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1. Introduction
Throughout this paper, unless otherwise stated, n and L stand for positive

integers and a, t, x, xu x2, ... for positive real numbers. Let

SB(x1)...,xB)= £ J , (1)
where

xB+r = xr (all r) (2)
and

A(«)=- inf Sn(xu ..., xn) (3)
n xi,...,xn

Then, it is known (see (2)) that

< \ (even n = 14, odd n g 27).

Also, as Rankin (4) has proved, A(ri) has a finite limit as n-*oo and

X = lim A(n) = inf k(n) (4)
n—* oo n

Further (6),
A ̂ A(24)< 0-49950317 (5)

In a paper (1) to appear shortly, we have shown that

A(n)^A^KV2~i) =0-457107, (6)
thus improving Rankin's result (5)

A(n) = A=O-33O232,

which he obtained by a method involving the use of properties of convex
functions. Our result (6) was first obtained by a development of Rankin's
method, although later a simpler proof was found (see (1)). In this paper we
shall develop Rankin's method further and prove that

A(n)^ A=0-461238 (7)

We shall also prove that
A^A(24)<0-499197 (8)
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144 P. H. DIANANDA

The upper and lower bounds for A, appearing in (7) and (8), have a gap
which is less than 90 per cent, of that between the best previously known
bounds which are given in (5) and (6).

2. Some Lemmas
Lemma 1. Let a, xu x2, ...be any real numbers satisfying (2). Then there

are integers au a2, ..., as+1(s>0), with

as+1 = aj (mod n), (9)

such that, for k = 1, 2, ..., s,

(i) ak+l^ak+2 (10)

and

(ii) either ak+l-ak is even, xat+I^axflIt+1 + 1

(ID
and xo t+2<axf lk+3<x<I ) t+4<ax<Ik+5<...<xat + 1,

or ak+t-akisodd,ccxak+l^xak+l + 1

and xflk+2<axOfc+3<xflk+4<axak+5<...<axfl l [+I.

Proof. First let ak be an arbitrary integer. Consider the infinite chain C
of inequalities >

If all these inequalities are true then

and so

This contradicts (2). Hence the inequalities in C are not all true. Suppose
that the first bk = ak+l—(ak + 2) inequalities in C are true and the next one
false. Then we have (10) since bk^0. Also we have (11) if bk is even and
(12) if bk is odd. Thus there is an integer ak+1 satisfying both (i) and (ii).

Hence, starting with an arbitrary integer au we can find successively
integers a2, a3, a4, ... satisfying (i) and (ii) for k = 1, 2, 3, ... respectively.
Consider now the infinite sequence of integers a1; a2, a3, . . . . Since there are
only n residue classes (mod «), it follows that there are positive integers s
and t such that as+t = at(modn). Also (i) and (ii) are satisfied for k = t,
t+l, ...,s+t — l. Since (for any fixed s and t)a,, at+i, ..., as+, can be renamed
au a2, ..., as+1 respectively, the lemma follows. (I am indebted to the referee
for commenting that my original proof needed further clarification.)

Following Rankin (5), we write

(<t>Lx0,x1,...,xL+l)= £ ^ (13)
r = 0 X r + 1 + X r + 2
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We write also

./. /•>• v v V— X° J. Xl+X* j_ * 3 + * 4 , . XL-3+XL-2
VL\XO> xl> •••> XU = H H T ... +

Xj+X 2 X3+X4 X +

+ l ~ 1 - 1 (even L£2), (14)
(l+a)xL

X t + X 2 X3 + X4

X3+X4 X5+X5 XL—

Lemma 2. Let L be even and ^ 2. Suppose that

x2<ax3<x4<ax5<...<xt awd xt^axL+1 (16)

^ ( X ^ ) ^ ^ ( i,..., XL) (17)

Proof. This follows from (13), (14) and (16).

Lemma 3. Let L be odd and ^ 3. Suppose that

x2<ax3<x4<ax5<...<axt and axL^xL+1 (18)

Then (17) is true.

Proof. This follows from (13), (15) and (18).
For each t, we define functions /t(x), gt(x), Ft{x) and Gt(x) for x2:0 as

follows.

^ V / ( ' + 2 ) __^ for X>(JLY.
.(19)

2/(r + l)
(20)

f 1+a

7 , . 1 / 1 \2/(l+l)

G,{x) = ̂ ,(x*')= — r ^
f f \ l+a /

r ^ x (22)
\l+a/

The functions denned above are all convex functions of logx for x>0,
but we shall use this convexity property only of F2(x) and G3(x).
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Lemma 4.

.(23)

2 ( ) xf x g ,
1+a

-, / ax a , a= 2 / for x^ ;
Vl+a 1+a 1+a

and G3(x) = - —^—- (24)
3 (1 + a)*

are convex functions of log x for x > 0.

L - -5L (25)
1 + a

Proof. The convexity properties follow from the following facts: For
x>0 (i) F2(x) and G3(x) are continuous and have continuous derivatives,

(ii) except at x = -?—, F&x) exists and xF2'(x)+F2(x)^0 and (iii) G$(x)
1 + a

exists and xG'i(x) + G'3(x)^0.

(25) follows from (23) since xH ^2 / , by the inequality of the
1+a V l + a

(arithmetic and geometric) means.

Lemma 5. F,(x)^Ft.(x) for t^t'>0.

Proof. From (21), the result is true for x< • When x ^
- 1+a - 1+a

v2/(t+2)

F;(X)-F;.(X) = [ — ~ ) - I — ~ ) 2.0.

" 1

Hence

F(x}- F (x)> F I "* 1 — F I "• 1 — 0

Lemma 6. G ,(x) ̂  -F2W
/ r V ~'if (>la«aa(l + a)^ ) (26)

Proof. Let

Then, from (22) and (27),

G;(x)-F'(x) =

= 2 l^-~ (27)
1+a 1+a

\l+a/

= 0atx= _iL
1 + a
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where Gt(x)— F(x) has the minimum value

— - III afn
1 + a t

from (26). Hence Gt(x)^F(x) = F2(x) for x £ — , from (23) and (27).
1 + a

For xg , Gt(x)^F2(x) is equivalent, from (22) and (27), to
1+a

/ f+iV
which is satisfied if a(l+a) g I I . But (26) is true, and

,-u -K,l ~ \,-u - ' S 1

by the inequality of the means. Hence G,(x)^F2(x) for x:g also.

Lemma 7. \I/L(xo, xu ..., xL)^fL(x0/xL) (evenL^l), (28)

(29)

Proof. For odd i ^ 3 , (29) follows from (15), (20) and the inequality of
the means. Let x = xo/xL.

( a \iL

For even L ^ 2 and x ^ I ) ,

\1+<V

1 + a X+x X + X x + x

from (14). Hence (28) follows from the inequality of the means and (19).
/ a \iL

For even L>2 and x g I I ,
\l+aj

1+a xL

from (14) and the inequality of the means. Hence

. xL
where

, , . \r( x \2IL , a u

Iff Y *j 1 — I f I I _(_

Vl + " / 1+a
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Now

lKx,u)=--±-
\2'L

— I

>Oforu>Oandx<
~ - -

< I—— ) .

Thus \j/L{x0, xu ..., xL)^h(x0/xL, 0) = fL(x0/xL), from (19). This completes
the proof of the lemma.

„ ( t V- 1 .
3. I I it

\t-lj
Lemma 8. I 1 increases for t>l.

Proof. This follows from Theorem 140 of (3).
Lemma 9. G,{x)^F2(x) /or r = 3 (/" a(l + a) = £ .
Lemma 10. G,(x)^F2(x)for t^5 if<x(l+oi)^ -ff-f.

Proofs. Lemmas 9 and 10 follow from Lemmas 6 and 8.

Lemma 11. yjx—\x increases for 0 ̂  x ^ 1.

Lemma 12. (l+x)e~x decreases for x^.0.

Proofs. Lemmas 11 and 12 have obvious proofs.

3. First Improvement of (6)
We can improve (6) to

8 ^ 1 0 ~ 1 7 =0-461012, (30)
18

without much computational work, as follows.
Let a, xu x2, ... be positive and (2) be satisfied. Then we can find an

increasing sequence of integers au a2, ..., as+1 in accordance with Lemma 1.
From (1), (2) and (13),

ai Sn(xu ..., xn) = £ <f>ik{xak, x a k + 1 , ..., xf l k + 1 + 1 ) , (31)
n k = I

where .
d (32)

from (10). From (31), (32) and Lemmas 2, 3 and 7,

i, . . . , x n ) =
k = 1
dfc odd

since (11) or (12) is satisfied. Hence, by (21) and (22),

+ V 1 i J g~* /••v2/d|£/-.2/dfc\ / I^A

ZJ '2ak\rdk\
xttk lXak+l) \U)

I
die odd

https://doi.org/10.1017/S0013091500014711 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014711


A CYCLIC INEQUALITY AND AN EXTENSION OF IT 149

Suppose that a(l +a)^£ . Then, by (32), (33) and Lemmas 5, 6 and 9,

n * = I

by the convexity property of F2(x), given in Lemma 4, and the fact that, as a
consequence of (2) and (9),

k = 1

Hence, by (25),

and so, from (3) and (4),

/ i L J L (35)

when a(l+a):g£. If a = 1 we get the inequality (6); and if a(l+a) = f,
so that a = £(V10-1)> we get the inequality (30). That this is the best in-
equality, obtainable from (35), for a(l +a )^£ follows from Lemma 11.

4. Further Improvements of (6)
We next consider a(^ 1) satisfying

^ (36)
256

As in § 3, we can obtain (33) in this case also. It is convenient to write

t dk = p, t dk = q andp+q = N (37)
t = I * = I
dk * 3 dk = 3

Then,
(38)

from (32) and (37). It is also convenient to write, in conformity with (34),

fl ^-=x and fl — = ~ (39>
die * 3 "k + l dk - 3 <"I + 1

Then, using (32), (37) to (39) and Lemmas 4 to 6 and 10, we get, from (33),

N
n ' ~

a
= P l + a

l + a
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by the inequality of the means. Thus we get, using (37),

V-'<+->. (40)
n

Thus, from (3), (4), (38) and (40),
(«)^A^ max min H(a, p), (41)

agio OgpgiV

J689-8
where (36) is equivalent to a^a0 = = 114055. Now

16
«\ -3AMOg« ( 4 2 )

P+2N J p+2N

and, in virtue of (38),
_ 37V log a

From Lemma 12, it follows that
1 / 1 V—

3N\l+aJ
( l+| loga)< < —( (1+loga).

dp 2N(l + )-3N\l+JK

Hence, for all p satisfying (38),

<M ^o if (— J ^Kl + loga), i.e. ctga, = 1-08571
dp \ l + a/

and ^ ^ O i f a f - ^ — J ^ |+loga, i.e. a^a2 = 1-09277
dp l +

(since 1 ga^a0). It is seen that 1 <<xt <a2<a0-

If a1^a^a2 then — = 0 for some p satisfying (38). For this p, from

(40) and (42),
( V 1 3/Vloga ....

^ (43)

and H(x,p) = i ^2-31oga(l+ =- S (44)
1+a I \ p+2N )

r\ T-f
If aga., — ^0 for all/7. Thus, from (40),

dp
min /f(a, p) = /^(a, JV) = / + .

V l+a 1+a
Hence we have (35) and thus, from Lemma 11, the best inequality obtainable
from (35) is when a = ax. This is

A(«)^ X ̂ 0-461216 (45)
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If a 1 a2, — ^ 0 for all p. Thus, from (40),
dp

min H(a, p) = H(tx, 0) =
i

and we have

which is best when a = a2. The inequality then is

A(«) ̂ zl^O-460838,

which is not so good as (45).
If <x, ^ a ^ o 2 , from (43) and (44) we find (by computation) that, for a and

p satisfying (43), H(<x, p) has its maximum value when a = 1-0868 and
p = 0-7214/V. This maximum value is 0-461238. Thus (41) is equivalent to
(7) which, we note, is only a slight improvement of (45), which itself is better
than (6).

5. Proof of (8)
From (1) and (3), we easily get (8) if we let n be 24 and xu ..., x24 be 0, 15,

0, 17, 0, 19, 0, 21, 2, 22, 5, 21, 7, 18, 7, 16, 6, 14, 5, 13, 3, 13, 1, 14 respectively,
in (1), and use considerations of continuity.

6. Addendum to (1)
Near the end of (1) we proved an inequality equivalent to

^ ± * - Ci^--(46)
n

B(x1 , . . ,xn) ±
n r= i 3xr+1 + xr+2 + \xr+1-xr+2 I

if (2) is satisfied. We can now prove more, namely, that

inf Uxt, . - , *„) = 2»"""- ^ (47)
n,... xn n

if (2) is satisfied.

Proof. For even n, (47) follows from (46) since we have equality in (46) if

xt = x3 = ... = *„_! and x2 - x4 = ... = xn =

when s B = _ ^ l _ + ; £ l = ^ 2 - i .
2x3

For n = 1, (47) is trivially true. For odd n>\, (47) follows from (46)
since we have equality in (46) if

JCj . X2 - X 3 — JC3 . X 4 . X5 — ... — A n _ 2 . X n _ ! . Xn — £ . 1. I . 1 ,

when !„ = ( — L _ + - i . + -JL = 2<" ^z2"- - —
,+x3 2x3/ «xt 2«

https://doi.org/10.1017/S0013091500014711 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014711


152 P. H. DIANANDA

REFERENCES
(1) P. H. DIANANDA, A cyclic inequality and an extension of it. I, Proc. Edin.

Math. Soc, 13 (1962), 79-84.

(2) P. H. DIANANDA, On a cyclic sum, Proc. Glasgow Math. Assoc. (to appear).

(3) G. H. HARDY, J. E. LITTLEWOOD and G. P6LYA, Inequalities (Cambridge,
1934).

(4) R. A. RANKIN, An inequality, Math. Gaz., 42 (1958), 39-40.

(5) R. A. RANKIN, A cyclic inequality, Proc. Edin. Math. Soc, 12 (1961), 139-147.

(6) A. ZULAUF, On a conjecture of L. J. Mordell II, Math. Gaz. 43 (1959), 182-184.

DEPARTMENT OF MATHEMATICS

THE UNIVERSITY

SINGAPORE, 10

https://doi.org/10.1017/S0013091500014711 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014711

