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Abstract. In this work, we study the entropies of subsystems of shifts of finite type (SFTs)
and sofic shifts on countable amenable groups. We prove that for any countable amenable
group G, if X is a G-SFT with positive topological entropy 4(X) > 0, then the entropies of
the SFT subsystems of X are dense in the interval [0, #(X)]. In fact, we prove a ‘relative’
version of the same result: if X isa G-SFT and Y C X is a subshift such that 4(Y) < h(X),
then the entropies of the SFTs Z for which Y C Z C X are dense in [2(Y), h(X)]. We also
establish analogous results for sofic G-shifts.
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1. Introduction

Let G be a countable group and let A be a finite alphabet of symbols. In symbolic
dynamics, the central objects of study are the subsystems of the so-called full shift, the
dynamical system (A, o), where o denotes the action of G on A by translations
(Definition 2.5). Shifts of finite type (Definition 2.12) and sofic shifts (Definition 2.13) are
the most widely studied and well understood examples of symbolic dynamical systems. In
each of these cases, the system of interest is completely specified by a finite amount of
information. This allows for combinatorial, finitary arguments to be applied to the analysis
of the dynamics of such systems.

Entropy is one of the most fundamental invariants of a topological dynamical system.
Many fundamental results from classical entropy theory (that is, in the case where G = Z)
only generalize if G is an amenable group (Definition 2.2). Amenability allows one to
‘approximate’ the group by a sequence of finite subsets in a way that is useful for studying
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dynamics. See Definition 2.14 for the definition of the entropy of a symbolic dynamical
system on an amenable group.

In general, one would like to understand the structure of the collection of subsystems
of a given subshift. In this paper, we study the entropies of the SFT subsystems of a given
SFT, as well as the entropies of the sofic subsystems of sofic shifts. There are many existing
results in the literature in the case where G = Z. For example, the Krieger embedding
theorem [12] characterizes the irreducible SFT subsystems of a given irreducible Z-SFT.
Additionally, Lind [13] has provided an algebraic characterization of the real numbers that
are realized as the entropy of a Z-SFT.

However, the situation is very different in cases where G # Z. Even in the case where
G =7 for d > 1, the classes of SFTs and sofic shifts behave quite differently. For
example, Boyle, Pavlov, and Schraudner [5] have shown by example that the subsystems
of Z4 sofic shifts can be badly behaved for d > 1 (in contrast to the case where d = 1).
Moreover, Hochman and Meyerovitch [9] have characterized the real numbers that are
realized as entropy of a Z?-SFT (with d > 1), but in contrast to the result of Lind
mentioned above, the characterization is in algorithmic terms and unavoidably involves
concepts from computability and recursion theory. Nonetheless, Desai [6] has shown that
a Z4-SFT with positive entropy has a wealth of SFT subsystems (sharpening an earlier
result of Quas and Trow [16]).

THEOREM 1.1. [6] Let G = deor some d € N and let X be a G-SFT such that h(X) > 0.
Then

{h(Y):Y C X andY is an SFT}

is dense in [0, h(X)].

In recent years, several results of the G = Z and G = Z¢ cases have seen extensions
to larger classes of groups, especially amenable groups. To name a few: Barbieri [2] has
classified the real numbers that are realized as the entropy of a G-SFT for many types of
amenable G (extending the result of Hochman and Meyerovitch mentioned above); Frisch
and Tamuz [8] have investigated the (topologically) generic properties of G-subshifts for
arbitrary amenable G; Barbieri and Sablik [3] have shown how an arbitrary effective
G-subshift, where G is finitely generated, may be simulated by a G’-SFT, where G’ is
the semidirect product G’ = Z? x G; and Huczek and Kopacz [10] have (very recently)
obtained a partial generalization of Boyle’s lower entropy factor theorem [4] to countable
amenable groups with the comparison property. In this vein, we prove the following
generalization of Theorem 1.1 to arbitrary countable amenable groups.

THEOREM 4.2. Let G be a countable amenable group, let X be a G-SFT, and let Y C X
be any subsystem such that h(Y) < h(X). Then

{h(Z): Y CZ C Xand Z is an SFT}

is dense in [h(Y), h(X)].
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Choosing G =Z? and ¥ = @ in the above theorem recovers the result of Desai
(Theorem 1.1 above). Note that a shift space X C A® has at most countably many SFT
subsystems, and therefore the set of entropies of SFT subsystems is at most countable. In
this sense, Theorem 4.2 is ‘the most one could hope for.’

Remark 1.2. After a preprint of this work was made public, the authors of [8] made
us aware that a short alternate proof of Theorem 4.2 can be derived from their main
results. Specifically, they prove there that for any countable amenable group G and any
real ¢ > 0, the set of G-subshifts with entropy c is dense (in fact residual) within the
space of G-subshifts with entropy at least ¢ with respect to the Hausdorff topology. This
result immediately implies that for any G-SFT X, there exist G-subshifts contained in X
that achieve all possible entropies in [0, #(X)]; then, some simple approximations with
G-SFTs (in the sense of our Theorem 2.12) can be used to obtain a proof of Theorem 4.2.

For sofic shifts, we obtain the following result.

THEOREM 5.2. Let G be a countable amenable group, let W be a sofic G-shift, and let
V C W be any subsystem such that h(V) < h(W). Then

{h(U):V CcU C WandU is sofic}
is dense in [h(V), h(W)].

From this result, we can quickly derive the fact (Corollary 5.3) that if X is a sofic
G-shift, then each real number in [0, #(X)] can be realized as the entropy of some (not
necessarily sofic) subsystem of X. (Recall that the alternate proof of Theorem 4.2 described
in Remark 1.2 above relies on a version of this result requiring X to be an SFT.) The tool
for proving Theorem 5.2 (from Theorem 4.2) is provided by the following theorem, which
may be of independent interest. We note that this result generalizes another theorem of
Desai [6, Proposition 4.3], which addressed the case G = 74,

THEOREM 5.1. Let G be a countable amenable group and let W be a sofic G-shift. For
every € > 0, there exists an SFT X and a one-block code ¢ : X — W such that the
maximal entropy gap of ¢ satisfies H(p) < e.

The maximal entropy gap H(¢) is defined in §2 (Definition 2.16). In particular, this
result implies that if ¥ is sofic and ¢ > 0, then there is an SFT X that factors onto Y and
satisfies h(X) < h(Y) + ¢.

Our proofs of Theorems 4.2, 5.1, and 5.2 take the same general approach as the
arguments given by Desai for the G = Z¢ case. However, the extension to the general
amenable setting requires substantial new techniques. Indeed, our proofs are made possible
by the existence of exact tilings (Definition 3.1) of the group G that possess nice
dynamical properties. Such exact tilings are trivial to find for Z? (by tiling the group
using large hypercubes), but were only recently constructed for arbitrary amenable groups
by Downarowicz, Huczek, and Zhang [7]; their construction is the main technical tool
employed in this paper.
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As mentioned in Remark 1.2 above, Theorem 4.2 can be alternately derived from results
in [8]. We present a self-contained proof here for two reasons. First, we would like to
present a direct adaptation of the techniques from [6], since it demonstrates the power of
the improved tiling results of [7]. Second, this presentation provides a unified approach to
all of our proofs, since our proofs in the sofic setting (where we are not aware of alternative
proofs) also rely on tiling-based constructions that are similar to those in our proof of
Theorem 4.2.

The paper is organized as follows. In §2, we discuss basic notions and elementary
theorems of symbolic dynamics, set in terms appropriate for countable amenable groups.
In §3, we define and explore the concept of tilings and exact tilings of amenable groups,
appealing to Downarowicz, Huczek, and Zhang for the existence of certain desirable
tilings. In §4, we prove our main results for G-SFTs, and in §5, we prove our main results
for sofic G-shifts. Finally, in §6, we provide an example of a 72 sofic shift whose only SFT
subsystem is a fixed point.

2. Basics of symbolic dynamics
2.1. Amenable groups. We begin with a brief overview of amenable groups.

Definition 2.1. (Group theory notation) Let G be a group and let K, ' C G be subsets. We
employ the following notation:
(i) the group identity is denoted by the symbol e € G;
(i) KF={f:keKand f € F};
(i) K '={k':kek})
(iv) Kg=1lkg:k e K}foreachg € G;
(v) K U F expresses that K and F are disjoint, and is their (disjoint) union;
(vi) KAF = (K \ F)Uu (F \ K) is the symmetric difference of K and F; and
(vii)  |K] is the cardinality of the (finite) set K.

Definition 2.2. (Fglner condition for amenability) Let G be a countable group. A Fglner
sequence is a sequence (Fy), of finite subsets F;;, C G which exhausts G (in the sense that
for each g € G, we have g € F, for all sufficiently large ) and for which it holds that
KFAF|
nooo|Fy|l
for every finite subset K C G. If such a sequence exists, then G is said to be an amenable
group.

Throughout this paper, G denotes a fixed countably infinite amenable group and (F},),
is a fixed Fglner sequence for G.

Definition 2.3. (Invariance) Let K, F C G be finite subsets, and let ¢ > 0. We say F is
(K, &)-invariant if

|K FAF)
_— < &
|F|
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If e € K and F is (K, &)-invariant, then F is also (K’, ¢’)-invariant for any &’ > ¢ and
any K’ C K such that e € K'. If F is (K, ¢)-invariant, then so is the translate Fg for
each fixed g € G. Invariance is the primary way by which we say a large finite subset
F C G is a ‘good finite approximation’ of G, according to the finitary quantifiers K
and ¢. The amenability of G provides a wealth of nearly invariant sets, which enables
such approximation for the purpose of studying the dynamics of G-actions.

Next we develop concepts related to the geometry of finite subsets of G.

Definition 2.4. (Boundary and interior) Let K, F C G be finite subsets. The K-boundary
of F is the set

oxkF={feF:Kf ¢F},
and the K-inferior of F is the set

intxk F={feF:Kf CF}
Observe that F = (g F) U (intg F).

If F is sufficiently invariant with respect to K, then the K-boundary of F is a small
subset of F (proportionally), by the following lemma.

LEMMA 2.1. Suppose K, F C G are non-empty finite subsets and e € K. Then

1
E|KFAF| < |0k F| < |[K||K FAF).

In particular, if F is (K, €)-invariant then |0g F| < ¢|K || F]|.

Proof. Ifee€ K,then KFAF =KF\ F.If ge KF \ F, then g = kf for some k € K
and f € dg F, by Definition 2.4. Therefore, K '\ F C Kdx F,in whichcase |[K F \ F| <
|K||0k F|.

For the second inequality, note that f € dx F' implies there exists k € K such that
kf ¢ F; therefore, g = kf € KF \ F is a point such that f € K~'g c K"1(KF \ F).
Consequently dx F' C K~Y(KF\ F), in which case |0x F| < |K||KF \ F|.

Finally, if F is (K, €)-invariant, then |0g F'| < |K||KF \ F| < ¢|K||F|. O]

Given finite subsets K, F C G, in this paper, we focus on the K K _1—boundary and
K K ~!-interior of F (rather than the K-boundary and K-interior), and we make use of the
following lemma.

LEMMA 2.2. Let K, F C G. For any translate K g of K (for any g € G), either Kg C F
or Kg C (intg -1 F)° (or both are true).

Proof. Suppose Kg ¢ (intggx-1 F)°. Then there exists f € intgg-1 F such that
f € Kg, which implies g € K~! f and hence Kg Cc KK~'f C F. O

2.2. Shift spaces. Here we present necessary definitions from symbolic dynamics. See
Lind and Marcus [14] for an introductory treatment of these concepts.
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Definition 2.5. (Shifts and subshifts) Let A be a finite set of symbols equipped with the
discrete topology. A function x : G — A is called an A-labeling of G. By convention, we
write x, for the symbol x(g) € A which is placed by x at g € G. The set of all .A-labelings
of G is denoted .A®, which we equip with the product topology. For each g € G, let o'¢ :
AY — AC denote the map given by

(08x)p =xpg forallh € G

for each x € AY. The collection o = (c8) ¢eG 1s an action of G on AC¢ by homeomor-
phisms. The pair (A, o) is a dynamical system called the full shift over the alphabet A.
A subset X C A is called shift-invariant if 58 x € X foreachx € X and g € G. A closed,
shift-invariant subset X C A is called a subshift or a shift space. For a given x € A®,
the orbit of x is the subset O(x) = {08x : g € G} C AC. The subshift generated by x is
the topological closure of O(x) as a subset of A€ and is denoted O(x) C AC.

Definition 2.6. (Codes and factors) Let Ay, Aw be finite alphabets and let X C Ag and
W C AVGV be subshifts. Amap ¢ : X — W is shift-commuting if ¢ o 08 = 08 o ¢ for each
g € G; the map ¢ is said to be a sliding block code if it is continuous and shift-commuting;
and ¢ is said to be a factor map if it is a surjective sliding block code. If a factor map exists
from X to W, then W is said to be a factor of X and X is said to factor onto W. If a sliding
block code ¢ : X — W is invertible and bi-continuous, then ¢ is said to be a topological
conjugacy, in which case X and W are said to be topologically conjugate.

Definition 2.7. (Products of shifts) If A and X are finite alphabets, then A x ¥ is also a
finite alphabet (of ordered pairs). If X € A% and T C X are subshifts, then we view the
dynamical direct product X x T as a subshift of (A x )¢, defined by (x,t) e X xT
if and only if x € X and t € T. The shift space X x T factors onto both X and T via the
projection maps wy and w7, given by wx(x, ) = x and nr(x,t) =t for each (x,1t) €
XxT.

Remark 2.3. Definition 2.7 above introduces an abuse of notation, as technically we
have (x, 1) € A% x ¢ #£ (A x £)%. However, if equipped with the G-action ¢ given by
c8(x, 1) = (0%x, o8t), then A® x £ becomes a dynamical system that is topologically
conjugate to (A x %)%,

2.3. Patterns. In this section, we describe patterns and their related combinatorics.

Definition 2.8. (Patterns) Let A be a finite alphabet and let F C G be a finite set. A
function p : F — A is called a pattern, said to be of shape F. The set of all patterns of
shape F is denoted A7 . The set of all patterns of any finite shape is denoted A* = Ur AF,
where the union is taken over all finite subsets F' C G.

Remark 2.4. Given a point x € AC and a finite subset F C G, we take x (F) to mean the

restriction of x to F, which is itself a pattern of shape F. Usually this is denoted x|r € AF,
but we raise F from the subscript for readability.
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Definition 2.9. (One-block code) Let Ay and Ay be finite alphabets and let X C .Ag and
W C A% be subshifts. A factor map ¢ : X — W is said to be a one-block code if there
exists a function ® : Ax — Ay with the property that

Pp(x)g = P(xg) forallg e G

for each x € X.

Definition 2.10. (Occurrence) Let A be a finite alphabet and let F C G be a finite set. A
pattern p € A’ is said to occur in a point x € A if there exists an element g € G such
that (c8x)(F) = p.If X C AC is a subshift, then the collection of all patterns of shape F
occurring in any point of X is denoted by

P(F,X) ={(68x)(F) e AF :x e Xand g € G}.

If X ¢ AY is asubshiftand F C G is a finite subset, then |P(F, X)| < |A|/FL.If F’
G is another finite subset, then |P(F U F/, X)| < |P(F, X)| - |P(F’, X)|.If F/ C F and
X' C X, then |P(F', X")| < |P(F, X)|.

Definition 2.11. (Forbidden patterns) Let .4 be a finite alphabet, let F' C G be a finite set,
and let X C A be a subshift. A pattern p € AF is said to be allowed in X if p € P(F, X)
(if p occurs in at least one point of X).

Given a (finite or infinite) collection of patterns F C .A*, a new subshift X’ C X may
be constructed by expressly forbidding the patterns in F from occurring in points of X. We
denote this by

X =R(X,F)={x e X:forall p e F, p does not occur in x}.
For a single pattern p, we abbreviate R(X, {p}) as X \ p. The shift X is said to be specified
by the collection F if X = R(A%, F).

2.4. Shifts of finite type. In this section, we define shifts of finite type and sofic shifts
over G. We also discuss many related elementary facts.

Definition 2.12. (SFTs) A subshift X C A is a shift of finite type (SFT) if there is a finite
collection F C A* such that X = R(AC, F). For an SFT, it is always possible to take F
in the form F = AKX \ P(K, X) for some large finite subset K C G. In this case, we say
X is specified by (patterns of shape) K.

If X C A€ is an SFT specified by a finite subset K C G, then it holds that
x € X < forallg € G ((c%x)(K) € P(K, X))

for each x € AC.If K specifies X, then so does K’ for any (finite) subset K’ > K. If X and
T are SFTs, then so is the dynamical direct product X x T.

Definition 2.13. (Sofic shifts) A subshift W is sofic if there exists an SFT X which factors
onto W.
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The following elementary facts are needed; we abbreviate the proofs as they are similar
to the well-known proofs in the case where G = Z (see [14]).

PROPOSITION 2.5. Let X be an SFT, let W be a sofic shift, and let ¢ : X — W be a factor
map. Then there exists an SFT X and a topological conjugacy ¢ : X — X such that the
composition ¢ o é: X — W is a one-block code.

Proof. Because ¢ is continuous and shift-commuting, there exists a large finite subset
K C G such that for each x, x’ € X, and each g € G, it holds that

(@8x)(K) = (05x")(K) = ¢(x)g = ¢(x'),.

Suppose that e € K and that P(K, X) specifies X as an SFT. Let A="P(K, X) be anew
finite alphabet, and let X  AY be the set of all points ¥ € A such that

there exists x € X forallg € G, X, = (0¥x)(K).

Then X is an SFT specified by patterns of shape K ~'K. The map ¢ : X — X desired for
the theorem is given by

P(F)g = (Fg)e € A forallge G forall ¥ € X. O

PROPOSITION 2.6. For any subshift X C A, there is a descending family of SFTs (X,)n
such that X = (), X,

Proof. Let (p,), enumerate {p € A* : p does not occur in X}, and for each n, let

Xn = RAS {p1, P2, - .s pu))-

Then (X,,), witnesses the result. O

PROPOSITION 2.7. Let X C AC be a subshift and let Xo C A® be an SFT such that
X C Xo. If (Xp)n is any descending family of subshifts such that X = (), Xpn, then
X, C Xo for all sufficiently large n.

Proof. Take K C G to specify X as an SFT. Note (P(K, X,)), is a descending family
of finite sets, and it is therefore eventually constant. In particular, we have

PK, X,) =P(K, X) C P(K, Xo)
for all sufficiently large n. O

When G = Z4, SFTs are often reduced via conjugacy to so-called -step SFTs, in which
the allowed patterns are specified by allowed adjacent pairs of symbols. Such SFTs are
often desired because they allow for a kind of ‘surgery’ of patterns. If two patterns occur
in two different labelings from a 1-step SFT, and yet they agree on their 1-boundaries, then
the first may be excised and replaced by the second. This yields a new labeling which also
belongs to the 1-step SFT. Although there is no obvious notion of 1-step SFTs when G #
74, we do have the following result which allows for this sort of excision and replacement
of patterns.
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LEMMA 2.8. Let X C A be an SFT specified by K C G, let F C G be a finite subset,
and letx, y € X be two points such that x and y agree on 0k -1 F. Then the point z, defined
byzg =y,ifg € Fandzgs =x, if g ¢ F, also belongs to X.

Proof. Let g € G. By Lemma 2.2, either Kg C F or Kg C (intgg-1 F)°. In the first
case, we have (68z)(K) = (08y)(K) which is an allowed pattern in X. In the second case,
we have Kg C (F°) U (dg -1 F). Since x and y agree on dx x-1 F, we have (042)(K) =
(08x)(K) which is again an allowed pattern in X. In either case, (687)(K) is allowed in X
for every g, and hence z € X. O

2.5. Entropy. Let X C A% be a non-empty subshift. Recall that for a given large finite
set F' C G, the number of patterns of shape F' that occur in any point of X is |P(F, X)]|,
which is at most |A|!F!. As this grows exponentially (with respect to | F'|), we are interested
in the exponential growth rate of |P(F, X)| as F becomes very large and approaches the
whole group G. For non-empty finite sets F C G, we let

1
h(F,X) = i log |P(F, X)|.

If F, F’ C G are disjoint finite subsets, then A(F U F', X) < h(F, X) + h(F’, X). This is
because |[P(F U F/, X)| < |P(F, X)| - |P(F’, X)| and

1 1 1 1
= < min (—, —)
[FUF'| |F|+|F'| [F| |F'|

Definition 2.14. (Entropy) Let X be a non-empty subshift. The (fopological) entropy of X
is the non-negative real number 4 (X) given by the limit

h(X) = lim h(Fy, X),

where (Fy), is again the Fglner sequence of G. For the empty subshift, we adopt the
convention that 2 (&) = 0.

It is well known that the limit above exists, does not depend on the choice of Fglner
sequence for G, and is an invariant of topological conjugacy (see [11]).

For any subshift X C AG and any finite subset F C G, it holds that A(F, X) <
log |A| and consequently 2(X) < log |.A|. More generally, if X and X’ are subshifts such
that X C X', then h(F, X) < h(F, X’) for every finite subset F C G and consequently
h(X) < h(X’). If X and X’ are subshifts over A, then so is X U X’ and h(X U X') =
max(h(X), h(X")).

The following proposition is a classical fact; a proof is given in [11].

PROPOSITION 2.9. Let G be a countable amenable group. If a G-shift W is a factor of a
G-shift X, then h(W) < h(X).

Frequently in this paper, we refer to ‘measuring’ or approximating the entropy of a
subshift via a large set F. We give a precise definition as follows.
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Definition 2.15. (Entropy approximation) Let X C A be a subshift and let § > 0. A finite
subset F' C G is said to 8-approximate the entropy of X if

h(X) —8 < h(F, X) < h(X) + 6.

We shall more commonly write 2(X) < h(F, X) + 6 < h(X) + 26.

Infinitely many such sets exist for any §, as provided by the Fglner sequence and the
definition of 4 (X). We introduce this notion so that we may layer invariance conditions
and entropy-approximating conditions as needed.

PROPOSITION 2.10. For finitely many choices of i, let K; C G be any finite subsets and
let ¢; > 0 be any positive constants. For finitely many choices of j, let X j C AjG be any
subshifts over any finite alphabets and let §; > 0 be any positive constants. There exists a
finite subset F C G which is (K;, &;)-invariant for every i and which § j-approximates the
entropy of X j for every j.

Proof. Choose F = F, for sufficiently large n. O

The following theorem is an elementary generalization of a classical statement (see [14]
for a proof in the case where G = Z). We omit the proof here for brevity.

PROPOSITION 2.11. Let (X,), be a descending family of subshifts and let X = (1), Xp.
Then

h(X) = Tim h(X,).

It is desirable to work with SFTs as much as possible while preserving (or, in our
case, approximating) relevant dynamical quantities. We shall make frequent use of the
next theorem, which we justify with several of the above results.

THEOREM 2.12. Let X C AS be a subshift and suppose that Xo C AC is an SFT such
that X C Xo. For any ¢ > 0, there exists an SFT Z C AC such that X C¢ Z C Xo and
h(X) <h(Z) <h(X)+e.

Proof. By Proposition 2.6, there is a descending family of SFTs (X,), such that
X =), X». By Proposition 2.7, we have X, C Xo for all sufficiently large n. By
Proposition 2.11, we have h(X) < h(X,) < h(X) + ¢ for all sufficiently large n. Choose
Z = X, for n large enough to meet both conditions. U

If ¢ : X — W is a factor map of subshifts, then we have already seen that h(W) <
h(X). The ‘entropy drop’ or entropy gap between X and W is the quantity A(X) — h(W).
A subsystem X’ C X induces a corresponding subsystem ¢(X') = W’ C W and, later in
this paper, we will want a uniform bound for the entropy gap between every X’ and W'
pair. We make this idea precise in the following definition.
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Definition 2.16. (Maximal entropy gap) Suppose ¢ : X — W is a factor map. The
maximal entropy gap of ¢ is the quantity

Hip) = S;{lp(h(X’) — h(p (X)),

where the supremum is taken over all subshifts X’ C X. In particular, it holds that
h(W) < h(X) < h(W) + H(9).

Recall that if X and T are subshifts, then the dynamical direct product X x T factors
onto both X and T via the projection map(s) wx (x,?) = x and w7 (x,t) = ¢.

PROPOSITION 2.13. Let X and T be shift spaces. The maximal entropy gap of the
projectionmap ty : X x T — X is

H(mwx) = h(T).

Proof. 1t is classically known that 7(X x T) = h(X) + h(T), in which case h(T) =
h(X x T) — h(X) < H(wy). For the converse inequality, suppose Z C X x T is any
subshift. Note by Definition 2.7 that z € Z implies z = (z%, z7), where z¥ = 7x(z) €
7x(Z) € X and zT € T. Therefore, Z C 7wx(Z) x T, in which case it follows that #(Z) <
h(mx(Z)) + h(T). Since Z was arbitrary, we have

h(T) = H(myx) = Slép(h(Z) — h(mx(2))) < h(T),

where the supremum is taken over all subshifts Z C X x T. O

A quick corollary is that when 4 (T) = 0, we have h(Z) = h(mwx(Z)) for any subsystem
ZCXxT.

3. Tilings of amenable groups

3.1. Definition and encoding. In this section, we consider the notion of tilings of G.
The existence of tilings of G with certain properties is essential in our constructions in
subsequent sections.

Definition 3.1. (Quasi-tilings and exact tilings) A quasi-tiling of G is a pair (S, C), where
S is a finite collection of finite subsets of G (called the shapes of the tiling) and C is a
function that assigns each shape S € S to a subset C(S) C G, called the set of centers or
center-set attributed to S. We require that e is in S for each S € S. The following properties
are also required.

(i) For distinct shapes S, §’ € S, the subsets C(S) and C(S’) are disjoint.

(ii) The shapes in S are ‘translate-unique,’ in the sense that

S#S8 = Sg#S8 forallgeG,

foreach S, S’ € S.
(iii) The map (S, ¢) — Sc C G defined on the domain {(S,¢) : S € Sand ¢ € C(S)}is
injective.

https://doi.org/10.1017/etds.2022.57 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.57

2892 R. Bland et al

‘We may refer to both the pair (S, C) and the collection
T=T(S,C)={ScCcG:SeSandce C(S)}

as ‘the quasi-tiling.” Each subset T = Sc € T is called a tile. For a quasi-tiling 7, we
denote the union of all the tiles by | J 7. A quasi-tiling 7 may not necessarily cover G
in the sense that | J 7 = G; nor is it necessary for any two distinct tiles , T/ € T to be
disjoint. However, if both of these conditions are met (that is, if 7 is a partition of G), then
T is called an exact tiling of G.

Ornstein and Weiss [15] previously constructed quasi-tilings of G with good dynamical
properties, and this construction has become a fundamental tool for analyzing the
dynamics of G-actions. Downarowicz, Huczek, and Zhang [7] sharpened this construction,
showing that a countable amenable group exhibits many exact tilings with good dynamical
properties, as we describe below (see Theorem 3.3).

A quasi-tiling 7 of G may be encoded in symbolic form, allowing for dynamical
properties to be attributed to and studied for quasi-tilings. The encoding method presented
here differs from the one presented in [7], as we will only require exact tilings in this paper.
See Remark 3.2 below for further discussion of the relation between our encoding and the
encoding given in [7].

Definition 3.2. (Encoding) Let S be a finite collection of finite shapes and let
X(S)={(S,s):5€S5 eS8},

which we view as a finite alphabet. If 7 is an exact tiling of G over S, then it corresponds
to a unique point # € £(S)¢ as follows. For each g € G, there is a unique tile Sc € T
containing g; let s = gc’1 € Sandsett, = (S, ).

In the above definition, note that s is the ‘relative position’ of g in the translate Sc of S. In
other words, 7 labels each element g of G with both the type of shape of the tile containing
g and the relative position of g within that tile. In particular, g € C(S) <= t; = (S, ).

Note that the correspondence 7 + ¢ € %(S)“, when regarded as a map on the set of
all exact tilings of G over S, is injective. However, the correspondence is not surjective
in general. Let ££(S) C =(S)C be the set of all encodings of exact tilings of G over S.
It may be the case that no exact tiling of G over S exists, in which case Xg(S) = @. In
general, we have the following useful theorem.

PROPOSITION 3.1. Let S be a finite collection of finite shapes drawn from G. Then
YE(S) € 2(S)C isan SFT.

Proof. Let {(S) be the set of all points ¢ € >(S)¢ that satisfy the following local rule:
foreach g € G, if t, = (Sp, s0) € £(S), then

tse = (So,s) foralls € S, (R1)

where ¢ = s 1g. It is easy to see that X;(S) is an SFT and from Definition 3.2, it is
immediate that Xz (S) C X1(S).
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For the reverse inclusion, let t € X1(S) be an arbitrary point satisfying the local rule
(R1) everywhere. For each S € S, let C(S) ={g € G :t;, = (S,e)}. Then T =T (S, C)
is a quasi-tiling. To complete the proof, it suffices to show that 7 is exact and encoded by ¢,
since that would give t € X g(S) and then X (S) = 21(S).

Let g € G, suppose t, = (S, s), and let ¢ = s~'g. By rule (R1) and the fact that
e € S, we have t. = 1, = (S, e) and therefore ¢ € C(S). Hence, g = sc € Sc € T. This
demonstrates that | J 7 = G. Next, suppose Sc, S'¢’ € T are not disjoint and let g €
ScNS'c. Then g =sc =s'c’ for some s € § and s’ € §’. From ¢ € C(S), we have
tc = (S, e) and by the rule (R1), we have

tg =tse = (S, 9).

By identical proof, we have t; = (S', s"), from which it follows that $ = §" and s = s’
The latter implies that

C=S_1g=s/_1g=C/,

and hence Sc and S’c’ are the same tile. This demonstrates that 7 is a partition of G and
therefore 7 is an exact tiling of G over S. Finally, we note that it is straightforward to check
that 7 is encoded by ¢, which completes the proof. [

Remark 3.2. Before we move on, we note here that the encoding method presented above
(Definition 3.2) differs from the one presented in [7]. The encoding method in that work
gives symbolic encodings for all quasi-tilings, which is not necessary for our present
purposes. Indeed, the encoding in [7] uses the alphabet A(S) = S U {0}, and a point
€ A(S)Y encodes a quasi-tiling (S, C) when ¢ =8 = g e C(S) and ; = 0 otherwise.
This is a prudent encoding method for the study of general quasi-tilings, as any quasi-tiling
may be encoded in this manner. Our encoding method works only for exact tilings, but is
well suited to our purposes. In fact, if one is only interested in exact tilings, then the two
encodings are equivalent. Indeed, if Ar(S) C A(S)Y is the collection of all encodings
of exact tilings of G over S, then there is a topological conjugacy ¢ : Xg(S) — Ag(S)
givenby ¢(t); = S <= 1, = (S, e) and ¢ (¢), = 0 otherwise.

Next we turn our attention to the dynamical properties of tilings, as derived from their
encodings.

Definition 3.3. (Dynamical tiling system) Let S be a finite collection of finite shapes, let
T be an exact tiling of G over S, and let 7 be encoded by the point r € X£(S). The
dynamical tiling system generated by T is the subshift generated by ¢ in X(S)Y, denoted
27 =0@) C Ze(S).

This allows for the dynamical properties (e.g., entropy) of X7 as a subshift of X(S)¢
to be ascribed to 7. The tiling entropy of T is h(T) = h(X7), where the entropy of X7
is a subshift of T(S)C.

The tiling entropy of 7 is a measure of the ‘complexity’ of tile patterns that occur in
large regions of G. In particular, when 7 has entropy zero, the number of ways to cover a
large region F' C G by tiles in T grows subexponentially (with respect to | F|).
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The following theorem is quickly deduced from the main result of Downarowicz,
Huczek, and Zhang [7], which we state in this form for convenience. It is this result that
allows us to use exact tilings of G in this paper.

THEOREM 3.3. [7] Let K C G be a finite subset and let ¢ > 0. Then there exists a finite
collection of finite shapes S with the following properties.
(i) Each shape S € S is (K, &)-invariant.
(i) K C Sand|S| > e~ for each shape S € S.
(iii)  There exists a point ty € X g(S) such that h(@(to)) =0.
The point ty encodes an exact tiling To of G over S with tiling entropy h(77y) = 0.

3.2. Approximating sets with tiles. Entropy and other dynamical properties of G-shifts
are well measured by sets with strong invariance properties (the Fglner sequence Fj,
provides a wealth of such sets). However, we would instead like to use an (appropriately
selected) exact tiling 7 for this purpose. In this section, we build good tile approximations
of sets: finite collections of tiles 7* C 7 attributed to large, suitably invariant subsets
F C G that are good in the sense that the symmetric difference FA [ 7™ is small (as a
proportion of |F|).

Definition 3.4. (Tile approximation) Let F C G be a finite subset. An exact tiling 7 of G
induces two finite collections of tiles: the outer approximation of F by T, denoted

T(F)={teT:1NF #a)},
and the inner approximation of F by T, denoted
T(F)={teT:tCF}
Denote F*(T) = |J 7 (F) and F°(T) = |J T°(F). Observe that F°(T) C F C F*(T).

LEMMA 3.4. Let S be a finite collection of shapes from G and let U = J S. Let ¢ > 0

and choose § > 0 such that S\U||UU™| <¢e. Let F C G be a finite subset that is

(UU™, 8)-invariant. For any exact tiling T of G over S, the following statements hold:
@ NFX(T\F (DI <elFl;

(i) (A —=olF| <|F(T)| <|F|; and

(i) |FI < |F*(DI < d+elF]

Proof. First, we observe that each tile T € 7 is contained in a translate Ug for some
g € G; indeed, we have T = Sc for some S € S and ¢ € C(S) C G, then S C U implies
7 C Uc. This fact also gives that |t| < |U| forevery tile t € T.

We claim that every tile T € 7 (F) \ T°(F) intersects dy;;,—1 F. To establish the claim,
we first note that for each such tile 7, it holds that t N F # @ and t ¢ F. So let f €
7 N F and note that f € T C Ug for some g € G. From t ¢ F, we also have Ug ¢ F.
By Lemma 2.2, we have f € Ug C (intyy-1 F)¢, and hence f € F\ (intyy-1 F) =
0y -1 F, which establishes our claim.
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By the claim in the previous paragraph, there isamap y : 7*(F) \ T°(F) — oyy-1 F
with the property that y () € t for each t. Observe that y is injective, as distinct tiles are
disjoint, and therefore |7 (F) \ T°(F)| < |9y -1 F|. We also have that

l9yy—1 Fl < JUUT||F],

by the invariance hypothesis on F and Lemma 2.1. Then

|FX(T)\ F°(T)| >kt
1eT*(F)\T°(F)
[T (F)\ T°(P)IIU|
< |9yy-1 FlIU|
<8|UIUUT|F]
< ¢e|F|.

IA

This establishes statement (7). The remaining two statements are easy to check using the
fact that F°(T) C F C F>*(T) and statement (i). O

One more notion is necessary to develop before moving on from tilings: the frame of a
given subset with respect to a given tiling.

Definition 3.5. (Frame of a tiling) Let F, K C G, and let T be an exact tiling of G. The
inner (7, K)-frame of F is the subset

frr x (F) = | 9k (),
T
where the union ranges over all © € 7°(F). See Figure 1 for an illustration.

4. Results for SFTs

Having discussed everything about tilings relevant for our purposes, we are now ready to
begin discussing our main results. In this section, we present our results for SFTs and in
the following section, we turn our attention to sofic shifts.

THEOREM 4.1. Let G be a countable amenable group and let X be a G-SFT such that
h(X) > 0. Then

{h(Y):Y C XandY isan SFT}
is dense in [0, h(X)].

Before we begin the proof, let us give a short outline of the main ideas. The broad strokes
of this proof come from Desai [6], whose argument in the case where G = Z¢ we are able
to extend to the case where G is an arbitrary countable amenable group. This is possible
by using the exact tilings of G constructed by Downarowicz, Huczek, and Zhang [7].

Given an arbitrary ¢ > 0, we produce a family of SFT subshifts of X whose entropies
are 2¢-dense in [0, £(X)]. We accomplish this by first selecting an exact, zero entropy
tiling 7o of G with suitably large, invariant tiles. Then we build subshifts with strongly
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(a) A hypothetical region F c G (b) The 7 -interior of F is shaded.
with illustrated tiling 7".

(c) The inner frame of F' (with respect to 7, K) is shaded.
The K-boundary of each tile inside F is taken.

FIGURE 1. A sketch of the construction of fr x (F).

controlled entropies inside the product system Zg = X x X, where X is the dynamical
tiling system generated by 7.

To construct these subshifts from Zy, we control which patterns in the X layer can
appear in the ‘interior’ of the tiles in the X layer. We are able to finely comb away entropy
from Zy by forbidding these patterns one at a time. This process generates a descending
family of subsystems for which the entropy drop between consecutive subshifts is less
than e. After enough such patterns have been forbidden, the overall entropy is less than ¢.
This collection of subshifts therefore has entropies that are e-dense in [0, #(Zp)]. Then we
project the subshifts into X and use Theorem 2.12 to produce SFT subsystems of X with
entropies that are 2e-dense in [0, h(X)].

Proof. LetX C AY be an SFT such that 4(X) > 0,let K C G bea large finite subset such
that P(K, X) specifies X as an SFT, and let ¢ be any constant such that 0 < ¢ < h(X).
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FIGURE 2. A hypothetical collection of shapes S, the appropriate alphabet X (S), and (the 7 -layer of) two aligned
blocks are pictured. Each point of each block is labeled with the correct shape type and relative displacement
within that shape.

Choose § > 0 such that
28 + 8 log2+28log | Al < e.

By Theorem 3.3, there exists a finite collection S of finite subsets of G with the following
properties.

(i) Each shape S € S is (KK ™!, n)-invariant, where > 0 is a constant such that
n|KK~'| < 8. By Lemma 2.1, this implies that [0g x-1S| < 8|S]| for each shape
Sed.

(i) KK 'cSand|S|> & !foreach S € S.

(iii) There is a point g € X (S) such that h(O(1p)) = 0. Consequently, #p encodes an
exact tiling 7y of G over S with tiling entropy zero.

For the remainder of this proof, these are all fixed. We shall abbreviate 0 F = 0y -1 F
for any finite subset F C G. For a pattern p on F, we take dp to mean p(d F) and call this
the border of p (with respect to K K -1,

Let =g = O(f9) C Z£(S) be the dynamical tiling system generated by the tiling 7o,
which has entropy zero. Of central importance to this proof is the product system X x X,
which factors onto X via the projection map m : X x X9 — X given by 7 (x, t) = x for
each (x, 1) € X x Xy. Let us establish some terminology for certain patterns of interest
which occur in this system.

Given a shape S € S, we shall refer to a pattern b = (b¥, bT) e P(S, X x o) as a
block (to distinguish from patterns of any general shape). If a block b € (A x £(S))®
satisfies bST = (S, s) for every s € S, then we shall say b is aligned. See Figure 2 for an
illustration of the aligned property.

For a subshift Z C X x Xy, we denote the subcollection of aligned blocks of shape §
that occur in Z by

PUS, Z) CP(S, Z) C (A x £(S))5,

where the superscript a identifies the subcollection. Given a shape S € S and an aligned
block b of shape S, consider the border db € (A x £(S))?S. We are interested in the
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number of ways that the border db may be extended to all of S—that is, the number of
allowed (and in particular, aligned) interiors for S which agree with 9b on the boundary
aS. For a subshift Z C X x ¥y, we denote this collection by

ints®(db, Z) = {b' € P*(S, Z) : b’ = 3b}.

We shall extend all the same terminology described above (blocks, aligned blocks, borders,
interiors) to tiles T = Sc € Ty, as there is a bijection between P(S, Z) and P(zr, Z) =
P(Sc, Z). For a given tile T € Ty, a block b € (A x X(S))? is aligned if bZ; = (S, s) for
each sc € Sc = t. The subcollection of aligned blocks of shape T occurring in a shift
Z C X x X is denoted P(t, Z). Given a border 3b € (A x £(S))?7, the collection
of aligned blocks of shape t occurring in Z agreeing with db on dt is also denoted
ints?(3b, Z) C P%(z, Z).

For the theorem, we shall inductively construct a descending family of subshifts (Z,),
of X x Xy as follows. Begin with Zyg = X x X, then assume Z,, has been constructed for
n > 0. If there exists a shape S, € S and an aligned block 8, € P*(S,, Z,) such that

lints” (384, Zn)| > 1,

then let Z,,11 = Z, \ B,. If no such block exists on any shape S € S, then Z,, is the final
subshift in the chain and the chain is finite in length.

Let us first argue that in fact, the chain must be finite in length. For each n > 0,
we have Z,,1 C Z,, in which case P%(S, Z,+1) C P%(S, Z,) for every shape S € S.
Moreover, for the distinguished shape S, (the shape of the forbidden block 8,), it holds
that P*(Sy,, Zn+1) U {Bx} C P*(S,, Z,). This implies that

> 1P, Zy)
SeS

strictly decreases with n. There is no infinite strictly decreasing sequence of positive
integers, and hence the descending chain must be finite in length. Let N > 0 be the index
of the terminal subshift, and note by construction that the shift Zy satisfies

lints® (8D, Zy)| = 1

for every aligned block b € P*(S, Zy) on any shape S € S.
Most of the rest of the proof aims to establish the following two statements:

h(Zy+1) < h(Zp) < h(Z,4+1) +¢ foreachn < N; and (UD)

h(Zy) < e. (U2)

To begin, let F C G be a finite subset satisfying the following two conditions:
(F1) Fis (UU!, ®)-invariant, where U = |J S and ¢ is a positive constant such that
P|U|[UU™| < 8. Note this implies that F may be well approximated by tiles from
any exact tiling of G over S, in the sense of Lemma 3.4.
(F2) F is large enough to §-approximate (Definition 2.15) the entropy of ¥y and Z,, for
every n < N. This implies in particular that A (F, ¥g) < §.
Such a set exists by Proposition 2.10. We fix F for the remainder of this proof.
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Now for each n < N, we claim that

IP(F, Z)l = Y Y ] ] lints*(£(37), Z,)|, and (E1)
t f T
IP(F, Z)| < JAPFE S T T lints* (£ 071), Zo)ls (E2)
t f T

where the indices ¢, f, and t are as follows. The variable ¢ ranges over P(F, Xy), and
therefore 7 is the restriction to F of an encoding of an exact, zero entropy tiling 7; of G
over S. The variable f ranges over all (A x X(S))-labelings of the (7;, KK ~!)-frame
of F (Definition 3.5) that are allowed in Zy and for which f U agrees with 7. Lastly, the
variable 7 ranges over the tiles in 7,°(F).

To begin the argument toward the claims (E1) and (E2), let n < N be arbitrary. To
count patterns p € P(F, Z,), write p = (p¥, pT) and sum over all possible labelings in
the tiling component. We have

IP(F, Z)| =) HpeP(F,Z):p" =1, 4.1)
t

where the sum ranges over all t € P(F, ¥¢). This is valid because Z,, C Zyp = X x X,
and hence any 7 = (zX, zT) € Z, must have T e 2.

Next, lett € P(F, Xg) be fixed. The pattern ¢ extends to/encodes an exact, zero entropy
tiling 7; of G over S (possibly distinct from the original selected tiling 7g, but as X is
generated by 7o, one may take 7; to be a translation of 7y that agrees with 7 on F).

Recall that F°(T;) =|J 7T,°(F) C F is the inner tile approximation of F by the
tiling 7; (Definition 3.4), which we shall abbreviate here as F,°. Recall also that the
(T;, K K~1)-frame of F is the subset (U, 97, where the union is taken over all T € 7,°(F)
(Definition 3.5). Since K is fixed for this proof, we shall abbreviate the frame as fr; (F).
From equation (4.1), we now split over all allowed labelings of fr; (). We have

IP(F.Z)I =YY HpeP(F,Z):p" =tand p(f;(F)) = f}l,  (42)
tf
where the first sum is taken over all ¢t € P(F, £¢) and the second sum is taken over all
f € P(r;(F), Zo) for which f7 agrees with .
We have the pattern ¢t € P(F, ¥¢) fixed from before; next we fix a frame pattern
f € P(fr;(F), Zy) such that f T agrees with 7. We wish to count the number of patterns
p € P(F, Z,) such that pT =t and p(fr;(F)) = f. Let this collection be denoted by
D, =D, f; Z,) C P(F, Z,). Observe that each D,, is finite and D, C D, for each
n < N.Consider themap y : Dy — [[, P(z, Zp) given by y (p) = (p(t)), which sends
a pattern p € Dy to a vector of blocks indexed by 7,°(F). We claim the map y is at most
| A[81Fl-to-1 and for each n < N, we have

y (D) = [ ]ints*(f(37), Zy). 4.3)

Together, these claims will provide a bound for | D,,| from above and below, which combine
with equation (4.2) to yield the claims (E1) and (E2).
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First we argue that y is at most |.A|*|FI-to-1. This is where we first invoke the invariance
of F. Suppose (b;); € I_[T P(r, Zp) is a fixed vector of blocks. If p € Dy is a pattern such
that y(p) = (b;)¢, then pT is determined by ¢ and p(t) = b, for each tile T € 7,°(F).
Therefore, p is uniquely determined by p* (F \ F?), and hence ly ~N(br)e| < |A|IFNEL
By property (F1) of the set ' and by Lemma 3.4, we have |F' \ F°| < §|F| and thus the
map y is at most | A[°IFI-to-1.

Next, we shall prove the set equality in claim (4.3). Let n < N and let p € D,.
For each tile T € 7,°(F), the block p(t) € P(r, Z,) C (A x X(S5))" is aligned; this is
because pT =t and ¢ encodes the tiling 7; itself. Moreover, p agrees with f on fr,(F)
by assumption that p € D, = D(t, f; Z,), in which case p(dt) = f(dt) for each tile
T € 7,°(F). This demonstrates that

y (D) C [ Jints*(f(@7), Zy).

We shall prove the reverse inclusion by induction on n. For the n = 0 case, let (b;), be
a vector of blocks such that b, € P%(t, Zp) and db, = f(d7) for each t € T,°(F). To
construct a y-preimage of (b;); in Dy, begin with a point x € X such that x(fr;(F)) =
fX. Such a point exists because f occurs in some point of Zy = X x . Note that

x(0t) = fX(01) = b

for each T € 7,°(F), because dt C fr;(F) for each . Moreover, for each 7, it holds that
the block bX occurs in a point of X, as each block b, = (bX, b7 occurs in a point of
Zy = X x Xg. Because X is an SFT specified by patterns of shape K, we may repeatedly
apply Lemma 2.8 to excise the block x(t) and replace it with bf for every t € T,°(F).
Every tile is disjoint, so the order in which the blocks are replaced does not matter. After
at most finitely many steps, we obtain a new point x’ € X such that x’(fr,(F)) = f* and
x'(t) = b¥ for each T € T°(F).

Recall that the point ¢ € X is fixed from before. The point (x', £) € X x X is therefore
allowed in Zg = X x Xg. Let p = (x/, t)(F) € P(F, Zp). We have that pT =t and
p(fr;(F)) = f by the selection of x’. This implies that p € Dy. It also holds that p(t) =
b, for each T € 7,°(F), as t itself encodes the tiling 7; from which the tiles T € 7,°(F) are
drawn (and each block b; is aligned, by assumption). We then finally have y (p) = (b;)+,
which settles the case n = 0.

Now suppose the set equality in claim (4.3) holds for some fixed n < N, and let (b;); €
[1; ints*(f(37), Zy41). From the inclusion Z, | C Z, and the inductive hypothesis, it
follows there is a pattern p € D, such that y (p) = (b;);. Suppose p = (x, t)(F) for some
(x,t) € Z, (by induction, ¢ is the point fixed from before). We need to modify p only
slightly to find a y-preimage of (b;),; which occurs in Z, 4 (and hence belongs to Dy, 1).

Consider the block 8, determined at the beginning of this proof, which is forbidden in
the subshift Z, 4. If 8, occurs anywhere in the point (x, t), then (by the assumption that
By, is aligned) it must occur on a tile T € 7;. It does not occur on any of the tiles from
T°(F), because for each tile € 7,°(F), we have (x, t)(r) = b; which is allowed in Z,,
by assumption.
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Yet, B, may occur in (x, t) outside of F;°. By the construction of Z, |, we have
|intsa(8ﬂn’ Zy)| > 1,

and therefore there is an aligned block b which occurs in Z, such that b # B, and 9b =
dfn. Apply Lemma 2.8 at most countably many times to excise X wherever it may occur
in x, replacing it with bX . This yields a new point x” € X.

Then (x', t) € Zg also belongs to Z, ;. It was already the case that none of the blocks
Bo, . - ., Bu—1 could occur anywhere in (x, ¢) by the assumption (x,t) € Z,, and now
neither does B, occur anywhere in (x’, t). The pattern p’ = (x/, r)(F) may be distinct
from p = (x, ) (F) (the labeling may change on F' \ F;°), but we did not replace any of the
blocks within F°. We still have p’(t) = b, for each tile t € 7,°(F), and hence p’ € D4
and y (p) = (b)«.

This completes the induction, and we conclude that the set equality in claim (4.3) holds
for each n < N. From this equality and the fact that y is at most |.4|*!¥-to-1, we obtain

[ ] lints*(£@1). Z)I < DG f 5 Zw)l < JAPFL T T lints (f 37), Z).

Notice that the above inequalities hold for each fixed r € P(F, Xyp), each fixed f €
Pt (F), X x Xp) such that f T = t(fr;(F)), and each n < N. From these inequalities
and equation (4.2), we conclude that claims (E1) and (E2) hold, that is,

IP(F, Z)l = Y Y ] ] lints*(£(@7), Z,)|, and (E)
t f T
IP(F, Z)| < JAPFE S ] lints* (£ 91), Zo)l, (E2)
t f T

where the first sum is taken over all r € P(F, Xp), the second sum over all f €
Pt (F), Zo) for which f T agrees with #, and the product over all T € 7,°(F).

Property (F2) of the set F implies that h(F, £o) < 8, in which case |P(F, Zg)| < €°!F1.
Consequently, the variable ¢ in claims (E1) and (E2) ranges over fewer than ¢/*! terms.
Moreover, by the selection of S, we have |[dt| < §|t| for each T € 7,°(F), in which case it
follows that

Ifr: (F)| =

Uar

T

U+

T

= 8|F°| < S|F).

= lorl <) slt|=3
T T

Here we have used that distinct tiles from 7; are disjoint. From this estimate, we deduce
that there are fewer than |.A|°/¥! labelings of the frame of F that agree with a fixed ¢ on
the 7 -layer. Consequently, the variable f in claims (E1) and (E2) ranges over fewer than
|AI°IF] terms. Observe also that the size of T,°(F) as a collection is small compared to F.
Indeed, |S| > & ~1 for each shape S € S, in which case

FI= [F7) =) Itl = T2 (P - (min IS > [T7(F)l8 ™",

and therefore | 7,°(F)| < 8| F|. Consequently, the variable 7 in claims (E1) and (E2) ranges
over fewer than §| F| terms.
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Before returning to claims (U1l) and (U2), one more estimate is necessary. For each
n < N, each shape S € S, and each aligned block b € P4(S, Z,), we claim that

lints®(3b, Z,)| < 2 |ints®(3b, Zp41)]. (4.4)

Let S € S and let b € P4(S, Z,) be an aligned block occurring in Z,, distinct from the
forbidden block B,. Say b = (x, t)(S) for some (x, t) € Z,. We claim that b occurs in a
point of Z,1;. Note that 7 extends to/encodes an exact, zero entropy tiling 7, of G over S,
and note that S is a tile of 7;. This is because b is aligned by assumption, in which case
te = b] = (S, e), and therefore e € C,(S).

Suppose the forbidden block B, occurs anywhere in (x, t). Because B, is aligned, it
must occur on a tile T € 7;. It does not occur on S, because b # S,,. By the assumption
that |ints®(88,, Z,)| > 1, we know there is an aligned block En # B, that occurs in Z,
such that Z)l;,, = 3B,.

Recall X is an SFT specified by patterns of shape K, and l;,)f is allowed in X. Again
we may apply Lemma 2.8 at most countably many times, excising ,Bf wherever it may
occur in x and replacing it with 15,’,( . At the end, we receive a new point x’ € X, within
which BX does not occur. Then (x/, 7) is allowed in Z,4 and (x', )(S) = b, and hence
b e P4(S, Zp+1)-

The conclusion is that B, is the only aligned block lost from Z, to Z,y;. For
each b € P4(S, Z,), we have either ints?(3b, Z,) = ints®(db, Z,+1) or ints*(db, Z,) =
ints*(8b, Z,,1+1) U {Bx}. If two positive integers differ by at most 1, then their ratio is at
most 2, and hence the inequality in claim (4.4) follows.

Finally, we shall use the estimates in claims (E1) and (E2) to argue for the ultimate
claims (U1) and (U2) made before. For the first, consider a fixed n < N. It is clear that
h(Z,+1) < h(Z,) by inclusion. For the second inequality in claim (U1), we have

IP(F, Zy)| < |APF ZZ]—[Imts (f07), Z)|

< JAPIFT. Z Z 1"[ 2 |ints” (£ (97), Zns1)]

< JAPIFL 201FL Z Y [ lints“(£@1), Zurn)l
t f T

< JAPIFL. 281 P(F, Zy i),

where the inequalities are justified by claim (E2), claim (4.4), the fact that | 7,°(F)| < 8| F|,
and claim (E1), respectively. Taking logs and dividing through by | F'|, we obtain

W(Zy) < h(F, Zp) + 8
< (8log|A|l +8log2+h(F, Zny1)) + 8
< §log|A|l+38log2+ (h(Zyt+1) +38) + 8
= h(Zps1) + 28+ 8log 2 + 6 log | A|
< h(Zp41) ¢,
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where we have used the property (F2) of F, the previous display, the property (F2) again,
and our choice of §. This inequality establishes claim (U1). For claim (U2), recall that the
terminal shift Zy has the property that any aligned border db € P4 (39S, Zy) on any shape
S € S has exactly 1 allowed aligned interior. Hence, we see that

IP(F, Zy)| < |APIFT- ZZ]‘[ lints* (£ (07), Z)

=AM Z [T

< |A|5|F\ ,65|F\ . |A|5\F| 1

where the first inequality is justified by claim (E2) and the last inequality is justified by
our bounds on the number of terms in the sums (established previously). Taking logs and
dividing through by |F|, we finally have

h(Zn) < h(F, ZN) + 6
< (§+28log |A]) + 6
— 25 + 25 log | Al

<&,

where we have used the property (F2) of the set F, the previous display, and our choice
of §. We have now established claim (U2).

With claims (Ul) and (U2) in hand, the rest of the proof is easy. By claims (Ul) and
(U2), we have that (Z,),<n is a family of subshifts of X x X such that (h(Z,)),<n is
e-dense in [0, 1 (X x Xg)].

For each n < N, let X,, = n(Z,) C X, where & is the projection map m(x,t) = x.
From Proposition 2.13, H(xw) = h(Xp) = 0, and hence h(X,) = h(Z,) foreveryn < N.

Then (X,),<n is a descending family of subshifts of X such that (7(X,)),<y is e-dense
in [0, 2(X)]. Though each X, may not be an SFT, we do know that X is an SFT. One may
therefore apply Theorem 2.12 to construct a family of SFTs (¥;,),<n such that for each
n < N, we have X,, C Y, C X and h(X,) < h(Y,) < h(X,) + ¢. Hence, (h(Yy))n<n is
2¢-dense in [0, h(X)]. As & was arbitrary, we conclude that the entropies of the SFT
subsystems of X are dense in [0, 4 (X)]. O]

The following ‘relative’ version of Theorem 4.1 is stronger and easily obtained as a
consequence of Theorem 4.1.

THEOREM 4.2. Let G be a countable amenable group, let X be a G-SFT, and let Y C X
be any subsystem such that h(Y) < h(X). Then

{h(Z):YCZ C XandZ is an SFT}
is dense in [h(Y), h(X)].

Proof. We prove the density directly. Suppose (a, b) C [h(Y), h(X)] for positive reals
a <b, and let € < (b —a)/2. By Theorem 4.1, there exists an SFT Zp C X such that
a < h(Zy) < a + ¢. Note that these inequalities give h(Y) < h(Zp). Consider the subshift
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Y U Zy C X, which has entropy
h(Y U Zy) = max(h(Y), h(Zp)) = h(Zp) € (a,a + ¢).

Because X is an SFT and Y U Zy C X, by Theorem 2.12, there is an SFT Z such that
YUZyCZ C Xand h(Y U Zy) < h(Z) < h(Y U Zg) + &. Thus we have

a<h(YUZy) <h(Z)y<h(YUZy +e<a+2e<b.

Since (a, b) was arbitrary, the proof is complete. O

5. Sofic shifts

5.1. An extension result for sofic shifts. To address the case of sofic shifts, we seek to
leverage our results on SFTs. In particular, given a sofic shift W, we would like an SFT X
such that W is a factor of X and such that the maximal entropy drop across the factor map
is very small. The following theorem guarantees the existence of such SFTs.

THEOREM 5.1. Let W C Ag;v be a sofic shift. For every ¢ > 0, there exists an SFT X and
a one-block code ¢ : X — W such that the maximal entropy gap of ¢ satisfies H($) < .

Proof. Since W is sofic, there exists an SFT X C Ag and a factor map ¢ : X — W.
Without loss of generality, we assume that:

(i) ¢ is a one-block code, witnessed by the function ® : Ay — Aw; and

(i) Ay and Ay are disjoint.

We abbreviate Axyw = Ax U Aw. Let ¢ > 0 and select § > 0 such that

48 +8(1 + ) log |Ax| < &/2.

Let K C G be a large finite subset that specifies X as an SFT. The set K is fixed for the
remainder of this proof, and thus we shall denote 0 x-1 ' by 0F and intyg g1 F by int F/
for any finite set F C G. By Theorem 3.3, there exists a finite set of finite shapes S such
that the following conditions are met.

(i) Each shape S € S is (KK ™!, n)-invariant, where > 0 is a constant such that

n KK~ <8. By Lemma 2.1, this implies |3 S| < §|S| foreach S € S.

(i) KK 'c Sand|S|> 8 !foreachS e S.
(iii) There is a point fo € £ (S) such that 2(O(zg)) = 0.

Recall by Proposition 3.1 that X (S) is an SFT. By Theorem 2.12, there is an SFT T
such that O(19) € T C T£(S) and h(T) < h(O(1g)) + 6. Consequently, each pointt € T
is an encoding of an exact tiling 7; of G over S (possibly distinct from the original tiling
To), with tiling system entropy

h(T;) = h(O@1)) < h(T) < h(O(ty)) + 8 = 0 + 6.

Because X and T are SFTs, we have that X x 7 C (Ax x £(S))Y is also an SFT.
Lett € T be arbitrary and recall that 7; is a partition of G. Thus, for each g € G, there
is a unique tile T € 7; such that g € t. We define the notation 7;(g) by setting 7;(g) = 7.
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Next we define a map ¢, : X — Agw by the following rule: for each g € G and x € X,

by, = 178 if g € 97,(8),
T T | d(xy) if g € int Ti(g).

This map is well defined, as T = d7 U int 7. The map ¢, applies the one-block code ¢ to
‘most’ of a point x, by relabeling the interiors of each tile t € 7T;.

We now define a sliding block code ¢ : X x T — (Axw x Z(S))¢ by applying the
map(s) ¢, fiber-wise: for each point (x,¢) € X x T, let

p(x, 1) = (¢ (x), 7).

It is straightforward to check that ¢ is indeed a sliding block code (Definition 2.6). For the
theorem, the desired shift X is identified with the range of this map. Let

X =¢(X xT) C (Axw x Z(S)°.

See Figure 3 for an illustration of the construction. It remains to show that there is a
one-block code q~5 ‘X — W, that the shift X is an SFT, and that ’H(qg) <e&.

First, let us show that X factors onto W. The factor map is induced by the function
@& : Axyw — Ayw, which is an extension of @, defined by the following rule: d(@) = aif
a e Ay and (o) = ®(@) if @ € Ax. Let ¢ : X — AS be given by

¢(F, 1), = D(¥g) forall g € G and forall (%,1) € X.

It is clear that ¢ is a one-block code. Let us now show that ¢(X) = W. Let x € X and
t € T, in which case (¢;(x), 1) € X is an arbitrary point. The effect of applying the map
¢; to x is to apply the one-block code ¢ to ‘most’ of x. The map $ then ‘completes’ the
relabeling, via the extended function ®. In fact, we have that </3(¢, x),t) =¢(x) € W,and
hence ¢(X) C W. For the reverse inclusion, let w € W. Since ¢ : X — W is onto, there
exists a point x € X such that ¢(x) = w. Choose ¢ € T arbitrarily; then (¢;(x), t) € X
and q§(¢>, (x), 1) = ¢ (x) = w. We conclude that q; X > Wisa genuine factor map (and
a one-block code).

Let us now show that X is an SFT. We repeat that the shift X can be written in the
following instructive form:

X ={(¢(x),1):x € Xandt € T} C (Axw x (S)°.

To show that X is an SFT, we will construct an SFT X; C (Axw x £(S))€ and then prove

that X = f(]. Recall that K C G specifies X as an SFT. Let K7 C G be a finite subset

such that P(Kr, T) specifies T. We define X, to be the set of points (X, 1) € (Axw x

(S))C that satisfy the following local rules.

(R1) Any pattern of shape K7 that occurs in ¢ must belong to P(K7, T), and any pattern
of shape K that occurs in X and belongs to .A§ must also belong to P(K, X) (recall
PK,X) C A§W = (Ax U Aw)X in general). Note by Definition 2.10 that this
condition is shift-invariant.
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FIGURE 3. A hypothetical point x € X with a tiling ¢+ € T overlayed; the partially transformed point ¢, (x)
is pictured, which is labeled with symbols from both X and W; finally, the wholly transformed image point
¢(x) € W is reached.

(R1) For any shape S € S and any ¢ € G, if ¢ satisfies (ct); = (S, s) for each s € S,
then there exists b € P(S, X) such that (6°x)y; = by, € Ax for all s € S and
(0°X)y = ®(bs) € Ay forall s € int S.

As these are local rules, they define an SFT; call it X; C (Axw x =(S))°. Moreover,

it is easily checked that any point (¢;(x),t) € X satisfies these rules everywhere (by

construction of X ), and so we have XcX 1.

For the reverse inclusion, consider a point (X, t) € X 1. From (R1), it follows thatt € T,
as T is an SFT specified by Kr. Therefore, ¢ encodes an exact tiling 7; of G over S with
h(T;) < 8. Let (t,), enumerate the tiles of 7;, and for each n let t, = S,c, for some
S, € Sand ¢, € G. Recall {7, : n € N} is a partition of G.

Let n € N, and consider ¢ = ¢;, and S = §,. Observe that because ¢ encodes the tiling
T;, we have (c¢t); = (S, s) for each s € S. Then by (R2), there exists a block b = b,, €
P(S, X) such that (6¢X); = b, forall s € 0S5 and (6€x); = ®(b,) forall s € int S.
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Define a point x € Ag by setting x(t,) = b, for each n € N. We claim that x is an
allowed point of X and that ¢,(x) = x. Toward this, let g € G be arbitrary and consider
the translate K g (recall that K specifies X as an SFT).

If Kg intersects the interior of any tile 7, = S,c,, then Kg C 1, by Lemma 2.2. In
this case, the pattern (c8x)(K) is a subpattern of b, and must therefore be allowed in X
as b, € P(S,, X). The alternative is that K g is disjoint from the interior of every tile, in
which case Kg C |, 97,. By (R2), we also have X, € Ax forevery g € | J, int 7,,. In this
case, we have (68x)(K) = (08x)(K), which is again allowed in X by (R1).

In either case, we have that (68x)(K) is allowed in X for any g € G and hence
x € X. Then by the definition of ¢;, we see that ¢;(x) = x. Thus, we have found a point
(x,1) € X x T such that ¢(x, ) = (¢;(x), t) = (x, t) and hence (x, t) € X. We conclude
that X = X 1 and therefore X is an SFT.

Finally, let us show that 7(¢) < &. Toward this end, let X’ C X be any subsystem of X
and let W' = ¢(X’) C W. We will show that A(X") — h(W') < &/2.

Let FF C G be a finite subset such that the following conditions are met.

(F1) F is (UU™!, ®)-invariant, where U = (JS and ¢ > 0 is a constant such that
DU UU™Y| < 8 (recall § was selected at the beginning of this proof). Note this
implies that F' may be well approximated by tiles from any exact tiling of G over S,
in the sense of Lemma 3.4.

(F2) F is large enough to §-approximate (Definition 2.15) the entropy of the shifts X’,
W', and T (recall that h(T) < §, in which case h(F, T) < 26).

Such a set exists by Proposition 2.10. This set is fixed for the remainder of this proof. Recall

that q~5 is a one-block code, and therefore there is a well-defined map @ F:P(F, X’ ) —

P(F, W) which takes a pattern p € P(F, X') and applies the one-block code to p (at each

element of F).

Recall also that a pattern p € P(F, X') is of the form p = (¢:(x), t)(F) for some points
x € X and t € T. The point # encodes an exact tiling 7; of G over S. For each tile t € Ty,
the definition of ¢, implies that

¢:(x)(nt7) € A}y and ¢ (x)(37) € Ay. (5.1

Let g = ®r(p) € P(F, W’). Recall that every element g € F belongs to a unique tile
T = T;(g) € T/ (F), where T, (F) C 7T; is the outer approximation of F by the tiling 7;
(Definition 3.4). By equation (5.1), we have that
- ok [P ifgedTie),
qg=q>F<p>g=<I><p§‘>={ A
Pe if g € int 7;(g).
In particular, we have g, = pf whenever g belongs to the set

FD(LTJintr),

where the union is taken over all 7 € 7;X (F).
In light of these observations, we are ready to estimate |P(F, X’)| in terms of
|P(F, W)|. We first use ®f to split over P(F, W) and then we split again over all
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possible T-layers. Indeed, we have

IP(F, XN =) lped(q:p" =1}, (5.2)
q t

where the sums are taken over all patterns ¢ € P(F, W’) and ¢t € P(F, T). Choose and
fix patterns ¢ and 1. If p € P(F, X’) is a pattern such that 5 (p) = ¢ and p” =1, then
the observations above imply that p is uniquely determined by

p’?(Fﬁ(LtJBO)eA*,

where the union is taken over all tiles T € 7, (F). Moreover, our choice of S and the
property (F1) of F together yield that

Uar U‘L’

T T

<8 = 8|F)| < 8(1 +8)|F|.

Therefore, there are at most | Ay [*I+OIF] patterns p such that &p(p) =g and pT =1.
From this and equation (5.2), we have

[P(F, X)| < [P(F, W))| - [P(F, T)| - | Ax 09I,
By taking logs and dividing through by | F'|, we obtain the following:
h(X') <h(F,X)+3$
< (W(F, W)+ h(F,T)+8(1+38)log |Ax|) +
< (h(W')+8)+ (28) + (1 4+ 8) log | Ax| + 8

= h(W') + 45 + 8(1 + 8) log | Ax]|
<h(W') +¢/2,

where we have used property (F2) of the set F, the above inequality, property (F2) again,
and our choice of 8. Since X’ C X was arbitrary, we have that

H(P) = sup (h(X') —h(@(X)) <¢/2 <e,
X'cX

which completes the proof. O

5.2. Subsystem entropies for sofic shifts. Here we present our main result concerning
subsystem entropies for sofic shifts. The proof follows easily by combining our extension
result (Theorem 5.1) with our result for SFTs (Theorem 4.2).

THEOREM 5.2. Let G be a countable amenable group, let W be a sofic G-shift, and let
V C W be any subsystem such that h(V) < h(W). Then

{h(U):V CcU C WandU is sofic}

is dense in [h(V), h(W)].
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Proof. We prove the density directly. Let (a, b) C [h(V), h(W)] for some real numbers
a<b.Llete <(b—a)/2 <h(W)—h(V).By Theorem 5.1, there exists an SFT X and a
factor map ¢ : X — W such that H(¢) < .

Consider the preimage Y = d)_l(V) C X, which is a subshift. Note that ¢p(Y) =V
because ¢ is surjective, and hence ¢|y : ¥ — V is a factor map. We then have that

R(Y) < h(V) +H(@) < h(V) + & < h(W) < h(X).

Note also thatb < h(W) < h(X) and thata > h(V) > h(Y) — &, which together yield that
(a+¢€,b) C [h(Y), h(X)]. By Theorem 4.2, there exists an SFT ZsuchthatY C Z C X
and h(Z) € (a + ¢€,a + 2¢) C (a, b). It follows that U = ¢ (Z) is a sofic shift for which
VcUcCWandh(U) <h(Z) < h(U) + ¢. Then we have

a<h(Z)y—e<h(U)<h(Z) <a+2 <b.
Thus A(U) € (a, b), which completes the proof. O]

If one selects V = & for the above theorem, then one recovers the statement that the
entropies of the sofic subsystems of W are dense in [0, 2(W)]. Next, we present our result
concerning the entropies of arbitrary subsystems of sofic shifts.

COROLLARY 5.3. Let W be a sofic shift. For every non-negative real r < h(W), there
exists a subsystem R C W for which h(R) = r.

Proof. If h(W) =0, then r =0, in which case one may simply select R = W. If
h(W) > 0, then let Wy = W and let (¢,), be a sequence of positive real numbers
converging to zero. We have that Wy is sofic and r < h(Wj), and without loss of generality,
we assume that h(Wy) < r + &9.

Inductively construct a descending sequence of sofic shifts as follows. If W,, C W is a
sofic shift such that r < h(W,,) < r + &,, then by Theorem 5.2, there exists a sofic shift
Wus1 C W, for whichr < h(W,41) <r + ep41.

Then R =(), W, C W is a subshift such that h(R) =lim, h(W,) =r by Pro-
position 2.11. O

6. A counterexample

Theorem 5.2 implies that the entropies of the sofic subsystems of a sofic shift space W are
dense in [0, #(W)]. One may wonder if this can be somehow ‘sharpened’; that is, one may
wonder whether

{h(W') : W c W and W’ is an SFT}

is dense in [0, #(W)]. However, this statement is nowhere close to true in general, as we
illustrate in this section by counterexample. This example is an adaptation of a construction
of Boyle, Pavlov, and Schraudner [5].

PROPOSITION 6.1. There exists a sofic Z>-shift with positive entropy whose only SFT
subsystem is a singleton.
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Proof. We first construct a certain point in {0, 1} as the limit of a sequence of finite
words, then consider the subshift it generates. Let 6 = 0.1 and let (7},), be the sequence of
natural numbers given by

T,=2n-2"-8"141
for each n. Let w! = 010 € {0, l}3 and for each n, define the word
Wt =ww L ww" 07107, (6.1)

where the w” term is repeated exactly T,, times. The limit word w*™ € {0, 1}N0 is an infinite

one-sided sequence. Define a two-sided sequence x* € {0, 1}Z by X = wlcﬁ foreachi € Z.

Let X = O(x*) C {0, 1}% be the subshift generated by x*. We claim that X exhibits the

following three properties.

(P1) X is effective, meaning that there exists a finite algorithm which enumerates a set
of words F C {0, 1}* such that X = R({0, 1}%, F).

(P2) There exists a point x € X such that

i Hk € [=n,n] : x¢x = 1}]
1m sup >
n—00 2n + 1

0.1.

(P3) Foreach x € X, either x = 0% or x contains the word 0" 10" for every n.

For (P1), let N be arbitrary. Note that because X = O(x*), any word of length N
occurring in any point x € X is also a word occurring in x*. By the recursive definition
in equation (6.1) and the fact that the sequence {7}, }7° | is recursive, there is an algorithm
which, upon input N, prints all the words of length N that do not appear as subwords of x*.
The shift X is therefore effective.

For (P2), we argue that x* satisfies the condition. For each n, let L, be the length of the

word w". Note that by the recurrence in equation (6.1), we have

Lyy1=T,L,+2n+1 foralln.

For each n, let f;, be the frequency of 1s in w”", given by

i w! = 1))
=L
Observe that f, < 1foreachnand f; = % It follows from the recurrence in equation (6.1)
that
T L+ 2n+ 1

for each n. This implies that

SaTuLy + fn2Cn+1) — fuT,L, — 1
fn - fn+1 =
T.L,+2n+1
- 12,+1)—1
= —Tn

https://doi.org/10.1017/etds.2022.57 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.57

Subsystem entropies of SFTs and sofic shifts 2911

in which case f, — fu+1 < 2n/T, < §/2" for each n. Hence, we have that

f—fhi=(h—R+2— )+ + (a1 — f0)
) )

8
<§+Z+"'+F

<34

in which case % — & < f for each n. By the recurrence in equation (6.1), we therefore
have that
Itk € [=n,n]: x; =1}

1
lim sup > =
n—00 2n+1 3

and the subsequence along (L), is a witness.

For (P3), let n be fixed. First, observe that the infinite sequence w° may be decomposed
as a concatenation of blocks, where each block is either the word w" or 0™ 10" for some
m > n. Moreover, each w” begins with 0 and ends with 0”. This implies that 1s belonging
to distinct blocks (of the form w” or 010 for m > n) in the decomposition of w™>
mentioned above are separated by at least n 4 1 appearances of the symbol 0. Therefore, if
for any k < n we have that 10X 1 appears anywhere in w, then it must appear as a subword
of a single block (rather than overlapping two distinct blocks), and that block must be w”.

Next, let x € X be arbitrary. If the symbol 1 appears in x at most one time, then (P3)
trivially holds. Otherwise, assume that 1051 appears somewhere in x for some k > 1.
Without loss of generality, suppose xo = xx4+1 = 1 and x; = O fori € [1, k]. Now consider
the subword w = x([—L,, L,]) for any n such thatk < L,,. Because X = 5(x*), the word
w must be a subword of x*. Then, either w is a subword of x*([—-2L,,,2L,]), or w is a
subword of w® or a mirror reflection of one. In the first case, the definitions of x* and w™>
imply that @ contains the word w" or its mirror. In the latter two cases, the observation of
the previous paragraph implies that w must contain w” or its mirror. In any case, 0" 10" is
a subword of x. As n can be made arbitrarily large, this proves (P3).

We now use the shift X to construct the Z>-shift which is desired for the theorem. For
each point x € X, let x” € {0, 1}Zz denote the Z>-labeling given by

(XZ)(i,j) = Xx;

for each (i, j) € Z?. That is, x is a Z>-labeling such that the symbols along each column
are constant, and each row is equal to x itself. We shall also denote

X2 =(xZ:x e Xx)c o, )7,

It is a theorem of Aubrun and Sablik [1] that if X is effective, then X Z is sofic.

Next, consider the alphabet {0, 1, 1'}, where we have artificially created two indepen-
dent 1 symbols. Let 7 : {0, 1, I’ }Zz — {0, 1}Zz be the one-block code which collapses 1
and . LetY = 7~ 1(X%) c {0, 1, 1/}22. The shift ¥ is a copy of the shift X7, in which the
1 symbols of every point have been replaced either by 1 or 1’ in every possible combination.

We claim that the shift Y is the desired subshift for the theorem. Specifically, we claim
that Y is sofic, that Y has positive entropy, and that the only non-empty SFT subsystem of
Y is the singleton {OZZ}.
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To prove that Y is sofic, we construct an SFT S’ and a factor map ¢’ : §" — Y to witness
the soficity of Y. Since X is sofic, there is an SFT § C AZ” and a factor map¢ : S — XZ.
Without loss of generality, assume that ¢ is a one-block code induced by the function
D:A—{0,1}.

Define a new finite alphabet A x {1, 1} and a one-block code ¢’ induced by the function
@' : Ax{1,1'} = {0, 1, 1’} which is given by

0 if ®(a)=0,

®'(a, b) =
b if da) =1,

for each (a, b) € A x {1, 1'}.

Let ' = S x {1, 1/}22, which we regard as a subshift of (A x {1, 1/})22. Note that S’
is an SFT, because both S and {1, 1’ }Z2 (the full Z?-shift on two symbols) are SFTs. A
point 5" € 8’ is of the form s’ = (s, t), where s is a point of S and ¢ € {1, 1’}Zz is an
arbitrary 2-coloring of 72. The reader may easily check that (7 o ¢')(s, 1) = ¢(s) € X zZ
from which it follows that ¢/'(S") = 7~ !(X%) =Y. Then ¢' : § — Y is a factor map.
Since S’ is an SFT, we conclude that Y is sofic.

Next, we will show that #(Y) > 0. From property (P2), the point x* € X exhibits s in
more than 10% of the positions in each of infinitely many symmetric intervals, say of the
form [—¢,, £,] for an increasing sequence of natural numbers (¢,),. Therefore, the point
(x*)Z exhibits 1s in more than 10% of the positions in each square F,, = [—¢,, £,]*. Each
1 in the pattern (x*)Z(F,) may be replaced by 1 or 1’ independently to yield an allowed
pattern of Y, which implies that

|P(Fy, Y)| > 20150 for all n.

As (F,), is a Fglner sequence for Z2, we then have 4(Y) > 0.1 log 2 > 0.

It remains to show that the only non-empty SFT subsystem of Y is the singleton {OZZ}.
Suppose to the contrary that Z C Y is an SFT subsystem of Y which contains a non-zero
point. Since Z is an SFT, we may find a constant k € N such that the allowed patterns of Z
are specified by the shape K = [0, k)? C Z.

Let z € Z be a point different from 0Zz and note 7 (z) = xZ e XZ for some x € X with
x # 0%, By property (P1), the string 0" 10" appears in x for every n. Let n > k be fixed.
Suppose without loss of generality that 0" 10" appears centered at the origin of x (with
xo = landx; = 0for 0 < |i| < n). Thus we have z(99) = 1 or 1’. In fact, by the definition
of Y, we have z(g, j) € {1, '} for every j € Z.

Consider the i = 0 column of the point z. Starting with each index ¢ € Z and looking
up, there is a corresponding vertically oriented word w® € {1, 1'}" given by a)ﬁ = 2(0,t+))
for each j € [0, n). By the pigeonhole principle, there must exist a word ¢ € {1, 1’}" such
that ¢ = ! for infinitely many choices of £. That is, for infinitely many choices of £, we
have z(o¢+j) = ¢;j for each j € [0, n).

Let £1 < £, be two such indices where a repetition occurs, with £, — £; > n. That is,
we have z(o¢,+j) = 2(0,6,+j) = ¢j for every j € [0, n). Now consider the rectangle r =
z([—n, n] x [£1, £2)). Tile Z* with infinitely many translated copies of r to obtain a new
point 7’ € {0, 1, 1’}22. Figure 4 illustrates the construction.
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1110111 110101

1rio1rr 110101

1110111 110101

110111 110101

rrio1rr 110101

11101171 110101

1110111 110101

1110111 ooy

1110111 rroroy

1110111 110101

11101171 1101071

1110111 110101

1110111 110101

1110111 110101

1110111 110101

1110111 110101

1110111 110101

1110111 110101

111011r 110101

111011y 11010
(2) A hypothetical point z is illustrated (b) The rectangle r is used to tile Z> and
around [-n,n] x [{1,£;). The repeated thereby construct z’. Every k X k block
vertical word ¢ is indicated by the dot- which occurs in z” also occurs in z.
ted box, and the rectangle r by the solid

box.

FIGURE 4. An illustration of the construction of the contradictory point z’ in a hypothetical case where n = 3
and k = 2.

Every pattern of shape K = [0, k)> which occurs in z’ is a pattern which occurs in z
(including the pattern of all zeroes), and hence they are all allowed in Z. Because Z is an
SFT specified by K, it then follows that 7’ € Z. Because Z C Y = P (X Z), there must
exist a point x’ € X such that 7(z') = (x’)%2. We obtain a contradiction, as the point x’
cannot satisfy the property (P3) of X. For instance, the word 0”103 cannot appear in x’
(as each row of 7’ is periodic in the horizontal direction with period 2n + 1 < 3n). This
demonstrates that if Z is an SFT, then it contains no non-zero point. Therefore, the only
non-empty SFT subsystem of Y is {OZZ}. U
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