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Abstract. Let X/ be a projective algebraic manifold, and further let CH*(X )o be the Chow
group of codimension k algebraic cycles on X, modulo rational equivalence. By considering
Q-spreads of cycles on X and the corresponding cycle map into absolute Hodge cohomology,
we construct a filtration {F*}, 5 , on CH*(X ) of ‘Bloch-Beilinson’ type. In the event that a certain
conjecture of Jannsen holds (related to the Bloch-Beilinson conjecture on the injectivity, modulo
torsion, of the Abel-Jacobi map for smooth proper varieties over Q), this filtration truncates.
In particular, his conjecture implies that F¥*1 = 0.
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1. Introduction

Let X/ be a smooth, projective algebraic manifold, and further let z*(X) be the free
abelian group generated by codimension k irreducible subvarieties in X. The Chow
group of codimension k cycles on X is given by:

CH*(X) := cokernel( cvy< & zk(X)>,

codimy V=k—1

where div is the divisor map.
There are two well-known constructions of the cycle class map. First, there is the
fundamental class map

cle : CHA(X) —> HZ* (X, Z(k)),

sing
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and second, there is the Abel-Jacobi map

H* (X, C)
FOH*-1(X, C) + H*1(X, Z(k))
~ H2k71(X’ C)

T FFH*1(X, C) + H* (X, Z)’

@ : CHF,_(X) — J5(X) :=

where CH}’fom(X ) = ker clg, and where in the former description of J¥(X), the Hodge
structure given by H*~1(X, C) ~ H*~1(X, Q(k)) ® C has weight —1.

The maps cl; and ®; are in general neither injective nor surjective, and their
kernels and images can be very complicated, as can be seen by the seminal works
of Mumford [Mu] and Griffiths [Gr]. In fact, even for X defined over a field L
of transcendence degree 1 over Q, the kernel of @ q : CH*(XL)q — JX(X(C))q
can be nontrivial [Sch], where for any abelian group M, Mg =M ®z Q. The
transcendence degree of the underlying field playing an essential role in the
nontriviality of ker @, ¢ suggests that the opposite situation should occur if X is
defined over a number field. In this direction, the following was conjectured by Bloch
[BI1] (and independently by Beilinson):

CONJECTURE 1.0. For smooth and proper Z defined over Q, the complex
Abel-Jacobi map

o : CHyon(Z/glq—>T"(Z(C))g
is injective, where Q is the algebraic closure of Q in C.

Remarks 1.0.1. Bloch and Beilinson (op. cit.) originally formulate Conjecture (1.0)
for smooth and proper Z defined over Q. This is equivalent to the corresponding
statement for smooth and proper Z defined over a number field [J2; p. 158], and
hence for Z defined over Q. We also wish to point out that it is the conjectured
injectivity of @y g in (1.0) that motivates us to restrict ourselves to the Chow groups
tensored with Q, viz. CH*( ) ® Q, rather than deal with the possibility of torsion
cycles in the kernel of the corresponding @ : CHf  (Z/q) — JX(Z(C)).
Furthermore, the Kiinneth decomposition of the diagonal class in
Theorem (1.2)(v) below, into algebraic classes, can only be expected to hold over

Q.

Since @y is in general not injective for X/, one anticipates that the kernel of ®;
can be ‘explained’ by kernels of successive higher regulator maps, defining a filtration
below.

CH"X/c)g=F D F' > F*> ... 5 FF 5 {0}, (1.1)

where F!' = kercly.q, and F? = ker @y o. This is fortified by Beilinson’s conjectural
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formula:
Gri; CH (X)) = Ext'y (1, P4 (X)(k)),

where MM is the conjectural category of mixed motives, and 1 is the trivial motive.
There are a number of works in the literature which support the idea of a filtration.
The reader can consult, for example, the works of [As], [A-S], [Gn], [Ra],
[J2; p. 178], [Sa], and the references cited there.

Both cycle maps cl;, ®; can be combined in the diagram below:

0 — CHf, (X)) — CHYX) — CHNX)/CHf . (X) — 0
Oy ‘l’ ‘L Wi \L cly
0 - JX) = HXX,Zk) — Hg(X) - 0

where the Hodge group
He"(X) ¢ H*(X, Z(k))

can be identified with homwp(Z(0), H*(X, Z(k))), and [Ca]
JH(X) =~ Extyy(Z(0), H*' (X, Z(k))).

and where Hi(X, Z(j)) := H(Z(j) — Q}7) is Deligne cohomology. Here ¥ is
the corresponding cycle map (see [E-V]). If again X is defined over Q, then by
conjecture (1.0) above, Wy is injective modulo torsion. Assuming this, one can then
read off a 2 step filtration on CH¥(X /6)Q. More specifically, from the short exact
sequence

0 — JXX(C)g — Hp'(X(C). Qk)) — H*(X(C), Q(k)) — 0,

there is the filtration:

¢y = Hp'(X(C), Q(k)).
o1 = J{X(O)g,
(Pz - O
This correspondingly induces a filtration (via (1.0)) on Chow groups
F'CH (X [g)q = CH"(X)q,
F'CH (X [g)q = CH}\(X)q.
F>CHN(X [g)q = tker : CH}\, (X)q > JX(X(C))g} = {0}.
The idea of this paper is to conceive of a filtration on CH*(X /c)q based on

reducing to this special situation. Roughly speaking then, a Bloch—Beilinson
filtration (B-B filtration), is a filtration in (1.1) satisfying a number of desirable
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features. Our aim then is to show that if a certain generalization of conjecture (1.0)
holds (see (2.1) below), then a B-B filtration exists. To be more precise, our main
result is

THEOREM 1.2. Assume given a smooth projective variety X /c. Then for all k, there
is a filtration

CH'X/c)g=F'>F' > >F' >F* 5. o FF S Pl = P2 = .

which satisfies the following

() F'= CHE,L(X/)o
(i) F* Cker®q: CHf, (X/c)g = J5(X(O))q.

(i) F¢e F" C F', where o is the intersection product.

(iv)  F'ispreserved under push-forwards f, and pull-backs f*, wheref : X /c — Y/ s
a morphism of smooth projective varieties. [In short, F¢ is preserved under the action
of correspondences between smooth projective varieties.]

(V) Gr&:=FY/F™ factors through the Grothendieck motive. More specifically,
let us assume that the Kinneth components of the diagonal class
[A] = Bp1g=21[AQ. 9)] € H*(X x X, Q(k)) are algebraic. Then

Identity if r=1¢
ACH = 2K+ 1, 2K = D.lgeminsan = | ¢ o

(vi) Let DX(X) := N,F*. If conjecture (2.1) below holds, then D*(X) = 0.

Although we apply our results to X/, one could easily modify our arguments so
as to apply to X, where L is a subfield of C. (On the other hand, by a standard
norm argument, there is an injection CHk(XL)Q — CH"(X/C)Q. Therefore a
filtration on CH*(X/¢) induces a filtration on CH*(X.)q.) In a few words, the
basic idea of the proof is the following. Given X/, we consider a Q-spread, namely
we can view X as defined over K, viz. X/, where K/Q is an extension of finite trans-
cendence degree over Q. There exists projective schemes X £ S over Q for which
the generic fiber X, over the generic point # € § satisfies X/c = X5, x C (via a
suitable embedding K < C). Similarly, if ¢ € CHNX /c)q 1s given, then by enlarging
K (if necessary), ¢ has a lifting € € CH"(XS)Q. By restriction, we can consider
¢ e CH (p™'(U))q for some Zariski open U/g C S, where p:p~'(U) — U is
smooth and proper. One then shows that under the assumption of conjecture (2.1),
CH"(p*I(U))Q embeds into absolute Hodge cohomology (Section 2). By
constructing a Leray filtration on the ‘lowest weight’ part of absolute Hodge
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cohomology, one arrives at a corresponding filtration on CHk(p*I(U))Q. Taking
direct limits, we arrive at

FCCHY(X)g = lim FCCH*(p™'(U))q,
ucs

where K = Q(S).

F'CHM(X [¢)qg = lim F' CH"(Xk)q.
KcC

2. Relation of a Generalization of Conjecture 1.0 to a Conjecture of Jannsen

Let I'(—) := hompp(Q(0), —), where hom is taken in the category of mixed Hodge
structures, and where 1:= Q(0) is the trivial Hodge structure of weight zero.
Throughout this paper we will use either the notation I'(—) or homygy(1, —), and
1 or Q(0) depending on what appears notationally convenient at the given time,
where for any subring 4 C R, A(k) = (2nv/—1)*4 c C. Note that A(k) defines
the trivial 4-Hodge structure of weight —2k. Recall that Q C C is the algebraic
closure of Q in C.

CONIJECTURE 2.0 (See [J2; 5.20]). For a smooth complex quasi-projective variety
V' that can be defined over number field, the regulator map

r: CH(V, 1)q — T(HY(V,Q())))
is surjective, where CH/(—, 1) are the higher Chow groups introduced by Bloch [ BI2].

We now consider a generalization of (1.0) to smooth quasi-projective varieties.

CONJECTURE 2.1. For any smooth quasi-projective variety Vig the Abel-Jacobi
map

CHyon(V /) — Extym(L H¥!(V, Q).
(as defined in [J2]) is injective.

Remarks 2.1.1

(i) If W is smooth and proper over C, then Exty;,(1, H*~!(W, Q(k))) = JK(W)q,
and the corresponding map CH{,.(W)q — Extyy(1, H*~'(W, Q(k))) is the
classical Abel-Jacobi map. Thus indeed (2.1) generalizes (1.0).

(ii) The description of Exty, (1, H*~'(V, Q(k))) for quasi-projective V, in terms of
a generalized jacobian, is given in (2.5.2) below.
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(iii) In the case k = 1, conjecture (2.1) is true, even without the added assumption of
V' defined over a number field. We prove this in (2.5) below.

The purpose of this section is to prove the following.

THEOREM 2.2. Conjecture (2.0) implies conjecture (2.1).

Proof. Theidea of proof essentially comes from [J2]. All varieties are thus defined
over Q. (Thus for example, by Chow’s lemma, conjecture (1.0) can be restricted to
smooth projective varieties over Q). Now let i : Z<> V' be a [pure] codimension
j algebraic subset of V. Then by purity, H;jil(V, Q(j)) = 0, hence the short exact
sequence (where U = V'\Z)

0 — HY YV, Q@) — H¥ (U, Q) — HZ(V.Q()) — 0,

where
HI(V, Q) = ker : HZ(V,Q()) — HY(V,Q())).

There is an exact sequence

- = DHT'(U.Q()) - THZ(V. Q())
- Extyy(L HY (V. Q()) — ---.

Note that if V' is complete, then H¥~'(V, Q(j)) has pure weight = —1, thus

T(HY 'V, Q()))) =0,

and hence o is injective, although this is in general not the case. Now set
CH/(V)o =ker : CH(V)q — HY(V,Q(j)). It seems natural to introduce the
notation CH’Z( V) := CHgimy-j(Z). Note that the cycle class map
CHjZ( Mo = H%j( V,Q())) is an isomorphism. This is because
CH( V) = CHdim z(Z)q is freely generated by the irreducible components of Z,
and that likewise H’ éj (V,Q())) is freely generated by the fundamental classes of these
components. Now set CHQ(V)OQ = i*CHf(V)a, (recall the inclusion i:Z < V).
There is a commutative diagram of exact sequences

> CH(U, Dy - CHLR B CHI(VYy =

Lr 12 1o

o

= THY(U.QG)) — THIV.Q()) — Extyy(L H'(V.Q() — -
2.3)

where ®; is the Abel-Jacobi map, and f is induced by inclusion. It follows easily that

(@) ronto = @)y, is injective.
(b) @l and o injective = r onto.
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Now suppose conjecture (2.0) holds and that ¥ is quasi-projective over Q,with
corresponding codimension k subvariety Z /gCV. Then viewing U as a complex

variety, r is always onto, and hence (Djﬂm([)’) is injective by (a) above. Thus (2.0)

= (2.1), and we are done. O

Remark (2.4). If V' /¢ is a projective algebraic manifold for which ®@; in (2.3) is not
injective, then by (a) and (b) above, one arrives at a corresponding U/ for which rin
(2.3) is not onto. This was first observed by Jannsen, in providing a counterexample
to a certain conjecture of Beilinson [J1; 3.12.¢c].

We now fulfill a promise made earlier.

PROPOSITION 2.5. Let U/ be a smooth quasi-projective variety. Then the
Abel-Jacobi map

CH} . (U)g — Extigy(1, H'(U, Q(1)))

is an isomorphism.
Proof. Let V' be smooth, projective, and U = V'\Z, for some Zariski closed
proper subset Z C V. Then from the commutative diagram of exact sequences

CHL(V)q — CH'(V)q — CH'(U)q -0
‘l’ ¢ ClV ‘l’ \L ClU
Hy(V,Q() — H(V,Q() — WH*(U,Q(l)) —0
we deduce that the restriction map
CH'(V)g, — CH'(U)g,

is surjective, where CH'(V), := kercly and CH'(U){, := kercly. Now referring to
the notation of (2.3), we have a commutative diagram of exact sequences:

CHL(V)g - CH'(V) - CH\(U),, -0
12 @ 2 \

DHZ(V, Q1)) —  Extyy(LH'(V,Q() — Extyy(1,H(U,Q()) — 0,

where we use the fact that Ext (1, H2(V, Q(1))") = 0. This is because HZ(V, Q(1))°
is a pure Hodge structure of weight 0, and for a MHS A [J2; Lemma 9.2],

WyH ®z C
WoH + FOWyH ®zC’

Extyy (1, H) =~ (2.5.1)
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Thus it follows from the five lemma that the Abel-Jacobi map
CH'(U)¢ — Extyy(1, H'(U, Q(1)))

is an isomorphism. Finally, by definition, CH'(U)¢, = CH},.(U)q. and so we are

done. O

As for final comments for this section, we deduce from (2.5.1) that

WoHY~\(V, C)
FOWoHY=Y(V,C)+ WoHY='(V,Q()))

Extyy (1, H¥~'(V, Q()))) ~ (2.5.2)

Furthermore, there is an exact sequence
0 — Extyy(1 H¥'(V, Q()) — H7(V. Q) — THY(V, Q) — 0, (2.6)

where Hj/(V,Q(x)) is absolute Hodge cohomology (see Section 3). Thus by
conjecture (2.1), there is an injection

CH (V)= HF(V,Q()),

for smooth quasi-projective ¥ over Q. Now for V = p~!(U) (see the paragraph
preceeding Section 2), one constructs a Leray filtration on the lowest weight part
of HZF(V, Q(k)). We work this out in the next section.

3. Absolute Hodge Cohomology and the Leray Filtration

For our narrow interests, we need to make use of a variant of Deligne cohomology
that takes into account the weight filtration. This leads us to absolute Hodge
cohomology. Since we are only interested in some formal properties of absolute
Hodge cohomology, specifically the exact sequence in (2.6) above, we present here
only a brief definition and refer the reader to the literature for more details. The
definition of a mixed Hodge complex can be found for example in [Be], [J1], and
[B-Z]. We adopt the notation in [J1]. Let 4 C R be a subring such that 4 ® Q is
a field.

DEFINITION 3.0 (See [B-Z; def. 1.8]), or [J1; def. 2.1]). A mixed 4-Hodge complex
consists of the following.

(@) A complex K% of 4-modules (in the derived category), that is bounded below,
such that H?(K,) is an A-module of finite type for all p. (The reader who is
not familiar with derived categories may think of an object in the derived
categories of complexes as a complex defined up to quasi-isomorphism).

(b) Afiltered complex (K§ 2Q> W) of A ® Q-vector spaces that is bounded below, and
an isomorphism Kj,o — K3 ® Q in the derived category.
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(© Abifiltered complex (K¢, W, F) of C-vector spaces, and a filtered isomorphism
o (Kg, W) > (K3gq+ W) ® C in the filtered derived category.
Further,

(d) ForeverymelZ

GryKigq — (G K¢, F)
is a (polarizable) 4 ® Q-Hodge complex of weight m, i.e. the differentials of
Gry, K¢ are strictly compatible with the induced filtration F, and F induces

a pure (polarizable) A ® Q-Hodge structure of weight m+r on
H'(Gry Kjgq) for r e Z.

By definition of morphisms in the derived category, a mixed A-Hodge complex
gives rise to a diagram

/K;1®Q (/KE, W)
n g % B Ve N B> 3.1

where oy, oy, ff;, P, areactual morphisms of complexes, o is a quasi-isomorphism,
p, is a filtered morphism, and f3, is a filtered quasi-isomorphism.

According to the work of Deligne (and Beilinson, see [J1; Theorems 2.2 and 2.3]),
the construction of mixed A-Hodge complexes is equivalent to the construction
of mixed A-Hodge structures. For the next definition, we need the following. If
u:M®* — N°*is a morphism of complexes, then the cone of u is the complex

Cone(M' A N') =C,:=M[1] & N°,
with differential
MO @ N _0) M2 @ NI+
(a, ) > (~d(@), (@) + d(b).
The absolute Hodge cohomology is given by
H* (Cone{ K3 @ oK @D Wo [ FUKE 25 Koo @D W' KeI-10),
where W, = (Dec W), is the filtration decalee [D2; II], and

(o, B)(&4, &g, ) = (g — o, Biég — Préo)-

A cohomological mixed A-Hodge complex on a space W is essentially a sheafified
version of the definition of a mixed A-Hodge complex. The precise definition for
example can be found in [B-Z; Definition 1.8]). A cohomological mixed 4-Hodge
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complex naturally gives rise to a mixed Hodge complex by applying the functor
RT (W, —) to the cohomological mixed Hodge complex (i.e. the result of applying
I'OW, —) to a corresponding acyclic resolution of a given complex of sheaves on
W). From now on we are now going to work in the setting where X is a projective
algebraic manifold of dimension n, Y is a normal crossing divisor (NCD), and
j: X\Y = X is the inclusion. The cohomological mixed Hodge complex of interest
is

the corresponding mixed Hodge complex will now be denoted by

(K3, (Kigg» W), (K¢, W, F)), where 4=Q.
Set

. . 7 . 7 . (@) 187 57 1 e
M® = Cone{Ky & WoKgq ® Wo[ | FOKe — 'Kiigo ® Wo'Ke}[-11,

with the given prescription in (3.2).
The corresponding absolute Hodge cohomology associated to (3.2) is then given
by

H3(X\Y, Q(k)) := H*(M"). (3.3)
There is a short exact sequence
0 — Extyy(1, H*7'(X\Y, Q(k)) - H(X\Y, Q(k))
— homuu(l, H¥(X\ Y., Q(k))) — 0.
Now set
H{(X\Y, Q(k)) := ®(HF (X, Q(K))),

where we note that HZ(X, Q(k)) = H¥(X,Q(k)), and where @ is given by
restriction.

We are now going to view X = X as fibered over a smooth projective variety S,
and more particularly, we will refer to the setting below.

x\Y & X < v

\ p \
S\ < S « X

where S is a projective algebraic manifold of dimension s, p is smooth over S\X, and
%, Y := p~}(X) are NCD’s. This ‘good situation’ can always be arranged by the work
of Hironaka. The main result of this section is:
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PROPOSITION 3.4. There is a ‘Leray’ filtration on ﬂ%‘(X\ Y, Q(k)) with corre-
sponding {"-graded piece EY2%=% which satisfies the following. There is a short exact
sequence

0—>E£’02k7£—>Eﬁ<’32k7£—>Ee’2k76—>0,
L L
where

Exthy(1, Wo HH(S\Z, R*p, Q(k)))

EZ,Zkfé ~
= T homyu(1, G HH*I(X\Y, Q)

and

E'¥C > homyp(1, HY(S\E, R*p,Q(k)).

Remarks 3.5. (i) We clarify the ‘denominator’ of E$*~¢. First of all, there is a
short exact sequence of MHS’s

0— W H* ' (X\Y, Q(k) » WoH™ ' (X\Y, Q(k))
— G H*(x\Y, Q(k)) — 0.

Taking the corresponding Ext® long exact sequence, we arrive at the edge map
hommu(1, Griy H*(X\ Y, Q(k))) — Extyy(1, W_ i H* ' (X\ Y, Q(k))).

Consider the Leray spectral sequence associated to the map p : X\ Y — S\X, and the
associated Leray filtration H*~(X\Y, Q(k)) = ¢y D @; D ---. By degeneration of
this spectral sequence at E, [D1] and semi-simplicity considerations, we have
©_1/0, =~ HY(S\Z, R*p Q(k)) and W_jp, is a direct summand of
W_iH*(X\Y, Q(k)) (as Hodge structures); moreover

W H T (S\Z, R p,Q(k) = W11/ W10,

since the weight functor W,( ) is exact (see [J2] (6.3)). The denominator of Ef)’ozk%
means the corresponding ‘image’

Extyy (1, W_i H*1(X\ Y, Q(k))) P Exthy (1, W_10,_,)

T

homyp (1, Griy H* 7' (X\ Y, Q(k))) \

(Image) \
Extyy(1, W HY(S\E, R*p,Q(k)))
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(i1) Let ¢t € S\Z. Then the composite
HS\E R'p,Q) & H'(X, QP ¢ H'(X, Q)
is a morphism of mixed Hodge structures (see [Z; 8.4]). Hence H*(S\Z, R*p,Q) is a
pure Hodge structure. Therefore one deduces that
EZY o Extyy(1 HY(S\Z, R*p,Q(k),
this being a consequence of the commutative diagram below.
homym(1, Griy H*~'(X\Y. Q) —  Extyy(L W H* ' (X\Y. Q)
\ \
hommu(1, Griy, HY(S\E, R*~'p,Q(K)) —  Extyyu(1, Wi H(S\Z, R*~'p,Q(k)))
Il
0
(i) Similarly, if £, Y = @, then

ES2t ~ Extly(1, H'(S, R%*p,Q(K))),

the essential point here is that we are dealing with pure Hodge structures.

As part motivation for Proposition (3.4), we note that the exact sequence in (3.4)
says something interesting even in the case £ = 1. By a result of Deligne [D2]
and Leray degeneration, the image of the composite

H*(X,Q) — H*(X\Y,Q) - H(S\Z, R*p,Q),

is surjective. Thus by Proposition (3.4), taking £ = 1, we arrive at the exact sequence

T (X)g — EXF" = [H'(S\E, R 'p,Q)) " - 0,

where {H'(S\Z, R*~'p,Q)}*" := homyu(Q(—k), H'(S\E, R%~'p,Q)), (shifting

by twists), are the classes of Hodge type (k, k). Now bearing in mind the work
on normal functions in [Z], one should be able to interpret EL,*7! as corresponding
to the normal functions associated to the fibering p : X\ Y — S\X, and that the
map EL* — {H'(S\Z, RZk*lp*Q)}(k’k) gives the cohomology class (‘topological
invariant’) of a given normal function.

4. Proof of (3.4)

We make use of the fact that the Leray filtration and hence its corresponding graded
pieces on H*(X\Y) are themselves mixed Hodge structures—the mixed Hodge
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structures being induced from H*(X\ Y). (See [B-Z; Proposition 3.14] and [Z; (15.5)].)
Recall the setting we consider is given by this diagram

x\Y & X < v

\ pd \
S\X S «— X

where S is a projective algebraic manifold of dimension s, p is smooth over S\X, and
both X and Y := p~!(X) are NCD’s. Whenever the context is clear, we will also write
p: X\Y — S\Z for the obvious restriction of p to X'\ Y. The fiber dimension of p will
be denoted by m. Thus n = s + m, where n = dim X. For a smooth quasi-projective
V/c, we let Q5 (resp. Qf,.) be the sheaf of germs of holomorphic (resp. C*) forms
on V, and for any sheaf S on V, S(V) :=TI'(V,S), the global sections.

The proof of (3.4) will now proceed in three steps.

Step 1. Construction of a filtration on cohomology.

We first introduce what we regard as an ‘ideal’ choice of filtration. We will later see
that for technical reasons, our first choice of filtration will have to be modified
slightly. Put

EZQ{'X\ y=(X\Y)

= Image ((p*Q{zg\é}ﬁ ® Q{'}}\zif}fil)(X\ Y) = Qfy = (X\ Y)).

The C*°-forms compactly supported on X\ Y are denoted by Qfy yy=(X\Y). Thus
L°Oy, ye(X\Y) = LQ = (X\Y) N Qfy e (X\Y).

A ‘Leray’ filtration on 'Q%(X). Let 'Q%« be the sheaf of distributions [J1] on Q5.
For a form w € Q3% and D € 'Q%.., the differential d : 'Q%.. — 'Q}X is given by the
formula dD(w) = (—1)*D(dw). The decomposition QY= = @pig-eQ5% naturally
induces a corresponding decomposition 'Qy. = @)+’ Y%, and Hodge filtration

Frog. = @ '@

p+q:o
p=i

The natural embeddings of complexes
Q%, F) > (Q%, F) = (Q%[—201], F)

are filtered quasi-isomorphisms [J1; Lemma 1.2], where the latter embedding is given
by the following. If wis a C* (p, ¢)-form, then w determines a section of "Q4"?™" by
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the formula

H;/ A
1 (2nv/—=1)" P

We introduce the filtration
LYY (X) = (& €' Qe (X) | acfg{;;\y}?c()(\ Y) = 0}.

One has a corresponding spectral sequence with Ef’q = H™(Gri/Q}~(X)), and
corresponding filtration £°H*(X). Now recall the perfect pairing (a duality of MHS’s

(FD:

H*(X\Y,Q) x H'*(X\Y,Q) - Q, (4.0)
Then in the composite pairing

H*(X,Q) x H' *(X\Y,Q) > H*(X\Y,Q) x H" *(X\Y,Q) - Q,

L¥Y H*(X) is the left kernel, i.e. the subspace of H*(X, Q) that is annihilated by
H?**(X\Y, Q). In other words

LETHY(X) = Im(HY(X) — H*(X)). (4.0a)

The optimistic statement we would like to make is that

Im(L°H* (X, Q(k)) > H*(X\Y, Q(k))),
can be identified with

We e L'HY(X\Y, Q(K)),

where L'H*(X\ Y, Q(k)) is the Leray filtration of the fibering p : X\ Y — S\X given
in [G-H; pp. 462-465], which is made up of forms with local descriptions involving
at least ¢ differentials from S on H*(X\Y,Q(k)), with graded piece
HYS\Z, R*“p,Q(k)), (and where the corresponding spectral sequence is known
to degenerate at E,). However, since we cannot prove this statement, we instead
prove a slightly weaker result, which is sufficient for our purposes. This will involve
a slight modication of our filtration, as we indicated earlier.

For a suitable metric on S, let X, be an ¢ neighbourhood of X in S, and let
Y, := p~!(Z,) (thus for example X\ Y, is compact). We assume ¢ > 0 is sufficiently
small. Note that Y is a deformation retract of Y;, and hence H,(Y) ~ H.(Y,),
and that if H,(---) is Borel-Moore homology, then H,(X\Y) ~ H,(X\Y,). In par-
ticular, it follows that the composite H,(Y;) — H.(X) — H,(X\Y) is zero. Let
Eﬁ’Q}x (X) be the result of replacing AC[Q{}\Y},C(X \Y) in the definition of
EZ’Q}(OC(X) (preceeding (4.0)) by {y € LZQ{}\Y},C(X\ Y) | n supported on X\Y.}.
One has a corresponding L'fH‘(X). Let j* : £fH‘(X) — H*(X\Y) be the restriction
map. We prove the following
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LEMMA 4.1. Im(*) = {L'H*(X\Y)} N H*(X), where L'H*(X\Y) is the Leray
filtration as defined in [G-H]. (Henceforth, following the proof of this lemma,
we will simply write L*H*(X\Y) instead of L'H*(X\Y).)

Proof. Let {w} € {L'H*(X\Y)} N H*(X), where w is a differential form. Then on
X\Y, w+dn) A 559%%;}3@(/\’\ Y) =0, for some form n on X\Y. Now let ¢ be a
C* function on X satisfying

1 on X\Y;

(p =
0 on Ya/z

Then w + d(¢ - ) € LU'Q%2"(X), hence Im(*) D (L H*(X\Y)} N H*(X). Going the
other way, it is clear that {L'H*(X\Y)}N H*(X) C {L'H*(X\Y,) N H*(X). But
H*(X\Y,) ~ H*(X\Y), and under this isomorphism,

{LEH*(X\Y)} N H*(X) = (L'H*(X\Y)} N H*(X).
Moreover, it is easy to see that Im(*) C {L*H*(X\Y,)} N H*(X). Hence,
Im() C (L"H*(X\Y)} N H*(X),

and the lemma follows. O
Step II. Constructing the filtration on Deligne homology.

For the next part, we introduce the complex {C,(X), 9} of integral C*—chains on
X, with corresponding cohomological complex {{C*(X) := C_,(X), (—1)*3}. Note that
'C*(X) can also be ‘Leray’ filtered via the morphism of complexes 'C*(X) — Q% (X)
given by integration of forms over chains, and the ‘Leray’ filtration on the latter
term. Correspondingly, we consider the Deligne complex [J1]

M == Cone{'C*(X: Q(k — m)) @ F* " Qe (X) = Qe () }[- 11, (4.2)
where
H* (Mp) = "H3(X, Q(k — m) = H5™'(X. Q(k)),

and where the middle term is Deligne homology, and the latter isomorphism is given
by Poincare duality. Note that for example

/H%k72n(X’ Q(k _ l’l)

(@b, o) > (—da, —db, a — b + de)
/CZk—Zn(X; Q(k _ I’l))
ker (D : ﬂg‘ . @D Frd(x Ry M;anJrl)
- b T
N D(MZDkfbl—l)
(4.3)
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Now for small ¢ > 0, set

ﬁKMg( 2n . [,f/CZk*z"(X; Q(k _ n)) @ Esz_”/Qif‘oZz"(X) ® (4 3a)
@ LA (x). '
We consider the following filtration on 'Hp(X, Q(k — n)). Set
Ker D - LI ko]
O, QU —my = K2 M MZ;? — (4.3b)
DMy )N LM

Now let £°K* be either £YC*(X; Q(k — n)) or EEF"‘"’Q}X,(X). Roughly, we want
to show that if ¢ € LK%%' has the property that ¢ is a coboundary current,
then & = d&, for some &, € L7 K%*2=1 This can be verified on the one hand
by harmonic theory principles, and on the other using triangulations. Before being
more specific, we digress to consider the following situation. Let M, N be
compact manifolds. By triangulizing both M and N, we consider the simplicial
complex on the product M x N as the product of the simplicial complexes on
M and N. Now working over Q, and similar to the construction in [G-H,
pp. 56-58]), we consider a basis of p-chains {tf, Ei} for M, where the {t}
are cycles. Similary, one has a basis of g-chains on N, {rﬁ, u?}, where again
the {rﬁ} are cycles. Note that {g/~ L= 8;11’} are independent (as no hnear com-

bination of the chains {ﬁi} can be a cycle) and similarly for {g —a,u‘f}
Now let
_ (1) (2) (3)
¢= Z aﬂpqrz ng + Z ruﬁpq—a X ﬂ + Z rrxﬁpq'up X T;ji +
o B.p.q o B.p.q o B.p.gq
(4)
+ Z ocﬁpq“ x '“/;’
o, B.p.q

()

wppq =0 forp>£and

where the 7’s are rational numbers. We will write & € L, if r
i=1,2,3,4. Note that

_ 2) 1 3) 1
9 = Z( l)pr%ﬁpqlg QZ + Z raﬁpqgg X£Z+
a.B.p.q o.pB.p.q

+ Z r?};pq[g’a’( U x gj + (1Y x gZ_l].
«.p.p.q
Now suppose d¢ € L;. Then one can easily argue that rg,)ﬁ,p, = 0forp>¢+1and
i =2,3,4. Therefore it easily follows that d¢ = 9, for some &; € L,y;. It is not
difficult to see that this is really a consequence of the degeneration of the Leray—Serre
spectral sequence at Ej associated to the map Pr; : M x N — M. Next, getting back
to the situation at hand, there is no harm in replacing C,(X) by the corresponding
complex of geometric chains (see [Bo; p. 6]). That is, obtained from a direct limit
of simplicial complexes on X under refinement of triangulations. This presumes
a given piecewise-linear (PL-)structure on X, for which we acknowledge that an
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essentially canonical PL-structure with certain desireable properties exists (see [H;
Theorem p. 170, Remark p. 178]). One can also consider the sheaf of (locally finite)
geometric chains, which can be shown to be soft, albeit not necessarily flasque.
It is mainly for this reason why we considered introducing ¢ in the definition of
our filtration in (4.3b), the basic idea being that the restriction
Co(X) = Co(X\Y) mneed not be surjective, whereas the restriction
Co(X) = Co(X\Y,) is always surjective since X\ Y, is closed in X. There is a corre-
sponding 'C*(X) := C_,(X), where C,(X) now represents geometric chains, and
the corresponding Deligne homology is independent of triangulations and
PL-structure. Since X\Y is a smooth fibration over S\, hence a local product,
a similar situation as in the product case occurs here. But here we have to be a little
more careful. Again, for a suitable metric on X, we consider Y, an ¢ neighbourhood
of Y in X. Now if ¢ € £YC*~"(X; Q(k — n)) is a coboundary, then by a process of
triangulation, we can assume that ¢ = dy, where ¢ corresponds to a chain with
dimg(|p(E N X\ Y,)]) < 2dimce S — ¢; moreover if we allow for the possibility of
¢+ o =dy for some coboundary chain o in X, which is supported on Y;, then
we can assume further that dimg(|p(y N X\Y;)|) < 2dimc S — £+ 1. Again, this
follows from the fact that over S\X, X is a fibration, with degenerating Leray
spectral sequence at Ej.

We now discuss the similar situation with currents. For the Hodge theoretic
details, the reader may find it helpful to refer to [G-H; p. 84] for the statement
of the Hodge theorem, as well as [G-H; pp. 111-116] for the standard Hodge—Kahler
identities.

For a coboundary 7 € LleFk’"’Qfé‘;Z”(X), it suffices for our purposes to prove
the following weaker result. We can replace FF7"Q%.(X) in H'D by
FF 0% (X)g_cosea- Thus n being a coboundary (hence d-closed) implies that
an = 0. If (from Hodge theory) 3" is the adjoint of @ and G = G; is the Green’s
operator, then by the Hodge theorem, 5 = 3 9 G. Note that from Hodge theory,
3 +99=0 and that [G,d] =0, hence if we set v=10 Gy, then v =0 and
dv=n. It is easy to show that ve £"!. In fact, it is trivial to check that
9Lt c £, this being a consequence of the explicit description of 3  that
can for example be found in [G-H; p. 82]. Therefore it suffices to show that
G(£% c £°. But over a polydisk D c S\Z where p~'(D) ~ D x X, trivializes (for
some fixed tre D), the Laplacian A=A, (=2A;=2A;) decomposes on
‘decomposable forms’ into A = Ap + Ay, (see [G-H; p. 104]). Therefore it easily
follows that A(LY) c £°, and likewise one can argue that the same is true
for G, due to the relationship of G with A given in the Hodge theorem. Thus
v defines a current in FF"QYT7I(X), as well as an element of
Eélek—n/Q?YkDZanl(X).

Remark. Tt is worthwhile mentioning that the property 9 G(£%) c £¢! should

also be a consequence of a kernel description of 3 G. For example, on C" x C",
consider the related Bochner—Martinelli kernel k(z, w) defined as follows. First,
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for { =({,...,¢,), set

OQ) = diy A~ NGy O = ()T Gdly A NG A AL,
Define

Z D;(z — w) A D(w)

||z — w|*"

k(z,w) =

’

for a suitable normalizing constant C,. Then the operator

K: Q) (€1 — QU 5(C)

given by

Koy = [ Kz A gt0)

can be viewed as a first step towards a kernel description of 3G on Q%1 s oo(C”) If we
identify S < C’, X < C", then in this case it is elementary to ‘check that
K((p*Q”(S)) A QO '—Z(X)) C (p*QE(S) A QLT (X). There are also analogues
of K¢ for pe¥ T(C”).

Step III. Conclusion of the proof of (3.4).

Having defined a ‘Leray’ filtration on Deligne homology, it is now a consequence
of the description of Deligne homology in (4.3) and the paragraphs following (4.3b),
that the following is true. There is an exact sequence below, obtained by applying
Poincare duality and some Hodge theory.

LT HPNX Y C) — LPHE(X, Q(k)) 4 LFPH (X, Q(k)) — 0, (4.3¢)

where L'FOH™ (X, Q(k)) means L'HX* (X, Q(k)) N FOH*(X,Q(k)), H* '(X:Y)
involves currents ¢ for which d¢ is supported on Y, and the following ‘intersection’
(given by restriction) makes sense and:

LOH (X v 0N HA (XY, C) = £ o HF T (X\ Y, ©)
modulo W_;H* 1 (X\Y, Q(k)).

Recall the absolute Hodge cohomology H,zj‘ (X\Y, Q(k)) defined in (3.3) above and
the short exact sequence

0 — Extyy(L, H*'(X\Y, Q(k))) — HZ(X\Y, Q(k))
— hommu(1, H*(X\Y, Q(k))) — 0.
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There is a commutative diagram
CH*X), — CHNYX\Y),
v ¥ (4.4)
HFX.QU) = HEX.QK) > HEX\Y.QK)

where @ is the obvious restriction map. By referring to the discussion following
(3.3), we recall that H(X\Y,Q(k)) := ®(HZ (X, Q(k))). Since the restriction
CH¥(X) - CH*(X\Y) is surjective, it follows that the cycle map
CHK(X\Y)q — HI(X\Y, Q(k)) takes its values in H7;(X\Y, Q(k)). Now set

LYHZ(X\Y, Q(k)) := DL HF (X, Q(k))).

Note that W_H**(X\ Y, Q(k)) is a pure Hodge structure. It therefore follows
that

{cw_ H*Y(x\Y, C)}
() AW H* (XY, Q) + FOW_ H* (X \ Y, O)}
= W_ L H*Y(X\Y, Q)+ FOW_ L' H*(x\Y, C).
[Proof. Suppose, for some £y < £,
ae LOW_ H*(X\Y, Qk)), be LOFW_ H*(X\Y,C)
are given such that a +b e L' W_ H*~'(X\Y, C). Then by a weight argument
[al =[] =[0] € GroW_H* ' (X\Y,C) = W_1H"(S\Z, R*%~1p C).
Thus a € LT W_ H*(X\ Y, Q(k)), b e LOMFOW_H¥*1(X\Y,C),and so on.]
Let Y be a desingularization of Y. We consider the diagram below, where we note

that the center column is not in general exact at the middle, whereas the right column
is exact by the work of Deligne [D2; I1(8.28)].

HE XY, Qk—1)) — [H* (Y, Qk—-1)INF -0

\: \:
LOHN(X 7,0 - L'HEX,QK) - LEFOH (X, Q(k)) -0
) \:

LHF(X\Y,QK)  —  [LWHM (X\Y,Qk)INF* — 0

\ -

0 0
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It follows by a diagram chase that there is a short exact sequence

LW H*Y(X\ Y, C)

WoH* 1 (X\ Y, Q(k))
+F'WyH*1(X\Y, C)

— LYH%(X, Q(k)) — hommu(1, L' H*(X\ Y, Q(k))) — 0.

0—

} NLS W H?=1(X\Y, C) 4.5)

Note that [Ca]

Extyy(1, W H7HS\Z, R, Q(k)))
W_H"1(S\Z, R*¢p,C)

S waHTNS\E R, Q) |
+FOW_ H1(S\Z, R*¢p,C)

further, as we recall [J2],

Extyy (1, H*'(X\ Y, Q(k)))
WoH*=1(X\Y, C)

~

WHY X\ Y. QUO) + FOWH(X\ Y, O}

Now set

Lokt ._ W_ H*"1(S\Z, R*~tp.C)
Z0 .

[ WoHP X\ Y, Q)
+F'WoH*-1(X\Y, C)

Eﬁ;,Zk_l = Gréﬁ%‘(X\ Y, Q(k))
E“¥t .= homyu(1, HY(S\Z, R*‘p,Q(k)))

N W_ H=(S\Z, R%*~tp. C)

Taking Gri of (4.5) together with the serpent lemma, there is a short exact
sequence

€,2k—¢ €,2k—¢ €,2k—¢
0> E;"" = E; — éoo — 0.
It easily follows that the sequence below is exact

homyy(1, GrY, H*1(X\ Y, Q(k))) — Extiy(1, W_iH1(S\Z, R*~p,Q(k)))

— Ei,OZk—K N 0,
where the ‘map’

homyy(1, Gr, H*1(X\ Y, Q(k)) — Exty;(1, W_1H ' (S\Z, R*~p,Q(k)))
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is interpreted as in (3.5)(1). We deduce that

Extyga(1, W_iHY(S\Z, R p,Q(k)))
hompyy(1, Gr%,HZk —1(X \Y, Q(k)))

E&zkfz ~
This proves (3.4). O

Let Ly be the operation of taking the cup product with a hyperplane class of X.
Then Ly : H*(X\Y, Q(k)) — H**>(X\Y, Q(k + 1)) is a morphism of mixed Hodge
structures; moreover since m := dim X, (generic fiber), and over S\ZX,

Ly Ri'p,Q() — R 'p,Qm — i+ )

is an isomorphism (even if m —i < 0). We deduce therefore that L’)?’Zk“ induces

isomorphisms
0 — Eﬁ.OZk—l N E&Zk—( - éﬁfk_e -~ 0
ngfzki% »L 2 Lr;72/€+l »L 2 L$72Ic+l l«?
0 — Eif(mflwrl)fl — E&Z(mfkw%)fl — El,2(n17k+Z)fl S 0

=00

(4.6)

5. Proof of the Main Theorem (1.2)

Recall the final setting from Section 4, namely a short exact sequence

0— E&Zk—f s E&Zk—f s Eifk—f s 0,

and that Ly acts on the E, terms; moreover since m = dim X, (generic fiber)
[=n=m+s], L’)’}_ZkH determines an isomorphism on all three E, terms as
summarized in (4.6) above.

We now set U = S\Z and consider the following prescription. We introduce a
filtration F* on CH*(p~'(U))q. Set

F'CHp™!(U)/U)q = CH (p™'(U))q = CH*(X\Y)q.
Introduce

Yo : CH (p™'(U)g > EL* = E*?* = homyn(Q(0). H(S\Z, R*p,Q(k))).
and set

F'CH"(p™'(U)/U)q = ker .

It is clear that FICH*(p~1(U)/ U)q represents cycles that are relatively homologous
to zero (i.e. homologous to zero fiberwise), thus in particular (1.2)(i) clearly holds.
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One now has an induced map

Yo FICH (p™ ! (U)/U)g — B
Again, set

F2CH"(p™'(U)/U)q = ker ;.

Correspondingly, we have an induced map v, : F2CH*(p™'(U)/U)q — E%*7%, and
so on. In general, we are looking at this setting.

Y, : F*CH p™'(U)/U)g — ES*,
FH'CHNp™'(U)/ U) g = ker .
PROPOSITION 5.0. Recall the definition of D*(X) in (1.2)(vi). Then

lim F*' CH*(p~'(U)/U) c DM(X).
ucs

Proof. The idea of proof comes from [Ra]; however, as noted in [Ra], this idea is
due to Beauville. Actually it is enough to show that

lim F' CHN (p™'(U)/U)g = lim F*YCH*(p™'(U)/U)q forj > 1.
ucs Ucs

Consider this commutative diagram

Yy

FICHNp '(U)/U)g  — EXk
e L Lk
FFICH™ (p~Y(U)) U)o — Eloco+j,2m—k+j
Since F*H CH*(p~!(U)/U)q = ker . ,; and that

lim CH™(p~"(U)/U)q = CH™(X,)q = 0 forj>1,
ucs

[where X, = generic fiber of p] it follows that

lim FFYH CHN (p~!(U)/U)g = lim FFYCHN(p™'(U)/ Uy,
Ucs Ucs

and we are done.
Note that (1.2)(vi) is clear. The remaining details (1.2)(ii)—(v) are worked out
below.

Functoriality: Any correspondence between two complex projective algebraic
manifolds X;, X, can be ‘spread out’ (Q-spread) to a correspondence Z over
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S\Z, for some (S, X), in a diagram of the sort
Z  C (X\V1) xs\z (X2\)2) — A\

2
X\,

where the );’s, being preimages of X, are NCD'’s, the arrows are smooth and proper
morphisms, and where X; = &, x C. It easily follows that correspondences act
on E4%~t, 4%t and Ef;fk_z, and Deligne cohomology, hence functoriality is clear.
(1.2)(iv)&(v) easily follow.

Products: For products, this follows from the compatibility of the product U on
Deligne cohomology with the intersection product on Chow groups.

Abel-Jacobi  equivalence: Let ¢&e F'CH*(p~'(U)/U)q. By restriction to
X, =p (s pY(U), teU, & determines a  normal function
ve: U= [y J(X, 1)g- The normal function is described by the factorization

Ji

EeF'ICHY p (D)D) — EPT = JX)g
1 N
2™\ (U), Q(K) KA HE(X,, Q(K)).

(1.2)(i1) easily follows from this.

Acknowledgements

The inspiration for writing this paper comes from [Ra]. From a different perspective,
there are also the recent works of [As], [A-S] and [Gn]. We would like to thank the
referee for his or her constructive criticisms; in particular the need to improve
the presentation in Section 3.

References

[As] Asakura, M.: Motives and algebraic de Rham cohomology, In: B. Brent Gordon et al.
(eds). The Arithmetic and Geometry of Algebraic Cycles, Proc. CRM Summer School,
7-19 June 1998, Banff, Canada, CRM Proc. Lecture Notes 24, Amer. Math. Soc.,
Providence, 2000, pp. 133-154.

[A-S] Asakura M and Saito, S.: Filtration on Chow groups and higher Abel-Jacobi maps,
Preprint (1998).

[Be] Beilinson, A.: Notes on absolute Hodge cohomology, In: Contemp. Math. 55(1), Amer.
Math. Soc., Providence, 1985, pp. 35-68.

https://doi.org/10.1023/A:1011882030468 Published online by Cambridge University Press


https://doi.org/10.1023/A:1011882030468

322 JAMES D. LEWIS

[BI1] Bloch, S.: Algebraic cycles and values of L-functions II, Duke Math. J. 52, (1985),
379-397.

[B12] Bloch, S.: Algebraic cycles and higher K-theory, Adv. in Math. 61, (1986) 267-304.

[Bo] Borel, A.: Sheaf theoretic intersection cohomology, In: A. Borel ez al. (eds) Intersection
Cohomology, Progr. in Math. 50, Birkhduser, Boston, 1984.

[B-Z] Brylinski, J.-L. and Zucker, S.: An overview of recent advances in Hodge theory, In:
Complex Manifolds, Springer-Verlag, New York, 1997, pp. 39-142.

[Ca] Carlson, J.: Extensions of mixed Hodge structures, In: Journées de géométrie
algébrique d’Angers 1979, Sijhoff and Nordhoff, 1980, pp. 107-127.

[D1] Deligne, P.: Théoréme de Lefschetz et critéres de dégénérescence de suites spectrales,
Publ. Math. I.H.E.S. 35 (1968) 107-126.

[D2] Deligne, P.: Theorie de Hodge I, Actes, Congrés Intern. Math. Nice 1970, pp. 425-430;
I, Publ. Math. L H.E.S. 40 (1971) 5-58; III, Publ. Math. . H.E.S. 44 (1974), 5-77.

[E-V] Esnault, H., Viehweg, E.: Deligne—Beilinson cohomology, In: Beilinson’s Conjectures
on Special Values of L-Functions, Perspect. Math. 4, Academic Press, Boston, 1988,
pp. 43-91.

[F1  Fujiki, A.: Duality of mixed Hodge structures of algebraic varieties, Publ. Res. Inst.
Math. Sci., Kyoto Univ. 16 (1980), 635-667.

[Gn] Green, M.: Lectures at the NATO ASI in Banff (1998).

[Gr] Griffiths, P.: On the periods of certain rational integrals, Ann. Math. 90 (1969),
460-541.

[G-H] Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Wiley, New York, 1978.

[H]  Hironaka, H.: Triangulations of algebraic sets, In: Proc. Sympos Pure Math. 29,
Arcata 1974, Amer. Math. Soc., Providence, RI, 1975, pp. 165-185.

[J1]  Jannsen, U.: Deligne homology, Hodge-D-conjecture, and motives, In: Beilinson’s
Conjectures on Special Values of L-Functions, Perspect. Math. 4, Academic Press,
boston, 1988, pp. 305-372.

[J2]  Jannsen, U.: Mixed Motives and Algebraic K-theory, Lecture Notes in Math. 1400,
Springer-Verlag, Berlin, 1990

[K]  King, J.: Log complexes of currents and functorial properties of the Abel-Jacobi map,
Duke Math. J. 50(1) (1983), 1-53.

[KI] Kleiman, S.: Algebraic cycles and the Weil conjectures, In: Dix exposés sur la
cohomologie des schémas, North-Holland, Amsterdam, 1968, pp. 359-386.

[Mu] Mumford, D.: Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9
(1968), 195-204.

[Ra] Raskind, W.: Higher £-adic Abel-Jacobi mappings and filtrations on Chow groups,
Duke Math. J. 78(1) (1995), 33-57.

[Sa] Saito, S.: Motives and filtrations on Chow groups, Invent. Math. 125, (1996), 149-196.

[Sch] Schoen, C.: Zero cycles modulo rational equivalence for some varieties over fields of
transcendence degree one, In: Proc. Sympos. Pure Math. 46(2) (Algebraic Geometry,
Bowdoin 1985), Amer. Math. Soc., Providence, 1985, pp. 463-473.

[Z]  Zucker, S.: Hodge theory with degenerating coefficients: L,-cohomology in the
Poincaré metric, Ann. Math. 109 (1979), 415-476.

https://doi.org/10.1023/A:1011882030468 Published online by Cambridge University Press


https://doi.org/10.1023/A:1011882030468

