T. Mandai
Nagoya Math. J.
Vol. 145 (1997), 125-142

A CONSTRUCTION OF ASYMPTOTIC SOLUTIONS
AND THE EXISTENCE OF
SMOOTH NULL-SOLUTIONS
FOR A CLASS OF
NON-FUCHSIAN PARTIAL DIFFERENTIAL OPERATORS

TAKESHI MANDAI

§1. Introduction
Consider a partial differential operator

(1.1) P= 3 a,.t 200, a,,(t 2 ="t

jtlal<m

where £ is a non-negative integer and a,, are real-analytic in a neighborhood of
(0,00 €R, x R..

M. S. Baouendi and C. Goulaouic [1] defined Fuchsian partial differential oper-
ators, and proved the unique solvability of the characteristic Cauchy problems in
the category of real-analytic (or holomorphic) functions, which is a generalization
of the classical Cauchy-Kowalevsky theorem. They also proved a generalization of
the Holmgren uniqueness theorem. Especially, from their results it easily follows
that if P is a Fuchsian operator with real-analytic coefficients, then there exist no
sufficiently smooth null-solutions. Here, a Schwartz distribution # in a neighbor-
hood of (0,0) is called a nuli-solution for P at (0,0), if Pu = 0 in a neighborhood of
(0,0) and (0,0) € supp # < {t = 0}, where supp # denotes the support of .

The author considered the characteristic Cauchy problems for a class of oper-
ators wider than the Fuchsian operators in [3]. In that result, he showed the
unique solvability of the characteristic Cauchy problems in the category of func-
tions which are of class C~ with respect to ¢ and real-analytic with respect to .
He also showed the non-existence of sufficiently smooth null-solutions. (As for
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distribution null-solutions, see [4]). This class of operators is defined in terms of
four conditions. He gave a conjecture that if the third condition is violated, then
there exists a C” null-solution.

In this article, we construct an asymptotic solution of P# = 0 in the form

(1.2) u(t, x) = exp(— %i&{][]—g]x)‘t—ﬂb‘]) . tl[M+1](z) . % tl/ll ;ﬁo (lOg t)pU,,p(l'),

where

(i) M is a non-negative integer, and ¢ is a positive integer,

(ii) ul71G=0,1,. .., M) are positive rational numbers such that ¢#[0] >
ul1]1> -+ > ulM] > 0.
(i) A1 G=0,1, . . . ,M+1)and v,,(=0;0=<p=<Im) are real-

analytic in a fixed open neighborhood of 0 € R”,
for a class of operators wider than that considered in [3].

Further, using these asymptotic solutions, we prove the conjecture in [3] men-
tioned above under an additional assumption. The C” null-solution constructed
here is one of the most fastly decaying nontrivial solutions of Pu = 0.

In Section 2, we give the statements of the main theorems. After giving some

preliminaries in Section 3, we prove the main theorems in Sections 4 and 5.

NOTATIONS:

(i) The set of all integers (resp. nonnegative integers) is denoted by Z (resp.
N). Put N/q:={p/q:p € N} for a positive integer ¢, and put Z/gq simi-
larly.

(ii) Put 9 := t0,.

(iii) For a bounded domain £ in C", we denote by O(£) the set of all holo-
morphic functions on £.

(iv) The space of the Schwartz distributions on U is denoted by 2’ (U).

(v) For a complete locally convex topological vector space E, put

Chiai(0, T1; E) 1= {f €C"([0,T]; E)
j
ﬂ =0for0 <j < N—1}.
dt’ =0

(vi) Put (1),:=TI_;(1 — I) for 1 € C and j € N.
(vii) For a commutative ring R, the ring of polynomials of A with the coeffi-

cients belonging to R is denoted by R[A]. The degree of F € R[A] is de-

noted by deg; F.
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§2. Statement of the main result

Let g be a positive integer, £2 be a bounded domain in C” that includes the
origin 0, and T be a positive real number. Consider a linear partial differential
operator of the form (1.1). We assume only the following weaker condition on the

coefficients.
(A-0) a,, €700, T1;0(Q) G+ |al<m),
where

7,0, T1; 6(2) := {$ € C*(©, T1; 6(D)
s ¢(sH1 € C(0, T ;0(2))},
7.0, T1; 6(2) := {¢ € C™(©, T1; 6(Q))
o) € F,([0, T1;6(2)) for some M € N}.

Let 7(j, @) be the generalized vanishing order of a;, on the hypersurface
2 :={0, x) :x € 2}, that is

(2.1) r(j, ) ==suplr€Z/q:t"a,;, € F,([0, T]; 0(2)))}.

If #»(j, @ = oo, then we redefine 7(j, @) := R for a sufficiently large R (R :=
max{r(j, a) : 7(j, @) < o} + 1 will suffice). Put

(2.2) @t 0) =t (t, ) (€ F,0, T1;0(Q))).

Note that if 7(j, @) < R, then &, ,(0, x) # 0.

Associating a weight w(j, &) ‘=7 — r(j, @) to each differential monomial
a;,(t, 2)0)0%, we draw a Newton polygon A(P) using the points G + | al, —
w(, @) G+ |al <m) in (u, v)-plane as follows.

DeriNITION 2.1 ([3]). (1) Put
AP :=ch( U {(u,v) €eR:u<sj+]al,v=— 0@ a)l),

j+lal<m

where ch(A) denotes the convex hull of A. This is called the Newton polygon of P.
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( + lal, —w(5, a))

G+ lal, —w(5,«))

30>

L,(P)

—w(P)

“ . lower sides

Ficure 1. Newton polygon of P : A(P)

(2) Put
V=V®P :={G,a) ENXN':(G+|al, — 0§, a)) is a vertex of 4(P)}.
(3) Put
o=@ = max{n(,®) ER:j+|al <m,

which is the maximum weight of P.

(4) The boundary of A(P) N ([0, o) X R) is the union of two vertical half-lines
and a finite number of compact line segments with distinct slopes. Each of these
compact line segments is called a lower side of A(P). The set of the slopes of the
lower sides of 4(P) is denoted by S = S(P) (C Q). For ¢ € S(P), the lower side
of A(P) with slope g is denoted by L, = L,(P). Put

L=1L{F) :={G,a) eNXN:(G+|a|l, -0l a) € L,Md)}

Let the right end points of L,(P) be (u;, v,). We put d,(P) := u,, and call it
the degree of the slope p.

If 0€S, we put L,(P):= {(0, — w(0,0)} = {0, — w(P))} € R?, I,(P)
:={(0,0)) < N x N” and d,(P) := 0.

By the use of these notions, Fuchsian operators in the sense of M. S. Baouendi
and C. Goulaouic [1] are characterized as follows. (In fact, they assumed that the
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coefficients belong to C™ ([0, T1; 6(2)). This difference is, however, not essential
and hence we ignore the difference of the classes of coefficients.)

ProposiTION 2.2. The operator P is Fuchsian if and only if o(P) 2 0, S(P) =
{0}, and there exist no (j, ) € I,(P) such that a # 0.

We consider a class of operators wider than the class of Fuchsian operators.
First, we assume the following condition.

(A-1) For all £ € S(P), there exist no (j, @) € I,(P) such that a # 0.

DeriviTION 2.3, For g € S(P) with ¢ > 0, we put

GIPI@ ;D= T 4,0, DX €0@IAl.
G.0el, P
We also put
G D= T a0, D0, 0@
7,00 €Iy (P

The polynomial €,[P] of A is called the indicial polynomial of P associated with the
slope 1 € S(P) U {0}. Note that d,(P) = deg, 6,[P].
For ¢ € S(P) U {0}, we consider the following condition.

(A-2; 1) 1f (, 0) € V(P) and j = d,(P), then &;,(0,0) # 0.
This is equivalent to the following.

(A-2;4) For every v € S(P) with v = y, the coefficient of the top order
term of €,[P](x; ) € 0(£2)[A] does not vanish at x = 0.

Remark 2.4. Note that if (j, 0) € V(P), then @,,(0, ) # 0. Thus, the condi-
tion (A-2; ) is a kind of non-degeneracy at x = 0. Further, the condition (A-2; y)
for £ > 0 is weaker than the condition (A-2;0), and (A-2;0) is equivalent to
(A-2) in [3].

Now, the following is one of the three main theorems in this article.
THEOREM 2.5. Assume that P satisfies (A-0) and (A-1). Let u, € S(P) N N/q,
to > 0, and assume the condition (A-2; o). If A, is a simple oot of €, [P1(0; 2) =

0, then therve exist

(i) MEN,
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(i) ulf] EN/qG=0,1,..., M), where pty = p[0] > p[11 > -+ > u[M] >0,
(iii) a subdomain £, of 2 including 0,
i) Al e o) G=0,1,..., M+ 1), where A[01(0) = 4,
such that the following holds.
For an arbitrarily given v,(x) € O(2,), there exists v, ,(x) € (2, (= 0;0
< p < Im) such that a formal series
¥ 2[5 (x)

. L Im
(2.3) u(t, x) = exp(— 2 t—;z[;]) . tMM+11<z) . Z tl/q Z (log t)pvm(x)
=0 rlsl 1=0 =0

is an asymptotic solution of Pu = 0. That is, for every N € N there holds

—AM+1)(x M Al —uly ¥ 2 —ulj
(2.4) YL exp (E%(]‘Qt ”)-P(exp(—g%t “’)

N im
w AUHI@ | Shgle S (log t)ﬁv,'p(x)> _ O(tzv/q—ro)’
p=0

=0

with some v, € N.

This theorem shall be proved in Section 4. We shall also give a proposition
which corresponds to the case of g, =0 and M = —1.

Remark 2.6. Even if u, € S(P) but u, € N/q, we can retake another ¢ such
that ¢, € N/q and (A-0) is satisfied. Hence, we can always apply this theorem
with this new q.

Next, we consider the following condition for g € S(P).

(A-6; 1) If v € S(P) and v > g, then all non-zero roots A of €,[P1(0; ) =
0 satisfy Re A < 0. Further, there exists 4, € C which satisfies the
following.

(i) Re 4, >0,
(i) A, is a simple root of €,[P1(0; A) = 0 and the other roots A
satisfy Re 4 < Re 4,.

Remark 2.7. In this section, we define only the conditions (A-0), (A-1),
(A-2; p), and (A-6; ). This apparently strange numbering is for the consistency

with [3]. We shall introduce another condition (A-3) in Section 5.

Using the theorem above, we can show the existence theorem of smooth
null-solutions, which is the second of the main theorems.
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THEOREM 2.8. Assume the conditions (A-0), (A-1), (A-2; u,), and (A-6; ) for
some ty € S(P) with pty > 0. Then, P has a C” wnull-solution at (0,0).

The C” null-solution given in this theorem is one of the most fastly decaying
nontrivial solutions as t— -+ 0. In fact, we have the following theorem, which is
the last of the main theorems.

THEOREM 2.9. Assume the conditions (A-0), (A-1), (A-2; t,), and (A-6; tt,) for
some ft, € S(P) with pty > 0. Assume that u is a C° solution of Pu= 0 for t > 0. If
there exist 0 > Re A, and C, > 0 such that the inequality

lu(t, ) | < C, exp(— /,ei t—”")
0

holds for t > 0 in a neighborhood of (0,0), then u = 0 for t > 0 in a neighborhood of
(0,0).
Theorems 2.8 and 2.9 shall be proved in Section 5.

Finally, let us consider a typical example.

ExampLE 2.10. First, we consider the following ordinary differential oper-
ator decomposed into first order operators.

Pyi=1'"9— 2, D) - 9= A,, D)@, — A, (t, D)@, — A,,(¢, 2)),

where m, 7, dEN,0<r<m, k,eNA<;<» and 2,4, € C°([0, T;
0) Q<j<r;r+1=<1=<m). Assume that 2,(0,2) 0 (1 <j <7 and
k,=2k,= -+ 2k, 2 0. For this operator, S(P,)) = {k,,..., k,, 0} if » < m, and
S(P) = A{k,,..., k,} if r=m. The condition (A-1) is trivially satisfied, and the
condition (A-2; y) is “ if k; > p then 4;(0, 0) # 0”. We can also show that

Pl x; D= T (=20 ) I 1—2,(0,2)- 2"

Jik>n 7:kj=u

for u € S(P) with ¢ > 0, where h(g) is the number of k;'s that satisfy k; < .
Thus, the condition (A-6; y,) for ¢, > 0 is the following.

If k; > u, then Re 4,(0, 0) < 0. Further, there exists j, such that

(i) k;, = o

(i) Re 4, (0, 0) >0,

(iii) If k; = py and j # j,, then Re 2,0, 0) < Re 2, (0, 0).

Next, we consider a partial differential operator. Put g£; =0 (1 <j<m —
P oand Ly = ko, Q<7 <7). Also put w;:=d+ Xj_ p, 0=<j5<m),

Consider an operator
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P= PO + Z twi+lBj(ty .'I,',19, ax)’
=0

where B;(t, ;9, 3) = X0, bat, D059 and b, € C*([0, T1; 6(Q)).
Then, P satisfies the condition (A-1), and there hold 4(P) = A(P), S(P) =
S(Py), €,[P] = €,[P,]. (See Lemma 3.1.) Hence, P satisfies the condition (A-2;
o) (resp. (A-6; 1)), if and only if P, satisfies (A-2; ;) (resp. (A-6; 1))

§3. Preliminaries

In this section, we give some preliminaries for the proofs of the main
theorems.

Let P be an operator (1.1) satisfying (A-0). By tjatj =9(9—-1)...9—5+1)
= (§);, we can easily show the following lemma, which is useful in our arguments.

LEmMMA 3.1. We can rewrite P as

(3.1) P= 3 bt 090,

jtlal<m

with b, , € /?:([0, T1;06(2)). For this b;,, we define the gemeralized vanishing
order

(G, ) :=sup{reZ/q:t7'b;, € F,[0, T1; O(D)}.

For p 2 0, we put w,(P) := max{— 7' (j, @) + G+ |al):j+|a| < m}. Then,
we have

A(P) =ch( U {(w,v) €eR:u<j+lal,v=r(, a)}>,

i+lal <m
VIP) ={G,®) ENXN":G~+|al, 7, @) is a vertex of A(P)},
wP) =max{— 7, a) €R:j+|a|l <m} = w,(P),
L(P)={(G,) ENXN': =7, +pG+lal) =w,@}.

Further, the condition (A-1) is stated as follows :
(A-1) Foreveryp € S(P), if —r'(, @) +uG+|al) = w,(P), thena = 0.

Under (A-1), there holds

(32)  GUPVx; D) = 3 (b, DI DY | X
j=0

_ |[tcu,,(P)ell‘”/uP(e—zt‘”/;z)] |t=0 (ll > 0),
PP, (u=0),
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and the condition (A-2; ) is stated as follows:
(A-2; ) If G, 0) € V(P) and j = d,(P), then {b,,(t, Ot "} |,_, # 0.

It is convenient to consider the operator in the form (3.1) rather than the
form (1.1).

A(P)

_“’u(P)...

FIGURE 2. @, (P)

Remark 3.2. For g =0, we can define €,[P] by (3.2), even if g €S. If
¢ € Sand ¢ > 0, then €,[P] has more than one term as a polynomial of . If y &
S and g > 0, then €,[P] has only one term.

The key tool for the proofs of main thorems is the following type of trans-
formation of operators.

LeMMmA 3.3.  Assume that an operator P of the form (1.1) (or (3.1)) satisfies the
conditions (A-0) and (A-1). Let y € S(P) N N/q, ¢t > 0, and assume (A-2; y1). Let
Ay be a simple root of €,[P1(0; 2) = 0. Take a subdomain " of 2 including 0 and
A(x) € 0(2') so that they satisfy A(0) = A, and €,[P1(x;A2(x)) =0 on Q. If we
put
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P = exp(% f”) o Po exp(— Z(Tx) t—”),

then P’ is an opervator on [0, T1 X Q7 of the form (1.1) and satisfies the following:
(a) The operator P’ satisfies (A-0) and (A-1).
(b) SP) N (g, ©) = SP) N (g, =).
() BP1(x; ") =8,[P1(x; ") for everyv > pand x € £".
(d) There holds €,[P"](x ; 2) = €,[P1(x; A+ A(x)). Further, if d,(P) > 1,
then p € S(P) ; if d,(P) = 1, then t &€ S(P’).
(e) There exists ' < pt such that yff € N/q and S(P") N [0, p) = {¢'}.
(f) d,(P) =1 and P’ satisfies (A-2; tt').

1= du(P)

b

A(P)

T L(P)

A(P')

L L(PY)

The upper part of the dotted line is 4(P).
The upper part of the real line is A(P’).
Ficure 3. A(P’) and A(P)

Proof. First, note that
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xp(Mt > o §e exp(—%@t >=19+/1(x)t_”,

exp(x—i}ﬁt > 0y ° exp( ,(ax) ) =0, + — 'k(x) [

(3.3)

From these, it is easy to see that P’ is an operator of the form (3.1) and satisfies
the conditions (A-0), (A-1), and (A-2; ). It is also easy to see that there hold the
conclusions (b), (c). Further, we have €,[P']1(x ;A) = €,[P](x; A+ A(x)). Since
%,[P1(x;0) =0 and since (3,%,[P])(0;0) = (0,6,[P])(0; ) # 0, we have
(1,0, .. .,0) € V(P) (C N x N". Hence, if d,(P) > 1, then u € S(P); if
d,(P) =1, then g & S(P’). Further, there exists ¢ € N/q such that ¢’ <,
SP) N[0, ) = {¢?}, and d,,(P’) = 1. The condition (A-2; ) and the fact that
(0,6,[P"1)(0; 0) # 0 imply (A-2; &'). O

By an iterative use of this lemma, we have the following.

PROPOSITION 3.4. Assume that P satisfies (A-0) and (A-1). Let y, € S(P) N
N/gq, 1ty > 0, and assume (A-2; o). Let A, be a simple voot of €, [P1(0; 2) = 0.
Then, there exist

(i) MEN,
(i) 71 EN/gG=0,1,..., M), where pty = p[0] > p[11 > -+ > ulM] >0,
(iil) a subdomain 24, of 8 including 0,

(iv) Al € 0(2y,) G=0,1,..., M), where A[0]1(0) = A,,

such that the operator

(M+1) , _ u /1[]](33) —um . /1[]] 6] —-u[]]
PTi= XP(,ZE) ar ) P e~ ,20 i)

is an operator on [0, T1 X £y, of the form (1.1) and satisfies the following:

(a) The operator pM*y satisfies (A-0) and (A-1).

b)) SPY™) N (1, ) = SP) N (g, ).

(c) (g,,[P(MH)] (x ;) =8B, [Pl(x ;) for every v > p, and x € 2y, ,.

(d) There holds €, [P "1(x; ) = 6, [P1(z; 2+ A[01@). I d,(P) > 1,
then g1, € S(PY*Y) 5 if d, (P) = 1, then p, & S(P™*Y).

€ S@™) n [0, x) = {0}.

) dy(PM*™) =1 and P™*Y satisfies (A-2; 0).
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v
ol L=du(PY) u
i m
A(P) = A(PO) N
: " L (PMH)) = = L, (PW)
Lo(PM+1)y !
A(PM+D) B :
A(PO)
LMU](P(j))

The upper part of the dotted line is A(P) = A(P).
The upper part of the real line is A(P”) (1 <j < M).
The upper part of the bold real line is 4(P™*").

Ficure 4. A(P) = A(P®) and A(PY™*) < -+ < A(P™)
Proof. Since A, is a simple root, we can take a subdomain £, of £ including
0 and A[0](x) € O(L)) such that they satisfy A[0](0) = A, and %,,[Pl(z;

A[0] (@) = 0 on Q,.
Put P 1= P and p[0] := e If we put

w._ A[0] (@) o © _A0l(@
P = exp(*por ") - P - ex o "),

then by Lemma 3.3, the operator P is also an operator of the form (1.1) on [0, T]
X £, and satisfies the following:

(a) The operator P satisfies (A-0) and (A-1).
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() S(PV) N (ul0], ©) = S(P”) N (u[0], o).

© €,IPY1(x ;) = €,[P”1(x ;") for every v > u[0] and x € Q,.

(d) There holds %, [P1(x;2) = €,,[PO1(x; 2+ A01@). 1If d,uP")
> 1, then p[0] € S(PY); if d,;(P®) = 1, then p[0] & S(P™).

(e) There exists g[1] < u[0] such that w[1]1 € N/¢g and S(P™) N [0,
©[0]) = {p[11}.

() d,,(P") =1 and P satisfies (A-2; [1]).

By (f), we have %,,[P"1(x;2) =al11(®)A — b[11(x) for some all], b[1] €
0(2,) with a[1]1(0) # 0.

If ©[1] = 0, then put M = 0. Consider the case when ¢[1] > 0. We can take
a subdomain £, of £, including O such that @[1](x) # 0 on £,, and hence we can
take A[1] € @(2,) such that €,,,[P](x; A[11(x)) =0 on 2,.

If we put

Al1] (x) t—u[l]) . p. exp(— Al1] (@) t—u[n),

@ . _
P "e"p< ul1] 1]

1)

then by Lemma 3.3 and by d,;,(P ) = 1, the operator P? is also an operator of

the form (1.1) and satisfies the following:

(a) The operator P satisfies (A-0) and (A-1).

(b) SP®) N (ul1], ) = SPP) N (ul1], c0).

) €,IP?1(x;) =¢,[P"1(x ;") for every v > ull] and x € Q,.

(d) There holds €, [P?1(x; 1) = €,,[PV1(z; 2+ A[1]1 (@) = al1]1 @2,
and p[1] € S(P?).

(e) There exists #[2] < u[1] such that u[2] € N/¢ and S(P?®) n [0,
pl(11] = {pl2]1}.

) d, (P?) = 1 and P? satisfies (A-2; ¢[2]).

We can continue this procedure unless u[jl = 0. Since ulj] € N/g and
«[0] > pl1] > -++ 2 0, we necessarily reach u[M + 1] = 0. U

The following lemma is used to construct each term of infinite series in
asymptotic solutions.

LemMa 3.5. Let Qx; ) € ODIA] and A€ O(2). Assume that Q(x;
A@) # 0 on Q. Then, we can solve the equation

B4 Q;Nv=1""3 g@ogd’, g,€0@ 0<p<D
»=0
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asv=t"" 3t 0, logt’, v,€0(Q) O<p<L).
Proof. By an easy calculation, we have

Q@ 9ot = £ (7) G0 @1 4@) - 1" tog »”.

Hence, (3.4) is equivalent to
Qx;A@) « v,(2)

L-p

+ 2 (p ;r]) @0 (:4@) * v,,,(@) = g,@ ¢=01,..., D).

Thus, by Q(xr ; A(x)) # 0, we can uniquely determine v, v;_,,. .., v, ]

§4. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. First, we give the existence of an
asymptotic solution with no exponential factor, which corresponds to the case
to=0and M= — 1 in Theorem 2.5. Although we use only the case when deg,
%,[P] =1 in the proof of main theorems, this proposition has its own value.

ProposITION 4.1. Assume that P satisfies (A-0), (A-1), and (A-2;0). Let
Ax) € 0(R) satisfy

(i) B,LP](x; A(x)) =0 on 2,
(ii) B[Pl (x;A(x) +1/q) # 0 on 2, for 1 € N\ {0},

for some subdomain £, of 8 including 0. Then, for an arbitrarily given v,,(x) €
0O(82,), there exist v,,(x) € O(2y) (1 = 0;0 < p < Im) such that

o Im
(4.1) ult, n) =172 1" 2 (log H’v,,(x)
»=0

=0

is an asymptotic solution of Pu = 0 . That is

N Im
t—l(I)P<tl(I)_ 53 (og t)pv,'p(x)) = o(V Py
1=0 $=0

for every N € N.

Proof. We can formally expand P with respect to £ as
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P=1r*(6IPI@; 9 + 3 B,&, 3,; 91*),
h=1

where B,(z, 8,39 = 2, a1 <m bia(@) 059 with b,,, € 6(2) and w = w(P).
Hence, we have only to find v, , that satisfy

%,[P1(z ;9 (t“’””" s (log H’v,, (x))
=0

-1 hm
=~ £ B, @ 0,;9(F" X og0*,,@) (€N,
h=0 p=0

Since

B[P (x ;9 ("D vy0(2) = G,[Pl(x ; 2(2) + '“vy (@) =0,
ax(tl(.z‘)i-l/q(log t)bv(x))
= " (og 0’ (0,0) (@ + 7 (log D’ (3,0 WD),

and since
G lPl(x; A(x) +1/q) #0 (1= 1) on 2,

we can get v;, with an arbitrarily given v,, by applying Lemma 3.5. ]

Proof of Theorem 2.5. We can apply Proposition 3.4 to P. By (f) of the prop-

osition, we have

G, [P 1(x; D) = alM+ 11(@A — bIM + 11(2)

for some a[M + 1], bIM + 1] € 0(2,,,,) with a[M + 11(0) # 0. Hence, we can
take a subdomain £2, of £,,,, including 0 such that a[M + 1]1(x) # 0 on 2, We
can take AIM + 1] € 6(R,) such that €,[P™ "1 (x;AIM + 11(2)) =0 and
G IPY 1z ; AIM + 11(x) +1/¢) # 0 on £, for I € N\ {0}.

By applying Proposition 4.1 to P(M“), we can construct an asymptotic solu-
tion
MA@ S g T »
(4.2) v=_¢ ‘2t 2 (log Oy, , (@)
1=0 =0

of Py = 0 for an arbitrarily given Vo0 € O(8y).
Thus, the proof of Theorem 2.5 is completed. ]
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§5. Proof of Theorems 2.8 and 2.9

In this section, we prove Theorems 2.8 and 2.9.
First, we introduce another condition (A-3).
(A-3) If £ € S(P) and ¢ > 0, then all the non-zero roots A of €,[P1(0;
A) = 0 satisfy Re A < 0.
From the results in [3], we easily get the following theorem, which shall be
used later.

THEOREM 5.1. Assume the conditions (A-0), (A-1), (A-2;0), and (A-3). Then,
there exist Ny € N, Ty > 0, and a domain 8, including O for which the following
holds :

(1) For every N = N, and every [ € c}f;,“’””([o, T]; O(2)), there exists a unique
u € Chy ([0, T, ; 0(R2) such that Pu= f on [0, T,] X £,

2) Ifu € £ x C°([o, T ;D@2 NRY) and Pu=0 for t > 0 in a neighborhood
of (0,0), then u =0 for t > 0 in a neighborhood of (0,0). Especially, there exists no
sufficiently smooth null-solution for P at (0,0).

In (2) of this theorem, the domain where # = 0 may depend not only on the
domain where Pu = 0 but also on # itself. As for solutions in C°([0, 71; C° (2
n R")), however, we can show the existence of a common domain of uniqueness,
by a standard argument as follows.

COROLLARY 5.2. Assume the same assumptions as in the theorem above. Then
there exists Ny € N such that for every T” € (0, T) and every open neighborhood U’
of 0 € R”, there exist T” € (0, T") and an open neighborhood U” of O for which the
following holds. If u € £ x C°([0, T1; C°(2 N R™)) and Pu =0 on (0, T") X
U',thenu=00on (0, T") X U".

Proof. Put K :={ue ™ x 0, T1: C°R@NRM):Pu=10 on (0, T
X U’}. This is a closed subspace of a Fréchet space £° x C°([0, T1; C°(2 N
R")), and hence it is also a Fréchet space. Let {T,},cy be a decreasing sequence
of positive real numbers converging to 0 and let {U,},.y be a fundamental system
of open neighborhoods of 0. Put L,:={u € K:u4 =0 on (0, T,) X U,}, which
are closed subspaces of K. By Theorem 5.1-(2), there holds K = U, _.L,. Since a
Fréchet space is a Baire space, there exists an # such that L, has an inner point,

thatis L, = K. U
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Now, we give a proof of Theorem 2.8.

Proof of Theorem 2.8. We may assume that g, € N/g without loss of gener-
ality, and we can apply Proposition 3.4 to P. The operator PY*Y satisfies (A-0),
(A-1) and (A-2;0). By the assumption (A-6; g, for P and by the conditions (c),
(d), (e) in Proposition 3.4, the operator PY*Y satisfies (A-3). Further, as we have

(M+1)

shown in the proof of Theorem 2.5, the operator P has a formal solution (4.2)

with v,, = 1.

If we put
AM+1 @) o »
vy =t Z 3 (log ', (x)
1=0  p=0
and gy := PV (v,) for sufficiently large N € N, then we have

e cn(0, T1; 0(2,)),

where £, is a subdomain of £ including 0 and #, € N, both independent of N. By
Theorem 5.1, we get wy, € C,A,’:,w(})wm) ([0, T,]; 0(R2)) such that PM* (wy) =
— gy, where T, > 0 and £, is a subdomain of £, including 0. Thus, v := vy +
M) =0 and M0, 2) — 1(t— + 0). Note that Corol-
lary 5.2 implies that v is independent of N for sufficiently large N in a neighbor-
hood of (0,0).

Since Re A[0](0) > 0 by the assumption, we can easily show that

w, satisfies P

. Al () fu)
u(t, ) 1= exp< ]Z%) ] ) v(t, )
belongs to Cj,, ([0, T,); 0(2)). Thus, u is a C” null-solution for P. |

Next, we give a proof of Theorem 2.9.

Proof of Theorem 2.9. If we take 0" as 0 > 0" > ReA,, and if we put v :=
exp(0’t ™ /u)u, then we have v € £' x C°([0, T1; @' (2, N R")) for every
N € N with some domain £, and 7 > 0. We also have

o - 0w\ =
= P( <_ " uo) ) = <— 'R uo) ’
0 exp “ A 1) exp “ t Py
that is, Pv =0, where P:= exp(6't ™™ /u,) * P~ exp(— &'t “/u,). We have

only to show that ¥ = 0 for # > 0 in a neighborhood of (0,0).
By an argument similar to and easier than that in the proof of Lemma 3.3, the
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operator P is an operator of the form (1.1) and satisfies the following:

(a) The operator P satisfies (A-0), (A-1), and (A-2; Lo)-

(b) SP) N (i, ) = SP) N (g, ).

(¢) €,[P1(x ;') = €,[P)(x ;") for every v > y, and x € Q,.
() %,[Pl(x; ) =¢,[Pl(x;1+d).

(e) S(P) N [0, ] = {u,).

By (d) and the condition (A-6; y,) for P, all the roots A of %HO[P] 0;D=0
satisfy Re 2 < 0. This and the conditions (c), (¢) imply that the operator P satis-
fies (A-3). Further, also by (d), we have %,,O[P] (0;0) # 0. This and the assump-
tion (A-2; i,) imply (A-2; 0). Thus, we can apply Theorem 5.1 to P, and hence, we
have v = 0 for ¢t > 0 in a neighborhood of (0,0). ]
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