Kim’s lemma for Kim-dividing over arbitrary sets: if a formula ϕ(x, b) Kim-
divides over A with respect to some Morley sequence in tp(b/A) then the formula
ϕ(x, b) Kim-divides over A with respect to any Morley sequence in tp(b/A).

As we will notice in a moment, Kim’s lemma for Kim-dividing (over models) will
be the main reason behind the fact that our local rank is finite in the context of
NSOP1 theories.

§3. Rank.

3.1. Definition and basic properties. In this section, we are interested in defining
a local rank depending on pairs consisting of an L-formula and a global type. We
will prove several properties of this new rank. Our idea for the rank was in some way
motivated by Hans Adler’s doctoral dissertation (see [2]). More precisely, in Section
2 of his dissertation, Adler defines so called dividing patterns and then defines a local
rank measuring the length of a maximal dividing pattern. In our case, we could
not simply reuse his idea, since we are trying to “domesticate” Kim-dividing, and
instead of that we propose our own variation on Kim-dividing patterns.

Let Q :=
(
(ϕ0(x; y0), q0(y0)), ... , (ϕn–1(x; yn–1), qn–1(yn–1))

)
, where ϕ0, ...

... , ϕn–1 ∈ L and q0, ... , qn–1 are global types.

Definition 3.1. We define a local rank, called Q-rank,

DQ( · ) :
{
sets of formulae} → Ord∪{∞}.

For any set of L-formulae �(x) we have DQ(�(x)) � 	 if and only if there exists
� ∈ n	 and (bα,Mα)α<	 such that:

(1) dom(�(x)) ⊆M 0,
(2) q0, ... , qn–1 areM 0-invariant,
(3) Mα � C for each α < 	 and (Mα)α<	 is increasing and continuous,
(4) bαMα ⊆Mα+1 for each α + 1 < 	,
(5) bα |= q�(α)|Mα for each α < 	,
(6) �(x) ∪ {ϕ�(α)(x; bα) | α < 	} is consistent,
(7) each ϕ�(α)(x; bα) Kim-divides over Mα with respect to definition (B),

i.e., for each α < 	 there exists an Mα-invariant global type rα(y�(α))
extending tp(bα/Mα) and b̄α = (bαi )i<� |= r⊗�α |Mα such that bα0 = bα and
{ϕ�(α)(x; bαi ) | i < �} is inconsistent.

If DQ(�) � 	 for each 	 ∈ Ord, then we set DQ(�) = ∞. Otherwise DQ(�) is the
maximal 	 ∈ Ord such that DQ(�) � 	.

https://doi.org/10.1017/jsl.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.9


8 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

Remark 3.2. If T is NSOP1, then Definition 3.1 is equivalent to the same
definition but with the condition (3) replaced by

(3*) Mα � C for each α < 	, (Mα)α<	 is continuous, and eachMα+1 is |Mα |+-
saturated,

or even by
(3**) Mα � C for each α < 	, (Mα)α<	 is continuous, and eachMα+1 is |Mα |+-

saturated and strongly |Mα |+-homogeneous.
The proof is a quite standard and long recursion, which uses transitivity and
symmetry of |�

K over models. Thus we omit it. If we refer to Definition 3.1 in
the case of T being NSOP1, we usually have in mind its equivalent formulation with
the condition (3∗).

Let us explain a little bit the concept behind this rank. For simplicity we
assume that Q = ((ϕ, q)). Then the witnesses from the definition of DQ(�) � 	,
(Mα, bαi )α<	,i<� , may be used to draw the following tree:

�(x)

ϕ(x; b0
0)

ϕ(x; b1
0)

ϕ(x; b0
1) ϕ(x; b0

2) ...

ϕ(x; b1
1) ϕ(x; b1

2) ...

dom(�)

M 0

M 1

M 2

Each horizontal sequence of bαi ’s is a Morley sequence in some globalMα-invariant
type and so witnesses Kim-dividing of ϕ(x; bα0 ) overMα . This is nothing new.

The first new ingredient in our rank is that we require that also the leftmost branch
in our tree forms a Morley sequence, this time in the previously fixed global type q
(which isM 0-invariant). In other words, we focus only on Morley sequences —and
that is in accordance with the intuition that all the essential data in a NSOP1 theory
is coded by Morley sequences.

The second new ingredient in our rank is that we allow “jumps” in the extension
of the base parameters between levels. More precisely, instead of the sequence
dom(�) ⊆M 0 �M 1 � ..., we could consider a more standard sequence dom(�) ⊆
dom(�)b0

0 ⊆ dom(�)b0
0b

1
0 ⊆ .... However, let us recall that |�

K does not necessarily
satisfy the base monotonicity axiom, thus we allow in our rank some freedom in
choosing the parameters over which each next level Kim-divides.

Remark 3.3. Because in NSOP1 theories the both notions of Kim-dividing ( (A)
and (B) from Definition 2.6) coincide over a model and in our rank we consider
only Kim-dividing over models, our rank is suitable to work with both notions of
Kim-dividing in the NSOP1 environment.
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In the following lines, we will make use of our intuition and show several nice
properties of the Q-rank, we also refine the definition of Q-rank, so it will become
more technical, but it will allow us to prove a few more facts. We start with something
completely trivial.

Fact 3.4.

(1) DQ(�) � 	, f ∈ Aut(C) ⇒ Df(Q)(f(�)) � 	.
(2) If �′ ⊆ � then DQ(�) � DQ(�′).
(3) DQ(�) � ⊕j<nD((ϕj ,qj ))(�), where ⊕ denotes the Cantor sum.

Proof. Items (1) and (2) follow by the definition. Item (3) follows from the
following fact, which can be proven by a straightforward induction on α: for any
ordinal α = A0∪̇A1∪̇ ··· ∪̇An–1, if αi is the order type of Ai for i < n, then α �
α0 ⊕ α1 ⊕ ··· ⊕ αn–1. 


Corollary 3.5. There exists finite Q such thatDQ(x = x) � � if and only if there
exists Q such that |Q| = 1 and DQ(x = x) � �.

As we will see in a moment, the Q-rank is finite in the case of NSOP1 theories,
which is a desired property of our rank. It also happens that outside of NSOP1 the
rank may be finite, e.g., in the case of T being DLO. In the following example we
work with Definition 3.1, however a more general result on finiteness of our rank in
the context of NIP theories is provided in Section 6, where we work with a slightly
modified definition of Q-rank (see Definition 6.11).

Example 3.6. Let T be the theory of dense linear orders without endpoints,
DLO. First, we will show that DQ(x = x) ≤ 1 for Q = (φ(x, yz), q), where q is an
arbitrary invariant type and φ(x, yz) = (y < x < z). SupposeMi, bij , i < 2, j < �
with bij = (aij , c

i
j) witness that DQ(x = x) ≥ 2. As φ(x; a1

0 , c
1
0 ) divides over a0

0c
0
0

(i.e., over b0
0), a0

0 , c
0
0 cannot lie in (a1

0 , c
1
0 ), hence by the consistency condition we

must have a0
0 < a

1
0 < c

1
0 < c

0
0 . But then an automorphism over M0 moving b0

0 to
b0

1 will move φ(x; a1
0 , c

1
0 ) to a formula inconsistent with it. This contradicts M0-

invariance of the restriction q′ of q to the first variable as a1
0 |= q′|M1.

Note also that if φ(x, y) is of the form x > y or x < y or x = x, then D(φ,q)(x =
x) = 0, as in that case no instance of φ(x, y) Kim-divides over any set. Also, it is
easy to see that if φ(x, y) = (x = y) then D(φ,q)(x = x) = 1.

Now letQ = (φ(x, y), q(y)) withx = x0 ... xn–1 be a variable of length n,φ(x, y) a
formula and q(y) a global invariant type. By quantifier elimination and completeness
of q(y) we have that q(y) ∧ φ(x, y) ≡ q(y) ∧

∨
i<k φi(x, y) where each φi(x, y)

defines a product of intervals with endpoints in the set y ∪ {+∞, – ∞}.
We claim that DQ(x = x) ≤ nk. Suppose for a contradiction that DQ(x = x) >

nk. Then by pigeonhole principle one easily gets that DQ′(x = x) > n where
Q′ = (φl , q) for some l < k. Let (bi ,Mi)i<n+1 witness that DQ′(x = x) ≥ n + 1.
Choose c |= {φ(x, bi) : i < N} and let �(x) be a formula equivalent to qftp(c/∅).
By replacing φl (x, y) with �(x) ∧ φl (x, y) we may assume φl (x, y) is of the form
�(x) ∧

∧
j<n �j(xj, y), where each �j(xj, y) defines an interval with endpoints in

y ∪ {+∞, – ∞}. Again by pigeonhole principle we must have thatDQ′′(x = x) ≥ 2
withQ′′ = (�(x) ∧ �j(xj, y)) for some j < n. As�(x) is over ∅ and is consistent, we
get that, for any j, any family of instances of�(x) ∧ �j(xj, y) is consistent if and only
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10 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

if the corresponding family of instances of �j(xj, y) is consistent (any realisation of
the latter can be extended to a realisation of �(x), since there is a unique 1-type in
DLO). Hence DQ′′(x = x) = D(�j (xj ,y),q)(xj = xj). But D(�j (xj ,y),q)(xj = xj) ≤ 1
by the first two paragraphs, a contradiction.

Definition 3.7. Let ϕ(x; y) ∈ L and let q(y) ∈ S(C). We define Cϕ,q � � as

Cϕ,q := max{k | (∃M � C, M isM – invariant)

(∃(ai)i<� |= q⊗�|M )({ϕ(x; ai) | i < k} is consistent)}.

Remark 3.8. LetM,N � C. Assume that:

• q is M-invariant, (ai )i<� |= q⊗� |M and kM is the maximal number (or �)
such that {ϕ(x; ai ) | i < kM} is consistent.

• q is N-invariant, (bi )i<� |= q⊗� |N and kN is the maximal number (or �) such
that {ϕ(x; bi ) | i < kM} is consistent.

Then kN = kM . To see this we introduce auxiliary N̄ � C which contains M and
N, and a Morley sequence (ci)i<� |= q⊗�|N̄ . We have that (ai)i<� ≡M (ci)i<� ≡N
(bi)i<� . This remark says that Cϕ,q is in some sense a uniform bound and it can
not happen that for eachM � C and each corresponding Morley sequence (ai)i<� ,
max{k | {ϕ(x; ai) | i < k}} is finite, but Cϕ,q = �.

From now on (if not stated otherwise), we assume that T has NSOP1.

Lemma 3.9. ThenDQ(�) � 	 if and only if there exist � ∈ n	 and
(
(bαi )i<�,Mα

)
α<	

such that:

(1) dom(�(x)) ⊆M 0,
(2) q0, ... , qn–1 areM 0-invariant,
(3) Mα � C for each α < 	, (Mα)α<	 is continuous, and each Mα+1 is |Mα |+-

saturated,
(4) (bαi )i<�Mα ⊆Mα+1 for each α + 1 < 	,
(5) �(x) ∪ {ϕ�(α)(x; bα0 ) | α < 	} is consistent,
(6) for each α < 	, we have (bαi )i<� |= q⊗��(α)|Mα and {ϕ�(α)(x; bαi ) | i < �} is

inconsistent.

Proof. The implication right-to-left is straightforward and holds even without
the assumption about NSOP1. Let us show the implication left-to-right.

By Remark 3.2, there is a configuration satisfying conditions (1)–(7) from
Definition 3.1 such that each Mα+1 is |Mα |+-saturated. By Kim’s lemma (Fact
2.7), we can replace the condition (7) from Definition 3.1, by: for each α < 	
there exists c̄α = (cαi )i<� |= q⊗��(α)|Mα such that cα0 = bα and {ϕ�(α)(x; cαi ) | i <
�} is inconsistent. By saturation of Mα+1, we find (bαi )i<� ⊆Mα+1 such that
(bαi )i<� ≡Mαbα (cαi )i<� which is the desired sequence to finish the proof. 


Lemma 3.10. DQ({x = x}) �
∑
j∈J
Cϕj ,qj < �, where J = {j < n | Cϕj,qj < �}.

Proof. Let us deal first with the case when Q = ((ϕ(x; y), q(y))). Assume that
DQ(�) � 	 > 0 and let (bα,Mα)α<	 be as in Definition 3.1 (� is constant, so we
skip it).
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We have that bα |= q|Mα and since bαMα ⊆Mα+1, it is bα |= q|M0b<α . We
know also that q is M 0-invariant and that {ϕ(x; bα) | α < 	} is consistent. On
the other hand, by Lemma 3.9, there exists a Morley sequence (b0

i )i<� |= q⊗�|M0

such that b0
0 = b0 and {ϕ(x; b0

i ) | i < �} is inconsistent. Therefore Cϕ,q < � and so
	 � Cϕ,q < �.

We switch to the general case where

Q =
(
(ϕ0(x; y0), q0(y0)), ... , (ϕn–1(x; yn–1), qn–1(yn–1)

)
.

Now, the function � ∈ n	 becomes important. We have that 	 =
⋃
j<n �

–1[j], so we
are done if we can show that |�–1[j]| = 0 or |�–1[j]| � Cϕj,kj < � for each j < n.
Fix some j < n and assume that |�–1[j]| > 0. Let α < 	 be the first index such that
�(α) = j. Repeating the first part of this proof for qj we obtain what we need. 


Corollary 3.11. DQ(�) �
∑
j∈J
Cϕj ,qj < �, where J = {j < n | Cϕj,qj < �}.

Lemma 3.12. DQ(�) � 	 if and only there exist � ∈ n	, (bαi )α<	,i<� , and M � C

such that

(1) dom(�) ⊆M ,
(2) q0, ... , qn–1 are M-invariant,
(3) �(x) ∪ {ϕ�(α)(x; bα0 ) | α < 	} is consistent,
(4) {ϕ�(α)(x; bαi ) | i < �} is inconsistent for each α < 	,
(5)

(b	–1
i )�i<� ...

� (b0
i )i<� |= q⊗��(	–1) ⊗ ··· ⊗ q⊗�

�(0)|M.

Proof. The left-to-right implication is straightforward: by Lemma 3.9 there are
proper � ∈ n	 and

(
(bαi )i<�,Mα

)
α<	

, we setM :=M 0 and reuse (bαi )α<	,i<� .
Let us take care of the right-to-left implication. We will recursively define

a sequence ((eαi )i<�,Mα)α<	 satisfying all the six conditions from Lemma 3.9.
Because we do not want to get lost in a notational madness, instead of introducing
new subscripts, we will sketch a few first steps.

We set M 0 :=M and take M 1 � C which is a |M 0|+-saturated, and which
containsM 0 and (b0

i )i<� . Consider a Morley sequence

(c	–1
i )�i<� ...

� (c1
i )i<� |= q⊗��(	–1) ⊗ ··· ⊗ q⊗�

�(1)|M1 .

We have

(b	–1
i )�i<� ...

� (b1
i )i<� ≡M0(b0

i )i<�
(c	–1
i )�i<� ...

� (c1
i )i<�.

Now, letM 2 � C be |M 1|+-saturated such thatM 1(c1
i )i<� ⊆M 2 and let us choose

one more Morley sequence

(d	–1
i )�i<� ...

� (d 2
i )i<� |= q⊗��(	–1) ⊗ ··· ⊗ q⊗�

�(2)|M2 .

We see that

(d	–1
i )�i<� ...

� (d 2
i )i<� ≡M1(c1i )i<�

(c	–1
i )�i<� ...

� (c2
i )i<�,
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and so

(d	–1
i )�i<� ...

� (d 2
i )�i<�(c1

i )
�
i<�(b0

i )i<� ≡M0 (c	–1
i )�i<� ...

� (c1
i )

�
i<�(b0

i )i<�

≡M0 (b	–1
i )�i<� ...

� (b0
i )i<�.

Set (e2
i )i<� := (d 2

i )i<� , (e1
i )i<� := (c1

i )i<� and (e0
i )i<� := (b0

i )i<� .
Continuing this process we will obtain a sequence of models M 0 �M 1 �

··· �M	–1 and Morley sequences (eαi )i<� |= q⊗��(α)|Mα , where α < 	, such that

Mα(eαi )i<� ⊆Mα+1 and

(e	–1
i )�i<� ...

� (e0
i )i<� ≡M (b	–1

i )�i<� ...
� (b0

i )i<�.

Since dom(�(x)) ⊆M =M 0, we have also that �(x) ∪ {ϕ�(α)(x; eα0 ) | α < 	} is
consistent and that {ϕ�(α)(x; eαi ) | i < �} is inconsistent for each α < 	. Therefore
all the conditions of Lemma 3.9 are satisfied for ((eαi )i<�,Mα)α<	. 


Example 3.13. Let us provide an example of a situation when the rank of the
home sort is finite, but strictly bigger than 1. Let k be any natural number greater
than 1 and let p be equal to zero or to a prime number distinct from 2. Consider the
2-sorted theory Tk of k-dimensional vector spaces over an algebraically closed field
of characteristic p, equipped with a non-degenerate symmetric bilinear form (see
[14, Chapter 10]). Let x and y be single vector variables, φ(x, y) = (x ⊥ y ∧ x �= 0),
and let q(y) be the generic type in the vector sort V (so q is ∅-invariant). Put
Q = ((φ(x, y), q(y))). We will show that DQ({x = x}) = k – 1.

Let (vi)i<� be a Morley sequence in q(y). Then in particular v0, ... , vk–1 are
linearly independent, which easily implies that

∧
i<k φ(x, vi) is inconsistent. Thus

DQ({x = x}) ≤ k – 1. For the other inequality, putMi = acl(a0, a1, ... , ak–1+i) for
i < k and note that bi := vk+i |= q|Mi (as bi |� Mi and bi |= q|∅), and eachMi is an
elementary submodel by quantifier elimination. Also, the sequence (vk+i , vk+i+1, ... )
is Morley overMi , and it witnesses that φ(x, bi) Kim-divides overMi for each i < k.
Finally,

∧
i<k–1 φ(x, bi) is consistent, as there is a non-zero vector orthogonal to

b0, ... , bi–2. This shows that DQ({x = x}) = k – 1.

Remark 3.14. Note that if T is an NSOP1 theory (as we assume here) and
for some k < �, a formula ϕ(x, y), M � C, some M-invariant q(y) ∈ S(C) and
some (bi)i<� |= q⊗�|M , the set {ϕ(x, bi) | i < �} is k-inconsistent but not (k – 1)-
inconsistent, thenD((ϕ,q))(x = x) = k – 1 (as in Example 3.13). To see this, consider
a linear order I being (k – 1)-many copies of� (one after another one) and (ci)i∈I |=
q⊗I |M and use Lemma 3.12. In other words, for �(x) := {x = x} the situation is
quite simple and either D((ϕ,q))(�) = 0 or D((ϕ,q))(�) = Cϕ,q provided Cϕ,q < �.

Lemma 3.15. If � � �′ then

DQ(�) � DQ(�′).

Proof. Assume that DQ(�) � 	 ∈ N>0, then by Lemma 3.12 there exist � ∈ n	,
(bαi )α<	,i<� , andM � C such that:

(1) dom(�) ⊆M ,
(2) q0, ... , qn–1 are M-invariant,
(3) �(x) ∪ {ϕ�(α)(x; bα0 ) | α < 	} is consistent,
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(4) {ϕ�(α)(x; bαi ) | i < �} is inconsistent for each α < 	,
(5)

(b	–1
i )�i<� ...

� (b0
i )i<� |= q⊗��(	–1) ⊗ ··· ⊗ q⊗�

�(0)|M.

Let N � C contain M and dom(�′), and let

(c	–1
i )�i<� ...

� (c0
i )i<� |= q⊗��(	–1) ⊗ ··· ⊗ q⊗�

�(0)|N .

Then naturally dom(�′) ⊆ N and q1, ... , qn are N-invariant. Because

(b	–1
i )�i<� ...

� (b0
i )i<� ≡M (c	–1

i )�i<� ...
� (c0

i )i<�,

we have also that {ϕ�(α)(x; cαi ) | i < �} is inconsistent for each α < 	, and that
�(x) ∪ {ϕ�(α)(x; cα0 ) | α < 	} is consistent. Moreover, � � �′ implies that �′(x) ∪
{ϕ�(α)(x; cα0 ) | α < 	} is consistent. Hence, Lemma 3.12 gives us DQ(�′) � 	. 


Lemma 3.16. DQ

(
� ∪

{ ∨
j�m
�j

})
= max
j�m
DQ(� ∪ {�j}).

Proof. Because � ∪ {�i} � � ∪ {
∨
j �j} for each i � m, Lemma 3.15 gives us

that

max
j�m
DQ(� ∪ {�j}) � DQ

(
� ∪

{ ∨
j�m
�j

})
.

Hence it is enough to show that

DQ

(
� ∪

{ ∨
j�m
�j

})
� 	 ⇒ max

j�m
DQ(� ∪ {�j}) � 	.

LetDQ(� ∪ {
∨
j �j}) � 	, i.e., there exists � ∈ n	 and (bα,Mα)α<	 as in Definition

3.1, in particular,

• dom(� ∪ {
∨
j �j}) ⊆M 0,

• � ∪ {
∨
j �j} ∪ {ϕ�(α)(x; bα) | α < 	} is consistent.

Thus there is i0 � m such that � ∪ {�i0} ∪ {ϕ�(α)(x; bα) | α < 	} is consis-
tent. Because dom(� ∪ {�i0}) ⊆ dom(� ∪ {

∨
j �j}) ⊆M 0, we have that DQ(� ∪

{�i0}) � 	 and so also maxj DQ(� ∪ {�j}) � 	. 

Let us recall that we are working in a theory T which is NSOP1.

Lemma 3.17. Assume that q0(y0) = ··· = qn–1(yn–1) = q(y) (in Q).

(1) Let {�
} lists all finite subsets of �. If for each 
 we have thatDQ(�
) � 	 < �,
then DQ(�) � 	.

(2) We can always find a finite �0 ⊆ � such that DQ(�0) = DQ(�).

Proof. Because for each 
 we have DQ(�
) � 	, by Lemma 3.12, for each 

there exists a function �
 ∈ n	, a sequence of sequences (b
,αi )α<	,i<� and a model
M
 � C such that:

(1) dom(�
) ⊆M
 ,
(2) q isM
 -invariant,
(3) �
(x) ∪ {ϕ�
 (α)(x; b
,α0 ) | α < 	} is consistent,
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(4) {ϕ�
 (α)(x; b
,αi ) | i < �} is inconsistent for each α < 	,
(5)

(b
,	–1
i )�i<� ...

� (b
,0i )i<� |= q⊗� ⊗ ··· ⊗ q⊗�|M
 .

Let N � C be such that
⋃



M
 ⊆ N . Moreover, let us pick up the following Morley

sequences:

(c	–1
i )�i<� ...

� (c0
i )i<� |= q⊗� ⊗ ··· ⊗ q⊗�|N ,

and, without loss of generality, let {ϕ�
 (α)(x; y) | 
, α < 	} = {ϕ0(x; y), ... , ϕr–1

(x; y)} for some r � n. We introduce �(x; y) :=
∨
i<r

ϕi(x; y), and note that

�(x) ∪ {�(x; cα0 ) | α < 	}

is consistent (otherwise, by compactness, �
(x) ∪ {�(x; cα0 ) | α < 	} is inconsis-
tent for some 
 , which is impossible, since

(c	–1
i )�i<� ...

� (c0
i )i<� ≡M
 (b
,	–1

i )�i<� ...
� (b
,0i )i<�

and �
(x) ∪ {ϕ�
 (α)(x; b
,α0 ) | α < 	} is consistent). Consider d |= �(x) ∪
{�(x; cα0 ) | α < 	}, then for each α < 	 there is iα < r such that |= ϕiα (d, cα0 ).
Let � ∈ n	 be given by � : α �→ iα .

As we want to use Lemma 3.12 to show that DQ(�) � 	, and we have already
defined �, N � C and (cαi )α<	,i<� , we need to verify whether all the five conditions
from Lemma 3.12 hold. Obviously, dom(�) ⊆ N and q is N-invariant, so we have
the first and the second condition. The fifth condition is naturally satisfied by the
choice of (cαi )α<	,i<� . The third condition says that �(x) ∪ {ϕ�(α(x, cα0 ) | α < 	} is
consistent, which is witnessed by element d. For the fourth condition, we need to note
that {ϕ�(α)(x, cαi ) | i < �} is inconsistent for every α < 	. Because �(α) < r, there

exist 
 andα′ < 	 such that �(α) = �
(α′). We know that {ϕ�
 (α′)(x, b

,α′

i ) | i < �}
is inconsistent, that (b
,α

′

i )i<� |= q⊗�|M
 and that (cαi )i<� |= q⊗�|M
 . Thus also
{ϕ�(α)(x, cαi ) | i < �} is inconsistent. 


Corollary 3.18. Let q0(y0) = ··· = qn–1(yn–1) = q(y) (in Q) and let �(x) be a
partial type over A. Then there exists p(x) ∈ S(A) extending �(x) such thatDQ(p) =
DQ(�).

Proof. The proof is completely standard, but let us sketch it anyway. Consider

�̃(x) := �(x) ∪ {¬�(x) ∈ L(A) | DQ(�(x) ∪ {�(x)}) < DQ(�(x))}.

By Lemmas 3.15 and 3.16, the set �̃ is a partial type over A. Let p(x) ∈ S(A) be
any extension of �̃.

If DQ(p) < DQ(�) then by Lemma 3.17 there exists a finite subset p0(x) ⊆ p(x)
such that DQ(p0) < DQ(�). Let �(x) :=

∧
p0(x) ∈ L(A), we have that

DQ(�(x) ∪ {�(x)}) � DQ(�(x)) � DQ(p0(x)) < DQ(�(x)).

Thus ¬�(x) ∈ �̃(x) ⊆ p(x) and we got a contradiction with �(x) ∈ p(x). 
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Let Δ = {ϕ1(x; y), ... , ϕn(x; y)} and 1 < k < �. Recall that there is a local rank
used in simple theories, denotedD( · ,Δ, k) (cf. Chapter 3 in [4]). This local rank may
be used to characterize simplicity as: T is simple if and only ifD({x = x}, {ϕ}, k) <
� for all ϕ and k (e.g., Proposition 3.13 in [4]). As our rank is also local, we can
treat our rank as an analogon of the local rankD( · ,Δ, k). Let us compare now the
both local ranks.

Remark 3.19. For each Q = ((ϕ0, q0), ... , (ϕn–1, qn–1)) and any partial type �,
there exists K < � such that for any k � K we have

DQ(�) � D(�, {ϕ0, ... , ϕn–1}, k).

Proof. As T is NSOP1, there is some 	 < � such that DQ(�) = 	. Let � and
(bα,Mα)α<	 be as in Definition 3.1. For each α < 	 there exists kα < � such that
ϕ�(α)(x; bα) kα-divides over Mα . Set K := max{k0, ... , k	–1}. Then, by definition,
D(�, {ϕ0, ... , ϕn–1}, k) � 	, provided k � K . 


On the other hand, if T is NSOP1 but not simple, then there must be a
formula ϕ and some k0 < � such that D({x = x}, {ϕ}, k0) � �. Thus for every
K < � there exists k � K (e.g., k = K + k0) such that D({x = x}, {ϕ}, k) � �
but, D((ϕ,q))({x = x}) < � for any choice of q ∈ S(C). Therefore sharp inequality
in Remark 3.19 happens outside of the class of simple theories. One could ask about
equality under the assumption of simplicity. The following counterexample, which
is even stable, leaves no doubt.

Example 3.20. Let T be the theory of an equivalence relation E with infinitely
many classes all of which are infinite. It is well-known that T is �-stable of Morley
rank 2. Let ϕ0(x, y) = E(x, y) and ϕ1(x, y) = (x = y). Then it is easy to see that
for any k > 1 we have that D({x = x}, {ϕ0(x, y), ϕ1(x, y)}, k) = 2. Now, fix two
arbitrary invariant global types q0(x), q1(x) and put Q = {(ϕ0, q0), (ϕ1, q1)}. We
claim that DQ({x = x}) ≤ 1. Suppose for a contradiction that DQ({x = x}) � 2
witnessed by M 0,M 1, b0, b1 and � : 2 → 2. The case where �(0) = 1 can be
excluded immediately, so assume �(0) = 0. Observe that |= E(b0, b1), as otherwise
ϕ�(0)(x, b0) ∧ ϕ�(1)(x, b1) would be inconsistent (note ϕi(x, y) � E(x, y) for i =
0, 1). On the other hand, as b1 |= q�(1)|M0b0 , we have in particular that b1 |�M0 b

0,
so E(b0,M 0) �= ∅, which contradicts that ϕ0(x, b0) divides overM 0.

3.2. Rank vs. Kim-independence. We know that Kim-generics do not exist in the
theory of infinite-dimensional vector spaces with a bilinear form (see Proposition
8.15 in [14]), which is NSOP1. Since in the case of simple theories, a notion of
finite local rank, which is compatible with forking and invariant under shifts by
elements of a definable group (so-called stratified local rank, see, e.g., Fact 3.7 in
[26]), would lead to the existence of forking generics (see Lemma 3.8 in [26]), we
probably should not expect that a notion of finite local rank in the case of NSOP1

theories will be compatible with Kim-forking and invariant under shifts by group
elements (otherwise one could try to prove existence of Kim-generics, which does
not always hold). Anyway, it seems that our notion of rank does not behave well
under shifts by elements of some definable group, so does not immediately exclude
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16 JAN DOBROWOLSKI AND DANIEL MAX HOFFMANN

compatibility of the rank with Kim-forking. Here, we study this problem and relate
our results to an important question from [10].

Lemma 3.21. Let M � N � C and a ∈ C. If DQ(tp(a/M )) = DQ(tp(a/N )) for
each M-invariant Q such that |Q| = 1, then a |�

K

M
N .

Proof. Assume that a � |�
K

M
N , which means that tp(a/N ) Kim-divides over

M. Let ϕ(x, b) ∈ tp(a/N ) Kim-divide over M. There exists an M-invariant
q(y) ∈ S(C) extending tp(b/M ) such that ϕ(x, b) q-divides over M. We set
Q =

(
(ϕ(x; y), q(y))

)
. By Lemma 3.15 and Corollary 3.11, it follows that

DQ(tp(a/N )) � DQ(tp(a/M ) ∪ {ϕ(x; b)}) =: 	 < �.

Therefore there exists a sequence (bα,Mα)α<	 such that:

(1) Mb ⊆M 0,
(2) q isM 0-invariant,
(3) Mα � C andMα+1 is |Mα |+-saturated for each α < 	,
(4) bαMα ⊆Mα+1 for each α + 1 < 	,
(5) bα |= q|Mα for each α < 	,
(6) tp(a/M ) ∪ {ϕ(x; b)} ∪ {ϕ(x; bα) | α < 	} is consistent,
(7) ϕ(x; bα) Kim-divides overMα for each α < 	.

By Lemma 3.12, we can modifyM 0 and so assume thatM 0 is |M |+-saturated, which
we do. We set M –1 :=M and b–1 := b. Checking that (bα,Mα)–1�α<	 witnesses
that DQ(tp(a/M )) � 	+ 1 is routine (note that, as 	 < �, (bα,Mα)–1�α<	 can be
naturally indexed by the elements of 	+ 1). 


Lemma 3.22. Let T be NSOP1 with existence. Assume that a ∈ C, M � N � C,
N is |M |+-saturated, q(y) ∈ S(C) is M-invariant, and that q⊗�·n|M is stationary for
any n < �. Let Q =

(
(ϕ(x; y), q(y))

)
. If a |�M

N then DQ(a/M ) = DQ(a/N ).

Proof. Let DQ(a/M ) =: 	 < �, it means by Lemma 3.9 that there exists(
(bαi )i<�,Mα

)
α<	

such that:

(1) M ⊆M 0,
(2) q isM 0-invariant (which comes for free as q is M-invariant andM ⊆M 0),
(3) Mα � C for all α < 	, (Mα)α<	 is continuous, andMα+1 is |Mα |+-saturated

for all α + 1 < 	,
(4) bα<�M

α ⊆Mα+1 for all α + 1 < 	,
(5) bα<� |= q⊗�|Mα for all α < 	,
(6) tp(a/M ) ∪ {ϕ(x; bα0 ) | α < 	} is consistent,
(7) {ϕ(x; bαi ) | i < �} is inconsistent for all α < 	.

Step 1. Let d |= tp(a/M ) ∪ {ϕ(x; bα0 ) | α < 	} and let N ′′ � C be such that
aN ≡M dN ′′. By the existence axiom for forking independence, there existsN ′ ≡Md
N ′′ such that

M<	b<	<� |�
Md

N ′.

Because a |�M
N , we have that d |�M

N ′′ and then also that d |�M
N ′. As

N ′ is |M |+-saturated, Proposition 5.4 from [4] assures us that d |�M
N ′ and
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M<	b<	<� |�Md
N ′ combine into dM<	b<	<� |�M

N ′. Then monotonicity of |� gives
us b<	<� |�M

N ′.
Step 2. Because aN ≡M dN ′′ ≡M dN ′ and q(y) is M-invariant, we have that

DQ(a/N ) = DQ(d/N ′), so it is enough to show that DQ(d/N ′) � 	. Note that
tp(d/N ′) ∪ {ϕ(x; bα0 ) | α < 	} is consistent.

Step 3. Note that

b<	<� = (b	–1
i )�i<� ...

� (b0
i )i<� |= q⊗� ⊗ ··· ⊗ q⊗�|M.

Since b<	<� |�M
N ′ and the type q⊗� ⊗ ··· ⊗ q⊗�|M (	-many repetitions) is station-

ary, we have that also

b<	<� = (b	–1
i )�i<� ...

� (b0
i )i<� |= q⊗� ⊗ ··· ⊗ q⊗�|N ′ .

Step 4. Now, Lemma 3.12 gives us easily DQ(d/N ′) � 	. 

Definition 3.23. Consider p(x) ∈ S(A). We call p(x) Kim-stationary if for each

B ⊇ A there is a unique Kim-nonforking extension of p over B.

Repeating the proof of [4, Lemma 11.6] we get:

Fact 3.24. (Arbitrary T) Let |�
∗ be any invariant ternary relation satisfying

symmetry [over models] and extension [over models]. Then for any parameter set [any
model ] M and a, b, if tp(ab/M ) is |�

∗-stationary then tp(a/M ) is |�
∗-stationary.

Proof. Let N �M and let a′ ≡M a′′ ≡M a be such that a′ |�
∗
M
N and

a′′ |�
∗
M
N . By extension, symmetry, and invariance, there are b′, b′′ such that

a′b′ ≡M a′′b′′ ≡M ab, a′b′ |�
∗
M
N and a′′b′′ |�

∗
M
N . Then by |�

∗-stationarity
of tp(ab/M ) we have that a′b′ ≡N a′′b′′, so in particular a′ ≡N a′′. 


Remark 3.25. Let p(x) be a complete type overM ⊆ C with x possibly infinite.
(1) Let T be simple, then p(x) is stationary if and only if p|x0 is stationary for

every finite subtuple x0 of x.
(2) (T being NSOP1) LetM � C. We have that p(x) Kim-stationary if and only

if p|x0 is Kim-stationary for every finite subtuple x0 of x.

Proof. We start with the proof of (1). The implication from left to right follows
from Fact 3.24. Assume p|x0 is stationary for every finite subtuple x0 of x and let
q0, q1 be global non-forking extensions of p. Then for every finite subtuple x0 of x
we have that q0|x0 and q1|x0 are non-forking extensions of p|x0 , so by stationarity of
p|x0 they are equal, hence q0 = q1 and p is stationary.

The argument for Kim-stationarity is exactly the same. 

Lemma 3.26. LetA ⊆ C, let (I,<) be an infinite linear ordering without a maximal

element, and let q(y) ∈ S(C) be an A-invariant type.
(1) Let T be simple. If q|A is stationary then also q⊗�|A is stationary.
(2) (Any T) If q⊗�|A is stationary then q⊗I |A is stationary.
(3) (Any T) If q⊗�|A is Kim-stationary then q⊗I |A is Kim-stationary.

Proof. We start with the proof of (1). By Remark 3.25, it is enough to show that
for each n < �, the type q⊗n|A is stationary. This can be shown inductively by the
use of the following claim: 
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Claim. If p(x) ∈ S(C) is A-invariant, such that p|A is stationary, then q ⊗ p|A is
stationary.

Proof of the claim. Let B ⊇ A, let ab |= q ⊗ p|A be such that ab |�A
B , and

let a′b′ |= q ⊗ p|B . Our goal is ab |= q ⊗ p|B . As ab |�A
B , we have b |�A

B .
Since b′ |= p|B and p is A-invariant, also b′ |�A

B . Stationarity of p|A implies that
there exists f ∈ Aut(C/B) such that f(b) = b′, thus b |= p|B . Because a |= q|Ab ,
we have that f(a) |= q|Ab′ . Since q is A-invariant, we obtain that f(a) |�A

b′.
On the other hand, ab |�A

B changes via f into f(a)b′ |�A
B , then symmetry,

base monotonicity, normality and monotonicity of |� give us f(a) |�Ab′
Bb′.

By transitivity of |� , f(a) |�A
b′ and f(a) |�Ab′

Bb′ imply that f(a) |�A
Bb′,

which by the fact that a′ |= q|Bb′ (so a′ |�A
Bb′) and by stationarity of q|A implies

f(a) ≡Bb′ a′. As f(a) |= q|Bb′ , we have that a |= q|Bb , thus ab |= q ⊗ p|B and we
end the proof of the claim.

Now, we are moving to the proof of (2). Assume that ā = (ai)i∈I |= q⊗I |A and
b̄ = (bi)i∈I |= q⊗I |A are such that ā |�A

B and b̄ |�A
B for some B ⊇ A. We need

to show that tp(ā/B) = tp(b̄/B), which holds if and only if for each n < � and
each i1, ... , in ∈ I , such that i1 < ··· < in, we have tp(ain ... ai1/B) = tp(bin ... bi1/B).
Consider such i1, ... , in ∈ I and choose any infinite sequence I0 ⊆ I starting with
(i1, ... , in) which has the order type of (�,<). Let aI0 := (ai)i∈I0 and bI0 := (bi)i∈I0 .
Then aI0 |= q⊗�|A, bI0 |= q⊗�|A. Monotonicity of |� gives us that aI0 |�A

B

and bI0 |�A
B . As q⊗�|A is stationary we have that aI0 ≡B bI0 , so in particular

tp(ain ... ai1/B) = tp(bin ... bi1/B).
The proof of (3) is similar to the proof of (2), as the only property of |� used

was monotonicity, which also holds for |�
K . 


Definition 3.27. Let A ⊆ C and let q(y) ∈ S(C) be A-invariant.
(1) We call q|A strongly stationary if the type q⊗�|A is stationary.
(2) We call q|A strongly Kim-stationary if the type q⊗�|A is Kim-stationary.

Remark 3.28. Let A ⊆ C and let q(y) ∈ S(C) be A-invariant, and let (I,<) be
an infinite linear ordering without a maximal element.

(1) If the type q|A is strongly stationary then q⊗I |A is stationary.
(2) If in addition T is simple, then the type q|A is strongly stationary if and only

if q|A is stationary.
(3) If the type q|A is strongly Kim-stationary then q⊗I |A is Kim-stationary.
(4) If in addition A ⊆M � C, the type q⊗�|M is Kim-stationary if and only if

for each finite subtuple x̄ of (xi)i<� , the type
(
q⊗�|M

)
x̄

is Kim-stationary.

Question 3.29. LetM � C and let q(y) ∈ S(C) be M-invariant such that q|M is
Kim-stationary. Is the type q⊗�|M Kim-stationary?

Corollary 3.30. Let T be NSOP1 with existence. Assume that a ∈ C,M � N �
C, that q(y) ∈ S(C) is M-invariant and let Q =

(
(ϕ(x; y), q(y))

)
.

(1) Assume that N is |M |+-saturated and q|M is strongly stationary, then

a |�
M

N ⇒ DQ(a/M ) = DQ(a/N ).
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(2) Assume that T is simple and q|M is stationary, then

a |�
M

N ⇒ DQ(a/M ) = DQ(a/N ).

(3) If q|M is strongly Kim-stationary, then

a
K

|�
M

N ⇒ DQ(a/M ) = DQ(a/N ).

Proof. (1) is exactly the content of Lemma 3.22. For (2), we use Lemma 3.26
and repeat the proof of Lemma 3.22, where in Step 1, instead of the saturation
assumption we use transitivity, which naturally holds in simple theories.

(3) also uses a modification of the proof of Lemma 3.22. More precisely, in Step 1,
we use that |� implies |�

K and that transitivity (over arbitrary sets) holds in NSOP1

with existence. We obtain dM<	b<	<� |�
K

M
N ′ and then b<	<� |�

K

M
N ′. Then, Step 3

follows by the definition of strong Kim-stationarity. The rest (Step 2 and Step 4)
remains the same. 


It is worth comparing (2) and (3) in the above corollary with Theorem 4.7(2)
from [10]. We are aware that we introduced a different notion of rank, but because
of that, we were able to drop the assumption on simplicity from [10, Theorem 4.7(2)]
at the cost of assuming strong stationarity of the type q and so to provide partial
answer to the counterpart to Question 4.9 from [10] for our notion of rank.

In Example 4.1, we will observe that the stationarity assumption in Lemma 3.22
cannot be removed. Moreover, in Proposition 4.2, we will see that in the case of
vector spaces with a bilinear form, being strongly Kim-stationary is equivalent to
being Kim-stationary.

§4. Forking in T∞. In this section we describe forking in the theory T∞ of
vector spaces with a generic bilinear form, answering in particular a question about
equivalence of dividing and dividing finitely stated in the first paragraph of Section
12.5 in [18]. Before that let us recall the basic definitions and provide some facts
related to the previous sections.

LetT∞ be the theory of two-sorted vector spaces over an algebraically closed field
of a fixed characteristic p different from 2 (we allow p = 0), with a sort V for vectors
and a sort K for scalars, equipped with a non-degenerate symmetric (or alternating)
bilinear form, as studied in [18]. Then T is NSOP1 by [11, Corollary 6.1] and it
has existence by [14, Proposition 8.1]. Fix a monster model C = (V (C), K(C)) of
T∞. If A ⊆ C |= T∞, put 〈A〉 := LinK(C)(V (A)) and let AK := A ∩K(C). By [14,
Corollary 8.13], for any sets A,B,C we have that A |�

K

C
B if and only if:

• 〈AC 〉 ∩ 〈BC 〉 = 〈C 〉 and
• dcl(AC )K |�

ACF
dcl(C )K

dcl(BC )K ,

where dcl(∗)K means (dcl(∗))K (for an algebraic description of dcl(∗), see [18,
Proposition 9.5.1]). For a discussion about forking and dividing in T∞, see [18,
Section 12.3] and the rest of this section below. In all the proofs in this section we
will assume the bilinear form is symmetric; the arguments in the alternating case are
analogous.
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Example 4.1. Let M |= T∞ and let q0 be the unique global |�
Γ-generic (in

the sense of [18, Definition 12.2.1]) type in V. Let v |= q0|M and let N �M be
a model containing v. Then q0|M (x) ∪ {x ⊥ v} does not Kim-fork over M so it

has a realisation w with w |�
K

M
N . Let ϕ(x, y) express that x ∈ 〈y〉 \ {0} with

x and y being single vector variables, and Q = ((ϕ(x, y), q0(y))). We claim that
DQ(w/N ) = 0 and DQ(w/M ) ≥ 1, which shows that the stationarity assumption in
Lemma 3.22 cannot be removed. Indeed, note that if N ≺ N0 and b |= q0|N0 then b
is not orthogonal to v, so tp(w/N ) ∪ ϕ(x, b) is inconsistent, hence DQ(w/N ) = 0.
On the other hand, tp(w/M ) ∪ ϕ(x, b) is consistent and ϕ(x, b) q0-forks over N0

(as the sets 〈bi〉 \ {0} are pairwise disjoint for a Morley sequence (bi)i<� in q0 over
N0, since such a sequence is linearly independent). Thus DQ(w/M ) ≥ 1 (and it is
actually easy to see that DQ(w/M ) = 1).

Proposition 4.2. Let p(x) = tp(a/M ) be a complete type over M |= T∞. Then
p(x) is Kim-stationary iff a ⊆ K(C) ∪ 〈V (M )〉. Hence p(x) is Kim-stationary if and
only if it is strongly Kim-stationary.

Proof. By Remark 3.25, we may assume x is a finite tuple of variables. Assume
the right-hand side first. Then by compactness p(x) � x ⊆ V0 ∪K(C) for some
finite-dimensional subspace V0 ≤ V (C). As V0 ∪K(C) is stably embedded in C

and definable over M in the pure field K, we can view p(x) as a complete type
over V0(M ) ∪K(M ) in the finite Morley rank structure V0 ∪K(C). Hence Kim-
stationarity of p(x) follows as in V0 ∪K(C) Kim-independence coincides with
forking independence and V0(M ) ∪K(M ) ≺ V0 ∪K(C).

Now assume that p(x) is stationary and let p′(x0) be its restriction to a single
vector variable x0. By Fact 3.24, p′(x0) is Kim-stationary. Let a0 |= p′(x0) be the
coordinate of a corresponding to x0. Suppose for a contradiction that a0 /∈ 〈M 〉. Let
v ∈ V (C) be orthogonal to M with [v, v] = 1 and let N �M be such that v ∈ N .
Then it is routine to check that p′(x0) ∪ {[x0, v] = 0} does not Kim-fork over M,
so it extends to a complete type s(x0) over N which does not Kim-fork over M. Let
r(x0) be the unique Γ-independent extension of p′(x0) over N. Then r(x0) and s(x0)
are two distinct Kim-independent extensions of p′(x0) over N, which contradicts
Kim-stationarity of p′(x0). 


For m < �, Tm denotes the theory of m-dimensional vector spaces over an
algebraically closed field of characteristic p equipped with a non-degenerate
symmetric bilinear form. The following are Definitions 12.3.8 and 12.3.11 in [18].
For the definition of dividing uniformly (which we will not use directly), see [18,
Definition 12.3.4].

Definition 4.3. Let φ(x, b) be a formula and let A be a countable set.

(1) φ(x, b) divides finitely over A if there is an A-indiscernible sequence (bi)i<�
of realisations of tp(b/A) such that {φ(x; bi) : i < �} is inconsistent and
{bi : i < �} is contained in some finite-dimensional substructure N ⊆ C.

(2) φ(x; b) ΓMS-divides over A, if there is a Γ-Morley sequence (bi )i<� in tp(b/A)
(i.e., a |�

Γ-independent A-indiscernible sequence or realisations of tp(b/A))
such that the set {φ(x; bi ) : i < �} is inconsistent.
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For the definition of |�
Γ, see [18, Definition 12.2.1]. As |�

Γ implies |�
K (see [20,

Proposition 9.38(1)]), every Γ-Morley sequence is a Kim-Morley sequence. Hence,
as Kim-dividing is witnessed by any Kim-Morley sequence (see [10, Theorem 3.8]),
it follows that ΓMS-dividing is the same as Kim-dividing in T∞.

By �∗ = {i∗ : i < �} we will denote a copy of � with the reversed order.

Proposition 4.4. Let A be a countable set of parameters and ϕ(x, b) a formula
which divides over A. Then ϕ(x, b) divides finitely over A (so it divides uniformly over
A by [18, Lemma 12.3.9]).

Moreover, if k is such that ϕ(x, b) k-divides over A, then there is an A-indiscernible
sequence witnessing this contained in a model of T2k|V (b)|.

Proof. Let k be such that ϕ(x, b) k-divides over A. By compactness we can find
an A-indiscernible sequence (bi)i<���∗ with b0∗ = b such that the set {ϕ(x, bi) :
i < � � �∗} is k-inconsistent. Note that for any i the type tp(bi∗/Ab<�b(<i)∗) is
finitely satisfiable in b<� , hence in particular, putting C := Ab<� we get that the
sequence I := (bi∗)i<� is Morley over C. Hence ϕ(x, b) Kim-divides over C, so
(by Kim’s lemma), it ΓMS-divides over C. Thus, by [18, Lemma 12.3.12], ϕ(x, b)
divides finitely over C so, as A ⊆ C , it divides finitely over A.

Moreover, the proof [18, Lemma 12.3.12] gives that a C-indiscernible sequence
witnessing k-dividing of ϕ(x, b) over C can be found in an R-dimensional subspace
of V (C) provided that there is a model NR |= TR containing k elements of a Γ-
Morley sequence witnessing ΓMS-dividing of ϕ(x, b) over C. But such k elements
contain at most k|V (b)| vectors, so there is a model of T2k|V (b)| containing all of
them (see, e.g., [14, Fact 3.2]). This gives the ‘moreover’ clause. 


By [18, Remark 12.3.14] we conclude:

Corollary 4.5. In T∞, forking and dividing coincide: for any small set A and any
formula ϕ(x, b) we have that ϕ(x, b) forks over A if and only if ϕ(x, b) divides over A.

Next, we will describe dividing of formulae in T∞ in terms of dividing in the
�-stable theories Tm (which are interpretable in ACF ).

By quantifier elimination in T∞ (see [14, Fact 2.8], [18, 9.2.3]), we may (and will)
restrict ourselves to considering only quantifier-free formulae.

Fact 4.6. Let M |= Tm (with M ⊆ C |= T∞) and let ϕ(x, a) be a (quantifier-
free) formula with a ⊆M . Then if ϕ(x, a) is consistent in T∞ and m ≥ 2(|V (x)| +
|V (a)|), then ϕ(x, a) is consistent in M.

Proof. Suppose C |= ϕ(b, a) for some b ⊆ C. Then, as m ≥ 2|V (ab)|, there is
a model N |= Tm containing ba (see [14, Fact 3.2]). As ϕ(x, a) is quantifier-free,
we have N |= ϕ(b, a). By quantifier elimination in Tm we conclude that ϕ(x, a) is
consistent in M. 


Proposition 4.7. SupposeA ⊆ C, |AV | < �,ϕ(x, b) is a (quantifier-free) formula,
and k < �. Let M ⊆ C be a model of Tm with m ≥ 2k|V (b)| containing A and b.
Then ϕ(x, b) k-divides over A in T∞ if and only if it k-divides over A in M.

Proof. Suppose first that ϕ(x, b) k-divides over A in T∞. By Proposition 4.4,
we can find a sequence (bi)i<� contained in a modelN |= Tm witnessing this. Then,
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as {ϕ(x, bi) : i < �} is k-inconsistent in T∞, it is k-inconsistent in N as well. Hence,
by quantifier elimination in Tm, ϕ(x, b) k-divides in M.

Conversely, suppose ϕ(x, b) k-divides in M, and consider arbitrary l < � and
a finite subset p0 ⊆ qftp(b/A). Then there is a sequence (bi)i<l of tuples in M
such that for any i1 < ··· < ik we have that

∧
j<k ϕ(x, bij ) is inconsistent in M and

bi |= p0 for every i < l . Then, as bi0 ... bik–1 contains at most k|V (b)| vectors and
m ≥ 2k|V (b)|, we get by Fact 4.6 that

∧
j<k ϕ(x, bij ) is inconsistent in T∞ as well.

So, by compactness, ϕ(x, b) k-divides in T∞. 


§5. Further examples. In this section, we collect more examples of NSOP1

theories with existence. In each of them, there exist at least three related notions
of independence: |� , |�

K and |�
K,q (recall that |�

K,q denotes Kim-independence
with respect to definition (B) of Kim-dividing). We would like to better understand
what are the relations between these three notions of independence. Obviously:
|� ⇒ |�

K ⇒ |�
K,q . The first natural question is: when |�

K and |�
K,q coincide?

Remark 5.1. Let T be NSOP1 with existence. Then |�
K = |�

K,q if and only if
for every C and everyp(x) ∈ S(C ) we have thatp(x) extends to a global C-invariant
type. The implication “⇒” holds for arbitrary T.

Proof. “⇐”: We only need to show that a |�
K,q

C
B ⇒ a |�

K

C
B for arbitrary

a, B,C . By assumption tp(B/C ) extends to a global C-invariant type r(x). If
a |�

K,q

C
, then there is an aC -indiscernible Morley sequence in r(x) over C starting

with B. As I is in particular |� -Morley over C, by Kim’s lemma we get that a |�
K

C
B .

“⇒”: Suppose there exist B and C such that tp(B/C ) does not extend to a global
C-invariant type. Then for any D we have that tp(BD/C ) does not extend to a
global C-invariant type, so, vacuously,E |�

K,q

C
BD for anyD,E. But we can choose

(assuming T has infinite models) D and E such that E ⊆ acl(D) \ acl(C ), in which
case E � |�

K

C
BD, hence |�

K,q does not imply |�
K in T. 


Remark 5.2.

(1) Note in particular that if there exists C with acl(C ) �= dcl(C ) then for any
c ∈ acl(C ) \ dcl(C ) the type tp(c/C ) does not extend to a global C-invariant
type, so |�

K �= |�
K,q .

(2) By exactly the same argument as above, if T is NSOP1 with existence, then
|�
K,q coincides with |�

K over algebraically closed sets if and only if for any
algebraically closed C any p(x) ∈ S(C ) we have that p(x) extends to a global
C-invariant type. In particular, if T = Teq is stable then |�

K,q coincides with

|�
K = |� over algebraically closed sets.

Example 5.3. We are working in T∞. As there are sets C with dcl(C ) �= acl(C )
(for example, in the sort K(C), on which the induced structure is just that of a pure
algebraically closed field), we have that |�

K �= |�
K,q in T∞. We expect that |�

K =

|�
K,q over algebraically closed sets which however relies on Question 5.4 below:

by the proof of [14, Proposition 8.1], any complete type over a finite set C extends
to a global type p(x) which is invariant over acleq(C ). By compactness, the same
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is true for arbitrary C, as the existence of a global acleq(C )-invariant extension of
p(x) is equivalent to consistency of the typep(x) ∪ {ϕ(x, d ) ↔ ϕ(x, d ′) : ϕ(x, y) ∈
L, d, d ′ ∈ Ceq, d ≡acleq (C ) d

′}. So, if dcleq(acl(C )) = acleq(C ) then p(x) extends to
a global acl(C ) -invariant type in Teq∞ , which restricts to a global acl(C )-invariant
type in T∞.

Question 5.4. Is it true inT∞ that for any set C we have dcleq(acl(C )) = acleq(C )?

Example 5.5. Assume that T is the theory of �-free PAC fields, let F ∗ be a
monster model of T and let F̄ := (F ∗)sep (so F̄ is a model of SCF and in this
example, if we refer to SCF, we actually refer to Th(F̄ )). Assume that A = acl(A),
B = acl(B), C = acl(C ) (by [7], we know that acl(∗) is obtained by closing under
	-functions and then taking the field-theoretic algebraic closure) and C ⊆ A ∩ B .
By [6], we have A |�C

B if and only if:

• A |�
SCF
C
B (forking independence in SCF) and

• acl(AB) ∩ (AB0)sepB sep = acl(AB0)B for each B0 = acl(B0) ⊆ B .

Let A′ be a small subset of F ∗ and let B = acl(B). By the general properties
of forking independence (e.g., Remark 5.3 in [4]), A′ |�B

B holds if and only if
A |�B

B , where A := acl(A′B). By the above description of forking independence

in the theory of �-free PAC fields, we have A′ |�B
B (and so also A′ |�

K

B
B and

A′ |�
K,q

B
B). So we see that the existence axiom for forking independence holds over

algebraically closed sets. Actually, the existence axiom for forking independence
holds over arbitrary sets (cf. Remarks 2.15 and 2.16 in [15]).

Let us recall what is |�
K and |�

K,q in the case of �-free PAC fields. Up to the

best of our knowledge, there is no description of |�
K or |�

K,q over arbitrary sets,
so we need to pick a model F � F ∗. Assume that A = acl(A) and B = acl(B),
and F ⊆ A ∩ B . Then, A |�

K

F
B if and only if A |�

K,q

F
B (as both notions of Kim-

dividing coincide over models in NSOP1), if and only if:

• A |�
SCF
F
B and

• SG(A) |�
K
SG(F )

SG(B),

where (2) is considered in the so-called sorted system, which is a first-order structure
build from all the quotients by open normal subgroups of the absolute Galois group
(see, e.g., [5, 8, 19]). In fact, as the absolute Galois group is the free profinite group
on�-many generators, this sorted system is stable (by [5]) and hence the second dot
above can be replaced by “SG(A) |�SG(F )

SG(B)”, i.e., the forking independence
relation, which is described in Proposition 4.1 in [5].

Example 5.6. Let T be the theory ACFG, exposed in [13]. More precisely, fix
some prime number p > 0 and letLG be the language of rings extended by a symbol
for a unary predicate G. Models of the LG -theory ACFG are algebraically closed
fields of characteristic p with an additive subgroup under the predicate G. Now,
the LG -theory ACFG is the model companion of ACFG ; let (K,G) be its monster
model. For A ⊆ K , let Ā denote the field-theoretic algebraic closure of A in K. Take
A,B,C ⊆ K and recall that the weak independence relation, A |�

w

C
B , is given as

follows:
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• A |�
ACF
C
B and

• G(AC + BC ) = G(AC ) +G(BC ),
where |�

ACF denotes the forking independence relation in ACF. By Corollary 3.16
from [13], we have that |� is |�

w after forcing base monotonicity:

A |�
C

B ⇐⇒ (∀D ⊆ CB)
(
A
w

|�
CD

BC
)
.

Therefore ACFG, which is a NSOP1 theory, enjoys the existence axiom for forking
independence. In a private communication with Christian d’Elbée, it was suggested
to us to use Corollary 1.7 from [13] and Theorem 2.12, to show that |�

w coincides

with |�
K over algebraically closed sets. As the proof is standard, we omit it here.

Therefore |�
K coincides with |�

w over algebraically closed subsets and |�
K,q

coincides with |�
w over models. In ACFG, there exist sets C such that dcl(C ) �=

acl(C ), thus |�
K �= |�

K,q in general (by Remark 5.2). One could ask whether |�
K

and |�
K,q coincide over algebraically closed sets (similarly as in T∞)?

Example 5.7. In [12], another example of an NSOP1 theory with existence was
studied. More precisely, Tm,n denotes the theory of existentially closed incidence
structures omitting the complete incidence structure Km,n. In other words, Tm,n is
the theory of a generic Km,n-free bipartite graph. Theorem 4.11 from [12] gives
us that Tm,n is NSOP1 and Corollary 4.24 from [12] implies that Tm,n satisfies the
existence axiom for forking independence. Actually, the aforementioned corollary
gives us also a nice description of forking independence, thus let us evoke it: for any
A,B,C ⊆ C |= Tm,n we have

A |�
C

B ⇐⇒ A
d

|�
C

B ⇐⇒ (∀D ⊆ acl(BC ), C ⊆ D)(A
I

|�
D

B),

and |�
I is a ternary relation coinciding with |�

K,q over models. Thus, again, forking
independence is induced by forcing base monotonicity on a ternary relation related
to |�

K,q .

The above examples motivate asking the following question:

Question 5.8. Assume that T is NSOP1 with existence. Is it true that |� is |�
K

after forcing base monotonicity, i.e.,

A |�
C

B ⇐⇒ (∀D ⊆ acl(BC ), C ⊆ D)(A
K

|�
D

B) ?

We know that in any theory T (not necessarily an NSOP1 theory), for each a and
A it holds that a |�

K,q

A
A1. Assuming that Question 5.8 has an affirmative answer

and assuming that |�
K coincide with |�

K,q over algebraically closed sets, we would
obtain the forking existence axiom over algebraically closed sets.

1We proved this fact under assumption of NSOP1 with the use of our rank, but after a talk on the
topic, Itay Kaplan, in a private communication, shared with us a simpler proof of this fact, which does
not need the NSOP1 assumption.
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§6. Beyond NSOP1. Now, let us consider arbitrary theory T (not necessarily
NSOP1). Instead of Definition 3.1, one could define the rank by the conditions
from Lemma 3.12. Such a rank would be always finite (indeed, by the consistency
condition and pigeonhole principle applied to �, rank of any type � would be
bounded by

∑
i∈�(	)Cφi ,qi < �) and satisfy the standard properties (Lemmas 3.15–

3.17 and Corollary 3.18). This is some strategy, however it seems that we require
too much here. Thus, let us derive yet another notion of rank and show its finiteness
in an important class of theories. The new rank is a slight modification of Q-rank
and, as we will see in a moment, the new rank coincides with the Q-rank in NSOP1

theories.

6.1. Refining notions. We start with introducing a refined notion of an invariant
type and a notion of a surrogate of a global type. These notions are used in Definition
6.11 and came out from studying examples similar to the one in Section 6.3.

Definition 6.1. Let A,B be small subsets of C and let C ⊆ C. A type q(y) ∈
S(C ) is B/A-invariant if f(q) = q for every f ∈ Aut(C/A) such that f(B) = B .
(Note that this implies C is invariant under all such f.)

Remark 6.2. Let A ⊆ B be small subsets of C, let C ⊆ C, and let q(y) ∈ S(C ).
We have: q is A-invariant ⇒ q is B/A-invariant ⇒ q is B-invariant.

Definition 6.3. A type q(y) is a semi-global type over A if there exists �(y) ∈
S(A) such that q(y) ∈ S(A ∪ �(C)) and � ⊆ q.

Definition 6.4 (Morley in semi-global type). Let q be an A-invariant semi-global
type over A and let (I,<) be a linearly ordered set. By a Morley sequence in q over A
(of order type I) we understand a sequence bI = (bi)i∈I such that bi |= q|Ab<i .

Remark 6.5. Assume thatA ⊆ B are small subsets ofC, and q is anB/A-invariant
semi-global type over B and (I,<) is a linearly ordered set.

(1) For each f ∈ Aut(C/A) with f(B) = B , we have f(q) = q ∈ S(B ∪ �(C))
for some �(y) ∈ S(B). More precisely, f(�) = � ∈ S(B) (B is fixed setwise),
so f(B ∪ �(C)) = B ∪ �(C), and so we do not need to add new parameters
to the domain of q (to satisfyB/A-invariance of q) and being aB/A-invariant
semi-global type over B is well-defined.

(2) If bI = (bi)i∈I and cI = (ci)i∈I are Morley sequences in q over B, then bI ≡B
cI . Thus we see that bI and cI realize a common type over B, which we denote
q⊗I |B . Moreover, bI is B-indiscernible and bi |�

d

B
b<i for all i ∈ I .

Lemma 6.6. Suppose q is a B/A-invariant semi-global type over B and cI =
(ci)i∈I |= q⊗I |B for some linearly ordered set I. Let f ∈ Aut(C/A) with f(B) = B
and let b be an enumeration of B. Then bcI ≡ f(b)cI .

Proof. By compactness, we may assume that I = {i1, ... , in} is finite. Assume
by induction that bc1 ... cn–1 ≡ f(b)c1 ... cn–1. Pick f̃ ∈ Aut(C) sending bc1 ... cn–1

to f(b)c1 ... cn–1. Then, as f̃(q) = q by B/A-invariance, we have

f̃(cn) |= f̃(tp(cn/bc1 ... cn–1)) = f̃(q)|
f̃(b)f̃(c1)...f̃(cn–1)

= q|bc1...cn–1
= tp(cn/bc1 ... cn–1)

which shows that f(b)c1 ... cn ≡ f(b)c1 ... cn–1f̃(cn) = f̃(bc1 ... cn) ≡ bc1 ... cn. 
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Lemma 6.7. Assume that q and r are A-invariant semi-global types over A,
tp(b/A) = r|A = q|A. If for a formulaϕ(x, b) there is b<� |= q⊗�|A and c<� |= r⊗�|A
such that {ϕ(x, bi) | i < �} is consistent and {ϕ(x, ci) | i < �} is inconsistent, then
T has SOP1.

Proof. As tp(b/A) = r|A = q|A, we have that q, r ∈ S(A ∪ tp(b/A)(C)) and we
can repeat the proof of Proposition 3.15 from [20]. 


Corollary 6.8. If T is NSOP1 then we have Kim’s lemma for semi-global type
dividing: for any small set A ⊆ C, any formula ϕ(x, b), if there is an A-invariant semi-
global type q ⊇ tp(b/A) over A and a sequence b<� |= q⊗�|A such that {ϕ(x, bi) | i <
�} is inconsistent, then {ϕ(x, ci) | i < �} is inconsistent for any A-invariant semi-
global type r ⊇ tp(b/A) over A and any sequence c<� |= r⊗�|A.

Proposition 6.9. The following are equivalent for the complete theory T:
(1) T is NSOP1.
(2) (Kim’s lemma for semi-global types dividing) For any smallM � C, any formula
ϕ(x, b), if there is an M-invariant semi-global type q ⊇ tp(b/M ) over M and
a sequence b<� |= q⊗�|M such that {ϕ(x, bi) | i < �} is inconsistent, then
{ϕ(x, ci) | i < �} is inconsistent for any M-invariant semi-global type r ⊇
tp(b/M ) over M and any sequence c<� |= r⊗�|M .

(3) (Kim’s lemma for Kim-dividing) For any small M � C, any formula ϕ(x, b),
if there is an M-invariant global type q ⊇ tp(b/M ) and a sequence b<� |=
q⊗�|M such that {ϕ(x, bi) | i < �} is inconsistent, then {ϕ(x, ci) | i < �} is
inconsistent for any M-invariant global type r ⊇ tp(b/M ) and any sequence
c<� |= r⊗�|M .

Proof. (1)⇒(2) follows by Corollary 6.8. If q and r are M-invariant global
types extending tp(b/M ) then q|B and r|B , where B :=M ∪ tp(b/M )(C), are M-
invariant semi-global types over M and thus (3) is implied by (2). Finally, (3)⇒(1)
is contained in Theorem 3.16 from [20]. 


Remark 6.10. Say that we are interested in the notion of Kim-dividing (over A)
of a formula ϕ(x, b). As it was earlier pointed out, the main issue with the definition
of Kim-dividing from [20] is that there might be not enough many A-invariant
global extensions of tp(b/A) to witness Kim-dividing. Perhaps there are situations,
where it is easier to find an A-invariant semi-global extension (over A) of tp(b/A)
and so working with semi-global types (instead of global types) in the definition of
Kim-dividing from [20] might give better results.

6.2. Modifying rank. Again, let

Q :=
(
(ϕ0(x; y0), q0(y0)), ... , (ϕn–1(x; yn–1), qn–1(yn–1)

)
,

where ϕ0, ... , ϕn–1 ∈ L and q0, ... , qn–1 are global types.

Definition 6.11. We define a local rank, called Q̃-rank,

D̃Q( · ) :
{
sets of formulae} → Ord∪{∞}.

For any set of L-formulae �(x) we have D̃Q(�(x)) � 	 if and only if there exist
� ∈ n	 and

(
bα
Z
,Mα

)
α<	

, where bα
Z

= (bαi )i∈Z, such that:
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(1) dom(�(x)) ⊆M 0,
(2) q0, ... , qn–1 areM 0-invariant,
(3) Mα � C for each α < 	, (Mα)α<	 is increasing and continuous, and each
Mα+1 is |Mα |+-saturated and strongly |Mα |+-homogeneous,

(4) bα
Z
Mα ⊆Mα+1 for each α + 1 < 	,

(5) bα0 |= q�(α)|Mα for each α < 	,
(6) �(x) ∪ {ϕ�(α)(x; bα0 ) | α < 	} is consistent,
(7) for each α < 	 there exists an Mα/M 0-invariant semi-global type rα(y�(α))

overMα such that bα
Z
|= r⊗Z

α |Mα and {ϕ�(α)(x; bαi ) | i ∈ Z} is inconsistent.

If D̃Q(�) � 	 for each 	 ∈ Ord, then we set D̃Q(�) = ∞. Otherwise D̃Q(�) is the
maximal 	 ∈ Ord such that D̃Q(�) � 	.

Proposition 6.12. If T is NSOP1 then DQ = D̃Q.

Proof. If DQ(�) � 	 then there exist � ∈ n	 and (bα,Mα)α<	 as in Definition
3.1. By Remark 3.2, we may assume that eachMα+1 is |Mα |+-saturated and strongly
|Mα |+-homogeneous. Then, as in Lemma 3.9, we may assume that each rα ∈ S(C)
from the condition (7) of Definition 3.1 is equal to q�(α) and that we have bα<� ⊆
Mα+1 satisfying q⊗�

�(α)|Mα and such that {ϕ�(α)(x, bαi ) | i < �} is inconsistent. By

saturation ofMα+1, we can extend each bα<� to bα
Z
|= q⊗Z

�(α)|Mα contained inMα+1

such that {ϕ�(α)(x, bαi ) | i ∈ Z} is inconsistent. Finally, q�(α)|Bα , whereBα :=Mα ∪
q�(α)|Mα (C), is anMα/M 0-invariant semi-global type overMα . Therefore we fulfill
all the conditions of Definition 6.11 and we see that D̃Q(�) � 	.

Now, assume that D̃Q(�) � 	. There exists � ∈ n	 and
(
bα
Z

= (bαi )i∈Z,M
α
)
α<	

as in Definition 6.11. All the first six conditions from Definition 3.1 are naturally
satisfied by �, Mα , and bα<� , where α < 	. To see that also the condition (7) of
Definition 3.1 is satisfied, we argue as follows. Let α < 	, let cα<� |= q⊗��(α)|Mα be

contained in Mα+1 and such that cα0 = bα0 . We know that q�(α) is M 0-invariant,
so in particular also Mα-invariant. Moreover, as q�(α)|Bα , where Bα :=Mα ∪
q�(α)|Mα (C), is an Mα-invariant semi-global type over Mα , and there exists an
Mα/M 0-invariant semi-global type rα(y�(α)) overMα such that bα

Z
|= r⊗Z

α |Mα and
we have that {ϕ�(α)(x; bαi ) | i ∈ Z} is inconsistent (by the condition (7) of Definition
6.11), Corollary 6.8 implies that {ϕ�(α)(x; cαi ) | i ∈ Z} is inconsistent. 


Corollary 6.13. If T is NSOP1 then D̃Q(�) < � for any choice of � and finite Q.

The following easily follows by the definition.

Fact 6.14. (1) D̃Q(�)) � 	, f ∈ Aut(C) ⇒ D̃f(Q)(f(�)) � 	.
(2) If dom(�′) ⊆ dom(�) and � � �′ then D̃Q(�) � D̃Q(�′).
(3) D̃Q(�) �

∑
j<n

D̃((ϕj ,qj ))(�).

(4) We have

D̃Q

(
� ∪

{ ∨
j�m
�j

})
� max
j�m
D̃Q(� ∪ {�j}).
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Question 6.15. Working outside of NSOP1, can we improve statements (2) and
(4) in Fact 6.14 so they will get theses as in Lemma 3.15 and Lemma 3.16?

Proposition 6.16. If D̃Q(�(x)) � 	 then there exist natural numbers lα , formulae
�α(x, yα), and sequences cα

Z
:= (cαi )i∈Z, where α < 	 such that:

• for each � : 	→ Z the set

�(x) ∪
⋃
α<	

{�α(x, cα
�(α)), ¬�α(x, cαl ) | l �= �(α)}

is consistent,
• for each α < 	 the set

{�α(x, cαl ) | l ∈ Z}
is lα-inconsistent.

Proof. Consider ((bα
Z

),Mα)α<	 as in Definition 6.11. For simpler notation,
let us introduce small M	 � C which contains all Mα ’s, all bα

Z
’s and is

|
⋃
α M

α |+-saturated and strongly |
⋃
α M

α |+-homogeneous. We know that
�(x) ∪ {ϕ�(α)(x, bα0 ) | α < 	} is consistent. 


Claim 1. There are natural numbers (kα)α<	 such that

�(x) ∪
⋃
α<	

(
{ϕ�(α)(x, b

α
l ) | 0 � l < kα} ∪ {¬ϕ�(α)(x, b

α
l ) | l < 0 or l � kα}

)

is consistent.

Proof of Claim 1. We will choose kα ’s recursively. Let k0 < � be maximal such
that

�(x) ∪ {ϕ�(0)(x, b
0
l ) | 0 � l < k0} ∪ {ϕ�(α)(x, b

α
0 ) | 0 < α < 	}

is consistent. Then also

�(x) ∪ {ϕ�(0)(x, b
0
l ) | 0 � l < k0}

∪ {¬ϕ�(0)(x, b
0
l ) | l < 0 or l � k0}

∪ {ϕ�(α)(x, b
α
0 ) | 0 < α < 	}

is consistent. If not then, by compactness,

�(x) ∪ {ϕ�(0)(x, b
0
l ) | 0 � l < k0} ∪ {ϕ�(0)(x, b

0
s )} ∪ {ϕ�(α)(x, b

α
0 ) | 0 < α < 	}

(1)

is consistent for some s < 0 or s � k0. Assume s < 0. Because b0
s b

0
0 ... b

0
k0–1 ≡M0

b0
0 ... b

0
k0

and b0
Z
⊆M 1, and M 1 is |M 0|+-saturated and strongly |M 0|+-

homogeneous, there existsf1 ∈ Aut(M 1/M 0) such that such thatf0
1 (b0
s b

0
0 ... b

0
k0–1) =

b0
0 ... b

0
k0

.

We recursively construct an increasing sequence fα ∈ Aut(Mα/M 0) for 1 �
α � 	. Assume that we have fα ∈ Aut(Mα/M 0) and we need to define fα+1.
Consider any extension fα ⊆ f′

α ∈ Aut(Mα+1/M 0). As bα
Z
|= r⊗Z

α |Mα (rα as
in the condition (7) of Definition 6.11), we have f′

α(bα
Z

) |= f′
α(rα)⊗Z|f′α(Mα).
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We know thatf′
α(Mα) =Mα ,f′

α |M0 = idM0 and that rα isMα/M 0-invariant. Thus
f′
α(bα

Z
) |= r⊗Z

α |Mα and f′
α(bα

Z
) ≡Mα bαZ . There exists f′′

α ∈ Aut(Mα+1/Mα) such
that f′′

αf
′
α(bα

Z
) = bα

Z
. Set fα+1 := f′′

α ◦ f′
α ∈ Aut(Mα+1/M 0) and note that fα ⊆

fα+1. If � � 	 is a limit ordinal, then simply put f� :=
⋃

1�α<�
fα ∈ Aut(M�/M 0).

After applying f	 to the set of formulae from (1), we obtain that

�(x) ∪ {ϕ�(0)(x, b
0
l ) | 0 � l � k0} ∪ {ϕ�(α)(x, b

α
0 ) | 0 < α < 	}

is consistent which contradicts the maximality of k0.
Now, assume that there are (k
)
<� such that

�(x) ∪
⋃

<�

{ϕ�(
)(x, b


l ) | 0 � l < k
}

∪
⋃

<�

{¬ϕ�(
)(x, b


l ) | l < 0 or l � k
}

∪ {ϕ�(α)(x, b
α
0 ) | � � α < 	}

is consistent. Let k� < � be maximal such that

�(x) ∪
⋃

<�

{ϕ�(
)(x, b


l ) | 0 � l < k
}

∪
⋃

<�

{¬ϕ�(
)(x, b


l ) | l < 0 or l � k
}

∪ {ϕ�(�)(x, b�l ) | 0 � l < k�}
∪ {ϕ�(α)(x, b

α
0 ) | � < α < 	}

is consistent. Repeating the argument from the case of � = 0, we will obtain that
also

�(x) ∪
⋃

��

{ϕ�(
)(x, b


l ) | 0 � l < k
}

∪
⋃

��

{¬ϕ�(
)(x, b


l ) | l < 0 or l � k
}

∪ {ϕ�(α)(x, b
α
0 ) | � < α < 	}

is consistent. Here ends the proof of Claim 1. 


Claim 2. The array (bαi )α<	i∈Z
is mutually indiscernible overM0, i.e., for everyα0 < 	

we have that (bα0
i )i∈Z is indiscernible over (bαi )α �=α0,i∈Z.

Proof of Claim 2. Let ī , j̄ ⊆ Z be increasing tuples of the same length m.
As bα0

ī
and bα0

j̄
both satisfy r⊗mα0

|Mα0
, we have bα

ī
≡Mα bαj̄ , so there is some

fα0+1 ∈ Aut(Mα0+1/Mα0) with fα0+1(bα0
ī

) = fα0+1(bα0
j̄

). By Lemma 6.6 we have
thatfα0+1 ∪ id

b
α0+1
Z

is an elementary map, so it extends to an automorphismfα0+2 of

Mα0+2. Continuing inductively, we obtain a compatible sequence of automorphisms
fα ∈ Aut(Mα/Mα0) ⊇ fα0+1 for α0 < α ≤ 	 with fα(b


Z
) = b


Z
for every 
 < α
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(at limit steps we take unions). Then f	 witnesses that bα0
ī

≡(bαi )α �=α0 ,i∈Z
b
α0
j̄

. Here
ends the proof of Claim 2. 


Let

cαn := (bαkα ·n, b
α
kα ·n+1, ... , b

α
kα ·n+(kα–1)),

�α(x, cαn ) :=
∧

0�j<kα
ϕ�(α)(x, b

α
kα ·n+j),

where α < 	 and n ∈ Z.
By Claim 2, the array (cαi )α<	i∈Z

is also mutually indiscernible overM0. Hence, the
first item from the thesis of the proposition follows from consistency of �(x) ∪⋃
α<	

{�α(x, cα0 ), ¬�α(x, cαl ) | l �= 0}.

For the second item of the thesis, we argue shortly as follows. Because of the
condition (7) in Definition 6.11, for each α < 	 there exists lα < � such that
{ϕ�(α)(x, bαi ) | i ∈ Z} is lα-inconsistent. In particular for each α < 	, we have that
{�α(x, cαn ) | n ∈ Z} is lα-inconsistent.

Fact 6.17 (Fact 2.11 in [16]). For any theory T the following are equivalent.

(1) T is dp-minimal.
(2) There is no sequence of formulae �1(x, y), ... , �2n (x, y) with |x| = n and

sequences (aji )i∈� with 1 � j � 2n so that for any � : {1, ... , 2n} → �, the
set

∧
1�k�2n

�k(x, ak�(k)) ∧
∧

1�k�2n

∧
l �=�(k)

¬�k(x, akl )

is consistent.

Corollary 6.18. If T is dp-minimal then D̃Q(�(x)) < 2|x|.

Proof. By Proposition 6.16 and Fact 6.17. 


Question 6.19. What other properties does D̃Q satisfy in the dp-minimal context?
For example, do we have a counterpart of Lemma 3.17 in the dp-minimal context?

The following definitions may be found in [9].

Definition 6.20.

(1) An inp-pattern in �(x) of depth 	 is (lα, ϕα(x, yα), (bαi )i<�)α<	 such that:
• {ϕα(x, bαi ) | i < �} is lα-inconsistent for each α < 	,
• �(x) ∪ {ϕα(x, bα

�(α)) | α < 	} is consistent for each � : 	→ �.

(2) The burden of �(x), denoted inp-rk(�(x)), is the the supremum of the depths
of all inp-patterns in �(x).

(3) We let the dp-rank of �(x), denoted dp-rk(�(x)), be the supremum of 	
for which there are a |= � and mutually indiscernible over C := dom(�)
sequences (bαi )i<� , where α < 	, such that none of them is indiscernible
over aC .
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Fact 6.21.

(1) inp-rk(�(x)) � dp-rk(�(x)) (Fact 3.8 in [9]).
(2) If T is NIP then inp-rk(�(x)) = dp-rk(�(x)) for every partial type �(x) (Fact

3.8 in [9]).
(3) T is NTP2 iff inp-rk(�(x)) <∞ for every partial type �(x) (Fact 3.2 in [9]).
(4) T is NIP iff dp-rk(�(x)) <∞ for every partial type �(x) (Proposition 10 in

[1]).

Corollary 6.22.

(1) For every Q and partial type �, we have

D̃Q(�) � inp-rk(�) � dp-rk(�).

(2) If T is NTP2 then for every Q and partial type �, we have

D̃Q(�) <∞.

Proof. Follows from the definition of inp-rk(�), Fact 6.21 and Proposition 6.16.



As we see above, Q̃-rank is finite in NSOP1 and finite dp-rank theories. There is
a natural question: what is the class of theories for which Q̃-rank is finite. We need
to look for a class of theories which generalizes finite dp-rank theories and NSOP1

theories at the same time. In their recent work, authors of [3] provide a new dividing
line in the stability hierarchy, called the antichain tree property and show that theories
without the antichain tree property (NATP) generalize NTP2 and NSOP1.

Question 6.23. Is D̃Q finite in NATP? Is D̃Q infinite in ATP?

A prospective approach to answer the second above question above, could be by
considering the Q̃-rank in the context of NSOP theories with SOP1.

Moreover, one could use finiteness of the Q̃-rank to indicate that a given theory
is placed among an extension of the current known boundary of the combinatorially
tame universe [27]. For example, the author of [27] notes that his theory ACFO of
algebraically closed fields with multiplicative circular orders has TP2 (Proposition
3.25 in [27]), but on the other hand his theory is a quite natural expansion of the
theory of the algebraic closure of a finite field. For sure it is worth checking whether
the Q̃-rank is finite (or ordinal-valued) in the case of ACFO.

6.3. An example where the rank is infinite: valued Boolean algebras. Let B be
a Boolean algebra considered in language LBA = {∧,∨,c , 0, 1} and (P,�, 0P, 1P) a
linearly ordered set with minimal element 0P and maximal element 1P . We call a
function v : B → P a valuation, if v(x) = 0P iff x = 0, V (1) = 1P , and v(x ∨ y) =
max(v(x), x(y)) for all x, y ∈ B . Now letLVBA = LBA ∪ {v, 0P, 1P} be a two-sorted
language on sorts B and P, where v is a symbol of a unary function from B to P. Let
DVBA0 be the LVBA-theory expressing that (B,∨,∧,c , 0, 1) is an atomless Boolean
algebra, v : B → P is a valuation, and for all x � y in B (here, “�” indicates the
canonical ordering in Boolean algebras) and any p ∈ P such that v(x) < p < v(y)
there exists z ∈ B with x � z � y and v(z) = p (density) and there are disjoint
y1, y2 � y with v(y1) = v(y2) = v(y) (no valuation-atoms).
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It is easy to see that DVBA0 is consistent. By Example 4.33 from [3], DVBA0

has ATP, so intuitively one may expect that the Q̃-rank is infinite in DVBA0. Let us
argue on that.

Proposition 6.24. DVBA0 is complete and admits QE in LVBA.

Proof. Let M,N |= DVBA0 and let f : A→ B be an isomorphism with A,B
finitely generated substructures of M and N, respectively. Since M and N are locally
finite, A and B are finite. Let a ∈M be an element. By a standard back-and-forth
argument, it is enough to find b ∈ B such that f extends to an isomorphism of
the substructures generated by Aa and Bb. Let (a1, ... , ak) be all the atoms in A
and (b1, ... , bk) all the atoms in B. Let P(A) = {p1, ... , pl} and P(B) = {q1, ... , ql}
be ascending enumerations in sort P. Assume a ∈ B(M ) (the argument in case
a ∈ P(M ) is very similar). By the quantifier elimination in (P,�, 0P, 1P), we can
find q′1, ... , q

′
k, q

′′
1 , ... , q

′′
k ∈ P(N ) such that (q1, ... , ql , q

′
1, ... , q

′
k, q

′′
1 , ... , q

′′
k ) has the

same quantifier-free type as

(p1, ... , pl , v(a ∧ a1), ... , v(a ∧ ak), v(ac ∧ a1), ... , v(ac ∧ ak)).

By the density axiom, for every i � k we can find b′i � bi such that v(b′i ) = q′i and
v(bi ∧ b′ci ) = q′′i . Put b :=

∨
i�k
b′i . Define f′(a ∧ ai) = b′i for all i � k and

f′(v(a ∧ a1), ... , v(a ∧ ak), v(ac ∧ a1), ... , v(ac ∧ ak)) = (q′1, ... , q
′
k, q

′′
1 , ... , q

′′
k ).

Then f ∪ f′ uniquely extends to an isomorphism of the substructures generated by
Aa and Bb which sends a to b, as required. 


Let q(y) = {0P < v(y ∧m) = v(y) < v(m′) | m,m′ ∈ B \ {0}}. We claim that
q(y) determines a complete global type (note it will obviously be ∅-invariant).
Clearly q(y) determines a complete type of y in the Boolean algebra B. Hence,
by the quantifier elimination, it is enough to prove that for any x, y |= q and any
a, b, c, d ∈ B we have v((x ∧ a) ∨ (xc ∧ b)) < v((x ∧ c) ∨ (xc ∧ d )) if and only if
v((y ∧ a) ∨ (yc ∧ b)) < v((y ∧ c) ∨ (y ∧ d )), and likewise for equality in place of
inequality. Note that if b �= 0 then v(xc ∧ b) = v(b) > v(x ∧ a), so v((x ∧ a) ∨
(xc ∧ b)) = v(b). On the other hand, if b = 0 then v((x ∧ a) ∨ (xc ∧ b)) = v(x ∧
a) = v(x). Hence, the equivalences easily follow by inspection.

Now, for any model M define rM (y) = {0P < v(y ∧m) = v(y) < v(m′) | m,m′ ∈
B, v(m) ∈ conv(v[B(M ) \ {0}])} ∪ {y ∧ c = 0 | v(c) < v[B(M ) \ {0}]}, where
conv denotes the convex hull operation in (P,�). Note q|M ⊆ rM . Again, by
quantifier elimination rM (y) determines a complete global type. Moreover, as
v[B(M ) \ 0] and its convex hull are invariant under automorphisms preserving M
setwise, we get that rM (y) isM/M0-invariant for anyM0 ≺M .

Let ϕ(x, y) = (x �= 0 ∧ x � y) and Q = (ϕ(x, y), q(y)). We claim that D̃Q(x =
x) = ∞ for x a variable of the sort B. Fix any ordinal 	. Choose (Mα, bα)α<	
with (Mα)α<	 continuous so that bα |= q|Mα and bαMα ⊆Mα+1 for every α < 	,
and eachMα+1 is |Mα |+-saturated and strongly |Mα |+-homogeneous. Then r|Mα
witnesses that ϕ(x, bα) Kim-divides (with respect to a semi-global type) over
Mα for every α < 	 (this is because for any Morley sequence (mi)i<� in r we
have that mi ∧mj = 0 for all i �= j). On the other hand, {ϕ(x, bα) | α < 	} is
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consistent by compactness and the choice of q. This shows that D̃Q(x = x) � 	, so
D̃Q(x = x) = ∞.
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