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CONTINUATION OF COMPLEX VARIETIES 
ACROSS RECTIFIABLE SETS 

YEREN XU 

ABSTRACT. We continue our research on extension of complex varieties across 
closed subsets. While efforts are being made to deal with varieties of any dimensions, 
the paper primarily concerns 1-dimensional case, and the exceptional set is thus as
sumed to be connected with finite length. As applications of the main result, several 
corollaries are obtained with interesting features. 

0. Introduction. This paper is a continuation of our previous work [Xu], in which 
the main goal was to find certain topological conditions on a 2k — 1 dimensional C1 

submanifold E in a domain CI and on a ^-dimensional complex variety V in Q \ E so 
that V can be extended analytically across E. To replace the smoothness of E, the major 
obstruction, following lines in [Xu], is that we no longer have a regularity theorem for 
the pair (V,E), (cf. Section 3 in [Xu]). Consequently, Stokes' formula for the pair (E, V), 
i.e., the formula d[V] = [E] in the sense of currents, is no longer valid here, since E is 
only the topological boundary of V. To overcome this difficulty, a different method has 
to be used. For this purpose, we need a delicate analysis of the set E which yields certain 
uniqueness and removable singularities results for holomorphic functions. To simplify 
our argument, we will concentrate the case when E is a rectifiable curves. As the proof 
goes on, we will realize that the method adopted here may not work well for high dimen
sional rectifiable sets, although we believe that the conclusion is still valid there. Finally 
it worthwhile to note that the method given here also works in our former paper [Xu] and 
gives an alternative proof of the results appeared there. It can also be used to show that 
a 1 -dimensional complex variety in a strictly pseudoconvex domain with rectifiable arc 
as its boundary can be parameterized as the image of some analytic mappings from the 
unit disc in C1 and Lipschitz continuous up to the unit circle. We will publish this result 
elsewhere. 

The author express his deep appreciation to Professor Edgar Lee Stout for his guid
ance. The author also thanks Professor Evgeni Chirka for the stimulating conversations 
during the preparation of the final version of the paper. 

1. Analysis of some planar sets. Let D be a bounded simply connected domain in 
C. If the boundary of D is a rectifiable curve, then it is known that a bounded function 
/ holomorphic on D with vanishing nontangential boundary values on a subset E C bD 
with positive length must be the zero function. The same conclusion is not true if D is only 
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a domain, as an example from Beurling shows that there exist domains with boundaries 
of finite length and nonzero bounded holomorphic functions whose nontangential limits 
vanish on a set with positive length. (See example after Corollary 2.5.) 

Throughout the paper we denote by A1 the 1-dimensional Hausdorff measure for sets 
inCw. 

DEFINITION 1.1. A continuum in C is a connected compact set. A curve is a con
tinuous image of a closed interval [a, b] C R. A curve is called an arc {simple closed 
curve) if it is a homeomorphic image of a closed interval (the unit circle). A curve is 
called rectifiable if it has finite length. A closed subset E is called almost simple if E has 
the following decomposition: 

£ = £0u(urI-) 
V I = 1 J 

where E0 is a null set, i.e., Al(Eo) = 0, and each T/ is a simple curve such that T, n ry, 
if not empty, has only one point, which is an endpoint for either T/, r , or both. 

EXAMPLE A. Define Eo to be the interval [0, /], E2n-\ to be the interval [ ^ , (2w* ^] 
and E2n to be the graph {x + / sin £ : ^J-iw — x — 2^}- Then the set E = | J ^ 0 Et is 
almost simple. 

EXAMPLE B. Let Cbe the Cantor ternary set in the unit interval [0,1]. The midpoints 
of the components of [0, l] \Care 1/2,1/6,5/6,1/18,5/18, etc. Let T be the tree in the 
upper half plane whose vertices are F = {(1/2,1), (1/6,1/2), (5/6,1/2), (1/18,1/4), 
(5/18,1 /4), etc.}, and define E = (C x {0}) U T. Then the set E is almost simple. 

DEFINITION 1.2. Let D be a domain in C and let E c D be a closed connected set. 
We say that the pair (D, E) has property (Q) at/? G £ if one of the following holds. 

1. If/7 G D, then for any given neighborhood O of/?, there exists a smaller neighbor
hood U containing/? so that (D \ E) n U is a union of two nonempty disjoint connected 
and simply connected open sets U\ and U2 that are contained entirely in D, and satisfy 

(a) U\ H t/2 is a curve. 
(b) /? is an interior point of the curve [/j D C/2. 
2. If/? G bD, then for any given neighborhood O of/?, there exists a smaller neigh

borhood £/ containing/? so that (D \ E) D U is either a connected and simply connected 
open set U contained in D with ÛnbD a curve that contains/? as an interior point, or a 
union of two nonempty disjoint connected, simply connected open sets contained in D 
satisfying requirements (a) and (b) in case 1. 

If (D, E) has property (Q) at almost all (with respect to A1) of its points, then we say 
that (D,E) has property (Q). 

Later on, we will see that, by Theorem 1.4 and Lemma 2.2, condition 1(a) is the same 
as to say that there exist two points q\ q2 on U\ D U2 and an arc 7 with q\ and q2 as two 
end points and with/? G int (7), such that U\ Pi U2 = 7. In the same manner, conditions 
on Un bD in 2 can be reformulated to a more transparent but equivalent condition. 
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REMARKS 1.3. A. Let D\ and D2 be two disjoint simply connected domains in C 
with bD\ and bD2 two simple closed curves. If E — D\ n D2 is a simple curve, then the 
pair (D\ U int(E) U D2,E) has property ( 0 . Note that, in a simply connected domain, 
not every almost simple curve with finite length has property (Q). An example can be 
obtained by putting the set E constructed in Example 2, Section 1.3.3 in [Xu] into a large 
disc in C. 

B. We list here several useful properties of continua, curves and rectifiable curves. 
(a) If T is a curve , then T is compact, connected and locally connected. Therefore T 

is (uniformly) locally arcwise connected ([Cu], p. 333), i.e., for every e > 0, there exists 
a 6 > 0, such that whenever the Euclidean distance between any two points on the curve 
is less than 8, there exists an arc À C T with diameter less than e connecting these two 
points. Conversely the Hahn-Mazurkiewicz theorem states that any non-empty compact, 
connected, locally connected and metrizable space is a curve ([Cu], p. 334). 

(b) If K C C is a continuum with finite 1-dimensional Hausdorff measure, then K is 
locally connected. In this case, even more is true: K is arcwise connected ([Fa], p. 34). 

C. Besicovitch proved, in his fundamental paper [Be] on the structure of certain planar 
sets, that every rectifiable curve is an almost simple rectifiable curve. Independently, 
Wazewski ([Wa]) proved that same is true for every continuum with finite length by 
showing that every continuum with finite length is actually a rectifiable curve. 

THEOREM 1.4. IfE is a rectifiable curve in a domain D such that E contains only 
finitely many simple closed curves, then the pair (D,E) has property (Q). 

PROOF. By the Besicovitch decomposition for rectifiable curves, we may write E — 
To U (U/2i F*) with each r, a simple curve in D. Define: 

Fi={j(rjnTi\ F=T0U(\JFX 

Then Al(F) = A1 (Ft) = 0. It is enough to show that (D,E) has property (Q) at every 
point/? EE\F. 

Suppose that/? £ T\\F and O is a neighborhood of p. Since T\ is a simple curve 
inside the domain D and since E contains only finitely many simple closed curves, we 
can find a smaller neighborhood O' of/? so that 

(1) 0'\Y\ = S i U ̂ 2 with each 5/ nonempty connected and simply connected. 
(2) There is no simple closed curve in E that is contained entirely inside O'. 
(3) EC\ O' is connected. This follows since E is uniformly locally arcwise connected. 
Denote by 7i = bO' H Yu 12 = bO'C\Y2 and define 

j={i>\ ^ n n ^^T/nri e n no'} 
ji = {jeJ:rJnsi^$} 

ii = {jeJi:rjmi^(j)}cJi 

for / = 1,2. Fix an /, say / = 1. For i\ ^ i2 in J\, Tix D Ti2 = </> by (2). Consider two 
cases. 
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(A) If I\ is the empty set, then S\ \ (Uye^ ly) is connected. As b(S\ \ (U/s/i F/)) = 

bS\ U (Uy&/i ^/) *s connected, Si \ (U/G/I *")) *s simply connected. 
(B) If the set I\ is nonempty, we denote by {/?/}, {#,} the set of points {r, Pi T\ }iej{ 

and {r,- H7i }IG/I respectively. If/i is a finite set, then there exist io,jo in /i such that the 
domain bounded by 

(Pk^h0 U ( ^ ^ ) 7 l U (?^ ) r , 0 U (#"pib)r, 

is simply connected, here (pq}y denotes the arc segment from/? to q along the curve 7. 
Thus we reduce to the case (A). If the set I\ is an infinite set, then our point/? can not be 
a limit point of {#;} since the length of E is finite. Thus the indices k and jo still exist 
and we are done. 

In all cases, we can find a subdomain U\ that is contained entirely in Si such that bU\ 
meets set E only along set F\, i.e., U\ \ E is connected. Since b{U\ \E)is connected, 
this leads to the conclusion that U\ \ E is simply connected. Following the same lines, 
we obtain U2 in S2. By taking U — (7 iU[/2Uri ,we finish our proof. 

The condition that E contain finitely many simple closed curves can be replaced by 
the condition that the Cech cohomology group Hl(E, Z) has finite rank. 

COROLLARY 1.5. Let Ebea rectifiable curve in a domain D so that D\E is connected. 
Then (D, E) has property (Q). 

Next we consider the case when the set E is in the boundary of the domain. 

THEOREM 1.6. IfD is a simply connected domain with bD a rectifiable curve and if 
E C bD is a rectifiable curve, then (D,E) has property (Q). 

PROOF. We need only to show that for almost all points p G E C bD, if O is a 
neighborhood ofp, then a smaller neighborhood B C O of p can be found such that 
BHD = B n {D \ E) is connected and simply connected. As the set E is contained in 
the boundary of D, it is enough to construct an arc À that is contained in O with two 
end points q\, qi on bD distinct from/?. Then the domain B enclosed by À U (qïqî) has 
the desired property, where ~q\qï is the curve contained in bD from q\ to q2, via/?. The 
existence of such an arc A can be verified by the same way as we did in the proof of 
Theorem 1.4, since we assume bD to be rectifiable. Thus we finish our proof. 

What happens to domains without assumption of simply connectivity? In general The
orem 1.6 is no longer valid. For example, we let D be the domain in C1 obtained by 
deleting a sequence of small discs from the unit disc such that the unit circle is the set of 
limit points of these discs. Then certainly (D,Sl) does not have property (Q). Keeping 
this example in mind, we consider a domain D c C with bD of finite length. We first 
decompose the boundary as 

bD = \jSi9 
i 

where {et} are the path-connected components of bD. Each 8i is either a single point or 
a rectifiable curve. Assume that the set {fit : bt is a single point} is at most countable. We 
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call a point p E bDa limit point of the family {<$/} if every neighborhood of/7 intersects 
infinitely many distinct <5,'s. Let 

(bDf — \q ebD : q is a limit point of the family {5/}}. 

If £ C bD is a rectifiable curve, then (D, E) has property (Q) at every point of E \ (bD)K 
For ifp E £ \ (frD)H, then there exists a neighborhood £/, such that UDbDis pathwise 
connected. Therefore, combining with Theorem 1.6, we have 

COROLLARY 1.7. Let Ebea rectifiable curve contained in the closure of a bounded 
domain D with bD of finite length. If A1 (E (1 (bDf) = 0, then (D,E) has property (Q). 

2. Holomorphic functions on domains with rectifiable boundaries. Throughout 
this section, we let D be a bounded domain in C, and denote by H°°(D) the set of all 
bounded holomorphic functions on D. If the boundary of D is a rectifiable simple closed 
curve, then follows from a result by Smirnov [Gl] that for every/ E Hoc(D), the nontan-
gential limit of/, which is denoted by n. t. limz_^/(z), exists for almost all of £ E bD. Fur
thermore, if we define/(O = n. t. limz_^/(z) if the right-hand side exists, and/(0 = 0 
otherwise, then the following Cauchy formula holds for all z E D 

By using this integral formula, we can easily obtain 

THEOREM 2.1. Let S\ and S2 be two disjoint simply connected domains in C so that 
E = bS\ n bS2 is a rectifiable arc, and let D — S\ U S2 U int (E). Iff is holomorphic and 
bounded on S\ U S2 and if for almost all^^E 

n. t. lim f(z) = n. t. lim /(z), 
zeSi^-^ç zes2j-^ç 

then the function f continues holomorphically into all ofD. 

This is a well-known result, but we will give a proof here, since our later results (cf 
Theorem 2.3, etc.) are motivated from this proof. 

PROOF. Let £ be an arbitrary point on int (E). Choose an arbitrary neighborhood U 
of £ contained in D, so that bU is a closed simple rectifiable curve. Let i/,- = 5/ C\bU, 
then vi U (is n U) is a simple rectifiable curve, which bounds a simply connected domain 
Df in 5,-, and meets bSt only along the closed subset EHU. Le t / = f\D., / = 1,2, then 
/ E H°°(Di). By the above result of Smirnov, we have 

J W 2 T T / M Z / - Z 

for all z E A . Now we define 

2717 ^I/IUI/2 Z ' — Z 
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Then F(z) is holomorphic on the domain A U D2 U (E D U). On the other hand, the 
opposite orientations on the rectifiable set E D U induced from two domains A and D2 

yield 
F{z)=Mz)+f2{z) 

If z G D\, then Cauchy integral theorem leads to^C^) — 0. Therefore F{z) = f\(z), i.e., 
F\DX =f\D\. Similarly, F\o2 = / | D 2 - By uniqueness of continuation, F\st =f\si and our 
proof completes. 

Note that in above theorem, the assumption that the curve E to be simple is redundant. 
In fact, we can prove following 

LEMMA 2.2. LetD\ andD2 be two bounded disjoint connected and simply connected 
domains in C with rectiflable boundaries. IfE = A HD2 is a rectifiable curve, then E is 
either a simple curve or a simple closed curve. 

Almost surely topologists know stronger versions of this lemma, but we could not 
quote any reference. For completeness of the paper, we include a proof below. 

PROOF. First we prove that E contains no proper subset that is a simple closed curve. 
Suppose not, then there is a simple closed curve À C E, E ^ A. Let C \ A = Uo U U^ 
with oo G UQQ. Then either A C Uo, or A C UQQ for / = 1,2. Since E C bD\ Pi bD2 is 
a rectifiable curve, Theorem 1.6 implies that both ( A , E) and (D2,E) have property (Q). 
Thus following the proof of Theorem 1.4, we can find a rectifiable arc 7 C A and a 
connected, simply connected open set B\ C A such that bB\ HE = 7. If A C Uo, 
then B\ C Uo. Again, since ( A , 7) has property (Q), a rectifiable subarc S C 7 and a 
connected, simply connected open set B2 C D2 can be found such that bB2 D E = 6. As 
bB\ n bB2 = 6,B\PiB2 = (j), and near every point £ G int (8) S divides C into two parts, 
B2 has to lie entirely inside UQQ. Thus D2 C UQQ, and E = D\DD2 C £/o n £/oo = A is a 
simple closed curve. Same proof applies if D\ C UQQ. 

Secondly, IfE is not a simple closed curve (and hence contains no proper subset that 
is a simple closed curve), we need to show that E is a simple curve. Suppose not, then 
there exists a point/? G E so that E is not simple at p. Denote by E = c/>([0,1]) with <j> 
a continuous map and/? = </>(/o) with /o < 1. Then/7 G àDi has more than one prime 
ends. Let x'-U —> A be the Riemann mapping from the unit disc U in C. Then/? will 
correspond to at least two distinct points, say q\ and q2, on the unit circle. If we connect 
qx and #2 by a rectifiable arc A that lies entirely inside U (except its endpoints q\ and q2) 
and define a domain U\ enclosed by A and by the short arc ~qïq2 on the unit circle, then 
7A = x(^) is a simple closed curve and D\ = f(U\) is a connected open subset in A • Let 

C \ 7 A = So u^ào w i m °° G Sao-T n e n f o r everY fixe(i ^ > w e c a n n o t h a v e b o t n EHS^ ^ <f> 
and E H S^ ^ (j), for otherwise either A C SQ or A C S^ and both cases will leads 
to either E C SQ or E C 5^ . Therefore we assume that for every such an arc A, either 
E C SQ or £ C S^. Moreover, for any two such arcs Ai and A2 with Ai D A2 = {#i, q{\, 
since \ preserves orientation and maps interior points in £/to interiors points in bounded 
domain DUEC S*l(S^) will imply E C S*2(S^), and UXl C UXl will imply SQ] C ^ 2

5 
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$œ C S^. Thus, as the curves {A} sweep out the whole unit disc U, {x(^)} will AU m e 

whole domain Dx. If £ C S*» for one such A i , £ n ( U A ^ ) = {p},i.e.9EnD{ = {p}> 
an absurd. Similar contradiction will be produced if we assume E C S^1 for one Ai. 
Therefore such a point/? does not exist at all and we finish our proof. 

To generalize the result in Theorem 2.1, we consider a simply connected domain D 
with bD a rectifiable curve. We need to introduce orientations on the set bD and define 
nontangential limits for bounded holomorphic functions defined on D. 

Let D be a simply connected domain in C with bD a rectifiable curve. Denote by \ 
a Riemann mapping from the unit disc U in C to D. If E C bD is an arc and if every 
point on E has two prime ends, then x_1(E) consists of two arcs, say I\ and h, on the 
unit circle S1. If we give Sl the induced orientation from the unit disc, then both x(/i) 
and x(h) have induced orientations from I\ and h respectively. Thus we can define the 
positive and negative sides of E. Similarly, if/ G H°°(D), then/o^ G H°°(U). Therefore 
the nontangential limit off o \ exists almost everywhere on Sx. Since bD is a rectifiable 
curve, Theorem 1.6 implies that (D,bD) has property (Q). Moreover x £ Hl(U), and 
thus it has nontangential boundary values at almost every point of bU. If F denotes the 
set of points on Sl where radial limit does not exist, then A1 (x(F)) = 0. Thus we can 
find a set E$ C bD with zero length such that at every point £ G bD\Eo, (D, bD) has 
property (Q) and bD has a tangent line. For Ç e bD\ (EQ U X(^O)) , if C ^ a s onty o n e 

prime end, then there is a unique £ G S1 corresponding to £. Otherwise, two points £i 
and £2 on S1 exist as preimages of £ under x- In the former case, if A is an arbitrary curve 
in U ending at £ and approaching bD transversely, then A* = A o x i s a curve in D that 
meets bD nontangentially at point (, and we define 

n.t. lim / ( z ) = lim/(z). 

For the latter case, if Ai and A2 are two curves in U ending at q\ and #2 respectively 
and approaching bU transversely, then A* = X\ o \ and A2 = A2 o \ are two distinct 
curves that meet bD at £ transversely. Moreover A * and \\ lie on different sides of D at 
C, say Aï C D+ and Â  C ZT with D+ (D~) the positive (negative) side of D at C Thus 
we can define nontangential limits from both sides in a similar way. The existence and 
uniqueness follow from corresponding results about//1 (U). Moreover, the nontangential 
limit is also independent of the choice of the mapping \. This can be easily verified. 

THEOREM 2.3. LetD be a bounded simply connected domain in C with rectifiable 
boundary. Denote by bD = TUE the decomposition of the boundary into its exterior-
boundary r = b(C \ D) and remaining part E C int (/)). IfE is a set of finite length and 
ifE = £oU(U/^i T/) with each Tt an arc, then every f G H°°(D) has non-tangential limit 
almost everywhere on TU (USi T/)- Moreover, if we let 

forCer fo(C) = lnA' l i m^Az-cA z) i/n. t. lim exists at C 
J ' 10 otherwise 

fnrfar f±(f\ = lnA- limzeo±,z-</(z) */n- t. Km exists at £ 
7 ^ " Ji VU 10 otherwise 
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where Df are Wo simply connected open sets such that £ G Z)t HD~ D T/, A1 (D+ HDj D 
T/) > 0, and D+ (D~) lies entirely inside the positive (negative) side ofE, then we have 
the following general Cauchy integral formula 

for z G D. In particular, ifff(Q = fj~(Q holds almost everywhere on Tffor all i > 1, 
then the function f(z) is holomorphic on the domain int (D). 

It is worthwhile to note that the existence of above domains D+ and D~ follows from 
Theorem 1.4, /. e., the pair (Z), E) has property ( 0 , since E CD contains no simple closed 
curve. For if 7 C E is a simple closed curve, then 7 separates C into two parts, say QQQ 
and Qo with oo G Qoo- Since D is connected, either Qoo HD = </> or Qo H D = 0. If 
QooHD = </>, then£> C Q0 and 7 C T. I f Q H D = 0, then Q C C \D and hence 
7 = bQo C &(C \ D) = T. Both cases lead to a contradiction. 

PROOF OF THEOREM 2.3. Let x b e a one-to-one holomorphic mapping from the 
unit disc in C onto D by the Riemann mapping theorem. Since we assume that D is 
bounded and A1 (bD) < oo, a result from Pommerenke [Po] states that \ can be extended 
continuously to Ù. Therefore, with boundary correspondence, x maps Sl onto bD. As 
bD is rectifiable, \' £ HX(U), and hence non-zero nontangential limits of \' exist almost 
everywhere on Sx. Moreover, since T is the exterior boundary of the domain £>, every 
point on T \ E has only one prime end, while every point on rz has two prime ends by 
property (Q). Thus x l ( 0 *s well-defined for £ G T and x - 1 (0 contains two points when 
£ G S1. We denote these two points by £+ and £~. There exist small neighborhoods N(^+), 
N(£~) of £+ and £~ respectively such that so x maps Ar(^±) H £/ into D±. Thus 

y f ( 0 = n.t. l i m / o X ( w ) . 

Since/o x G //°°(f/), we have for w £ U9 

/ ( Z )= /o# )4 / /^^ . 
2717 JSl Ç — W 

On the other hand, for each fixed /, we have 

r ft(Q-fr(Q „ r f°x(?)-f°x(n „ r /°x(Q ,,„ ~ 
k C-z * = k —z * = Ur, m ^ f (OK 

Since x maps Sl onto bD, the right hand side of (*) is the same as 

_L t f^m di+i_ t foxi0( _m L_W 

For each fixed z G A the integrand in the second term is holomorphic in £ G £/ and 
therefore the integration over S1 must vanish. The proof is complete. 

https://doi.org/10.4153/CJM-1995-045-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-045-8


CONTINUATION OF COMPLEX VARIETIES 885 

COROLLARY 2.4. Let D be a domain in C. IfE is a rectifiable curve in D such that 
(D,E) has property (Q), then for every f G H°°(D \ E) with the property that for almost 
all points on E, the two nontangential limits from both positive and negative sides ofE 
agree, there exists an F G H°°(D) such that F\D\E = / . 

Given a domain D in C. A closed subset E C bD is called a uniqueness set if every 
y ç H°°(D) whose nontangential limits vanish almost everywhere on E (with respect 
to its length) is identically equal to zero. For example, if D is simply connected with 
rectifiable boundary, then every subset in bD with positive length is a uniqueness set. 
For a general bounded domain D ^ C , if we retain the notions from Corollary 1.7, then, 
by locally applying the Cauchy integral formula, we can easily obtain 

COROLLARY 2.5. Let D be a bounded domain in C, and let E be a rectifiable curve 
inD. 

(1) IfE C bD and if(D, E) has property (Q), then E is a uniqueness set for H°°(D). 
(2) IfE C D and ifD \ E is connected, then E is a uniqueness et for H°°(D \ E). 

The following concrete example, due to Beurling, gives an illustration that how subtle 
the subject becomes when we deal with domains with rectifiable boundaries instead of 
simply connected domains with simple curves as their boundaries. 

EXAMPLE (BEURLING). Define function <j> for \z\ < 1 by 

Then</?(z) G 0(\z\ < 1). Let {ak} be the zeros oftp in the unit disc with |a i | < \cc2\ < ••• 
and let 

00 1 

A* = {z G C1 : \z - ak\ < -^ 

Z> = {|z|<l}\{CU} 

/»(*) = E -

k=\ 

1 
£ ï y'icckXz - ak) 

Then we have following facts: 
(1) A1(Z?D)<oo, 
(2) AkDAi = <t>,k^limdAk C {\z\ < \},k= 1 , . . . . 
(3) fn is a rational function with poles inside (JJLi A*. Therefore/, G 0((D). 
(4) fis bounded over D, since ^'(a*)! > e and \z — ak\ > ^ . 
(5) y« —>/uniformly on D. In fact {fn} converges uniformly on C \ \Jj*Li A .̂ Hence 

feom. 
(6)f=0 outside {\z\ < 1} and/ ^ 0 in £>. 
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For the proof of these claims, we refer the book by Stout ([St], p. 346). Notice that in 
this example the rectifiable boundary contains infinitely many simple closed curves and 
{bDf = the unit circle in C, so that Corollary 2.4 does not apply here. 

3. Extendibility of analytic curves across rectifiable curves. In the papers [Ru] 
and [We], Rudin and Wermer gave examples showing that disjoint analytic discs can 
abut along arcs of large Hausdorff dimension, and yet neither coincide nor be analytic 
continuations of each other. This raises the question as whether the two could be analyt
ically continued if the arc has finite length. The main result in this section shows, as a 
special case, that this is true. 

DEFINITION 3.1. Let E be a closed subset in a domain Q c C" and let V be a 1-
dimensional complex variety in Q \ E. We say that the pair (V,E) has properly (Q) at 
point/? G E if the following is satisfied: For every open set B C Q that contains/?, there 
exists a smaller open set, say U,p G U C B such that 

UP) 

unv={jvh 

where /(/?) > 2 is a finite positive integer, {F/}^} are nonempty irreducible 1-dimen
sional complex varieties in U \ E such that for i ^ j , Vt D Vj> H U is a zero dimensional 
variety (possibly empty) and {(K, n Vf) \ {Vl C\ Vf)} D U is a rectifiable curve that contains 
/?. The pair (V,E) has property (Q) if it has it at almost all (with respect to A1) points of 
E. 

THEOREM 3.2. Let E be a rectifiable curve in a domain Q c C " and let V be a 1-
dimensional complex variety in C1\E so that (V\ V) H Q = E. If the pair (V,E) has 
property (Q), then E is removable in the sense that VC\Q is also a 1 -dimensional complex 
variety in Q. 

Note that the rectifiable set E is only assumed to be connected. It may have non-zero 
Hl(E, Z). Therefore this theorem is not contained in our previous work [Xul]. Also we 
require in Definition 3.1 that only finitely many irreducible subvarieties meet at/? because 
of following example. 

EXAMPLE3.3. Let E be the real line in C1 andlet W\ be the union of countable many 
disjoint open discs in the upper half plane so that the closure of W\ contains the set E. If 
we let W2 = {x + iy : y < 0, x - iy G W\} and let V = Wx U W2i then of course VUE 
is not a variety in C1. It can be easily seen that near every point on the real line, V has 
infinitely many irreducible branches. 

PROOF OF THE THEOREM. The proof given here is lengthy. Therefore we divide it 
into several steps. 

STEP 1. Some Preliminary Preparation. 
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We first prove the result in the case n = 2. Define two subsets of the closed set E as 
follows: 

E0 = {p<EE,(V,E) has property (Q) at/?} 

£* = {/? G £, V is analytic at the point/?.} 

It is enough to show that F is a complex variety near each point of EQ, i.e., Eo C E$, 
since Al(E \ Eo) = 0, E \ 0 is closed, and our conclusion follows from a result of 
Shiftman [Sh], which states that a 1 -dimensional complex variety can be extended across 
a closed subset with zero length. 

Let/? be a point in Eo, say/? = 0. Since F f l Q = VUE and since A1 (is) < oo, 
we have that A3(F) = 0. For almost all complex lines L through/? = 0, the set VHL 
has zero length. Fix such an L. It follows that for almost all discs Di C L with center 0, 
bDL n (VOL) = (j). If we let I = L1 and C2 = I x L9 then VH ({0} x bDL) = 0. Since 
K is closed, we can find a small disc D s in S with center 0 such that 

Vn(D1xbDL) = ()>. 

The projection 7rx: VD (D% X Z)/,) —• D^ is thus a proper mapping. Choose coordinate 
system in C2 such that I = {(z\, 0)} and Z = {(0,z2)} and let 7ri = 7rz: C

2 —• CjZi) be 
defined by 7ri(zi,Z2) = Z\, B = B\ X B2 with 2?i = D s , #2 = AL- Then we have the 
following properties: 

(1) TT\: V (1B —> ir\(V C) B) is a. proper mapping. 
(2) 7Ti IFH5 is locally a biholomorphic mappings away from a discrete subset E' of 

(3) For the set 
B* = (Bi\in(EnB)) xB2, 

we have 
7T 1 : (F \£ / )n5*->7r 1 ( (F \^ / )n5*) 

is a finite covering map. For if K is a compact subset ofir\(VnB*), then 717 * (A) 
is a compact subset of V D 5. Since 717l (A) n 71717r 1 (£ n 5) = </>, the set 717* (AT) 
is indeed compact in V(1B*. The mapping is thus a proper mapping from KHZ?* 
onto its image, and therefore is a finite covering map away from the set E'. 

We call the coordinate system from the pair E x Z a normal coordinate system and 
the B9s the associated normal neighborhoods. Since the set of lines L satisfying above 
properties is dense in (7(2,1); indeed, it is of full measure in G(2,1), we will, in the 
following proof, change our normal coordinate system (and hence the associated normal 
neighborhoods) from time to time to simplify our argument. First for each fixed normal 
coordinate system, we adopt the following notations: 

El=Tri(EnB)9 

iri(VriB)\El = \jU} 
7=1 
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where {Uj } are the connected components of the set on the left, and 

Kl = 7T,(£'), 

^ rnz rnTr r ' ^W^ 1 ) , 

\i) = sheet number of analytic covering map TT\ \ v\ 
J j 

Note that the number Ai may equal to oo, since the set on the left in above second 
equality may have infinitely many components. Since VH (B\ x bB2) = </>, 

b(VDB) = (EnB)u(Vn(bBl xB2j), 

and 
iri(b(ynBJ) CElUbB{. 

ThusbUj C bB\UEl. Moreover, we claim that the set ElUbB\ is connected. First we can 
shrink the neighborhoodB\ (the projection TT\ remainsproper)sothat£ri(èi?i xB2) ^ <f>. 
If 7 is a connected component of the set EHB, then the set 7 meets the set bB\ x B2, 
since we assume that the curve E is connected. Therefore the connected set 7ri(7) has 
to meet bB\ and the set El UbB\ is thus connected. Therefore the connected set Uj has 
connected boundary and hence is simply connected. We have the following facts, the 
proof of which can be found in Chirka [Ch], p. 239: 

(1) For each a G El, 7rYl(a) D VHB is of dimension zero. 
(2) For each a G Tjk, the number of points (counting multiplicity) of 7rf x{a) D VHB 

will not exceed min^j ,^\). 
(3) The set VH UP\ ̂ il(Uj ) is the zero set of some monic polynomial Fj (z\, zi) with 

degree fij in z2 and with coefficients analytic functions of z\. Moreover, for zi G Uj\Kl, 
the polynomial Fj(z\,Z2) has only simple roots inz2. 

STEP 2. Some Lemmas. 
Next we are going to prove several lemmas that allow us to use the results in Section 2. 

LEMMA 3.4. For eachj andk, ifAl(Tx
k) > 0, then /x] = ii\. 

PROOF. Let Aj (z\ ) be the discriminant of the polynomial Fj (z\, z2). Then A] (z\ ) ^ 0 
for zi G Uj \Kl. Moreover, as VHB is bounded in C2, Aj (zi) is bounded and holomorphic 
on Uj \K{. Since A 1 ^ 1 ) = 0 and since Kl is closed, Aj(z\) is a bounded holomorphic 
function on whole Uj. Therefore, Aj (z\ ) has nontangential limit almost everywhere along 
bUj. Moreover, the uniqueness theorem for H°° functions on a simply connected domain 
with rectifiable boundary shows that the subset 

Zj = {z\ G bUj : n.t. limit of Aj exists at z\ and equals zero} 

has zero length. In particular, 

A 1 (7Ti(£ \£ 0 ) ) = 0, 

A1(zjnrjft) = o, 
A1(zinr^) = o, 
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and 

For any a G Tjk \ ( i j U Z| U ir\(E \ £0)), there are two sequences {am} C Uj \ Kl and 
{bm}cUl\KlsoUnt 

(1) AJ(flw)^OandAi(ftw)^0. 
(2) Aj(am) - Aj(«) ^ 0 and Aj(6m) - Aj(a) ^ 0. 

Moreover, since all the roots of Fj (z\, Z2) and F\{z\, Z2) lie inside VDB and all are holo-
morphic functions, by passing to the subsequences of {am} and {bm}, we can assume 
that Fj{am,zi) and F\(bm,Z2) converge to Fj(a,Z2) and F\(a,zi) respectively. The dis
criminant of Fj {a,zi) {F\{a,zi)) equals Aj(a) (A^(a) resp.) and Fj(a,zi) (Fl

k(a,Z2)) is a 
monic polynomial of degree /xj (fil

k resp.). Since the zero set of Fj(a,zi) (Fl
k(a,Z2)) is 

7rjl(a)nVn Vj (717!(a) f i F f l ^ resp.), and since all roots are simple, we can denote 
the zero sets as: 

iri\a)nVnVJ={J1(a),...,Jiij(a)}, 

7 r r 1 ( a ) n P n ^ = { a 4 ( a ) , . . . , 0^,(0)} 

with Ja(a) 7̂  a^(a) and d*a{a) ^ ^ ( 0 ) if or ^ /3. Each o/a(a) (<^(tf)) is the limit of 

<*4(flm) (^(^m) resp.). For each fixed m,ifa^ /?, then Ja(am) ^ J^(am) and u£(6m) 7̂  

dp(bm). There are two cases we have to consider separately. 

(1) If Ja(a) does not belong to the set B (IE, say Ja(a) G W\9 then for large w, 
^4(tf/n) £ FFi \ £'• Since the mapping TT\ is biholomorphic near the point Ja{d) and the 
sequence {bm} converges to the point a, irYl(bm) has a point which is also close to cJa(a), 
say uA(bm) G 7r]~l(bm). Thus we obtain 

Jp(a) = limu^(6m) = limo4(aw) = Ja(a). 

We have established a mapping from -K^1 {à) r\W\C\ Vj to ^x{a) Pi W\ Pi J^. Moreover, 
this mapping is one-to-one, since we assume that Aj(a) ^ 0 and A|(a) 7̂  0. This leads 
to the relation 

\-K\\d)C\wx nvj\ < \*ïl(a)n wxnPJ|, 

here we use | * | to denote the cardinality of the set. Similarly we can prove the reversed 
inequality, and this implies that 

\^\a)nvr\vj\ = \itïl(a)nvnvl\. 

(2) If Ja(a) £ EoDB, we can find a small neighborhood U C B so that Ja(a) G U 
and VH U = W[UW2, and W[9 W'2 have the property in Definition 3.1. There are two 
cases. Either there are infinitely many m% say {rrijx} and {rrij2}, so that {amjx} and \bmjl} 
are both contained in the same IT\(W[)\KX (or /n(W'2)\ K

l), amj —> a, bmj —» a, or we 
have that for large index m, am G TT\(JV[) \ AT1 and bm G 7ri( J^) \ Kl • That 7ri is a local 
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biholomorphism on both W[ \ E' and Wf
2 \ E' implies that there exist two indices a and 

f3 with 1 < a < fij, 1 < f3 < ii\, such that, in the former case, Ja(amji) G W[ \ E\ 
u%(bmj2)e W[\E', and hence 

Ja(a) = \imJa(amJi) = lim^(6m.2) = Jfc{a\ 

in the latter case, Ja{dm) G W[ \ E'9 uA(bm) E ^ 2 \ E'>an^ hence 

Jja) = \im Ja(am) = \\mJ^{bm) = J^(a). 

Similar to (1) above, both lead to 

\irïl(a)nEnvj\ = l^1 (a)nEn vil 

Combining above two cases, we reach to the conclusion that //J = /i£, and the lemma is 
proved. 

The connected components {Uj} that appeared in the above lemma depend on the 
choice of coordinate system and on the projection ir\. Since the number of branches of 
VC\B increases if we decrease the neighborhood #, by the definition of property (Q), the 
number of branches in B Pi V is a finite number THB > 2 for each fixed normal neighbor
hood B. From now on we fix a normal coordinate system and a normal neighborhood B 
of the point p = 0. Let W\ and W2 be two branches of VHB so that (W^nW^)\(Wx D W2) 
is a rectifiable curve containing/? = 0. We denote this curve by T, and by IT the projection 
TT\. Since TT(W\) and K(Wi) are two connected subsets of B\, the above argument shows 
that they have connected boundaries. Hence they are simply connected. Moreover, as the 
mapping TT|Â^ is proper, the set 

bir(Wi)nbTr(W2) D ir(b(Wi nB*))UTr(b(W2nB*)) D it(b{Wx U W2))9 

and the latter set contains 7r(r), which has positive length. Therefore by the proof of 
Lemma 3.4, the sheet number for the mapping iCx on 7r( W\ ) \ TT( JV\P\W2) is the same as 
that on the set ir(W2) \ TT(W\ C\ W2). We denote this positive integer by /x. On the one hand, 
since the set T is in the boundaries of W\ and W2, the number of points in 7r_1(Q D B 
will not exceed the number // for almost all £ G 7r(r). On the other hand, by applying 
the uniqueness theorem for holomorphic functions to the discriminant of proper analytic 
mapping ir\wi9 we know that for almost all £ G 7r(T), 7r-1(Q contains exactly \i points in 
W\UW2n B. Moreover, by our assumption about property (Q), we can assume that for 
each of these // points in the fiber, property (Q) holds. Next we will prove a lemma that 
enables us to use results in Section 2. 

LEMMA 3.5. The simply connected domains 7r( W\ ) and TT( W2) are disjoint, and their 
boundaries inside B\ meet only along the rectifiable curve 7r(r). 

PROOF. Suppose TX{W\ )n^{W2) is a nonempty open subset of B \. Choose a nonempty 
open connected component UJ of it. We first show that if £ G buj, then either £ G b7r(W\)n 
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7r(W2) or £ G bir(W2) H 7r(fTi ). This is so, because 

&J C è(7r(^i)n7r(^2)) = 7r(Wl)n7r(W2)\ (7r(Wl)nir(W2)) 

C ( H ^ Ô n ^ y ) \ (7r(Wl)nn(W2)) 

= (è7r(^i)n7r(^2))u(è7r(^2)n7r(^i)). 

Therefore we may assume that 

A1 (bunM^I)n7r(^2)) > o. 

Let /x;(0 be the number of points in 7 r _ 1 ( 0 n ^ n 5 . If Ç G &7r(ÏFi)n7r(fF2) and if P is an 
arbitrary point in the set 7r~l(QnW\ U W2 DB, then P cannot be in W\, since the mapping 
-K\W{ is an open mapping. Therefore P lies either in bW\ D bW2 D B or in èl^i \ W2, or 
in 1̂ 2• Suppose P EbW\\W2. Then property (Q) implies that for a small neighborhood 
(/of P, there exist two branches V\ and F2 of (JFi U ^2) n (/the closure of which meet 
along a curve containing P. Since P fi J¥2, both Fi and V2 are branches of W\ C\ U. Since 
TT(FI) C TT(WX\ TT(V2) C TT(^I), andC G ir(Vlc\T2) C 7r(r), the discriminant of iCl\Wx 

vanishes at the point P. Therefore for almost all points £ G b7r(W\) n TT(W2), 

7r-\Qc(bWinbW2nB)UW2. 

Now as £ G ^{W2\ there exists at least one such P that belongs to ^2, which is certainly 
not in fFi. Therefore together with the points in ir~l(Q H bW\ C\ bW2 D B, we have that 
Mi(0 < M2(0- But, as we showed before, for almost all £ G 67r(fFi), /xi(0 = M a n d 
for £ G 7r(^2) ^2(0 = M- We obtain a contradiction that /i < /z. Thus the two simply 
connected domains n{W\) and 7r(^2) are disjoint. 

Moreover, above proof also gives that for £ G Z?7r(̂ i ) Pi bir(W2), ir~l (Q DB C bW\ Pi 
Z?̂ 2 H 5 = T. Therefore, by the properness of the mapping ir on the set W\UW2, 

b^{Wx) H bir(W2) PI5i C TT(T) = ir(bWi nbW2HB) 

7r(bWi nB)n7r(bW2DB) C (bir(Wi)nb<K(W2)) HB^ 

i.e., 
bir(Wi)nbir(W2)nBi = 7r(T). 

This finishes the proof of the lemma. 
Now we have two simply connected domains F\ = 7r(fFi)andF2 = n(W2) with 

rectifiable boundaries so that F\C\F2 — <t> and F\ H F2 is a rectiflable curve 7 = ?r(r). 
Moreover, by the proof of Lemma 3.5, for almostallC G 7,7r_1(0 C W\fW2\W\nW2 = 
T. By using Lemma 2.2, the curve 7 is either an arc or a simple closed curve. In both 
cases, the pairs (F/,7) have property (Q) by Theorem 1.6 for / = 1,2. That is to say 
that for almost all q G 7, there exist a rectifiable arc 7/ in F, with 7/ H 7 = {q\,q2}, a 
rectifiable subarc 7o of 7 with endpoints q\ q2, and q G int(7o), such that the domain 
Dt C Fz bounded by the curve 7/U7 is simply connected, A C\D2 = <j>, andDj HD2 = 7. 
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LEMMA 3.6. bDj contains no simple closed rectifiable curve other than 7/ U 7o-

PROOF. Let us assume / = 1. All we need to show is that bD\ \ (7o U 7i) contains 
no simple closed curve. Suppose not, so that it contains a simple closed rectifiable curve 
6. Then 8 C 7 C ir(E) and 5 bounds a Jordan domain Do in C with Do C\F\ — <\>. If ( G 6, 
then 7T_1(0 contains no point that belongs to W\, since C is a boundary point of ir(W\) 
and 7T is an open mapping on W\. Therefore a point in 7r_1 (Q is either in bW\ H bW2 or 
in bW\ \ W2. The later case can hold only for points lying in a set of zero length, as we 
showed in Lemma 3.5. Therefore for almost all points £ G 6, TT~1(Q C bW\ nbW2, which 
implies that S C ir(bWi) D ir(bW2) = 7r(r). Since TT(JFI) H ir(W2) = </>, n(W2) C D0 and 
5 = 7r(T) that is impossible by our choice of the set 5. This completes the proof. 

LEMMA 3.7. Let D be either D\orD2. Then int (D) w a Jordan domain, i.e., a simply 
connected domain with rectifiable simple closed curve as its boundary. 

PROOF. For convenience, we denote by D the simply connected domain D\. Let 
C \ D = USo £2/ with each Q, connected and with Qo the unbounded component. Then 

1. bQf is connected, since the domain D is simply connected. Therefore each domain 
Q; is simply connected. 

2. b£li C bD. For if p G bQt, then/? ^ D, and therefore 

p € (Z?DU(C \D)) H6Q/ C Z?D. 

3. bQ.Q is a rectifiable simple closed curve. This follows from our Lemma 2.2 since 
we know that both D and Qo are simply connected with rectifiable boundaries and that 
bn0 = Dn~ô). 

Let 
CO 

bD \ bn0 = U vi 
i=\ 

where each z/z is a rectifiable curve with one end lying on &Qo, and i// C\i/j = <j> for / 7^7. 
By Lemma 3.6, each */, is contained in the Jordan domain Do bounded by bClo, and each 
Vi contains no closed simple rectifiable curve. To proceed the proof, we show first that 
USi^-Cint(D). 

Fix an /, say / = 1. Since v\ is a rectifiable curve, Theorem 1.4 and 1.6 imply that for 
almost all points/? G v\, following property holds: 

There exist/?i,p2 in v\ (depending on/?), a rectifiable arc/?17?2 C v\ with/?i,/?2 
as endpoints and with /? as an interior point, and two simply connected domains U\ U2 

contained in D such that U\ H U2 = </>, U\nU2= pïpî.. 
Thus U\ U U2 C D, and/? G int (U\ U f/2), which is a nonempty open set contained 

entirely in int(D). Therefore/? G int(D). Thus if we let 

i/'t = {p G z// : (D, 1//) has property ( 0 at point/?}, 

then v\ C int(D). Let v = U£i(^i \ ^/)- T h e n A l(^) = °- Hence for each/? G i/9 there 
exists a disc Bè(p) with center/?, with radius S, such that bBs(p) H v — <f> and ̂ (p ) C D0. 
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Since B6(p) H ((J£i v\) C int (D), Bb(p) \ v C int (D). Now as Al(y) = 0, every point in 
v can be approached by sequence of points that are in B6(p). Therefore 

i/CB8(p)Cmt(D) = D, 

i.e., Bè(p) C D. So/? £ int(£>), which shows that v C in t0 ) , and hence (J£i Vi C 
int (5). 

By this claim, we can easily finish the proof of Lemma 3.7 by observing following 
inclusions, 

oo 

Do = DU(\J vt) C int (D) C D0. 
i=\ 

STEP 3. Final Proof. 
We define for ( G A \ n(K\ ) holomorphic functions {aj(C)}Li by 

» r - , ( 0 n ^ = {a'1(0,. . .>aj l(0}, 

where ^ i is the set of singular locus for the proper mapping it on V D B. Then each aj 
is a bounded holomorphic function in its domain. Since the set K\ has zero length, oê-
can be extended as a bounded holomorphic function to A . Therefore, we can first extend 
these bounded holomorphic functions to the corresponding Jordan domain int (£),•) by 
invoking Theorem 2.3. Denote the extended function by oé-. Moreover, the nontangential 
limits of alj exist almost everywhere on the set 7o,and, by rearranging the order among 
these functions, we obtain 

n.t. lim a)(z) = n.t. lim aj(z). 
ZGD^^C J zeD2j-K

 J 

Thus we can extend the function aj analytically across rectifiable arc 7o to Z>2, by Theo
rem 2.1, and obtain an analytic function Gj in int(Z>i UD2) that contains int (7o). There
fore (W\U W2)HB is analytic near the points on 7r-1(7o). Since for almost all points on 
7 property (Q) holds, that implies that (W\U Wi) D B is a variety. Our theorem has been 
proved for n = 2. 

Now we turn to the proof of the theorem for general n > 2. The main principle is the 
same as we already did for n = 2, while minor changes need to be made. Take a point 
p eE0. Then, as A3(V) = 0, we can find a coordinate system {z\,... ,z„} with/? and for 
each fixed / a small neighborhood B\ ofp such that the projection map 717: C" —> C] is 
proper on VnBj. Fix an /, say i = 1 and letz' = (Z2,... ,z„). We retain the notations from 
above proof and use so-called canonical defining functions, used in the book by Chirka 
([Ch], p. 47) to replace the polynomials Fj by a system of polynomials {0^(zi ,^0}|/|=y 
that are polynomials in z\ with degree /ij and have holomorphic coefficients in z7, i.e., 
onQSLch7rYl(Uj)nVnB\Ef, 

^j{zuz')= £ <t>u(zx)(z')J, | / | = / x j . 
M<4 
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Thus away from a discrete set E1', which is the set of branch points for the projection 
TT\ | VDB, the common zeros 

o/(zi)= {a /
1(zi),... ,a / ,(zi)} 

of above system are the points of the fiber it\x{z\) Pi VC\ B. Each vector-valued holo-

morphic function orj\(z\ ) is bounded and hence extends over Uj, which we still denote by 

o .̂(zi). Therefore, 

(*) ir^(z{)nVnBD Ç]{<bfI(zuz
f) = 0} 

11=4 

forzi G t7Tn7ïï(£nfl). Form = « - 1, define a (m+^l~l) x m matrix 

Then (zi, z') G £ ' if and only if rankM < m. We claim that for almost all (with respect to 
Al)z\ G7ri (£n£)nL^, i f l <i{ </ 2</i) , thenaj i(zi)^o^ 2(zi) , / .e . ,7rfHzi)nFn5 
consists of /xj distinct points and equality in (*) above holds. The reason for our claim is 
that the discriminant of every mxm minor inM(zi, z') is a bounded holomorphic function 
on ^il(Uj ), and there is at least one mxm minor, say the first m rows, that has non-zero 
determinant M(zu z') on ix^\U))\E',Le., for every zx G Uj \TT\(E')9 tf'(zi,aj(zi)) ^ 0 
for each 1 <i <y). Our claim follows from the uniqueness theorem in the case n — 2. 
Thus, a similar argument in Lemma 3.4 and in its follow-up shows that there exist two 
indices v and /3 with oJv{z\) = oà(z\) for almost all z\ G Tjk, provided that Al(Tjk) > 0. 
By applying removable singularity theorem in Section 2 to each component, we reach 
the conclusion that Vj U V\ U int ( r l ) is an analytic variety if A.l(Tjk) > 0. Finally, for 
the set r l with zero length, we use the same argument in the last part of the proof when 
n = 2 to show that VH Q is also analytic. Therefore our proof is complete. 

Another way to reduce the problem from n > 2 to n = 2 is to use almost single-
sheeted projections from Chirka's book [Ch], p. 38. 

4. Some corollaries. 

COROLLARY 4.1. Let E be a rectifiable curve in a domain D. If V\ and V2 are two 
{-dimensional irreducible varieties in D\E such that bV\ and bVi are two rectifiable 
curves, and such thatE C V\ D V2, then either V\ = V2, or V\ U£U V2 is a \-dimensional 
variety in D. 

The proof of this corollary is a simple corollary of Theorem 3.2, after we prove that 
property (Q) holds in this case. For this purpose, we need a lemma that tells us in case 
that the boundary of a 1-dimensional variety is a rectifiable curve, there can only be, for 
almost all points on the boundary, finitely many local branches; indeed the number of 
branches near almost all points on the boundary cannot exceed 2. The result was proved 
in various places. The most recent one was included in M. Lawrence's thesis [La]. 
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LEMMA. Let V be a l-dimensional variety in a domain D such that the boundary 
bV is connected and of finite length. Then for almost all points p G bV and for any 
neighborhood U ofp in Cn, there exists a neighborhoods C U ofp such that the number 
of branches in VC\B that adjacent top is at most 2. 

The proof of this lemma is a standard argument by invoking analytic projections to 
certain normal coordinate planes. By using a result about amply adjacent neighborhoods 
for the image of the point p under projections, the result follows from the uniqueness 
theorem for holomorphic functions. For details, see the proof of the lemma in Section 2.2 
in [La]. 

PROOF OF COROLLARY 4.1. Suppose that Vx ^ V2. Then irreducibility of both V\ 
and V2 implies that V\ Pi F2 is of at most zero dimension. The lemma above gives that 
both V\ and K2 have at most 2 local branches adjacent to almost all points on E. Thus 
Ed V\ H V2 implies that property (Q) holds at almost all points of E, and our result 
follows from Theorem 3.2. 

A special case of Corollary 4.1 when E is a closed analytic arc was done by Globevnik 
and Stout in [GS] by applying a version of the "reflection principle" for varieties. Another 
version of our main result can be stated as following corollary, here we use D> as the unit 
disc in C. 

COROLLARY 4.2. Letf g be two proper holomorphic maps from B to a domain Q. 
in CN that extent continuously to ID. If there exist two arcs If and Ig contained in bB such 
that T\ =f(If), T2 = g(Ig) are two subsets in bQ with T\ D r 2 a rectifiable curve, then 
either/(D>) = g(P), or/(D)Uint(ri HT2)^g(P) forms a l-dimensional complex variety. 

In particular, if Q is a strictly pseudoconvex domain in C^ and iff and g are as above 
such that/(MP) ng(MD) contains a rectifiable curve, then/(B>) = g(P). 

It is an open problem whether the second part of above corollary still holds iff(bB) n 
g(6D>) is a totally disconnected closed set with positive 1 -dimensional Hausdorffmeasure, 
and N>2. When N =2 and T\, T2 are simple rectifiable curves, the problem was solved 
by Globevnik and Stout in [GS] under the assumption that Q = B2. Recently a similar 
version of this corollary was given by Alexander in [A13]. 

PROOF OF COROLLARY 4.2. By properness off and g, V\ = /(D)) and V2 = g(D>) 
are two l-dimensional irreducible complex varieties. Suppose that/(D>) ^ g(D>). Take an 
arbitrary point p G int (T\ n I"^), then for any neighborhood U ofp, there exists a smaller 
one B ofp such that/(D>)n# ^ g{0)DB and 5H(Ti n r 2 ) C int (H n r 2 ) . For otherwise, 
Unf(B) = UHg(B) implies that/(0) = g(D>) by the uniqueness theorem for irreducible 
varieties. Let V = V\UV2. Since/ and g are continuous on P,/(0) = /(D) U/(M)) 
and g(Ô) = g(D>) U g(bU). Thus VD B is a l-dimensional variety in B \ (H H T2). Let 
W\ = V\ H B and W2 — V2 fï B. Then W\ D W2 is a O-dimensional variety (possibly 
empty) and {(W\ H W2) \ (Wx H W2j) H B C f(bO) D g(bB) D B = T{ n T2 H B. Our 
Corollary 4.1 implies that V\ U int (ri Pi T2) U K2 is a l-dimensional variety. 
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When Q is a strictly pseudoconvex domain in C^ and T C f(bW) D g(bO) C bQ is a 
rectifiable curve, then either/(B>) = g(D>), or V =f(B)Uint (T)Ug(ID>) is a 1-dimensional 
complex variety. But the latter case can not be happen, for otherwise the variety V will 
meet the boundary bQ of strictly pseudoconvex domain Q in a set consisting of inte
rior points of V, which contradicts the maximum principle for the strictly subharmonic 
functions. This leads to the conclusion that/(P) = g(D). 

It can be easily seen that following is a variation of Corollary 4.1 and 4.2. 

COROLLARY 4.3. Let V\ and V2 be two l-dimensional irreducible varieties con
tained in a strictly pseudoconvex domain D.IfV\D V2 is a rectifiable curve that lies in 
the boundary ofD, then V\ = V2. 
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