EXPLICIT BOUNDS FOR THIRD-ORDER DIFFERENCE EQUATIONS

KENNETH S. BERENHAUT ${ }^{\text {M }}$, EVA G. GOEDHART ${ }^{1}$ and STEVO STEVIĆ ${ }^{2}$

(Received 30 April, 2005)

Abstract

This paper gives explicit, applicable bounds for solutions of a wide class of third-order difference equations with nonconstant coefficients. The techniques used are readily adaptable for higher-order equations. The results extend recent work of the authors for second-order equations.

2000 Mathematics subject classification: 39A10, 39A11.
Keywords and phrases: explicit bounds, applicable bounds, third-order linear difference equations, growth rates, nonconstant coefficients.

1. Introduction

This paper studies explicit, applicable growth rates for third-order difference equations. In particular, we will consider solutions $\left\{b_{n}\right\}=\left\{b_{n}\left(b_{0}, b_{1}, b_{2}\right)\right\}$ of equations of the form

$$
\begin{equation*}
\Delta^{3} b_{n-2}=p_{n} b_{n}-q_{n} b_{n-1}+r_{n} b_{n-2}, \tag{1.1}
\end{equation*}
$$

where for a sequence $\left\{a_{i}\right\}, \Delta$ is the forward difference operator and $\Delta a_{i}=a_{i+1}-a_{i}$. That is,

$$
\begin{equation*}
b_{n+1}=\left(3+p_{n}\right) b_{n}-\left(3+q_{n}\right) b_{n-1}+\left(1+r_{n}\right) b_{n-2}, \tag{1.2}
\end{equation*}
$$

for $n \geq 2$. We provide sharp inequalities for $\left\{b_{i}\right\}$ in terms of the sequences $\left\{p_{i}\right\}$, $\left\{q_{i}\right\}$ and $\left\{r_{i}\right\}$, and the initial values b_{0}, b_{1} and b_{2}. Solutions of difference equations

[^0]of the form in (1.1) have been studied by many authors (see, for example, [2-12]). Often these studies have focused on the understanding of oscillatory or asymptotic behaviour.

In what follows, it will be convenient to have the following notation.
For a sequence $a=\left\{a_{i}\right\}$, define the linear operator \mathscr{L} by

$$
\mathscr{L}(a)_{i} \stackrel{\text { def }}{=} p_{i+1} a_{i+1}-q_{i+1} a_{i}+r_{i+1} a_{i-1}, \quad \text { for } i \geq 1
$$

We now state our main result which extends recent results for second-order equations (see, for example, [1] and [13]). Closely related results can also be found in [14].

Theorem 1.1. Suppose $\left\{B_{i}\right\},\left\{p_{i}\right\},\left\{q_{i}\right\}$ and $\left\{r_{i}\right\}$ are real-valued sequences such that $\left\{B_{i}\right\}$ is positive, nondecreasing and convex, and for each $i \geq 2$, either

$$
\begin{equation*}
p_{i} \geq \max \left(q_{i}, 0\right) \text { and } r_{i} \geq 0, \text { or } q_{i} \leq \min \left(r_{i}, 0\right) \text { and } p_{i} \geq 0 . \tag{1.3}
\end{equation*}
$$

In addition, suppose there exist positive constants, c_{0}, c_{1} and c_{2}, satisfying

$$
\Delta^{2} B_{i} \geq\left\{\begin{array}{l}
c_{0} \Delta^{2} b_{i}(1,0,0)=\Delta^{2} b_{i}\left(c_{0}, 0,0\right) \geq 0 \tag{1.4}\\
c_{1} \Delta^{2} b_{i}(0,-1,0)=\Delta^{2} b_{i}\left(0,-c_{1}, 0\right) \geq 0 \\
c_{2} \Delta^{2} b_{i}(0,0,1)=\Delta^{2} b_{i}\left(0,0, c_{2}\right) \geq 0
\end{array}\right.
$$

for $i=0,1,2$. Now, define the sequence $\{V(i)\}$ via

$$
\begin{equation*}
V(i) \stackrel{\text { def }}{=} \Delta^{3} B_{i-1}-\mathscr{L}(B)_{i}, \quad \text { for } i \geq 1 . \tag{1.5}
\end{equation*}
$$

If

$$
\begin{equation*}
V(i) \geq 0, \quad \text { for } i \geq 3 \tag{1.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|b_{n}\right| \leq\left(\frac{\left|b_{0}\right|}{c_{0}}+\frac{\left|b_{1}\right|}{c_{1}}+\frac{\left|b_{2}\right|}{c_{2}}\right) B_{n}, \quad \text { for } n \geq 3 . \tag{1.7}
\end{equation*}
$$

The key to employing Theorem 1.1 is to determine a positive, nondecreasing sequence B satisfying (1.4) and (1.6). While this can be done inductively for many $\left\{\left(p_{j}, q_{j}, r_{j}\right)\right\}$, it is particularly convenient when the third derivative of an extension, \tilde{B}, to $[0, \infty)$ of the bounding sequence B exists. The next lemma follows directly from the fact that $\Delta^{3} B_{n-1}=B^{\prime \prime \prime}(\zeta)$, for some $\zeta \in[n-1, n+2]$.

Lemma 1.2. Suppose $\tilde{B}^{\prime \prime \prime}$ exists.
(1) If $\tilde{B}^{\prime \prime \prime}$ is nondecreasing, and for $n \geq n_{0}, \mathscr{L}(B)_{n} \leq \tilde{B}^{\prime \prime \prime}(n-1)$, then $V(n) \geq 0$ for $n \geq n_{0}$.
(2) If $B^{\prime \prime \prime}$ is nonincreasing, and for $n \geq n_{0}, \mathscr{L}(B)_{n} \leq \tilde{B}^{\prime \prime \prime}(n+2)$, then $V(n) \geq 0$ for $n \geq n_{0}$.

It will be helpful to have the following notation, which will be useful when demonstrating that (1.4) holds for particular examples.

For given $\left\{b_{i}\right\}$ and $\left\{B_{i}\right\}$, define \boldsymbol{G} and \boldsymbol{h} via

$$
\begin{aligned}
\boldsymbol{G} & =\left[\begin{array}{lll}
g_{0,0} & g_{0,1} & g_{0,2} \\
g_{1,0} & g_{1.1} & g_{1,2} \\
g_{2.0} & g_{2,1} & g_{2,2}
\end{array}\right] \\
& \stackrel{\text { def }}{=}\left[\begin{array}{ccc}
\Delta^{2} b_{0}(1,0,0) & \Delta^{2} b_{1}(1,0,0) & \Delta^{2} b_{2}(1,0,0) \\
\Delta^{2} b_{0}(0,-1,0) & \Delta^{2} b_{1}(0,-1,0) & \Delta^{2} b_{2}(0,-1,0) \\
\Delta^{2} b_{0}(0,0,1) & \Delta^{2} b_{1}(0,0,1) & \Delta^{2} b_{2}(0,0,1)
\end{array}\right]
\end{aligned}
$$

and $h=\left(h_{0}, h_{1}, h_{2}\right) \stackrel{\text { def }}{=}\left(\Delta^{2} B_{0}, \Delta^{2} B_{1}, \Delta^{2} B_{2}\right)$. Note that (1.4) can be rewritten as $h_{i} \geq c_{j} g_{j, i} \geq 0$, for $0 \leq i, j \leq 2$. In fact, if $h_{i}>0$ and $g_{j . i}>0$, for $0 \leq i \leq 2$, we may take $c_{j}=\min _{0 \leq i \leq 2}\left\{h_{i} / g_{j, i}\right\}$.

We now give some examples of applications for Theorem 1.1.
EXAMPLE 1 (Power-type rate bounds). Consider $\left\{B_{n}\right\}$ defined by $B_{n}=n^{k}$ (with $k \in \mathbb{R}$), and note that \tilde{B} given by $\tilde{B}(x)=x^{k}$, is positive, nondecreasing and convex for $k \geq 1$. Taking derivatives gives $\tilde{B}^{\prime \prime \prime}(x)=k(k-1)(k-2) x^{k-3}$ and $\tilde{B}^{(4)}(x)=$ $k(k-1)(k-2)(k-3) x^{k-4}$, and hence $\tilde{B}^{\prime \prime \prime}$ is nondecreasing for $1 \leq k \leq 2$ and $k \geq 3$, and nonincreasing for $2 \leq k \leq 3$.

Now, set $c=k(k-1)(k-2)$. Employing Lemma 1.2, each of the following satisfy (1.6) of Theorem 1.1:
(i) $p \equiv q \equiv 0, k \geq 3$, and for $n \geq 3$,

$$
\begin{equation*}
0 \leq r_{n+1} \leq \frac{c}{(n-1)^{3}} \tag{1.8}
\end{equation*}
$$

(ii) $p \equiv q \equiv 0, k \in[2,3]$, and for $n \geq 3$,

$$
\begin{equation*}
0 \leq r_{n+1} \leq\left(\frac{n+2}{n-1}\right)^{k} \frac{c}{(n+2)^{3}} \tag{1.9}
\end{equation*}
$$

(iii) $q \equiv r \equiv 0, k \geq 3$, and for $n \geq 3$,

$$
\begin{equation*}
0 \leq p_{n+1} \leq \frac{c(n-1)^{k-3}}{(n+1)^{k}} ; \quad \text { and } \tag{1.10}
\end{equation*}
$$

(iv) $q \equiv r \equiv 0, k \in[2,3]$, and for $n \geq 3$,

$$
\begin{equation*}
0 \leq p_{n+1} \leq \frac{c(n+2)^{k-3}}{(n+1)^{k}} \tag{1.11}
\end{equation*}
$$

For $k \geq 2, c$ is nonnegative, and hence the sequences in (i)-(iv) all satisfy (1.3). Now, note that (a) r_{n} defined by $r_{n}=c / n^{3}$ satisfies both (1.8) and (1.9), and (b) p_{n} defined by $p_{n}=c /(n+1)^{3}$ satisfies (1.11). We will consider these two instances in some detail.
(a) ($r_{n}=c / n^{3}$) That $r_{n}=c / n^{3}$ satisfies (1.8) is immediate. To see that the righthand inequality in (1.9) also holds, note that

$$
(n+2)^{3-k}(n-1)^{k} \leq(n+2)(n-1)^{2}=n^{3}-3 n+2<(n+1)^{3} .
$$

Now, employing the formulae in Table 2 below, we have the values

$$
\boldsymbol{G}=\left[\begin{array}{ccc}
1 & 1+c / 8 & 1+c / 8 \\
2 & 2 & 2-c / 27 \\
1 & 1 & 1
\end{array}\right] .
$$

Hence there exist $c_{0}>0, c_{1}>0$ and $c_{2}>0$ satisfying (1.4), whenever $0<c / 27<2$, that is, $2<k<k_{0}$, where $k_{0} \approx 4.867936$. For example, when $k=3(c=6)$, we have $\boldsymbol{h}=(6,12,18)$ and

$$
G=\left[\begin{array}{ccc}
1 & 7 / 4 & 7 / 4 \\
2 & 2 & 16 / 9 \\
1 & 1 & 1
\end{array}\right] .
$$

Thus, taking ratios as suggested earlier, we may use $c_{0}=c_{2}=6$ and $c_{1}=3$ in (1.7). (b) $\left(p_{n}=c /(n+1)^{3}\right)$ Here we have

$$
p_{n+1}=\frac{c}{(n+2)^{3}} \leq \frac{c}{(n+2)^{3}}\left(\frac{n+2}{n+1}\right)^{k}
$$

and (1.11) is satisfied. In addition,

$$
G=\left[\begin{array}{ccc}
1 & 1 & 1+p_{3} \tag{1.12}\\
2 & 2 & 2+3 p_{3} \\
1 & 1+p_{2} & 1+3 p_{3}+p_{2}+p_{3} p_{2}
\end{array}\right],
$$

and since each entry in (1.12) is strictly positive, there exist $c_{0}>0, c_{1}>0$ and $c_{2}>0$ satisfying (1.4), for all $2<k \leq 3$. For example, when $k=2.5$ ($c=1.875$), we have

$$
\begin{aligned}
h & =(4 \sqrt{2}-2,9 \sqrt{3}-8,32-18 \sqrt{3}+4 \sqrt{2}) \\
& \approx(3.656854248,5.27474877,6.479939708) .
\end{aligned}
$$

Hence, employing (1.12) with $p_{2}=5 / 72 \approx 0.06944444444$ and $p_{3}=15 / 512 \approx$ 0.02929687500 , we may take $c_{0}=c_{2}=3.65$ and $c_{1}=1.82$ in (1.7).

Example 2 (Exponential rate bounds). Consider $B=\left\{B_{n}\right\}$ and \tilde{B} defined by $B_{n}=n e^{n}$ and $\tilde{B}(x)=x e^{x}$, respectively. We then have $\tilde{B}^{\prime \prime \prime}(x)=(x+3) e^{x}$, and hence $\tilde{B}^{\prime \prime \prime}$ is nondecreasing. Employing Lemma 1.2, each of the following satisfy the requirements of Theorem 1.1:
(i) $p \equiv q \equiv 0$ and for $n \geq 3$,

$$
\begin{equation*}
0 \leq r_{n+1} \leq \frac{n+2}{n-1} \text { and } \tag{1.13}
\end{equation*}
$$

(ii) $q \equiv r \equiv 0$, and for $n \geq 3$,

$$
\begin{equation*}
0 \leq p_{n+1} \leq \frac{(n+2) e^{-2}}{n+1} \tag{1.14}
\end{equation*}
$$

As an example of r_{n} satisfying (1.13), we have $r_{n}=(n+1) /(n-1)$. Here

$$
\begin{aligned}
h & =\left(2 e^{2}-2 e, 3 e^{3}-4 e^{2}+e, 4 e^{4}-6 e^{3}+2 e^{2}\right) \\
& \approx(9.341548544,33.41866819,112.6574908),
\end{aligned}
$$

$r_{2}=3, r_{3}=2$ and

$$
\boldsymbol{G}=\left[\begin{array}{lll}
1 & 4 & 4 \tag{1.15}\\
2 & 2 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Thus $c_{0}=8.35, c_{1}=4.67$ and $c_{2}=9.34$ satisfy (1.4), and Theorem 1.1 is applicable.
We now turn to a proof of Theorem 1.1.

2. Proof of Theorem 1.1

In this section we will prove Theorem 1.1.
Prior to proving Theorem 1.1 we quote the following two tables which we use in the proof of the theorem.

Table 1. Values for $\left\{b_{i}\right\}$.

Case	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}
1	c_{0}	0	0	$\left(1+r_{2}\right) c_{0}$	$\left(3+p_{3}\right)\left(1+r_{2}\right) c_{0}$
2	0	$-c_{1}$	0	$\left(3+q_{2}\right) c_{1}$	$\left(3+p_{3}\right)\left(3+q_{2}\right) c_{1}-\left(1+r_{3}\right) c_{1}$
3	0	0	c_{2}	$\left(3+p_{2}\right) c_{2}$	$\left(3+p_{3}\right)\left(3+p_{2}\right) c_{2}-\left(3+q_{3}\right) c_{2}$

TABLE 2. Second-order differences for (b_{i}).

Case	$\Delta^{2} b_{0}$	$\Delta^{2} b_{1}$	$\Delta^{2} b_{2}$
1	c_{0}	$\left(1+r_{2}\right) c_{0}$	$\left(1+p_{3}\right)\left(1+r_{2}\right) c_{0}$
2	$2 c_{1}$	$\left(2+q_{2}\right) c_{1}$	$\left(1+p_{3}\right)\left(3+q_{2}\right) c_{1}-\left(1+r_{3}\right) c_{1}$
3	c_{2}	$\left(1+p_{2}\right) c_{2}$	$\left(1+p_{3}\right)\left(3+p_{2}\right) c_{2}-\left(2+q_{3}\right) c_{2}$

Proof of Theorem 1.1. Suppose $\left\{p_{i}\right\},\left\{q_{i}\right\},\left\{r_{i}\right\},\left\{B_{i}\right\}$ and $\left(c_{0}, c_{1}, c_{2}\right)$ satisfy the hypotheses of the theorem. We will consider three cases for $\left\{b_{i}\left(b_{0}, b_{1}, b_{2}\right)\right\}$, namely Case 1: $\left\{b_{i}\left(c_{0}, 0,0\right)\right\}$, Case 2: $\left\{b_{i}\left(0,-c_{1}, 0\right)\right\}$ and Case 3: $\left\{b_{i}\left(0,0, c_{2}\right)\right\}$. The values in Tables 1 and 2 follow directly from (1.2).

Now, note that, for each case, $b_{2} \geq 0, \Delta b_{1} \geq 0$, and by (1.4), $\Delta^{2} b_{i} \geq 0$, for $i=0,1,2$. Also, for $n \geq 2$, expanding b_{n+1} via (1.2) and simplifying, gives

$$
\begin{equation*}
\Delta^{2} b_{n-1}=b_{n+1}-2 b_{n}+b_{n-1}=\Delta^{2} b_{n-2}+\mathscr{L}(b)_{n-1} . \tag{2.1}
\end{equation*}
$$

Assuming that $\Delta^{2} b_{i} \geq 0$ for $i<N-1$, gives $b_{i} \geq 0$ for $2 \leq i<N+1$ and $\Delta b_{i} \geq 0$ for $1 \leq i<N$. Hence (1.3) implies that either

$$
\mathscr{L}(b)_{N-1}=p_{N} b_{N}-q_{N} b_{N-1}+r_{N} b_{N-2} \geq\left(p_{N}-q_{N}\right) b_{N-1}+r_{N} b_{N-2} \geq 0
$$

or $\mathscr{L}(b)_{N-1} \geq p_{N} b_{N}+\left(-q_{N}+r_{N}\right) b_{N-2} \geq 0$. Thus, combining this with the induction hypothesis and (2.1) gives $\Delta^{2} b_{N-1} \geq 0$, and the induction is complete. In particular, we have $\Delta b_{i} \geq 0$ for $i \geq 1$ and $b_{i} \geq 0$, for $i \geq 2$.

Now, for $i \geq 0$, define ϵ_{i} by $\epsilon_{i} \stackrel{\text { def }}{=} B_{i}-b_{i}$. The values of ϵ_{i}, for the first few i, are given in Table 3.

Table 3. Values for $\left\{\epsilon_{i}\right\}$.

Case	ϵ_{0}	ϵ_{1}	ϵ_{2}
1	$B_{0}-c_{0}$	B_{1}	B_{2}
2	B_{0}	$B_{1}+c_{1}$	B_{2}
3	B_{0}	B_{1}	$B_{2}-c_{2}$

We will show that $\epsilon_{i} \geq 0$ for all $i \geq 3$; the result in (1.7) then follows, since for general b_{0}, b_{1} and b_{2}, we then have

$$
\begin{aligned}
\left|b_{n}\left(b_{0}, b_{1}, b_{2}\right)\right| & =\left|\frac{b_{0}}{c_{0}} b_{n}\left(c_{0}, 0,0\right)-\frac{b_{1}}{c_{1}} b_{n}\left(0,-c_{1}, 0\right)+\frac{b_{2}}{c_{2}} b_{n}\left(0,0, c_{2}\right)\right| \\
& \leq \frac{\left|b_{0}\right|}{c_{0}} B_{n}+\frac{\left|b_{1}\right|}{c_{1}} B_{n}+\frac{\left|b_{2}\right|}{c_{2}} B_{n} .
\end{aligned}
$$

Note that (1.4) guarantees that $\Delta^{2} \epsilon_{i} \geq 0$, for $i=0,1,2$ and the assumptions on B give $\Delta \epsilon_{0}>0$ and $\epsilon_{1}>0$ (see Table 3). Now, assume $\Delta^{2} \epsilon_{n} \geq 0$, for $n<N$. It then follows immediately that

$$
\begin{equation*}
\epsilon_{n} \geq \epsilon_{n-1} \geq 0, \tag{2.2}
\end{equation*}
$$

for $1 \leq n<N+2$. Hence we have

$$
\begin{align*}
\Delta^{2} \epsilon_{N}= & \Delta^{2} B_{N}-\Delta^{2} b_{N} \\
= & \Delta^{3} B_{N-1}+\Delta^{2} B_{N-1}-\Delta^{2} b_{N} \\
= & \Delta^{3} B_{N-1}+\Delta^{2} B_{N-1}-b_{N+2}+2 b_{N+1}-b_{N} \\
= & \Delta^{3} B_{N-1}+\Delta^{2} B_{N-1}-\left(\left(3+p_{N+1}\right) b_{N+1}\right. \\
& \left.-\left(3+q_{N+1}\right) b_{N}+\left(1+r_{N+1}\right) b_{N-1}\right)+2 b_{N+1}-b_{N} \\
= & \left(\Delta^{3} B_{N-1}-p_{N+1} B_{N+1}+q_{N+1} B_{N}-r_{N+1} B_{N-1}\right) \\
& +p_{N+1} \epsilon_{N+1}-q_{N+1} \epsilon_{N}+r_{N+1} \epsilon_{N-1}+\left(\Delta^{2} B_{N-1}-\Delta^{2} b_{N-1}\right) \\
\geq & V(N)+\Delta^{2} \epsilon_{N-1} \\
\geq & 0 . \tag{2.3}
\end{align*}
$$

The second to last inequality in (2.3) follows from (2.2) and (1.3). The final inequality follows from (1.6) and the induction hypothesis. Thus $\left\{\epsilon_{i}\right\}$ is positive (and convex), and as mentioned, (1.7) now follows.

Acknowledgements

The first author acknowledges financial support from a Sterge Faculty Fellowship.

References

[1] K. S. Berenhaut and E. G. Goedhart, "Explicit bounds for second-order difference equations and a solution to a question of Stević", J. Math. Anal. Appl. 305 (2005) 1-10.
[2] Z. Došlá and A. Kobza, "Global asymptotic properties of third-order difference equations", Comput. Math. Appl. 48 (2004) 191-200.
[3] J. Henderson and A. Peterson, "Disconjugacy for a third-order linear difference equation". Advances in difference equations, Comput. Math. Appl. 28 (1994) 131-139.
[4] H. A. Hussein, "An explicit solution of third-order difference equations", J. Comput. Appl. Math. 54 (1994) 307-311.
[5] R. K. Mallik, "On the solution of a third-order linear homogeneous difference equation with variable coefficients", J. Differ. Equations Appl. 4 (1998) 501-521.
[6] N. Parhi and A. K. Tripathy, "On oscillatory third-order difference equations", J. Differ. Equations. Appl. 6 (2000) 53-74.
[7] J. Popenda and E. Schmeidel, "Nonoscillatory solutions of third-order difference equations", Portugal. Math. 49 (1992) 233-239.
[8] B. Smith, "Quasi-adjoint third-order difference equations: oscillatory and asymptotic behavior", Internat. J. Math. Math. Sci. 9 (1986) 781-784.
[9] B. Smith, "Oscillatory and asymptotic behavior in certain third order difference equations", Rocky Mountain J. Math. 17 (1987) 597-606.
[10] B. Smith, "Oscillation and nonoscillation theorems for third-order quasi-adjoint difference equations", Portugal. Math. 45 (1988) 229-243.
[11] B. Smith, "Linear third-order difference equations: oscillatory and asymptotic behavior", Rocky Mountain J. Math. 22 (1992) 1559-1564.
[12] B. Smith and W. E. Taylor, Jr., "Asymptotic behavior of solutions of a third-order difference equation", Portugal. Math. 44 (1987) 113-117.
[13] S. Stević, "Asymptotic behavior of second-order difference equations", ANZIAM J. 46 (2005) 157-170.
[14] S. Stević, "Growth estimates for solutions of nonlinear second-order difference equations", ANZIAM J. 46 (2005) 439-448.

[^0]: 'Wake Forest University, Department of Mathematics, Winston-Salem, NC 27109, USA; e-mail: berenhks@wfu.edu.
 ${ }^{2}$ Mathematical Institute of Serbian Academy of Science, Knez Mihailova 35/I 11000 Beograd, Serbia; e-mail: sstevic@ptt.yu and sstevo@matf.bg.ac.yu.
 © Australian Mathematical Society 2006, Serial-fee code 1446-181 1/06

