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Summary

Maximum likelihood estimation methods with an individual animal model were used to analyse a
bi-directional selection experiment, with control, for cannon bone length in Scottish Blackface
sheep. A method is described for partitioning the likelihood to allow within- and between-line
estimates of genetic variance. It is concluded that both sources of information made substantial
contributions to the precision of the base population heritability estimate. The implications for
different experimental designs and varying heritability are discussed.

1. Introduction

The heritability of quantitative traits has been
estimated in both laboratory and farm animals from
comparisons between relatives in unselected popula-
tions and from between-line divergence in selected
populations. The resultant estimates, referred to as
base population heritability and realized heritability
respectively, have often been compared to evaluate
the efficacy of quantitative genetic theory. Sheridan
(1988) reviewed experiments in all animal species in
which base population and realized heritability esti-
mates were available and concluded that there was a
lack of strong agreement between the base population
and realized genetic parameters, although James
(1990) suggested that a major cause of the discrepancy
appeared to be sampling error.

Simple comparisons of base population and realized
heritability estimates are naive even when sampling
variances have been estimated appropriately, since the
two estimates are not necessarily equivalent in
expectation. Firstly, the realized heritability is popula-
tion-specific in that it will be an estimate of genetic
variance that is reduced from the base population
value by the combined effects of linkage disequilib-
rium, structure of the finite breeding population and
inbreeding. Secondly, a base population heritability is
strictly only relevant to the population before selection
whereas the realized heritability is usually obtained
after a number of generations of selection. Thirdly,
estimation of the base population heritability can use
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a variety of genetic relationships whilst realized
heritability is based on mid-parent offspring regres-
sion. Only if the correct genetic model is fitted can one
expect agreement between the estimates of heritability.

Hill (1972) has extensively discussed the appropriate
analysis of selection experiments and used divergence
between the selected lines and control in terms of
selection differential and response to estimate realized
heritability. Atkins & Thompson (1986) followed a
similar approach and also estimated base population
heritability from within the control line. An alternative
approach proposed by Sorensen & Kennedy (1984)
and Blair & Pollak (1984) would have been to use
across-generation relationships in the selected line(s)
and a mixed model analysis to separate genetic and
environmental trends without recourse to the control
line or assumptions of symmetric response by using
measures of divergence between the lines. Although
the genetic trend is dependent on an assumed base
population heritability (Blair & Pollak, 1984), these
authors argue that such a value would be available
from the control line and/or literature values.

These methods are not alternatives but comp-
lementary in the sense that they rely on different
sources of information. The realized heritability
method of analysis uses information between selected
lines to describe responses while the mixed model
approach relies on information within the selected
lines. Both approaches use the within control line
information as a source of' unbiased' base population
parameters, The more relevant question then is not
which is the better method but how both methods of
analysis can be combined to use the available
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information most efficiently. Given the relative value
of the various information sources, questions of
efficiency of design for parameter estimation may then
be answered.

Maximum likelihood estimation with an individual
animal model has now become feasible for large data
sets with derivative-free procedures (Graser, Smith &
Tier, 1987) and efficient computing strategies (Meyer,
1989). This method is attractive in that for a selection
experiment under an infinitesimal model it will be
estimating the same heritability as that estimated from
within unselected control lines (Sorensen & Kennedy,
1984). However, these methods do not lend themselves
to partitioning sources of information. This paper has
several aims. A method is described for partitioning
the likelihood to allow within and between line
estimates of genetic variation. It is shown how the
information available within unselected lines can be
quantified by using spectral decompositions. These
methods are applied to a selection experiment de-
scribed by Atkins & Thompson (1986). In particular,
the separation of the total amount of variation into its
component sources is attempted.

2. Materials and methods

(i) Selection lines

The experimental design was described in detail by
Atkins & Thompson (1986). Briefly, a flock of 1600
ewes produced lambs in 1954 and 1955 to provide an
initial population. Thereafter, the derived lines were a
control line, in which selection was at random, and
two lines selected for either high or low values of an
index of cannon-bone length, adjusted for body
weight, measured at 8 weeks of age. During the period
1956 to 1974 inclusive, the three flocks were main-
tained at approximately 270 ewes per year mated to 10
rams. Ewes were retained in the flocks for five annual
matings (2 to 6 years of age) while rams were used for
one mating only (1 year of age) and replaced. Selected
proportions of young animals were approximately
10% for males and 70% for females.

(ii) Estimation of heritability for line combinations

Separate data and pedigree sets were formed for each
of the three lines. The base population animals
required for each line and the necessary genetic
connections between the lines within the base popu-
lation were maintained in a separate data set. Analyses
were then performed for the lines separately and in
combination to estimate base population heritability.
The line combinations were:

LONG + CONTROL (H + C)

CONTROL + SHORT (C + L)

LONG + CONTROL + SHORT (H + C + L)

Each of the line combinations was analysed for
varying numbers of years, 6, 11, 16 and 21 years
(representing 4, 9, 14 and 19 years of selection
respectively).

Comprehensive analyses (Atkins & Thompson,
1986) had suggested that an appropriate model for the
selected trait, cannon-bone length adjusted for body
weight, was:

yljk = year, + dam aged + animalk + e

LONG
SHORT

CONTROL

LONG+SHORT

(H)
(L)

(C)
(H + L)

eijk,
with the animal effects having variance A<J\ where A
is the numerator relationship matrix (Henderson,
1976).

Likelihoods were calculated using the algorithm
described by Graser et al. (1987) for different values of
heritability. Within each line, animals were grouped as
sires and the remaining animals into families using
only female relationships. This allowed the likelihood
to be calculated recursively by correcting, in turn, for
each of the families, and then sires within each line,
and then for base animals, year sand dam age.

For each year-line combination, likelihood values
for seven values of heritability around the maximum
likelihood estimate were used to approximate the
likelihood by a quadratic function in heritability using
least squares. The quadratic coefficient was a measure
of information of the heritability estimate, and the
inverse of this coefficient was the estimated sampling
variance of the estimate.

(iii) Comparisons between lines

The analysis of high (H) and low (L) lines forms a
combined estimate of heritability from between and
within lines, and it is of interest to develop a method
for comparing the separate estimates. In most com-
parative studies one can develop extended models to
allow estimation of all relevant parameters, but, in
this case, it is difficult to reparameterize the individual
animal model in terms of heritability within and
between lines. However, a sequence of analyses can be
constructed that does allow the question to be
answered. From analysis of H, L and H + L lines, then
the difference in likelihoods (LOHh) between the
combined lines and within lines can be constructed.
By minimizing LDHL as a function of heritability, one
can get, in effect, a between line estimate of heritability.
The LDHL in a sense measures the fixed effect X line
interaction and the heritability estimate from Z-DHL

will make the estimates of effects between lines as
consistent as possible, taking account of the variance
structure.

Informally, there are phenotypic means of yH and
_yL in H and L lines. We expect that estimates of
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environmental means in each year, a, to be approxi-
mately linear in h2 and to be related to phenotypic
means by equations of the form

2) h2

withvarQ;H)=KH,

with var (yL) = Vh.

(1)

(2)

The terms st(h
2) h2 can be thought of as responses to

selection and s((h
2) as a selection differential. These

rates of change in a are approximate. These rates of
change or approximate selection differentials, ^(h2)
where i = H, L, can be approximated by:

where a^h2) is the estimate of effects in line i using
heritability h2.

An estimate of heritability from (1) and (2) is:

h2 = RS 1 ,

with

and

If K"1 = Vl\ then

and

This is the form of a weighted regression estimate of
generation differences (yu—yh) on differences in
selection differentials similar to that used in the
estimation of realized heritability.

(iv) Information on heritability within unselected
lines

In order to give some benchmark to the amount of
information on heritability to be obtained from data,
calculations were carried out to quantify the in-
formation available in different pedigree structures.
Using the results of Patterson & Thompson (1971),
the asymptotic information matrix of estimates of v\
and cr2 for a pedigree with relationship matrix A can
be shown to be:

B C

c D
(3)

with b =

The matrix P is an orthogonal matrix and the rows of
P are eigenvectors of A and A is a diagonal matrix
with ith diagonal element At so that A4 are eigenvalues
of A. P is a transformation that produces n in-
dependent sums of squares and the maximum like-
lihood technique can be thought of as weighted least
squares using independent quadratic forms as observa-
tions, and expected values functions of A,, rr\ and o-2,
and weights inversely proportional to 2/(o-2 + A(a-2)2.

A first approximation to information on the
heritability estimate, h2 = a-2/(o-2 + er2), is:

[(1 - h2)2 B - 2h2(l - h2) C + h4D]/<r2
(4)

with <r2 the phenotypic variance (= cr\ 4- cr2).
Several simple designs were considered with parents

randomly selected to produce animals in the next
generation. In these designs, each individual has n
half-sib offspring and one of these offspring is chosen
to have n offspring, the process being repeated for g
generations to give (gn + 1) animals. The data can be
summarized as:

n vi2 0 = g) y g i observation of the

A = PAP'.

parent in generation g and yg2 the mean of the other
animals in generation g and s is the sum of squares
within generations of non-parents, with expected
mean square (cr2 + 0-5cr2) and g(n —2) degrees of
freedom.

Variance of yx and ygl = a\ + cr2

Variance of yg2 = cr2 + cr2/n

Covariance between yx and ygl = (f)*"1 cr2

Covariance between ygl and yg2 = (f) <r\

Covariance between ygl and yhl = (\Yh~g) rr\

h > g ( i = 1,2)

Covariance between yg2 and yhi = (i)<h+s+2) a\

h > g ( i = l,2).

Therefore A and P for y can be calculated and hence
(4) evaluated. Patterson & Thompson (1971) show
that similar formulae to (3) hold when fixed effects are
fitted. The information on heritability was estimated
for this balanced design for variable numbers of
offspring and generations, and across a range of
heritabilities.

The approach was then extended to the unbalanced
design of the control line. Variances of heritability, for
a range of heritability values, were calculated for the
control line using pedigree information (a) on female
parent to offspring, (b) male parent to offspring and
(c) all relationships in the data.

3. Results

(i) Comparisons between lines

Estimates of heritability and standard errors for
combinations of lines for varying numbers of years
are presented in Table 1. The derivation of the
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Table 1. Summary of heritability estimates and standard errors for
various combinations of lines and year*

Flock

H
L
C
H + L
H + C
C + L
H + C + L
DHL
DCL
DHL

Year 6

0-640+ 0-060
0-578 + 0068
0-731+0-064
0-598 + 0037
0-649 + 0041
0-658 + 0-044
0-630 + 0033
0-366 + 0126
0-640 + 0129
0-565 + 0-067

Year 11

0-618 + 0-042
0-585 + 0-048
0-667 + 0-042
0-596 + 0024
0-621+0027
0-631+0030
0-615 + 0021
0-504 + 0069
0-622 + 0085
0-586 + 0036

Year 16

0-627 + 0-034
0-599 + 0039
0-683 + 0033
0-593 + 0019
0-634 + 0022
0-636 ±0023
0-641+0017
0-501+0058
0-574 + 0058
0-568 + 0028

Year 21

0-640 + 0-030
0-647 + 0032
0-695 + 0028
0-610 + 0016
0-648 + 0019
0-660 + 0020
0-631 ±0014
0-543 + 0-046
0-572 + 0053
0-569 + 0-024

* DXY indicates an estimate from the difference between the likelihood from
combined flocks X and Y with the likelihood within flocks X and Y.

Table 2. Total information [and information per individual] for various
combinations of lines and years. Information is expressed as the inverse
of the sampling variance*

Flock

H
L
C
H + L
H + C
C + L
H + C + L

DHL
DCL
DHL

Year 6

278 [0-30]
213 [0-22]
248 [0-25]
717 [0-38]
589 [0-31]
521 [0-27]
942 [0-33]

63
60

226

Year 11

569 [0-30]
425 [0-23]
578 [0-30]

1787 [0-47]
1360 [0-35]
1142 [0-30]
2293 [0-40]

214
139
794

Year 16

852 [0-30]
671 [0-23]
925 [0-32]

2824 [0-50]
2074 [0-36]
1898 [0-34]
3657 [0-43]

297
302

1301

Year 21

1144 [0-27]
990 [0-25]

1249 [0-32]
3853 [0-49]
2865 [0-36]
2591 [0-31]
4994 [0-43]

472
352

1719

* DXY indicates an estimate from the difference between the likelihood from
combined flocks X and Y with the likelihood within flocks X and Y.

standard errors (and total information as the inverse
of the sampling variance, Table 2) is shown in Fig. 1
for several line combinations at the end of the
experiment (year 21).

The heritability estimates were remarkably con-
sistent both other years and across lines (Table 1). The
Control line yielded estimates that were slightly but
consistently higher than the estimates from all other
line combinations. The derived estimates for the
between-line heritabilities tended to be lower than the
within-line estimates, with the difference approaching
significance by the end of the experiment.

The information on heritability increased approxi-
mately linearly with time, since the information per
individual hardly varied across years for any line
combination except for a consistently lower value up
to Year 6 (Table 2). The lower value in the initial years
reflected the proportionally greater contribution of
base population animals. The between-flock contrasts
in Table 2 show that by the end of the experiment,
High versus Low contributed 1719 of the 4994 total
information, or that within-line information was
approximately two-thirds as valuable as the total

response. The comparison of High and Low was
almost four times as valuable as the comparison
between either selected line with the Control, as might
be expected since the selection differentials in the first
case were twice those in the second case (Table 2).

As an illustration of the way the between line
information is used, Table 3 shows the year estimates
for the first 11 years of the three lines for three values
of heritability near to the estimates for these data. In
the High line, as heritability increases, the predicted
genetic merit increases and so the year effects, which
are corrected for the genetic merit, decline. The
decline becomes larger with time due to the continuing
selection. In the Low line, the reverse happens with
the year effects increasing with time. There is relatively
little change in the Control line as parents are selected
at random. Differences between the columns divided
by the heritability are a measure of the selection
differential and are given in Table 4. The selection
differential terms change linearly with time and, to a
first approximation, are independent of heritability.
The terms are approximately equal in magnitude for
the selected lines, showing symmetry between the
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-2 x log likelihood

0-57 0-59 0 61 0-63 0-65
Heritability

0-67 0-69 0-71

Fig. 1. Relationship between ( — 2xlog likelihood) and
heritability around the point of maximum likelihood for
the High line ( • ) , Low line (O), and the High + Low
lines (O), using all information up to year 21.

lines, and larger than in the Control line. For
comparative purposes, Table 4 also shows the cumu-
lative selection differentials reported by Atkins &
Thompson (1986) for the High and Low lines. The
cumulative selection differentials, which are based
solely on phenotypic differences between selected and
unselected animals, were consistently greater in mag-
nitude than the weighted selection differentials calcu-
lated here.

The difference of likelihoods LDHL between lines H
and L takes a value of heritability to minimize
differences between fixed effects in the two lines taking
account of the variance-covariance structure of the
estimates. An example of the structure of the variance
matrix of the year estimates (at) is given in Table 5.
The variance increases with time and the covariance
(at, as; t > s) converges to a constant value as t
increases. The structure of this directly observed
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Table 4. Selection differentials for each selected line
as a deviation from the control line

Years

1
2
3
4
5
6
7
8
9

10
11

HIGH

WSD*

-0-3
-0-2

1-8
2-8
40
4-2
5-5
6-4
7-1
8-7
9-8

CSD|

00
00
1-8
3-6
5-2
5-3
6-7
8-4
8-9

10-3
11-5

LOW

WSD*

0-5
0-2

- 2 0
-2-2
-3-3
-3-6
-4-6
-6-5
-7-4
-8-5
-8-2

CSDf

00
00

-4 -4
-4 -4
-4-7
-5 -6
-7 -0
-9-2

-10-2
— 11-5
- 1 2 0

* WSD, Weighted selection differential estimated at h2 =
0-6 using Ah2 = 002 (see text).
t CSD, Cumulative selection differential as calculated by
Atkins & Thompson (1986).

Table 5. Variance-covariance matrix of year
estimates in the Control flock (heritability = 0-60)

Years 1 10 11

1 2,2 — — — — — — — — — —
2 8 38 — — — — — — — — —
3 12 10 27 — — — — — — — —
4 10 10 15 29 — — — — — — —
5 10 10 13 17 31 — — — — — —
6 10 10 13 15 19 31 — — — — —
7 10 10 13 15 17 20 35 — — — —
8 10 11 13 16 17 18 22 38 — — —
9 10 11 14 17 18 19 20 25 43 — —

10 10 10 13 16 19 19 20 30 28 45 —
11 9 10 13 15 19 19 21 27 25 30 46

matrix is similar to those developed by Hill (1972),
invoking assumed values for drift variance and
measurement error, for the variance of generation
means in selection experiments.

Table 3. Year estimates for each line for different heritability values

Years

1
2
3
4
5
6
7
8
9

10
11

HIGH

0-58

0-93
206
1-30
3-20
113
1-87
2-98
2-84
2-28
1-75
2-31

(h2)

0-60

0-94
2-07
1-26
315
106
1-79
2-87
2-71
214
1-58
212

0-62

0-94
2-07
1-23
309
0-98
1-70
2-76
2-58
200
1-40
1-93

LOW

0-58

1-50
2-55
206
3-61
1-64
303
3-26
3-22
2-78
2-60
2-35

(h2)

0-60

1-50
2-55
210
3-65
1-70
310
3-35
3-35
2-92
2-77
2-51

0-62

1-49
2-54
2-14
3-70
1-77
3-17
3-45
3-48
307
2-94
2-68

CONTROL

0-58

0-85
210
1-96
3-67
1-51
2-65
3-38
306
2-51
2-66
2-41

0-60

0-83
210
1-93
3-65
1-51
2-65
3-38
307
2-52
2-66
2-41

(h2)

0-62

0-83
209
1-92
3-64
1-52
2-64
3-37
307
2-53
2-66
2-42
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Table 6. Information per individual {expressed as the
inverse of the sampling variance) for maximum •
likelihood estimates of heritability (h2) for various h2,
family sizes (n) and generations (g)

g

1
1
1
1
1

2
2
2
2
2

4
4
4
4
4

n

2
3
5
9

17

2
3
5
9

17

2
3
5
9

17

Control line
Year 6

Female
Male

Year 21
Female
Male

h2 = 0-05

0182
0-221
0-278
0-362
0-476

0-239
0-275
0-331
0-412
0-515

0-280
0-318
0-365
0-439
0-532

0-251
0-503

0-335
0-542

h2 = 01

0-177
0-213
0-251
0-301
0-347

0-224
0-251
0-285
0-323
0-350

0-256
0-276
0-302
0-330
0-346

0-238
0-319

0-287
0-332

h2 = 0-4

0-170
0-181
0-182
0166
0134

0190
0-192
0-184
0161
0127

0-202
0198
0-184
0-158
0124

0-210
0118

0198
0114

h2 = 0-6

0184
0193
0190
0168
0131

0-203
0-204
0193
0167
0129

0-216
0-211
0195
0167
0128

0-232
0-124

0-214
0119

Table 7. Distribution of eigenvalues (familiogram)
for the Control line data at Years 6, 11, 16 and 21

Eigenvalue

< 015
015-0-35
0-35-0-55
0-55-0-75
0-75-1-0
1-0-1-5
1-5-2-0
2-0-3-0
3-0-4-0
4-0-6-0
6-0-8-0
8-0-10-0

100-140
140-180
180-220
220-260
>260

Proportion

Year 6

0036
0178
0-359
0091
0102
0095
0061
0043
0011
0006
0007
0003
0005
0004
—
—
—

Year 11

0044
0-215
0-374
0-092
0091
0062
0033
0040
0019
0011
0005
0004
0005
0002
0003
0-001
—

Year 16

0047
0-232
0-357
0101
0087
0064
0030
0033
0016
0012
0005
0004
0004
0003
0002
0001
0001

Year 21

0050
0-241
0-353
0101
0085
0062
0031
0030
0014
0013
0006
0004
0004
0002
0002
0002
0001

(ii) Information within unselected lines

As a benchmark to show how information varies with
different designs, the information per observation on
heritability for the simple, balanced pedigree structure
described earlier is given for different heritabilities,
family sizes and generations in Table 6. In practice
there are other branches in the pedigree, and many

links providing information are ignored. Pedigrees
using links between dams and offspring in species such
as sheep or pigs are modelled by small values of n,
larger family sizes are more appropriate for pedigrees
linked by sire and offspring. These results show the
gain from increasing generations in increasing the
information per observation of heritability, especially
at small n. In one sense, there are families of size
(gn—1) with unequal covariances between members.
For example, there are gn(n + l)/2 half sibs and gn
offspring pairs. Qualitatively, these results mimic
Robertson (1977) who considered estimation from
two generations.

The information on heritability shows that approxi-
mately twice as much information is given by dam-
linked families than by sire-linked families within the
Control line (Table 6). This is consistent with the
model calculations in Table 6 in that smaller families
are relatively more informative than larger family
sizes. The estimated information separately from male
and female families is not simply additive since the
dam linked families ignore links between males that
impose correlations between the families. For ex-
ample, at year 21 and heritability of 0-7, the total
information in the pedigree was 1249 (Table 2) while
the contributions from male and female families was
592 and 957 respectively. However, the information
from female families would still make a greater
contribution to the overall information than the
information from male families.

Distributions of eigenvalues are shown in Table 7
for the Control line in Years 6, 11, 16 and 21. These
distributions show the sizes of independent families
that would give the same information as the pedigree
and are called familiograms. There are a large
proportion of eigenvalues of 0-5 and 0-75 representing
comparisons between parents and offspring and
comparisons within half-sib families respectively.

3. Discussion

There have been few attempts to disentangle how
information from an individual animal model in-
fluences heritability estimates. Within an unselected
population, we have shown that the relative con-
tribution of information from male and female families
will depend on the size of the families, the number of
generations in the pedigree and the value of heri-
tability. For the specific situation of cannon-bone
length in sheep (heritability of 0-6-0-7), information
from female families was relatively more important
than that from male families. One other attempt to
disentangle information sources was the study of
Visscher & Thompson (1992) who did so by fitting a
model with male and female heritabilities. They
showed that in a British dairy cattle population,
approximately two-thirds of the total information on
heritability came from female relationships, most of
that being dam-daughter information.
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In a similar manner, information on heritability
arises from both between and within selected lines in
a selection experiment. The between-line information
for the divergence between the high and low selection
lines for cannon-bone length yielded a heritability
estimate of 0-569 with an estimated standard error of
±0024 (Tables 1 and 2). Atkins & Thompson (1986)
reported a realized heritability estimate from the
regression of divergent response on divergent selection
differential of 0-52. This value was adjusted, by
allowing for the expected reduction in genetic variance
arising from linkage disequilibrium, to the equivalent
of a base population estimate of heritability of
0-57 + 0026. The agreement in estimate and standard
error between the two different estimators was very
close, indicating the value of the methods proposed by
Hill (1972) to appropriately account for genetic drift
and the correlations that drift induces between annual
estimates of response.

The relative value of alternative designs for con-
tributing information to the estimate of heritability
can be determined from the information per individual
(Table 2). Over the whole experiment with two
divergent selection lines and a control line (H + C + L,
year 21), the information per individual was 0-43. If
the experiment had been conducted as a single flock
with no selection, the information per individual
would have been 0-32 (C, year 21). Alternatively,
restricting the design to the selected lines only (H + L,
year 21) would have resulted in information per
individual of 0-49. The proportional cost in infor-
mation from including the control line in the design
must be balanced against the need to test for symmetry
of estimates in both directions which, of course,
necessitates a control line.

In conclusion, both between-line and within-line
information in multi-generation selection experiments
designs can make substantial contributions to the
precision of an estimate of heritability. In the
experiment reported by Atkins & Thompson (1986),
between-line analysis of realized responses and within-
line analysis of the control line utilized about 60 % of
the available information. Alternatively, within-line
analysis of all lines separately would have utilized

about 65 % of the available information. This con-
tribution of within- and between-line information was
specific to this experiment. In selection experiments
with lower heritabilities and more effective selection
among females, the relative contribution of within-
line information would be less important.
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