
JFP 23 (2): 161–173, 2013. c© Cambridge University Press 2012

doi:10.1017/S0956796812000391 First published online 19 October 2012

161

FUNCTIONAL PEARLS

Metamorphism in jigsaw

KEISUKE NAKANO

Center for Frontier Science and Engineering, The University of Electro-Communications, Japan

(e-mail:)ksk@cs.uec.ac.jp)

Abstract

A metamorphism is an unfold after a fold, consuming an input by the fold then generating

an output by the unfold. It is typically useful for converting data representations, e.g., radix

conversion of numbers. (Bird and Gibbons, Lecture Notes in Computer Science, vol. 2638,

2003, pp. 1–26) have shown that metamorphisms can be incrementally processed in streaming

style when a certain condition holds because part of the output can be determined before

the whole input is given. However, whereas radix conversion of fractions is amenable to

streaming, radix conversion of natural numbers cannot satisfy the condition because it is

impossible to determine part of the output before the whole input is completed. In this paper,

we present a jigsaw model in which metamorphisms can be partially processed for outputs

even when the streaming condition does not hold. We start with how to describe the 3-to-2

radix conversion of natural numbers using our model. The jigsaw model allows us to process

metamorphisms in a flexible way that includes parallel computation. We also apply our model

to other examples of metamorphisms.

1 Introduction

Consider a problem: ‘Convert a given ternary (base-3) number to its binary

equivalent’. To solve this, we first compute the number
∑k−1

i=0 ai3
i from a given

sequence {ai}k−1
i=0 and then obtain a sequence {bi}l−1

i=0 (for some l) through l-fold

division by 2.

The problem can be solved without using addition, subtraction, multiplication,

and division. The solution is given by the following six jigsaw pieces:

(A) (B) (C) (D) (E) (F)

Note that there are only three kinds of curves. Each curve represents a digit: ,

, and correspond to 0, 1, and 2. We assume that there are infinitely

many pieces and pieces may not be rotated. The radix conversion problem is solved

by placing these jigsaw pieces at proper positions.

We shall now present how to convert a ternary number to its binary representation

by placing these jigsaw pieces. For instance, suppose that a ternary number 201 is

given. The conversion is outlined in Figure 1(a). We start with a board that has a

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

162 K. Nakano

1 0 0 1 1

0 0 0 0 0

1

0

2

0

0

0 (C)(B)

(A)

(a) Conversion from 2013 to 100112 (b) Piece placing strategies..

Fig. 1. (Colour online) 3-to-2 radix conversion with jigsaw pieces.

straight edge on the top and an edge with curves representing 2, 0, and 1 (from top

to bottom) on the right. Initially, the only piece we can place at the top right corner

is (C). Next, two pieces (A) and (B) are placed beneath and to the left of the last

one respectively. By repeating the placement of pieces in this way until a straight

line appears at the left, the conversion procedure is completed. Finally, the result

10011 appears as the curves of the bottom edge.

It is interesting that many orders are possible to obtain the result. Since there is

precisely one piece for each combination of right and top edge, the final result does

not depend on the order in which pieces are placed. Jigsaw pieces can be placed

horizontally, vertically, or diagonally as shown in Figure 1(b). Of course, one may

use other random or elaborated strategies. This property naturally contributes to

parallelizing the computation.

We will formalize this jigsaw procedure in functional style in this paper. Our

jigsaw radix conversion can be generalized to metamorphisms .

2 The trick revealed

We shall first reveal the trick underlying the jigsaw radix conversion by using the

example in Figure 1.

Let � and � be left-associative infix operators such that x� y = 3x + y and

x � y = 2x + y. Using these operators, we find 2013 = 100112 = 19 by 2 � 0 � 1 =

1 � 0 � 0 � 1 � 1 = 19. We show that the procedure for placing jigsaw pieces

achieves symbolic conversion from 2 � 0 � 1 into 1 � 0 � 0 � 1 � 1. Watch

the change in the boundary between the placed and unplaced areas. Initially

the boundary consists of straight horizontal curves 0, 0, 0, 0, 0, and vertical curves

representing 2, 0, 1. We represent the boundary by 0 � 0 � 0 � 0 � 0 � 2 � 0 � 1

using � and � . By placing the (C) piece, the boundary is changed into 0 � 0 � 0 �
0 � 1 � 0 � 0 � 1. Piece placing corresponds in general to an update of the boundary

. . . � T �R . . . into . . . �L � B . . . where T , R, L, and B correspond to curves at

the top, right, left, and bottom of the piece. The key to jigsaw radix conversion

is that every jigsaw piece satisfies an equation x � T �R = x�L � B for any x,

e.g., x � 1 � 1 = x� 2 � 0 = 6x + 4 for the (E) piece. This implies that the ‘value’

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 163

of the boundary is invariant when pieces are placed. Therefore, we have

0 � 0 � 0 � 0 � 0 � 2 � 0 � 1 = 0 � 0 � 0 � 1 � 0 � 0 � 1 � 1

where the left- and right-hand sides correspond to the boundary at the initial and

final boards. Since (0 �) and (0 �) are identity, 2 � 0 � 1 = 1 � 0 � 0 � 1 � 1 holds.

While we have started with five 0s for the top edge in the above example, we

generally cannot predict how many 0s will be needed. We may have to add (0 �)s at

the head of the boundary on demand and stop the procedure when (i) no � occurs

at the left of � and (ii) only 0s occur at the left of � . Condition (i) means that no

piece can be placed, and condition (ii) means that a straight line appears at the left

of the board. The procedure always terminates because the value of the left operand

of the rightmost � is reduced by boundary updating. The occurrence of (0 �) at

the head of the boundary can be eliminated at any time because it is an identity.

3 Formalization of a jigsaw model

We formalize our jigsaw procedure in functional style. We will make use of a

Haskell-like notation for familiarity.

Let V and H be types of curves on vertical and horizontal edges. Our jigsaw

procedure specifies a function of [V] → [H]. A jigsaw procedure is characterized by

the following three factors: a set of jigsaw pieces, a sequence of curves at the top

edge of the initial board, and a sequence of curves at the left edge of the final board.

First, a set of jigsaw pieces is given by a total function

pieces :: (V,H) → (H,V)

which determines curves on its left and bottom edges from those on its right and

top edges. For example, the set of jigsaw pieces (A) to (F) presented in Section 1 is

given by

data V = V0 | V1 | V2 -- 0, 1 and 2 as ternary digits

data H = H0 | H1 -- 0 and 1 as binary digits

pieces (V0,H0) = (H0,V0); pieces (V1,H0) = (H1,V0); pieces (V2,H0) = (H0,V1)

pieces (V0,H1) = (H1,V1); pieces (V1,H1) = (H0,V2); pieces (V2,H1) = (H1,V2)

where V0, V1, V2, H0, and H1 correspond to curves representing 0, 1, 2, 0, and 1.

Second, a sequence of curves at the top edge of the initial board is specified by a

single horizontal curve h0 :: H. We assume that the top edge has an infinite repetition

of the h0 curve. In our 3-to-2 radix conversion, the curve is given by H0 so that the

top of the initial board forms an infinite straight horizontal line.

Third, a sequence of curves at the left edge of the final board is specified by a

single vertical curve v0 :: V. Our jigsaw procedure terminates when all the vertical

curves become the v0 curve. In our 3-to-2 radix conversion, the curve is given by V0

so that we complete the procedure when a straight vertical line appears at the left

of the final board.

Therefore, our jigsaw procedure should be given by a function

jigsaw :: ((V,H) → (H,V)) → H → V → [V] → [H]

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

164 K. Nakano

which takes the above three factors and returns a function over lists. We assume

that lists of horizontal curves are aligned in a right-to-left manner, and those of

vertical curves are aligned in a bottom-to-top manner. Thereby Figure 1 shows that

the jigsaw function transforms [V1,V0,V2] into [H1,H1,H0,H0,H1].

We assume that three arguments of the jigsaw function, pieces :: (V,H) → (H,V),

h0 :: H, and v0 :: V, satisfy a requirement that

pieces (v0, h0) = (h0, v0). (1)

This guarantees that only terminating curves can occur at the left of terminating

curves under the top horizontal edge.

4 Definition of the jigsaw function

We implement the jigsaw function based on the idea of ‘boundary updating’,

explained in Section 2. A boundary is represented by a list of either vertical or

horizontal curves from bottom right to top left (right-to-left in (� ,�)-representation

in Section 2), which has type [Edge a b] with

data Edge a b = Vert a | Horiz b

where the types of vertical and horizontal curves are parameterized. The Edge type

is isomorphic to the Either type in Haskell’s standard library. We do not use the

Either type, however, because its constructors are Left and Right, which may cause

confusion with the left and right of jigsaw pieces. The initial boundary only consists

of vertical edges from the bottom to the top, i.e., [Vert x0, . . . ,Vert xl−1], and a

horizontal edge Horiz h0 will be added on demand at the tail of the list with a curve

h0 of the top edge of the board.

We implement the jigsaw function as follows:

jigsaw pieces h0 v0 = map unHoriz · place · map Vert

where unHoriz (Horiz x) = x

isHoriz (Horiz) = True

isHoriz (Vert) = False

place = until (all isHoriz) (step pieces h0 v0).

Here, place :: [Edge a b] → [Edge a b] repeatedly updates the boundary, preserving

its value, until it contains only Horiz elements; the loop function until is defined by

until :: (a → Bool) → (a → a) → (a → a)

until p f x | p x = x

| ¬p x = until p f (f x).

The auxiliary function unHoriz :: Edge a b → b unwraps the Horiz constructor;

although it is a partial function, it is clear that place always returns a list that

contains no Vert elements. For the function step, it suffices to make a single value-

preserving boundary update, assuming that at least one Vert element is present, and

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 165

guaranteeing to make progress. We specify it as follows:

step p h0 v0 (xs ++[Vert v,Horiz h] ++ys) = xs ++[Horiz h′,Vert v′] ++ys

where (h′, v′) = pieces (v, h)

step p h0 v0 (xs ++[Vert v]) | v = v0 = xs

| v �= v0 = xs ++[Vert v,Horiz h0].

The first rule of the step function corresponds to placing a single piece. The second

rule represents that a terminating curve at the left of the board does not contribute to

the result because of requirement (1). The third rule corresponds to board extension

with the h0 edge.

Note that the patterns in the specification of step may match multiple places,

but the computation is still confluent because no pairs of redexes interfere with

one another when the definition is regarded as a rewriting system. This is a trivial

case of confluent rewriting systems (Baader & Nipkow 1998). The termination of

place depends on the three parameters: pieces , h0, and v0. When pieces is given by

pieces (x, y) = (y, v) with a constant v �= v0 for any x and y, the computation of

place [v] will generate an infinite number of h0s.

Nondeterminism of pattern matching for the step function corresponds to flexibil-

ity in the order of placing pieces. When we always rewrite the rightmost occurrence of

[Vert v,Horiz h] at the input (extending it with Horiz h0 if possible), the procedure

corresponds to the horizontal placement of pieces. When we always rewrite the

leftmost occurrence, the procedure corresponds to the vertical placement of pieces.

When we simultaneously rewrite multiple occurrences of [Vert v,Horiz h], the

procedure corresponds to the parallel placement of pieces.

Using the jigsaw function, the 3-to-2 radix conversion radixConv 3,2 is implemented

by

radixConv 3,2 :: [V] → [H]

radixConv 3,2 = jigsaw pieces H0 V0

where V, H, V0, H0, and pieces are given as examples in Section 3.

5 Metamorphism in the jigsaw model

We start with an ordinary definition of metamorphism, which is an unfold after a

fold, consuming the input by the fold, and generating an output by the unfold. In

this paper we use the following variations of the foldr and unfoldr functions:

foldr :: ((b, a) → a) → a → [b] → a

foldr g e [] = e

foldr g e (x : xs) = g (x, foldr g e xs)

unfoldr :: (a → Maybe(b, a)) → a → [b]

unfoldr f s = case f s of Nothing → []

Just(x, s′) → x : unfoldr f s′

where the first argument of foldr has an uncurried form for convenience of formal-

ization. The 3-to-2 radix conversion radixConv 3,2 is implemented as a metamorphism

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

166 K. Nakano

by

radixConv 3,2 :: [V] → [H]

radixConv 3,2 = unfoldr modDiv 2 · foldr sumMul3 0

where sumMul3 :: (V, Int) → Int

sumMul3 (Vi, s) = i + s × 3

modDiv 2 :: Int → Maybe(H, Int)

modDiv 2 s | s = 0 = Nothing

| s �= 0 = Just(Hj , t) where j + t × 2 = s

where V and H are defined as in Section 3, and we employ a ‘smart’ where-

clause computing remainders for readability. We assume that ternary and binary

representations are given by a list of digits from the least significant to the most

significant digits. This definition can be easily generalized to m-to-n radix conversion.

As we have shown, the radixConv 3,2 function can also be implemented in jigsaw

style. An important difference from the ordinary definition is that the computation

does not involve types (like Int) other than that of inputs and outputs (like V and H).

In the ordinary definition, we have to first complete the computation with foldr to

obtain the integer representation of the input. Even if lazy evaluation is used, unfoldr

does not produce anything before foldr is completed because the first element of the

output, which is the least significant digit, is determined by the whole input. On the

other hand, the jigsaw procedure can start some parallelizable computation when

the input is being read.

We will demonstrate that the jigsaw function can represent a metamorphism

‘under a certain condition’ as indicated by the equation

unfoldr f · foldr g e = jigsaw pieces h0 v0 (2)

with some pieces , h0, and v0, which are determined by f, g, and e. The condition is

given in the following definition, which will be required to make Equation (2) hold.

Definition 5.1

Three functions f :: a → Maybe(H, a), g :: (V, a) → a, and e :: a are said to satisfy

the jigsaw condition with pieces :: (V,H) → (H,V), h0 : H, and v0 :: V when all of the

following clauses are satisfied:

(i) f e = Nothing holds;

(ii) f(g(v, s)) = Nothing for (v, s) :: (V, a) if and only if v = v0 and f s = Nothing;

(iii) f#(g(v, s)) = (h′, g(v′, s′)) for (v, s) :: (V, a) when (h, s′) = f# s and (h′, v′)

= pieces (v, h), where

f# :: a → (H, a)

f# s = case f s of Nothing → (h0, s)

Just(h, s′) → (h, s′).

The variables pieces , h0, and v0 in the above definition are the arguments of the

jigsaw function in Equation (2). Condition (i) forces the metamorphism to generate

an empty list for the empty list. This restriction is essential to make Equation (2)

hold. Condition (ii) stipulates a property on the nonproductive seeds of unfoldr .

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 167

ga
a

V
pieces

H

V

V

H
f #H

a
a ≡ f #H

a
a ga

V

a

Fig. 2. Jigsaw condition (iii).

Condition (iii) is the most weighty condition, which is visualized as a diagram in

Figure 2. Intuitively, this means that our jigsaw procedure can process the f generator

using pieces before folding the whole input with g. The ‘if ’ part of condition (ii)

always holds when condition (iii) holds under requirement (1).

Let us check whether the jigsaw condition is satisfied for two implementations of

radixConv 3,2. Condition (i) holds because modDiv 2 0 = Nothing from the definition.

Condition (ii) holds because modDiv 2(sumMul3(Vi, s)) = modDiv 2(i+s×3) = Nothing

if and only if i = s = 0. Condition (iii) holds because

modDiv#
2 (sumMul3(Vi, s))

= { sumMul3 }
modDiv#

2 (i + s × 3)

= { unfold modDiv#
2 and merge the branches }

(Hj , t) where j + t × 2 = i + s × 3

= { division of t and s by 3 and 2, respectively }
(Hj , t) wherej + i′ × 2 + s′ × 6 = i + j ′ × 3 + t′ × 6

i′ + s′ × 3 = t and j ′ + t′ × 2 = s

= { s′ = t′ from i, i′ � 2, j, j ′ � 1 and uniqueness of division by 6 }
(Hj , t) where j + i′ × 2 = i + j ′ × 3 and i′ + t′ × 3 = t and j ′ + t′ × 2 = s

= { pieces , sumMul3 and modDiv#
2 }

(Hj , sumMul3(Vi′ , t
′)) where (Hj ,Vi′) = pieces (Vi,Hj ′) and (j ′, t′) = modDiv#

2 s.

Before showing a strict relationship between the jigsaw condition and Equation (2),

we give an intuitive explanation for this condition on metamorphisms by comparing

with the streaming condition (Bird and Gibbons, 2003; Gibbons, 2007). A direct

implementation of a metamorphism defined by unfoldr f · foldr g :: [V] → [H] works

as follows:

�
� f

�
� f

�
� f

�
� f

�
� f � g

�
� g

�
� g

�
�

where any part of the output cannot be obtained before reading the whole input.

Roughly speaking, the streaming condition enables the order of f and g to alternate

like

� g
� �
� f � ≡

�
� f � g

�
�

for ‘productive inputs’ (x satisfying f x �= Nothing), thereby writing a part of the

output after reading only a part of the input. This alternation cannot always happen,

of course. It is impossible to do that if we cannot determine the first part of output

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

168 K. Nakano

before reading the whole input like the radix conversion. On the other hand, jigsaw

condition (iii) can alternate the order even when the streaming condition does not

hold. Assuming the existence of the pieces function satisfying the condition, we can

obtain

�
g

�
� pieces

g
�

�
� pieces

�
� pieces

g
�

�
� pieces

�
� pieces

�
� pieces

�
� pieces

�
� pieces

�
� pieces

�
� f#

�
� pieces

�
� pieces

�
� pieces

�
� f#

�
�
� pieces

�
� pieces

�
� f#

�
�
� pieces

�
� f#

�
�

� f#
�

by using f# instead of f and repeatedly applying the equivalence relation on pieces

to the diagram of metamorphism above as many times as possible. The obtained

diagram exactly illustrates our jigsaw computational model, in which each pieces

box represents a jigsaw piece. The leftmost and rightmost pieces boxes correspond

to jigsaw pieces at the top right and bottom left corners of the board respectively.

We can observe that vertical curves are given as an input and horizontal curves are

obtained as an output.

Now let us show a strict relationship between our jigsaw model and a metamor-

phism. We show that Equation (2) holds when the jigsaw condition is satisfied. Since

the result of the place function does not depend on piece placing strategy, it suffices

to prove Equation (2) for a specific strategy. We adopt a horizontal-first piece placing

strategy. The proof consists of two steps: First we show that the horizontal piece

placing corresponds to the behavior of the unfoldr function; then we show that its

vertical repetition corresponds to the behavior of the foldr function. We start with

the lemma for the case where the place function takes a boundary containing only

one vertical edge (with Vert) at its head. We use the following equations on the

place function:

place xs = place (step pieces h0 v0 xs) (3)

place (Horiz h : xs) = Horiz h : place xs (4)

which are obvious from the definition of place and step. In the rest of this section,

we will assume that pieces , h0, and v0 are fixed, thus so are place and f#.

Lemma 5.1

Let f, g, and e satisfy the jigsaw condition with pieces , h0, and v0. For all v and s,

place (Vert v : map Horiz (unfoldr f s)) = map Horiz (unfoldr (f � g) (v, s))

where the f � g function is defined by

(f � g) :: (V, a) → Maybe(H, (V, a))

(f � g) (v, s) = if f(g(v, s)) = Nothing then Nothing

else Just(h′, (v′, s′)) where (h, s′) = f# s and (h′, v′) = pieces (v, h).

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 169

Proof

We prove the statement by coinduction.

place (Vert v : map Horiz (unfoldr f s))

= { unfoldr and map }
case f s of Nothing → place [Vert v]

Just(h, s′) → place (Vert v : Horiz h : map Horiz (unfoldr f s′))

= { equation (3) and step for [Vert v] }
case f s of Nothing → if v = v0 then [] else place [Vert v,Horiz h0]

Just(h, s′) → place (Vert v : Horiz h : map Horiz (unfoldr f s′))

= {merge the else clause in the Nothing branch and the Just branch using f# }
if f s = Nothing ∧ v = v0 then []

else place (Vert v : Horiz h : map Horiz (unfoldr f s′)) where (h, s′) = f# s

= { equation (3) and step }
if f s = Nothing ∧ v = v0 then []

else place (Horiz h′ : Vert v′ : map Horiz (unfoldr f s′))

where (h, s′) = f# s and (h′, v′) = pieces (v, h)

= { equation (4) }
if f s = Nothing ∧ v = v0 then []

else Horiz h′ : place (Vert v′ : map Horiz (unfoldr f s′))

where (h, s′) = f# s and (h′, v′) = pieces (v, h)

= { coinduction principle }
if f s = Nothing ∧ v = v0 then []

else Horiz h′ : map Horiz (unfoldr (f � g) (v′, s′))

where (h, s′) = f# s and (h′, v′) = pieces (v, h)

= { map }
map Horiz (if f s = Nothing ∧ v = v0 then [] else h′ : unfoldr (f � g) (v′, s′))

where (h, s′) = f# s and (h′, v′) = pieces (v, h)

= { unfoldr and jigsaw condition (ii) }
map Horiz (unfoldr (f � g) (v, s)) �

The above proof employs coinduction because of the coinductivity of the results

of place and unfoldr . Assuming that unfoldr f s always generates finite lists for any

s, we might use induction on the structure of the lists to prove the statement.

Next, we present the relationship between the place function and metamorphism,

which is described in the following lemma. In the proof of the lemma, we apply

an unfoldr fusion law (Meijer et al., 1991). For f :: b → (a, b), h :: c → (a, c), and

g :: c → b,

f (g z) = case h z of Nothing → Nothing

Just(x, y) → Just(x, g y)
=⇒ unfoldr f · g = unfoldr h. (5)

We can simply confirm that f, g, and h = f � g introduced in Lemma 5.1 satisfy the

above fusion condition under jigsaw condition (iii). In addition, we use the following

equation on the place function:

place (xs ++ys) = place (xs ++place ys) (6)

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

170 K. Nakano

for all xs and ys, which can be shown by induction on the computation of

place ys .

Lemma 5.2

Let f, g, and e satisfy the jigsaw condition with pieces , h0, and v0. For all vs,

place (map Vert vs) = map Horiz (unfoldr f (foldr g e vs)).

Proof

We prove the statement by induction on vs. When vs = [], both sides of the equation

become [] because of jigsaw condition (i). When vs = w : ws,

place (map Vert (w : ws))

= { map and equation (6) }
place (Vert w : place (map Vert ws))

= { induction hypothesis }
place (Vert w : map Horiz (unfoldr f (foldr g e ws)))

= { Lemma 5.1 }
map Horiz (unfoldr (f � g) (w, foldr g e ws))

= { fusion law (5) with jigsaw condition (iii) }
map Horiz (unfoldr f (g (w, foldr g e ws)))

= { foldr }
map Horiz (unfoldr f (foldr g e (w : ws))) �

This lemma immediately concludes Equation (2).

Theorem 5.1

Let f, g, and e satisfy the jigsaw condition with pieces , h0, and v0. For all lists vs,

jigsaw pieces h0 v0 vs = unfoldr f (foldr g e vs).

Proof

jigsaw pieces h0 v0 vs = { jigsaw }
map unHoriz (place (map Vert vs))

= { Lemma 5.2 }
map unHoriz (map Horiz (unfoldr f (foldr g e vs)))

= { unHoriz and map }
unfoldr f (foldr g e vs) �

6 Applications

We have shown how to implement m-to-n radix conversion in the jigsaw model. This

section presents two other examples of metamorphism that can be implemented

with the jigsaw model. The jigsaw condition requires us to discover an appropriate

function pieces . Although it is difficult to show a general method for constructing

the function, the following examples may help us to find candidates of the pieces

function.

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 171

Group-by procedure for multiple data lists. ‘Group by’ is a core database operation

that groups an input data list into lists of data having the same key. We assume

that an input is given as a divided list, so we concatenate them to obtain a list of all

data. This operation is a metamorphism consisting of concatenation and grouping.

When k and v are types of keys and values, both V and H are [(k, v)], which is the

same type as intermediate data.

flipApp :: ([(k, v)], [(k, v)]) → [(k, v)]

flipApp (l1, l2) = l2 ++ l1
partByHd :: [(k, v)] → Maybe([(k, v)], [(k, v)])

partByHd [] = Nothing

partByHd ((k, v) : l) = Just((k, v) : ts , fs) where (ts , fs) = partByKey k l

groupByFst = unfoldr partByHd · foldr flipApp []

where the partByKey function takes a key and a list of key-value pairs and returns a

pair of lists: the first list contains those elements whose key is equal to the given one;

the second list contains the remaining elements. Jigsaw condition (i) holds from the

definition of partByHd . To make the other jigsaw conditions hold, we use flipApp,

which appends two lists in flipped order even though we could use a simple append

to implement the ‘group by’ operation. Taking h0 = v0 = [] and

pieces ([], []) = ([], [])

pieces ([], (k, v) : l) = ((k, v) : ts , fs) where (ts , fs) = partByKey k l

pieces ((k, v) : l1, l2) = ((k, v) : ts , fs) where (ts , fs) = partByKey k (l1 ++ l2),

we have groupByFst = jigsaw pieces h0 v0. Jigsaw condition (ii) can be confirmed

with a simple calculation. For condition (iii) with v = l1 and s = (k, v) : l2

partByHd#(flipApp(l1, (k, v) : l2))

= { flipApp and partByHd# }
((k, v) : ts , fs) where (ts , fs) = partByKey k (l2 ++ l1)

= { properties of partByKey }
(ts ′, fs2 ++ fs1) where (ts ′, fs1) = partByKey k ((k, v) : ts2 ++ l1)

(ts2, fs2) = partByKey k l2
= { pieces and flipApp }

(ts ′, flipApp(fs1 , fs2)) where (ts ′, fs1) = pieces ((k, v) : ts2, l1)

(ts2, fs2) = partByKey k l2

where some obvious properties of partByKey are used. Condition (iii) for the other

cases can also be checked in a similar way.

Heap sort. Gibbons (2007) presents a heap sort program as an example of meta-

morphism that does not satisfy the streaming condition. We demonstrate that the

program meets the jigsaw condition. Although the heap sort algorithm cannot

inherently be parallelized, we can implement it in the jigsaw model in which parallel

evaluation is possible. This fact should not surprise us. The outcome is exactly a

form of ‘parallel bubble sort’ as explained below. We basically follow Gibbons’s

definition of a heap sort except that the definition of the heap and its operating

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

172 K. Nakano

functions are abstracted out because two equivalent heaps may differ depending on

their construction history.

data Heap a = Empty | 〈〈nonempty heap whose elements have type a〉〉
insert :: (a,Heap a) → Heap a

insert (x, t) = 〈〈a heap obtained from the heap t by adding x〉〉
splitMin :: Heap a → Maybe(a,Heap a)

splitMin Empty = Nothing

splitMin t | t �= Empty = Just(m, t′)

wherem = 〈〈a minimum element in the heap t〉〉
t′ = 〈〈a heap obtained by removing m from t〉〉

heapSort = unfoldr splitMin · foldr insert Empty

where 〈〈text〉〉 indicates an implementation abstracted by its specification. We require

these functions only to satisfy a property

splitMin#(insert(x, t)) =

if x < m then (x, t) else (m, insert(x, t′)) where (m, t′) = splitMin# t (7)

for any nonempty heap t, which promises that splitMin extracts a minimum element

in a given heap. Jigsaw condition (i) holds from the definition of splitMin . Let us

introduce ∞ for the (dummy) largest value, which is often used in sorting programs.

We extend the definition of insert with insert (∞, t) = t to deal with the ∞ value.

Taking h0 = v0 = ∞ and

pieces (x, y) | x < y = (x, y)

| x � y = (y, x),

we obtain heapSort = jigsaw pieces h0 v0. Jigsaw condition (ii) holds due to an

extension of the definition of the insert function. For jigsaw condition (iii) with

v �= ∞ and a nonempty heap s,

splitMin#(insert(v, s))

= { expected property (7) }
if v < m then (v, s) else (m, insert(v, t)) where (m, t) = splitMin# s

= { insert and splitMin }
if v < m then (v, insert(m, t)) else (m, insert(v, t)) where (m, t) = splitMin# s

= { pieces }
(x, insert(y, t)) where (x, y) = pieces(v, m) and (m, t) = splitMin# s.

Condition (iii) for other cases can similarly be checked. Since the pieces function

swaps a wrong ordered pair of adjacent items, this exactly behaves as a bubble sort.

7 Concluding remarks

We have introduced a jigsaw model for metamorphisms. When it satisfies the jigsaw

condition, a metamorphism can be implemented in our model such that there is

room for parallel evaluation. It would be interesting to consider fusion and inversion

on the jigsaw model, which we have left for future work.

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

Functional pearls 173

We do not claim that the jigsaw model will always provide an efficient imple-

mentation of metamorphisms. It is difficult to compare computational complexity

between the jigsaw model and a näıve implementation of metamorphisms because

their ‘computation units’ differ. For example, in m-to-n radix conversion, when the

size of input is k and that of output is l, a näıve implementation of metamorphisms

takes k-fold multiplication and l-fold division, while the jigsaw model takes kl-fold

simple pattern matching. The most important feature of the jigsaw model is its

flexibility in computation.

Acknowledgment

The author would like to thank Jeremy Gibbons and anonymous reviewers for their

many insightful suggestions and corrections. He is also indebted to Hideya Iwasaki

and Zhenjiang Hu for the helpful discussion they had with him.

References

Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. Cambridge, UK: Cambridge

University Press.

Bird, R. & Gibbons, J. (2003) Arithmetic coding with folds and unfolds. In Proceedings of

the 4th Advanced Functional Programming, Lecture Notes in Computer Science, vol. 2638.

Springer-Verlag, pp. 1–26.

Gibbons, J. (2007) Metamorphisms: Streaming representation-changers. Sci. Comput. Program.

65(2), 108–139 (Elsevier).

Meijer, E., Fokkinga, M. & Paterson, R. (1991) Functional programming with bananas, lenses,

envelopes and barbed wire. In Proceedings of the 5th Functional Programming Languages

and Computer Architecture, Lecture Notes in Computer Science, vol. 523. Springer-Verlag,

pp. 124–144.

https://doi.org/10.1017/S0956796812000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000391

