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Abstract. We examine generalizations of R. Mane's results on the topological
dimension of spaces supporting an expansive homeomorphism to the case of
real-expansive flows. We show that a space supporting a real-expansive flow must
be finite dimensional, and a minimal real-expansive flow not exhibiting a type of
spiral behaviour must be one-dimensional. This latter class includes all known
examples and a slight generalization of Axiom A flows. These results are obtained
by introducing a new concept of stable and unstable sets for real flows, and examining
real-expansive flows in terms of these sets.

1. Introduction
In [5] R. Mane showed that minimal sets of expansive homeomorphisms are zero
dimensional thus proving that every minimal expansive homeomorphism is a sub-
shift. In [2] R. Bowen obtained the analogous result for minimal sets of Axiom A
flows. In this paper we introduce a new concept of stable and unstable sets for real
flows which enables us (using Mane's approach) to obtain Bowen's result without
using the machinery of Markov partitions, and to generalize it to certain other real
expansive flows. Mane also proved that every space supporting an expansive
homeomorphism must have finite topological dimension and we obtain the corres-
ponding result for real-expansive flows.

Throughout the paper (X, U) represents a real flow without fixed points on a
compact metric space X. d will denote a metric on X and the action of reR on
x 6 X is written xt. We shall assume that (X, U) is not trivial in the sense that it
consists merely of a finite number of orbits.

2. Stable and unstable sets for real flows
The obvious extension of the t-stable sets used by Mane for homeomorphisms in
[5] and by Bowen for Axiom A flows in [2] to general real flows would be (at JC)
{y; d(xt, yt)<e for all t >0}. However, the example given below shows that there
are flows such that, for any x, this set consists only of points of the form xt for t
sufficiently small (such points must always belong to the set) and there are no
asymptotic orbits. The definition of real expansiveness indicates that we could not
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expect this to be a useful idea of e-stable set in any case. These considerations
motivate the introduction of a concept of stable and unstable sets which allows
time delays.

(2.1) Definition. A real flow (X, U) is called real expansive [3] if it satisfies the
following condition.

For every e > 0 there is a 8 > 0 such that, if s is any continuous function (5: IR -» U)
satisfying 5(0) = 0, then for each xeX and y e AT with y£x(-e, e) there is teU
with d(xt, ys(t))>8.

(2.2) Example. We construct a minimal expansive real flow which has no positively
or negatively asymptotic orbits and which is not a finite number of orbits. Note
that this is very far removed from the case of Axiom A flows (see proposition 1.3
of [1]). The example is a suspension of a Sturmian minimal set and so is expansive
by theorem 6 of [3].

Let a < | be irrational and r the map r(x) = x +a (mod 1) from [0,1) onto [0,1).
Create a Sturmian set by 'splitting' along the orbit of 0 under T. This gives a minimal
expansive flow (M, <f>), say. Now let {xn} = {na} and choose an increasing sequence
of positive integers {n,+ } and a decreasing sequence of negative integers {nj} such
that xn+ is strictly decreasing to 0 and xnJ is strictly increasing to 1. Next find a
sequence {8j} decreasing to 0 such that, defining 7;

+ = [**,, x^ + S/] and IJ =
O ' - S , , * " ] , / ; nit =0U*k),IJ nl~k =0(/Vifc)andj; nl~k = 0 forall/and
fc. Define a function//on 7,+ ulj by/y(jct,) = 1+ (1//),/>(**, ±5,-) = 1 and by linearity
between the endpoints of each of the two intervals. Now define a function on [0,1)
by f{x) — fj(x), x e if u IJ and f(x) = 1 otherwise. Note that since the discontinuities
of / occur at the points {x%}, f can be extended to a continuous function on M.

Now form the suspension flow (Mf, U) of (M, <j>) under /. Note that, if two points
are real asymptotic in this flow, then (eventually) their base points are asymptotic
under <f> in M. However, the only such points are of the form <f>k0~ and <f>k0+ and
so the only candidates for real asymptotic points are of the form (<£N0~, u) and
(4>N0+, v) and, without loss of generality, we may assume u < 1 and v < 1. Now if
nf <N< nf+i, then for each / > 1 we can find /, >0 such that

(c^o",V)t, = to"<*'0+,v) but (<t>No-,U)t, =

and so clearly these points are not positively asymptotic. Reversing the roles of 0~
and 0+ in this argument shows that they are not negatively asymptotic either.

All our analysis for a flow will be carried out relative to a fixed collection of
cross-sections with special properties. This enables us to use the local product
nature of the flow.

(2.3) Definition. S<=X is called a local cross-section of time £>0 for the flow
(X, U) if S is closed and 5 nx[-£, £] = {x} fo. all xeS.

If 5 is a cross-section of time £ the action maps S x [-£, £] homeomorphically
onto S[-g, {]. By the interior S* of S we mean the set S nint (S[-£, £]). Note that
S*(—e, e) is open in X for any 0 < e < £.
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A theorem of Whitney ([6], p. 270) asserts that, for each xeX, there is a local
cross-section Sx of time vx with x e S*. The following lemma is obtained by carefully
modifying the proof of lemma 7 of [3].

(2.4) LEMMA. There is a £ > 0 such that for each a > 0 we can find a finite family
Sf = {Si, S2,. • •, Sk} of pairwise disjoint local sections of time C and diameter at most
a and a family 3~ = {Tu T2 Tk} with T,, c Sf (i = 1, 2 , . . . , fc) such that

X = r+[0, a] = T+[-a, 0] = S+[0, a] = 5+[-a, 0]

where T+ = U Tt and S+ = \J S,.
i = l i = l

We can now define stable and unstable sets allowing time delays in terms of a fixed
collection of sections. Choose £ as in lemma 2.4 and a such that 3a < £ and select
appropriate collections of sections Sf and ST as in that lemma. For convenience, if
SeSf then we shall denote by T the appropriate element of 3" such that T<^S*.

Now let (i be the minimum time between sections of Sf i.e.

13 = sup {8 > 0 ; for any x e S + w e have x(0, S)nS+ = 0 } .

Note that 0 < 0 < a. Let p > 0 satisfy 5p < £ and 2p < 0.
We next define a first return map </> on T+. If x e T+ then <f>(x) = xt, where t is

the smallest positive time such that xt e T+. Note that /3 < t < a. Also for each
5,ey, let Dp = S,[-p, p] and define a projection map P'p:D'p^Si by Pp(x) = xf,
where xteSi and |f|=£p. Since 2p<£, P'p is well defined, continuous and onto S,.
(If we do not need to specify the set in Sf, we shall write D'p as Dp and P'p as Pp.)
Also choose 0 < e < 5/3 such that, if JC, y e 5, d(x, y) < e and f is such that |r| < 3a
and xt € T, then yf e Dp.

Using this notation, we can set up a 'shadowing' orbit of y relative to the <f> orbit
of any point JC e T+. For, if y is sufficiently close to x, the orbit of y will cross S at
a time near the time when the orbit of x crosses T. We can now repeat this idea
using 4>{x) and the point where the y orbit crosses 5 as our base points and continue
in this way as long as these pairs of points remain close enough. Formally, if x 6 T
and yeS with d(x, y )£e , we can define a set of points {y0, y i , . . . , yn) on the orbit
of y by yo = y, and y, = PP(yi-\t), where t is the smallest positive time such that
</>'(*) = <f>'^1(x)t, and we can continue this construction as long as d(<f>'x, y,) < e. We
thus obtain a time delayed y shadow orbit along a piece of the orbit of x. Clearly
we can proceed in the same way for negative powers of <p. If there is possible
confusion as to which point is being shadowed, we write yi.

(2.5) Definition. L e t xeT a n d 17 < e. T h e rj-stable set of x is

W'v (x) = {y e S; d{<j>'x, y.) < v for all i > 0}

and the rj-unstable set of x is

Wu
n (x) = {y e S; <*(<fr'x, y,) < 77 for all i < 0}.

This definition is certainly appropriate for the case when (Xf, U) is a suspen-
sion over an integer flow (X, ij/). For clearly given T J ' > 0 there is an 17 > 0 such
that, if y satisfies d(ij/iy,tliix)<ri for all i > 0 , then yseW^ixt) where xteT
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and ys = Pp(yt). Thus points with stable orbits in the base produce points with stable
orbits (in the sense of 2.5) in the suspension. It is equally straightforward to check the
converse.

By the definition of e, it is sufficient to consider subsets of the orbit and shadow
orbit, {<f>l'x} and {y;,.}, say, with {/,} increasing and such that <f>''+1x = {<j)l'x)t for some
\t\ < 3a. We formalize this idea as follows.

(2.6) LEMMA, (i) Suppose d(c/>'x,yj)<e and <l>'x = (<f>'x)t for some \t\<3a, then

(ii) Suppose d(<f>'x,yi)<e and y7 = y,f for some | / |<2a, then (<f>'x)teDp and
Pp((<f>ix)t) = <f>ix.

(iii) Given 17 < e there is a 8<e such that if xeT+ and {/,} is any increasing
sequence of non-negative integers with lo = 0 such that for each i, <j>'i+lx = (<f>''x)ti
where 0 < f , < a , thenifyeS+ with d(<f>'kx, yik)< S for every k, ye Ws

v{x). A similar
statement holds for W1^ (x).

Proof, (i) follows by the definition of e and a straightforward induction argument
similar to that in the proof of (ii).

(ii) Without loss of generality, assume j>i. The claim holds for / = / + l, so
assume it holds for / = i + n for some n > 1. Suppose yi+n = y,f and yi+n+\ = yi+ns,
where 0 < t + s < la. Then

<f>i+n(x) = <f>i(x)(t + T)), where \v\<P and clearly

<t>i+n+\x) = 4>i+n(x)(s + V), where |i,'| <p.
Now

and the result follows by (i) since 2p < a and 3p < £.
(iii) Suppose k>0 is an integer between /, and /,+i and <(>k{x) = (p''(x)t, where

0 < t < a. By (i) we have yk = Pp(yitt). Now by flow continuity and the continuity of
Pp, we can find S > 0 such that, if x € T and y e 5 and d(x, y) < S, then d(xt, Pp(yt)) <
T), where xt 6 T+ and 0 < t < a. •

(2.7) THEOREM. (X, U) is real expansive if and only if given collections of sections
<fand & and p > 0, there is anr)>0 such that for any x € T+, WS

V (x) n Wt, (x) = {x}.
Proof. First suppose (X,U) is real expansive. Choose 0<eo<£ and £ i > 0 an
expansive constant corresponding to e0. Let e > T\ > 0 such that, if x e T, y e 5 and
d(x, y) < r], then d(xt, ys) < ei where, if <t>x = xh and y 1 = ysi, then 0 < t < tu 0 < s <
Si and \s -1\ < \s\ - h\. Suppose y * x, y e Ws

v (x) n Wu
n (x) and {tn} and {sn} are the

increasing bisequences such that xtn =<f>nx and ysn = yn. Define a piecewise linear
function / from U onto IR such that f(tn) = sn. Now for any teU, t = tn+a and
f(t) = sn+ a', where 0 =£ a < tn+x - tn, 0 < a' < sn+l - sn, and

\<T-O-'\^\(tn + 1-tn)-(sn + 1-Sn)\

for some n, so that

d(xt, yf(t)) = d({<$>nx)cr, yno-') < et

by the choice of 17. But this contradicts expansiveness, since y<£ x(-e0, e0) as eo<C
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Conversely, suppose that we are given collections of sections 9s and ST
and p > 0 as in definition 2.5 and that for some r\ > 0 and every x e T+ we have
WSr,(x)r\W^(x)-{x}. Let / be a continuous function from U to R satisfying
/(0) = 0. Let xeT, y e S and {?„} and {sn} be such that xfn=<^"j: and ysn=yn.
We shall show that if |/(f,-) —s;| is sufficiently small for all j then section separa-
tion forces d(xt, yf(t)) to be large for some t, while if this is not the case then
the distance between f(tt) and s, forces d{xt, yf{t)) to become large for some t.

Choose 0< 8 <£ — a -p and positive numbers £ I<T/ , £2<£i, £3 and e4 such that,
if u € T and v e S, then

(i) d(u, V)<BI implies d(u, irt) > £1 for all t with 8 < \ t \<£;
(ii) d(u, v)<e2 implies d(<t>u, ui)<£i;
(iii) d(u, t))sg2 implies d(«, vt)>e3 for |f | <8 (which is possible as 8 <0;
(iv) if a, b eX and d(a, b) < e4 then d(at, bt) < ei for |f |<a.
(a) Suppose that for all / for which we have tt and s, defined we have |/(f,-) - s,<\ < 8.

Choose ; such that d(<t>'x, y,-)> 17. Now d{xtt, ysj)> 77 > ei > £2 so d(x?,, y/(/y)) > £3
by (iii).

(b) Suppose / is the first integer (say positive) such that |/(f/) — S/|s5. We may
assume that d{<j>'x, y,)<£2 for 0 < / < / (as otherwise we can guarantee separation
by £3 using the argument of (a) again) so that d{<f>'x, y,) < £1 by (ii).

(b 1) Suppose f = Sj -f(tj) a 8. If f(tt) > 5y_i - 5, then

and now

rf(jcr/t yf(tj)) = rf(jc^-, y(sy - 1 ) ) > £1

by (i). But if f(t,)<Sj-i-8 then as f(ti-1)>sj-i-8 we can find ;' with tj-i<t'<ti

and /(*') = Sj-i - 5. Let ^ = t' - ry_i > 0. Then

so

(since 5 < 5 + £ < £) by (i). Thus

d(xt', yf(t')) = d(x(tH1 + €), y(s,-i -8))> £4

by (iv).
(b2) Suppose / = f(tj) - Sj > 8. Now f(t,) > 5, + 5 and /(f/-i) ^ *y-i + 8 < Sj + 8 thus

there is a f' with t,-i <t'< /, and f(t') = s, + 5. Let $ = 4, - 1 ' > 0. Now rf(xf,, ysy) < £1
implies rf(JC/>, ySj(8 + ̂ )) > £1 by (i) thus

d(xf, yf{t')) = d{x(tt -£), y(s, + 8))> e4

by (iv).
In summary, if e' = min (£2, £3, £4) then, for some t, d(xt, yf{t))>e'.
Now suppose x and y are arbitrary points of X. Choose 81 > 0 and £5 > 0 such

that d(x, y) < e5 implies
(i) d{xt, ys)<e' (where t is the smallest positive number such that xt& T+ and
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(ii) d(xw, yv)<e' for all w and v with |w|<5i + a, |i>|<a + 81 and \v-w\<8i.
Next let e6 > 0 be such that if d(x, y) < e6 then d(xf', y (f' +1)) > e6 for all uSi < |f | <

£ and |f' |<a. Finally, choose e 7 >0 such that e5>£7 and the set of all points in
BC7(x) which project onto xt is contained in x(-e5, es).

Now suppose d(x, y) < e7 and y£ x(—es, e5).
(a) Suppose \f(t)-s\<sSu Choose S'<^S1 such that \f(t + t')-s\<kSi

for all |r'| < 5'. Define a continuous real-valued function g such that g(t') = f(t + t')-s
for all t' with \t'\ > 3' and otherwise by linearity so that g(0) = 0. Thus

for |/'| < «'.

Thus

f), y(s + g(n)) <e' for |/'| < 8"

by (i) and (ii). Now by the first part of the proof we can find t0 such that
d{{xt)t0, (ys)g(to)) >s' and by the above construction \to\ must be greater than 8' i.e.

to),yf(t + to))>e'.
(Note that xt ̂  ys by the choice of e7.)

(b) If \f(t)-s|>iSi then | / (0- / |^n5i and so, if we choose t'<t such that
\f(t')-t'\ = &8u then d(xt', yf(t')) = d(xt', y(t'±8l/l6))>e6 unless d(x, y)>e6.

It finally follows that minis', e6, e7) is an expansive constant corresponding
to e5. •

(2.8) Definition. Suppose that iX, U) is real expansive and that collections tf and
2T are constructed as in (2.1) to (2.5). Let £< e be such that theorem 2.7 holds for
£ Then any r? with £ > 17 > 0 such that 17 is less than the 8 corresponding to g given
by lemma 2.6 (iii) is called an expansive constant (corresponding to if, 3~ and £).

(2.9) LEMMA. Suppose {xn} and {y "} are sequences of points in T and S respectively,
x" -*x, y"-»y and each y\ is well defined relative to xn for each k. Suppose that for
some integer k we have (j>kxn -* <f>'kx for some integer lk. Then y1-*y1k-

Proof. First note that, if {(j>kx"} converges, it must converge to a point on the <f>
orbit of x. For if </> x" — x"tn, {tn} is bounded and we can find a subsequence tni -»t
(say). Thus xn'tni^xt so 4>kx" -*xte T.

Now choose any convergent subsequence of {y"k} and a subsequence of this
subsequence (if necessary) such that {<f>'x"} converges for each integer 0</<fc
(denoting these subsequences by {*"} and {y"} again and assuming k >0 for con-
venience). We complete the proof by showing that yJJ-*yft. Suppose <f>'xn->
ip'ixiQ < / < k) and suppose that for some integer m(0 < m < k)y " -> y\ ior all 0 < i <
m. Let ^m+1(jcn) = <f>mixn)tn and y^,+1 = y ^ B where sn = tn + rjn and |rjn| <p. Now as
both {^m+1U")} and {<£m(x")} converge, ^ ^ r , say (since la <£), and thus sn^s
and T/M -»77 (since 2p < ^). Thus y^+i •* yt,^ = y/m+1» say. Now

I / + 1 n\ , j / . m + 1 n n

x ) + di<t> x , y m

so that letting n -* 00 gives
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Also t < a s o

by lemma 2.6 (i) and

Thus ylm+l = y"im^l as required. Since the induction hypothesis holds trivially for
m = 0, it holds for all integers up to k. •

(2.10) COROLLARY. Let (AT, R) be real expansive, let TJ be an expansive constant
and yeWs

v{x). Then d(<j>nx, yn)-+0 as n-»oo. Similarly, if yeW^(x), then
d(4>~"x, y-n)-* 0 as n -» 00.

Proof. If not, we can find points x, yeX with y e Ws
v{x), 8>0, and an increasing

sequence of integers {«,} such that d{<f>n'x, yni) a 5 for each / and <f>"'x -* a and yni -* b.
Then aeT, b&S and a ^ b . Now let k be an arbitrary integer. Choosing a
subsequence if necessary, </>"'+kx-*< '̂lca (say) and thus, by lemma 2.9, yni+k->b?k.
Note that if i is large enough so that n,< + k > 0, then yn.+k is well-defined. But now
d(<f>'ka, b?k) ^ TJ for all k, which contradicts the choice of TJ (theorem 2.7). •

(2.11) COROLLARY (Uniform expansiveness). Let 17 be an expansive constant. Then
for all 0 < 8 < 7\ there is an integer N{8) > 0 such that, ifxeT,yeS and d(x, y) a 5,
then d{<f> 'x, y,) > 17 for some integer i with \i\< N(S).

Proof. Let 77 be an expansive constant and suppose the statement does not hold.
Then there is a S >0 such that for every integer N>0 we can find points xN e T
and y N e 5 with d (x N, y N) > S but d (<t> lxN, y f) < TJ for all | /1 < N. Choose an integer
k and assume xN-*x, yN-»y and cj>kxN-><f>'kx, say. Then by lemma 2.9 y'k-^y'i,,.
But now

d(d>'kx, y1k)sd(<f>'kx, <j>kxN) + d(4>kxN, y?) + d(y?, yx
lk)

and so letting N->oowe obtain

This contradicts the fact that x # y.

(2.12) LEMMA. //TJ >0 is sufficiently small, there is a 8>0 such that if ptWs
s(x)

and q 6 Ws
s(x) then p' e Ws

n {q') where q' = qc and p' = Pp(pc) and c is the smallest
non-negative number such that qc e T+.

Proof. If 8<\e then for any a,b€S,d(a,b)<28 and 0 < / < 3 a , if ateT then
bteDp. Choose 8 small enough so that d(at,Pp{bt))<T\. Now choose an integer
/c>0 and assume <f>kq' lies on the orbit of q at or after q* and before qx

i+\- Then
as d(qx,px)<28 we have

where 4>kq' = qxs. We shall show by induction that Pp(p
xs) = p'k

q .
First consider k = 0. If q' lies between q? and qx

+i then q' = q?(c - 5 + TJI), where
4>'x =xs, and p' =px(c + TJ2-S + TJ3), where ITJ^, |TJ2|, |TJ3 |<P. NOW

PP(PX(C ~S + TJl)) = P?(C - 5 + Tj! + TJ4) = P'(~TJ2 - T?3 + TJl + TJ4).
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where |T74| <p. Since 5p < £, this point is p' and the claim holds. So suppose it holds
for some fc>0. Let <t>kq' lie between qx and qx

i+u let <j>k+1q' lie between qx and
q*+\ for some / > / and suppose <f>kq' = qxs and <f>k+1q' = q,xf. Let % > 0 be such that
{<f>'x)tij = <t>'x. Note that if u is such that qx =qxu then 0 < w < a +a + p-(3 < 2 a
and 0 < f0 < 2a + p by lemma 2.6 (ii). Now

and

where |TJI|, I172I, |i73|<P- Also

p'kii =p'k'(

= P*(tii +1 + i7i +174 +175),

where |i74|, |775|<p. AS 5p<£ and Pp(p
xt) and p^+i belong to the same set in £f,

PP(P*')= Pk+i as required. •

3. One dimensional minimal sets of real-expansive flows
In this section we discuss conditions under which the minimal sets of a real-expansive
flow are one dimensional. The conditions cover the known examples of such flows.
Throughout we shall assume that we have constructed y and 3~ and chosen p as
in § 2 and that r\ is an expansive constant if the flow is real-expansive.

Our first lemma is closely analogous to lemma 3 of [5] and guarantees the
existence of orbits asymptotic in our sense. Let Ss(x) = {a e X; d(x, a) = 8}, Bs(x) -
{a e X, d(x, a) < 8}, £|(*) and 1s(x) be the connected components of a point x e T
in Ws

v(x)nBs(x) and W^(x)nBs(x) respectively, and let 2.s(x) be the connected
component of x in Bs(x) n 5.

(3.1) LEMMA. Suppose (X, U) is a real flow and X is not one dimensional. There
exists r with rj>r>0 such that, for any 8 with 0<8<r, there is Te3~ and aeT
such that either 1%(a) nSs(a)^0 or 2«(a) n Ss(a) # 0 .

Proof. Choose a real number q so that the map a->a\ is continuous on Bq(z)nS
if 2 e T. Clearly we can find T € ST with dim ( D > 0 and thus * e r a n d < 7 > r > 0
such that 2 , W n 5 r ( x ) ? i 0 . Suppose that for some 0 < 8 < r we have S£(y) nSs(y) =
0 for all y e T. We construct a sequence of compact connected sets {An} with each
An <=• S, a sequence {xn} of points of T with xn e An, and a sequence of positive
integers {mn} such that:

(1) 4>m"xn+\= xn\
(2) (An+1)

x
m^cAn;

(3) A n n S 8 ( x n ) ^ 0 ;
(4) (AB)y

x- = B,(^yxB) if 0</</«„_!.

Take Ao = £«(*) and x0 = x. Suppose A o , . . . , An and x0,... ,xn and m 0 , . . . , mn-\
have been constructed. Let T be the connected component of xn in Bs(xn)nAn.
Then r e 5 and To Ss(xn) * 0 . Also-IV W^ (xn) and, if y e T- Wu

v(xn), there is an
integer my > 9 such that

https://doi.org/10.1017/S0143385700009214 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009214


Real-expansive flows and topological dimension 187

Define

mn = min {my; y e F such that my exists}

and so

sup d(<t>~'xn, z-i) < S for all 0 < / < mn.

Now let An+1 be the connected component of xn+1 = <f>~m"(xn) in Bs(xn+i) n (r)I"mn.
(F)*"mn is a compact connected set because the map a-*az

m (relative to a fixed
2 6 T) is continuous for -mn < m < 0 by the choice of q. Now for some y e F,
d(*n+i, y_ m J>5 so that An+i n5«(jcn+i) # 0 . Thus (1), (2) and (3) are satisfied and
(4) follows by the choice of mn.

Now choose a subsequence of {*„} such that xn -* a and, using this subsequence,
also assume that A = lim2* An exists.

So A consists of points p such that for some subsequence {pn.} with pn. e Ani, pni -* p.
Clearly A is a compact connected set, A<=Bs(a) and AnSs(a) ^ 0 . We shall show
that A<= W* (a). Let fc>0 and choose n sufficiently large so that we can write
k ~mn-i + mn-2 + • • • + mn-i + l, where 0</<mn_,_i . Now 4>lc(xn) = <t>'(xn-i) and,
if p € An, then ptr = g*—1 where g e An_,-.

Now suppose peA. Choose a subsequence {xnj} such that pn,-*P (p«, £ An.) and
<t>k (xn,)-* 4>lka for some integer lk. By lemma 2.9

(Pn,)i»+Pi and d((pB/)t"',^fc(JC/)) = rf(gf»'-',^'U>,l_l))sfi,

where g and / are suitably chosen as above and we have used (4) for Anj_.. Thus
d(<f>'ka,p?k)<8. We now only have to ensure that r (and so S) is small enough so
that this implies d(<f>'a, pf)^rj for all i20 using lemma 2.6 (iii). •

(3.2) Remark. If (X, U) is real expansive, then it has a pair of negatively or positively
weakly asymptotic points (i.e. points a # beX such that d(<f>"a, in)->0asn-> —oo
or n -» +oo). For if X is one dimensional this follows by the remark after definition
2.5 and theorem 6 of [3]. Otherwise, the result follows by the above lemma and
corollary 2.10. In fact, one can choose a and b to be on distinct orbits.

(3.3) LEMMA. Let (X, U) be real expansive and let r\ be an expansive constant. Then
given 0 < -q' < rj there exists a So > 0 such that

Ws
v(x)nBs(x)=Ws

v.(x)nBs(x)

for all xeT+ and 0<S<So.

Proof. If not, we can find sequences {xn} c T+ and {yn}
c S+ such that d{xn, yn) -* 0,

yn e W^Oc) and an increasing sequence of positive integers {mn} such that
d(<f>m-xn, (yn)

x
m-n)> T/'. Let 4>m-xn ^ x and (yX"n-> y, then d(x, y) > TJ' and, for each

integer k > 0, we can assume <f> V m"xn -»<£ !|IJC by successively choosing an appropri-
ate subsequence for the k +1 case from the subsequence for the k case; similarly
for k < 0. Thus
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by lemma 2.9. Thus

for all k which contradicts the fact that 17 is an expansive constant. •

(3.4) LEMMA. Let (X, U) be a real-expansive flow. Then there is an expansive
constant 17 such that, for all 8' sufficiently small, there is a 8>0 and an integer N (8)
such that, if xeT and A<= Ws

v(x) is a compact connected set containing x and
intersecting Ss(x), then there exists an integer m with 0 < m <N{8), points v,weS+

and compact connected sets Av and Aw contained in S+ such that:
(a) v'eAvnT+, v = v'(-t)e Aim (for some 0<t<a) and Pp(Av(-t))^ Almn

Bs{v)<= Ws
v (<t>~mx), and a similar statement holds for w and Aw;

(b) AvnSs( t )V0 and AwnSs(w')#0;
(c) d(Bsiv),BAw))>8;
id) Av^Ws

v(v')nBs(v') and A^c^fwVft f tv ' ) .

Proof. Choose -q' an expansive constant corresponding to the 17 of lemma 2.12 and
17 < 77' corresponding to the 8 of that lemma. Let

rn = inf{d(x,y);xeT+,yeS+,d(x,y)^r} and d(<t>~\, yU)> v)

and

T72 = inf {d(xt, Pp(yt));x, yeS+, xteT+ and 0<f<a, and 17 >d(x, y^r/i}.

Choose 5 and 5' such that 8'<^u 8<\T)2, 8<8'<-q. If a,beS+ and 0<t<a
such that at e T+ then, if d(at, Pp(b't)) < 8, we have d(a, b) < 8', and finally 8 <80,
where 80 is given by lemma 3.3 (interchanging the roles of 77 and 17')- Now let N(8)
be the number given by corollary 2.11 corresponding to 8 and TJ. Since Ss(x) n A #
0 , by that corollary we can find m with 0<m<N(8) such that

sup{d(<£~(m+1)x, z_(m+i));zeA}>i7 and sup{d(4>~'x, Z-,); z e A}<T;

for 0 < / < m . Thus
A i m c Ws

v(<f>-mx).

Also since the diameter of A*m is at least 171, we can find points v, w € A_m such
that (c) holds. If we now construct v' and project Alm onto the section containing
v', we obtain a compact connected set with diameter at least T/2. Let Av be the
connected component of this set in Bs(v') intersected with the set. Do the same
construction for W. We then have (a) and (b). Now by lemma 2.12 we have
Au <= Wv (v') and by lemma 3.3

AvaWs
v(v')nBs(v'),

as 8 < 80. This gives (d). •

(3.5) Definition. A flow (X,U) is said to have a spiral orbit at x if xt e WSr,(x) for
some t>0 and if d{<f>nx, (xt)n)^0.

(3.6) THEOREM. Let (X, U) be a real-expansive minimal flow which has no spiral
orbits. Then X is one dimensional (and so a suspension of a subshift [3], [4]).

Proof. Let 17 be an expansive constant small enough to satisfy the requirements of
lemmas 2.12(i.e.T/<5) and 3.4. Choose 8 < r of lemma 3.1 and corresponding to the
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TJ of lemma 3.4 and choose N(S) as in that lemma. Now choose a positive integer N 
with N> (1 +N(8))(a +p)/@. Let (primed points as in lemma 3.4) 

/•i = inf { « i ( 0 ~ V , 0 ~ y ) ; y)><5,x, y e S + , 0 < / , / < J V 

and there exists z e l + with x e W^, (z) and y e W^, (z)}. 

First suppose ri = 0. In that case we can find sequences {*„} and {y„} in S+ and 
{z„ } in T+ such that d(xn, y„)>8,xne Ws

v (z„), y„ 6 Ws

v (z„) and d (<f> ''x 'n, <j> ~'y ; ) - 0 
for fixed integers i,j with 0 < / , / < J V . Let y„-»y, z„ -»z . By lemma 2.9 
x, y e Ws

Vi (z)(rji < 5 of lemma 2.12) and so x'e W * 2 (y'), where x', y ' and 772 are 
given as in lemma 2.12. Further , let x'n-*x", yi ,-»y", (t>~'x'n-*<\>~lix" and cj>~'y'n-* 
<j>~liy". Clearly x" = <t>'rliy". Now if /, = lh then x" = y" but , as 2a < C, this implies 
x = y, contradicting y) 2 5. Now x" = y ' T , say, and assume T > 0. Also y" = y'r 
and ( 2 0 and JC" = ;C'S. Thus x' = y'(T +1-s) and so, as y' cannot lie be tween x' 
and x", T + t-s>0, which means that the flow has a spiral orbit at y. 

Now suppose rx > 0. W e construct a sequence of compact connected sets {A"} 
and points {*„}<= T+ with xn e A" such that : 

(a) A " n S 5 ( x „ ) # 0 ; 
(b) An^Ws

v(xn); 
(c) for some m„ with 0 < m„ < N ( 5 ) 

(Pp(An+1(-f)))C"<x")cAn for some | f | < a ; 
(d) (An)xJ'jnU = 0 for 0 < / < m „ ( « > 0 ) , . 

where t / is an open set in some T* with diameter less than \ T \ and such that 
U n l g ( a ) = 0 and d{U, S - T) = r > 0 . 

Set x 0 = a (given by lemma 3.1), A 0 = 2 s ( a ) and suppose A 0 , A 1 , . . . , A" and 
x0, X i , . . . , xn are constructed. Now applying lemma 3.4 to A" we obtain m„, v, w, 
A„ and A„,. Note that choosing jc n + i and A " + 1 as v' and A„ o r w' and A ą  satisfies 

(a), (b) and (c). Suppose Un U ( A „ ) - > 0 and also ¿7 n Q ( A „ , ) - ^ 0 . Then we 

can find peAv and £ A w with p~j e {/ and a™-, e U for some / and j with 0 ̂  1, / s m„. 

Let p" and 4 " be the first points of the negative orbits of p and q in Ax-m„. Let p ' 

and q' be the projection of p" and ¿7" on to T+. Thus d(p",q")^S by lemma 3.4 
(c) and p" , <7"e W ^ ' ^ X n ) . Since £/ c r*. p _ , = <0~'p' (say) and q-] = <t>~sq' (say) 

and so d(<f> ~'p', <f> ~sq') < \r\. By the choice of AT, 0 < /, s < AT which is a contradiction. 
m n 

So choose A " + 1 to be A„ if Un U (A0)"',-= 0 and to be A w otherwise. W e thus 

have (d) also. 
We now use the notation 

n - l 

( A B ) : ° , 

to mean that we shift the projection of A" into A"^n_lmn-i steps relative to 

<£ - m " - , jc„-i , then the projection of this set into A"~^_2 is shifted mn-2 steps relative 

to 0 ~ m " " 2 x „ - 2 and so on up to the projection in A ° m o is shifted m 0 steps relative 
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to <f>~m°x0. Let

Clearly, for any integer N, we have
N-l N-2

i - 0

ZJ "if Z* "I,-
i=0 i=O

so that the intersection in the definition of A is nested and thus A # 0 . Let peA.
We complete the proof by showing that there is K>0 such that for all k>K,
p(—k)£ U, which contradicts minimality. Inductively construct a sequence of points
{p~'} on the orbit of p by p° = p and for j satisfying

n — \ n

X m, <;< X m,
;=o i=o

(interpret the first sum as 0 if n = 0)

i=O

where f is the smallest non-negative number such that this point is in A"+1. It is
now clear that

so that for each j>mo,p ~' f£ U. Now suppose that the orbit of p intersects U between
p~' andp" ' " 1 . Make e small enough so that, if d(a, b)<e and ateT for | f | < a +p,

n~ 1 n

then d(at, Pp{bt)) < r. Now if I m, < / < £ m,-, then, by the definition of p~', the
i=0 i=0

orbit of xn also intersects U between

<t>-j+hm>{xn) and «/»"'"1+-om'UJ,
which is false. •

(3.7) Remark. It is by no means obvious that the existence of a spiral orbit leads
to a periodic point (as in the discrete case). However, this is the case for suspensions
(so we recover Mane's result [5]) and also for flows which exhibit a strong form
of uniform expansiveness which include Axiom A flows (so we recover Bowen's
result [2]). It would be interesting to have examples of spiral orbits in a minimal
real flow; if the example were also expansive, it would be an example of a minimal
expansive flow which does not have a one dimensional phase space (corollary 3.9).

(3.8) LEMMA. Let (X, R) be a minimal flow with a spiral orbit at x. Suppose
xTe W^ix) for some T>0, and for each n, (<f>nx)ln = (xT)n. Then /„-><».

Proof. Note that ln >£ for all n so that if Jn-A oo we can find a subsequence tni -* t > 0.
Now d(<l>"x, (xT)n)-*Osoitwelet<j>nix-*z we obtain d{z, z/) = 0andz is a periodic
point. D

https://doi.org/10.1017/S0143385700009214 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009214


Real-expansive flows and topological dimension 191

(3.9) COROLLARY (Mane). Let (X, U) be a minimal real-expansive flow which is
a suspension. Then (X, U) has no spiral orbits. Thus (X, U) is a suspension of a
subshift.

Proof. In a suspension, there are always the same number of returns to the base
between <f>nx and (xT)n, if p is chosen sufficiently small. Thus {/„} of lemma 3.8 is
bounded. •

(3.10) Definition. A real flow (X, U) is said to have property (*) if it has the
following property:

For each po > 0 there is an 17 > 0 and a sequence of positive real numbers {an}

such that X an<<x> and if x, y e S with d (x, y) < 17 and for some 111 < a + 2p0,
n = l

d(xt, yt(-po,Po))>an, then d{<f>'x', y ! )>Tj for some | / | < n and x' = xs, where

s > 0 is the smallest time such that xs e T+ and y' = Pp(ys). (*)

(Clearly (*) depends not only on Sf but also on the metric used and is not a flow
invariant.)

Note that if we had only required an -* 0, then (*) would be equivalent to uniform
expansiveness relative to y. It is easy to see that suspensions of subshifts or expansive
toral automorphisms satisfy (*) when the metric is suitably chosen. A deeper result
of Rufus Bowen shows that Axiom A flows also have this property.

(3.11) PROPOSITION. Every Axiom A flow has a metric with which it satisfies (*).

Proof. By 1.6 of [1] every Axiom A flow (with correctly chosen metric d) has the
property that there are constants c > 0 and A > 0 such that, for each S > 0, there
is TJ >0 so that, if x, y eX, s: R-» R is continuous with s(0) = 0 and d(xt, ys(t))<rj
for \t\sL, then

d(y, xv)^c exp (—XL) for some | D | ^ 5 .

Find c and A and choose po = 8<\a with corresponding constant 17. Let to be such
that xto = x' and /, such that xt,; = <f>'(x'){i > 1 or I < - 1 ) . Now define s piecewise
linear such that ys(ti) = y{ and 5(0) = 0. Now choosing a suitably small 17' (indepen-
dent of 5) we have d(<(>'x', yj) < TJ' implies d(xt, ys{t)) < r\. If the first inequality holds
for all |{| < n, the second holds for all \t\ < nfi and thus

d(xt, yto)<cexp(-A(n/3-2a)) for | f |<a+2p 0 and |u|<p0.

So we define the sequence {an} by

an=cexp(A(2a))-exp(-A/3«). •

(3.12) THEOREM. Let (X, U) have property (*) and no periodic points. Then (X, R)
has no spiral orbits and thus it is a suspension of a subshift if it is minimal.

Proof. Suppose that y = xTe Ws
v(x). The idea of the proof is to show that, for

large enough N, there is a neighbourhood of 4>N(x) contained in Dp such that the
positive semi-orbit of 4>N(x) keeps returning to this neighbourhood within bounded
time. By looking at where these orbits cut the section containing <f>N(x) and choosing
a convergent subsequence, we obtain a periodic point.
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Choose y > 0 such that, if x e T and y e By(x), then y £ Dp and d(Pp(y), x) < e.
Now choose po<p in the definition of (*) in such a way that the corresponding
constant S(=-q of the definition) satisfies aeS and beX and d{a,b)<8 then

f, 6f)<!% where \t\ <a +p. Let 8' be such that, if a, b e S and d(a, b)<8', then

, Z>0 < 5 for \t\ < 2a. Choose M large enough so that £ a, < |y . Choose N > 2M

large enough so that yx
nteDp and d((<f>nx)t, Pp(ynt))<8' for all n >|JV, (<£"x)f e S+

and |f| < a. Moreover, choose N large enough so that if L is such that {<f>Nx)L = yjv,
then L > a(i/(f3 - p ) . (We may do this as we can assume that !„-* oo where (<£"*)?„ =
yn.) Set w = cf>Nx and vv0 = yN. We shall inductively define a sequence {w,} of points in
the section containing w such that w/+1 = w,-/,- for some /8 <t,<L(l+p/f3) and
<̂ (w,, w/+i)-»0. This clearly implies the existence of a periodic point.

Define z\ =yN+l, z\ = ysr+i, • • -,zl=yN+k, where ((f>kw)x = w0, 0<x<a and
it is chosen to be maximal with respect to this property. Now we can find rjo with
|T?O| Spo such that d(w, wor]O)<aM because d{<f>'w, (M>0)DS 8 for all / >0 and also
for — M<i<0 as N-M^^N. Similarly, for j = 1 , . . . , k, we can find 17} with
117/1^po and d{<t>'w, z]r]))<aM- Now

Thus Zfc(̂  + T7o)eDp and define wi =PP(zl{x
Now suppose that w0, w\,..., wn_i in 5 have been constructed, and

z\, • • •, z\, z\,..., z\,..., z",..., z" in 5 + (z\ belongs to the same section for
/ > 0 and a fixed / with 1 < i < k) have been constructed in such a way that

d(<t>iw,z?T]?)<y for l</<fc andeachm>0

and if (<t>'w)ti = <f>'+1w and zis| = z!+i then |s ' -?, |<p. We construct z"+\(wn+\ if
/ = k). Define

z=z?(sr1+vrt).
Clearly

since ^(z""1, z")<8'. By the condition on L, each time we complete a new z cycle
to k terms we increase the number of returns of w to T+ by at least one. Thus the
last inequality holds for all forward returns of z" -1 to T+ and for at least M + n-\
backward returns. Thus, by the definition of (*),

for some |T/ |<P0- NOW

i+irf"+i, ZTJ)

so ZTje£)p. Set zT+i =PP(ZTJ), T/7+I such that |77r+i|<p and zr+ir/T+i =ZTJ, and s"
such that zTs" = z"+i. It remains only to check that |sT - f/| < p. Since d(</>'w, z?) < e,
zT(f; + 17') belongs to the same section a s^ ' ^w for some 17' with |TJ' |<P. Z"S" = Z"+\

https://doi.org/10.1017/S0143385700009214 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009214


Real-expansive flows and topological dimension 193

belongs to this section. Now

z?{t, + v')(srl + r/m + T, -T ,? + 1 - 1 , - r,') = z?+1 = z?s".
Now

\s"~l +v"+i +T/-T/"+I -ti-r}'\-5p<£
so

z?(t, + r,'-s?) = z? or |f«-s?| = M < p
as required. Thus the inductive construction is complete and the result follows. •

4. Real-expansive flows and finite topological dimension
In this section we use our section approach in conjunction with the properties of
the whole space X, to show that, if X supports a real-expansive flow, it must have
finite topological dimension. This gives an exact parallel to Mane's result for
homeomorphisms. We continue to use the notation of § 2.

(4.1) LEMMA. Let (X, U) be real expansive and let e2 > 0 be less than some expansive
constant. Let 0<e i<e 2 - Then there is 5 > 0 such that, if xeT, yeS, d(x,y)^8
and for some n > 0 we have

ei<max{d(0'x, y,); 0</<n}<e2,
thend(4>"x,yn)^8.

Proof. If not, we can find sequences {jt"}c T and {y"}c S and sequences of integers
{mn} and {/„} with mn > ln > 0 such that

n,yl)^ei and d(<J>mxn, yn
m)^e2 forO<m<mn.

Note that flow continuity ensures that /n-»oo and also that mn—ln ->oo as n->oo.
Choosing a subsequence if necessary we can assume tj>nxn -*x, y1n~*y a n ^ r o r a

given integer k, (f>'"+kx" -+<f>Skx. By lemma 2.9 y"n+k -» yx
Sk.

Thus, ensuring that /„ and mn - ln are sufficiently large,

and letting n-x»we obtain

As this holds for any fe and x T1 y we have a contradiction. •

(4.2) THEOREM. / / {X,U) is a real-expansive flow then X has finite topological
dimension.

Proof. Let e2 be less than some expansive constant and let e\ = \sj. Choose S > 0
as in lemma 4.1 and choose 5' > 0 such that if x, y e S and d(x, y) > 5 then d(x, yt)>8'
for all |f|<2a. Also let 0 < T J < E be such that x, y e S and d(x, y)<Tj implies
rf(;tf, yr) < 5' for any \t\ s a.

Now let {£/(, / = 1 , . . . , /} be an open cover of X such that 8(Ui)<rj, and [/, <=
7"[-5«. +l«] for some T &2T tor each 1 < i < /. (We can assume this last condition

n

can be satisfied because we can slightly modify lemma 2.4 so that X =[_} Tf (0, a).)
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Define
Unv = {U,)nan(U,){-na)nT,

where T is a fixed member of 5". Thus, for each n, {£/,";; 1 < / < /, 1 =£/< /} is an
open cover of T.

We now define a sequence {5n} such that:
(i) if x e T,yeS and d(x, y)<Sn, then y, is defined and d(<f>'x, y , ) s £ l for all

(ii) if j ; , yeS and d(x, y)<Sn, then if for some zeT, d(<j>'z,xl)<ei for all
| / |<(l + n)a//3, then y- is defined for all |/|<(1+«)«//? and rf(jcf, yf)<ei. If
xz

t = xs, and y f = yJ, then |s, - s , | <2« -or all |/| s (1 + n)a/fi.
Now form the £„ components of each U"j, i.e. x ~ y if there is a sequence

x = x0, Xi,..., xp — y such that d(x{, xi+l) < Sn for each 0 < / <p -1 and each x, e
[/,". Taking C/,"fc as the equivalence, we observe that we obtain a new open cover of
T. Now if x G T, then x belongs to at most I2 sets of this new cover (for n fixed) since,
for fixed / and /, x can belong to at most one Uif.

We complete the proof that X has topological dimension of at most / 2 - 1 by
proving Hindoo (sup,,,,* S(Uf)) = 0.

If not, we can find £>0 and values of n>N(£) (N(g) is the integer N(S)
corresponding to 8=£ and y\ = e\ in corollary 2.11) such that, for some
/,/, k, 8(U?/C)>€. Choose such values for n, i, j and k and points x, y e U?f with
d(x,y)>£. Let x =x°,x1,..., xp = y be a Sn chain from x to y in Uif. Now
x(na)e t/,<= T[-\a, + |a ] so ;t(rta +-y)G T for some lyl^ja and let J(x) be the
number of returns of x to T+ in time «a + y. Now for each 1 < r < p such that *; is
defined (relative to x) for all |/| </(*) , let

A, = max {d(<f>'x, x\); |i| =s/(x)}.
Note that

(1 + TJW/B ==/(*)>«-l>AT(f).

Now Ai is defined and A i < e i by the choice of 8n. Suppose Ar<e\ for some
l £ r < p - l . Then x p 1 is defined for each | / |< / ( JC) and so Ar+i is defined. Let r
be such that Ar'S e\(r'<r) and A r >e i . Such an r exists as otherwise Ap is well
defined and Ap<eu which contradicts d(x, x p ) > | and the choice of N(g). Next
note that \Ar—Ar_i| < ei. For otherwise Ar > e\ + Ar_i and say A, = d{<j>'x, x\) and

so that

&x, xT^^dit'x, xd-dM, xr
i~

1)> er

and this contradicts the choice of / for Ar_i. Now A, < 2ei = e2 and so by lemma
4.1 we have

Now by the choice of 8n, x\ is well defined for / = 1, 2 , . . . , r and / = 0 , . . . , J(x).
Let Sj be such that X'SJ = X'JM. Note that \so~na\s\a. Suppose that m is the first
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positive integer less than or equal to r such that \sm — na \ > \a. Again by the choice
of Sn, \sm-i - sm| < 2<* and thus

\sm - na | < |sm_i - na \ + \sm-i - sm | < a.

But now xmnaeU' so y =xm(na +x)e TczS for some x with | ^ |< |a , and
y(-na-x + s)eS. But

\-na -x + sm\p2a <£

so that

\sm- na\ = \x\^\a.

This contradiction shows that

\sr — na\ <5a.

Thus if we let s = na—sr then | s |<a and X;(I)S€ [/, and xr(na + y) = XjM(s + y).
Now

d(x'JM(s + r), <^J(X)U)) = d(xr(na + y), x(na + y)) > 8'

since \s + y\ s 2a and so

d(xrna, xna)^rj,

but xrna and xna are both in Uj which is a contradiction. •
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