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Abstract

This paper gives explicit, applicable bounds for solutions of a wide class of third-order dif-
ference equations with nonconstant coefficients. The techniques used are readily adaptable
for higher-order equations. The results extend recent work of the authors for second-order
equations.
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1. Introduction

This paper studies explicit, applicable growth rates for third-order difference equations.

In particular, we will consider solutions [bn] — [bn(b0, b\, b2)} of equations of the

form

A36n_2 = pnbn -qnbn-\ + rnbn^2, (1.1)

where for a sequence {a,}, A is the forward difference operator and Aa, = ai+i - at.

That is,

bn+l = (3 + pn)bn - (3 + qn)bn-x + (1 + rH)bn-2, d-2)

for n > 2. We provide sharp inequalities for {£>,•) in terms of the sequences {/>,-},

{<7,} and {/•,}, and the initial values b0, bt and b2. Solutions of difference equations
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of the form in (1.1) have been studied by many authors (see, for example, [2-12]).
Often these studies have focused on the understanding of oscillatory or asymptotic
behaviour.

In what follows, it will be convenient to have the following notation.
For a sequence a = {a,}, define the linear operator i f by

Sf(a)i = pi+]ai+i - qi+xa, + ri+,ai_,, for i > 1.

We now state our main result which extends recent results for second-order equa-
tions (see, for example, [1] and [13]). Closely related results can also be found in
[14].

THEOREM 1.1. Suppose {/?,}, {/?,}, {g,} and {r,} are real-valued sequences such
that {Bt} is positive, nondecreasing and convex, and for each i > 2, either

Pi > max(<7,, 0) and rt > 0, or q{ < min(r,, 0) and pt > 0. (1.3)

In addition, suppose there exist positive constants, c0, C\ and c2, satisfying

Co A2 bi(l, 0, 0) = A2bi(c0, 0, 0) > 0,

CiA2£,(0, - 1 , 0 ) = A2bj(0, - c , , 0 ) > 0, (1.4)

c2A
2bi(O, 0, 1) = A2bi(0, 0, c2) > 0,

for i = 0, 1, 2. Now, define the sequence {V(i)} via

V(i) = A3fl,_, - ^{B),, for i > 1. (1.5)

V(i) >0, for i >3, (1.6)

then

bn\ < h -I- ) Bn,
V c0 c\ c2 )

\bn\ < h -I- ) Bn, forn>3. (1.7)
V c c c )

The key to employing Theorem 1.1 is to determine a positive, nondecreasing
sequence B satisfying (1.4) and (1.6). While this can be done inductively for many
{(Pj, qj, rj)), it is particularly convenient when the third derivative of an extension,
B, to [0, oo) of the bounding sequence B exists. The next lemma follows directly
from the fact that A3S,,_i = fl'"(£), for some £ G [n - 1, n + 2].

LEMMA 1.2. Suppose B'" exists.

(1) ifB'" is nondecreasing, and for n > «0> i f ( 5 ) n < B'"(n - 1), then V(n) > 0
for n > n0.
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(2) IfB'" is nonincreasing, and for n > n0, i f (B)n < B'"(n + 2), then V(n) > 0
for n > n0.

It will be helpful to have the following notation, which will be useful when demon-
strating that (1.4) holds for particular examples.

For given {&,} and {6,}, define G and h via

G =

def

#0.0 #0.1 #0.2

£l,0 g\.\ gl.2

.82,0 #2.1 g2,2_

A2 bo(l, 0,0)
2fo0(0,-1,0) A2*,(0,-1,0)

A2b0(0, 0, 1) A2Z>,(0, 0, 1)
-1,0)
, 0, I)

and h = (h0, huh2) = (A2B0, A
2S,, A2B2). Note that (1.4) can be rewritten as

hi > cjgjj > 0, for 0 < /, j < 2. In fact, if /i, > 0 and g,., > 0, for 0 < / < 2, we
may take c, = mino<,<2{/i,/g;,,}.

We now give some examples of applications for Theorem 1.1.

EXAMPLE 1 (Power-type rate bounds). Consider {Bn} defined by Bn = nk (with
k e K), and note that B given by B(x) = xk, is positive, nondecreasing and convex
for k > 1. Taking derivatives gives B'"(x) = k(k - l)(k - 2)xk~i and Bm(x) =
k(k-l)(k-2)(k- 3)xk~4, and hence B'" is nondecreasing for 1 < k < 2 and k > 3,
and nonincreasing for 2 < k < 3.

Now, setc = k(k— 1)(A: —2). Employing Lemma 1.2, each of the following satisfy
(1.6) of Theorem 1.1:

(i) p = q = 0, k > 3, and for n > 3,

0 < r n (« - I)3 '

(ii) p = q = 0, k € [2, 3], and for n > 3,

0 < rn+l <

(iii) q = r = 0, k > 3, and for n > 3,

.. c ( n - l ) * - 3

and

(iv) 9 = r = 0, it € [2, 3], and for n > 3,

0 < pn+i < —-
2)* -3

1)*

(1.8)

(1.9)

(1.10)

(1.11)
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For k > 2, c is nonnegative, and hence the sequences in (i)-(iv) all satisfy (1.3).
Now, note that (a) rn defined by rn = c/n3 satisfies both (1.8) and (1.9), and (b) pn

defined by pn = c/(n + I)3 satisfies (1.11). We will consider these two instances in
some detail.

(a) (rn = c/n3) That rn = c/n3 satisfies (1.8) is immediate. To see that the right-
hand inequality in (1.9) also holds, note that

( / Z + 2 ) 3 - * ( / J - 1)* < (n + 2)( / i - I)2 =n3 -3n+2 < (n + I)3.

Now, employing the formulae in Table 2 below, we have the values

G =
1 l + c / 8 l + c / 8 "
2 2 2 - c/27
1 1 1

Hence there exist c0 > 0, C\ > 0 and c2 > 0 satisfying (1.4), whenever 0 < c/27 < 2,
that is, 2 < k < k0, where k{) % 4.867936. For example, when k = 3 (c = 6), we
have/i = (6, 12, 18) and

G =
1 7/4 7/4 '
2 2 16/9
1 1 1

Thus, taking ratios as suggested earlier, we may use c0 = c2 = 6 and ct = 3 in (1.7).
(b) {pn - c/(n + I)3) Here we have

Pn+\ =
(n + 2)3 - (n + 2)3

and (1.11) is satisfied. In addition,

(—V

G =
1
2 2 + 3p3 (1.12)

and since each entry in (1.12) is strictly positive, there exist c0 > 0, ct > 0 and c2 > 0
satisfying (1.4), for all 2 < A: < 3. For example, when k = 2.5 (c = 1.875), we have

h = (W2-2, 9V3-8, 32-

% (3.656854248, 5.27474877, 6.479939708).

Hence, employing (1.12) with p2 = 5/72 % 0.06944444444 and p3 = 15/512
0.02929687500, we may take c0 = c2 = 3.65 and c, = 1.82 in (1.7).
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EXAMPLE 2 (Exponential rate bounds). Consider B = [Bn\ and B defined by
Bn = ne" and B(x) — xex, respectively. We then have B'"(x) = (x + 3)ex, and
hence B'" is nondecreasing. Employing Lemma 1.2, each of the following satisfy the
requirements of Theorem 1.1:

(i) p = q = 0 and for n > 3,

0 < rn+t <
n - 1

and (1.13)

(ii) q = r = 0, and for n > 3,

0 < pn+l <
(n + 2)e -2

(1 .14)

A s an e x a m p l e o f rn sa t i s fy ing ( 1 . 1 3 ) , w e h a v e rn = (n + l)/(n — I). H e r e

h = (2e2-2e, 3e3 -4e2 + e, 4e4-6e3 + 2e2)

^(9.341548544, 33.41866819, 112.6574908),

r2 = 3, r3 = 2 and

"1
2
1

4
2
1

4
0
1

(1.15)

Thus c0 = 8.35, ci — 4.67 and c2 = 9.34 satisfy (1.4), and Theorem 1.1 is applicable.

We now turn to a proof of Theorem 1.1.

2. Proof of Theorem 1.1

In this section we will prove Theorem 1.1.
Prior to proving Theorem 1.1 we quote the following two tables which we use in

the proof of the theorem.

TABLE 1. Values for {A,}.

Case
1
2
3

bo

Co
0
0

b\
0

~C[

0

b2

0
0
c2

( 1 -
(3H
(3H

^3

r- r2)Co

- Pi)c2

(3 -
(3-1

(3 +
1- P.0(3
- p3)(3 -

p3)(l +
+ <72>C| -

+" P2)C2 -

/-2)C()

- (1 + r3)c\
- (3 + qi)c2
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TABLE 2. Second-order differences for [b,).

[6]

Case
1
2
3

A2b0 A2*, A2b2

d + r 2 ) c 0 r2)c0

2c,

PROOF OF THEOREM 1.1. Suppose {/?,), { ,̂), {r,}, {B,} and (c0, ci, c2) satisfy the
hypotheses of the theorem. We will consider three cases for [bj(b0, b\, b2)}, namely
Case 1: {6,(c0,0, 0)}, Case 2: {6,(0, - c h 0)} and Case 3: (6,(0, 0, c2)}. The values
in Tables 1 and 2 follow directly from (1.2).

Now, note that, for each case, b2 > 0, Abt > 0, and by (1.4), A2b, > 0, for
/ = 0, 1, 2. Also, for n > 2, expanding bn+t via (1.2) and simplifying, gives

6n_, = bn+l - (2.1)

Assuming that A26, > 0 for / < N - 1, gives b, > 0 for 2 < / < N + 1 and
bj > 0 for 1 < i < N. Hence (1.3) implies that either

-{ = pNbN - _2 > (pN - 0

or Ji?(b)N-i > pNbN + (—qN + rN)bN-2 > 0. Thus, combining this with the induction
hypothesis and (2.1) gives A2bN-\ > 0, and the induction is complete. In particular,
we have Ab> > 0 for / > 1 and b, > 0, for i > 2.

Now, for / > 0, define e, by e, = B, — bt. The values of e,, for the first few i, are
given in Table 3.

Case
1
2
3

TABLE 3.

S o - c 0

Bo

Values for {«,}

Bi+ct
B2

B2

B2-c2

We will show that e, > 0 for all i > 3; the result in (1.7) then follows, since for
general b0, b\ and b2, we then have

\bn(b0, bu b2)\ = —bH (c0,0, 0) - —b, (0, - c , , 0) + -bn (0, 0, c2)
C() C i C2

Co c, c2
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Note that (1.4) guarantees that A2e, > 0, for i = 0, 1, 2 and the assumptions on B
give Ae0 > 0 and €t > 0 (see Table 3). Now, assume A2en > 0, for n < N. It then
follows immediately that

(n > *„- . > 0, (2.2)

for 1 < n < N + 2. Hence we have

A2eN = A2BN - A2bN

= A3B*_, + A 2 ^ . , - A 2 ^

= A 3 ^ - , + A2fiA,_, - bN+2 + 2bN+l - bN

= A3BW_, + A25W_, - ((3 + pN+\)bN+x

— (3 + qN+\)bN + (1 + rN+l)bN-i) + 2bN+l - bN

= (A BN_\ — PH+\BM+\ + qN+iBfj — rN+iB^-\)

+ pN+i€N+i — qN+ieN + rN+xeN-\ + (A fi/v-i — A bN_t)

> 0. (2.3)

The second to last inequality in (2.3) follows from (2.2) and (1.3). The final inequality
follows from (1.6) and the induction hypothesis. Thus {e,} is positive (and convex),
and as mentioned, (1.7) now follows. •
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