A CONSTRUCTION OF ASYMPTOTIC SOLUTIONS
AND THE EXISTENCE OF
SMOOTH NULL-SOLUTIONS
FOR A CLASS OF
NON-FUCHSIAN PARTIAL DIFFERENTIAL OPERATORS

TAKESHI MANDAI

§1. Introduction

Consider a partial differential operator

\[P = \sum_{j + |\alpha| \leq m} a_{j,\alpha}(t, x) \partial_t^j \partial_x^\alpha, \quad a_{m,0}(t, x) \equiv t^\kappa, \]

where \(\kappa \) is a non-negative integer and \(a_{j,\alpha} \) are real-analytic in a neighborhood of \((0,0) \in \mathbb{R}_+ \times \mathbb{R}^n\).

M. S. Baouendi and C. Goulaoic [1] defined Fuchsian partial differential operators, and proved the unique solvability of the characteristic Cauchy problems in the category of real-analytic (or holomorphic) functions, which is a generalization of the classical Cauchy-Kowalevsky theorem. They also proved a generalization of the Holmgren uniqueness theorem. Especially, from their results it easily follows that if \(P \) is a Fuchsian operator with real-analytic coefficients, then there exist no sufficiently smooth null-solutions. Here, a Schwartz distribution \(u \) in a neighborhood of \((0,0)\) is called a null-solution for \(P \) at \((0,0)\), if \(Pu = 0 \) in a neighborhood of \((0,0)\) and \((0,0) \in \text{supp } u \subset \{ t \geq 0 \} \), where \(\text{supp } u \) denotes the support of \(u \).

The author considered the characteristic Cauchy problems for a class of operators wider than the Fuchsian operators in [3]. In that result, he showed the unique solvability of the characteristic Cauchy problems in the category of functions which are of class \(C^\infty \) with respect to \(t \) and real-analytic with respect to \(x \). He also showed the non-existence of sufficiently smooth null-solutions. (As for
distribution null-solutions, see [4]). This class of operators is defined in terms of four conditions. He gave a conjecture that if the third condition is violated, then there exists a C^∞ null-solution.

In this article, we construct an asymptotic solution of $Pu = 0$ in the form

$$ u(t, x) := \exp \left(- \sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \cdot t^{l(M+1)(x)} \cdot \sum_{l=0}^{m} \sum_{p=0}^{l} (\log t)^p v_{l,p}(x), $$

where

(i) M is a non-negative integer, and q is a positive integer,

(ii) $\mu[j] (j = 0, 1, \ldots, M)$ are positive rational numbers such that $\mu[0] > \mu[1] > \cdots > \mu[M] > 0$.

(iii) $\lambda[j] (j = 0, 1, \ldots, M + 1)$ and $v_{l,p} (l \geq 0 ; 0 \leq p \leq lm)$ are real-analytic in a fixed open neighborhood of $0 \in \mathbb{R}^n$.

for a class of operators wider than that considered in [3].

Further, using these asymptotic solutions, we prove the conjecture in [3] mentioned above under an additional assumption. The C^∞ null-solution constructed here is one of the most fastly decaying nontrivial solutions of $Pu = 0$.

In Section 2, we give the statements of the main theorems. After giving some preliminaries in Section 3, we prove the main theorems in Sections 4 and 5.

Notations:

(i) The set of all integers (resp. nonnegative integers) is denoted by \mathbb{Z} (resp. \mathbb{N}). Put $\mathbb{N}/q := \{p/q : p \in \mathbb{N}\}$ for a positive integer q, and put \mathbb{Z}/q similarly.

(ii) Put $\partial = t\partial_t$.

(iii) For a bounded domain Ω in \mathbb{C}^n, we denote by $\mathcal{O}(\Omega)$ the set of all holomorphic functions on Ω.

(iv) The space of the Schwartz distributions on U is denoted by $\mathcal{D}'(U)$.

(v) For a complete locally convex topological vector space E, put

$$ C_{\text{fiss}}^N([0, T] ; E) := \{ f \in C^N([0, T] ; E) : \frac{d^j f}{dt^j} \bigg|_{t=0} = 0 \text{ for } 0 \leq j \leq N - 1 \}. $$

(vi) Put $(\lambda)_j := \Pi_{i=1}^{j-1}(\lambda - i)$ for $\lambda \in \mathbb{C}$ and $j \in \mathbb{N}$.

(vii) For a commutative ring R, the ring of polynomials of λ with the coefficients belonging to R is denoted by $R[\lambda]$. The degree of $F \in R[\lambda]$ is denoted by $\deg F$.

§2. Statement of the main result

Let q be a positive integer, Ω be a bounded domain in \mathbb{C}^n that includes the origin 0, and T be a positive real number. Consider a linear partial differential operator of the form (1.1). We assume only the following weaker condition on the coefficients.

\[(A-0)\quad a_{j,a} \in \widehat{\mathcal{F}}_{q}([0, T] ; \mathcal{O}(\Omega)) \quad (j + |\alpha| \leq m),\]

where

\[
\mathcal{F}_{q}([0, T] ; \mathcal{O}(\Omega)) := \{ \phi \in C^{\infty}([0, T] ; \mathcal{O}(\Omega)) : [s \mapsto \phi(s^{q})] \in C^{\infty}([0, T^{1/q}] ; \mathcal{O}(\Omega)) \},
\]

\[
\widehat{\mathcal{F}}_{q}([0, T] ; \mathcal{O}(\Omega)) := \{ \phi \in C^{\infty}((0, T] ; \mathcal{O}(\Omega)) : t^{M} \phi(t) \in \mathcal{F}_{q}([0, T] ; \mathcal{O}(\Omega)) \text{ for some } M \in \mathbb{N} \}.
\]

Let $r(j, \alpha)$ be the generalized vanishing order of $a_{j,a}$ on the hypersurface $\Sigma := \{(0, x) : x < \Xi \Omega \}$, that is

\[(2.1)\quad r(j, \alpha) := \sup \{ r \in \mathbb{Z} / q : t^{-r}a_{j,a} \in \mathcal{F}_{q}([0, T] ; \mathcal{O}(\Omega)) \}.
\]

If $r(j, \alpha) = \infty$, then we redefine $r(j, \alpha) := R$ for a sufficiently large R ($R := \max\{r(j, \alpha) : r(j, \alpha) < \infty\} + 1$ will suffice). Put

\[(2.2)\quad a_{j,\alpha}(t, x) := t^{-r(j,\alpha)}a_{j,a}(t, x) \quad (\in \mathcal{F}_{q}([0, T] ; \mathcal{O}(\Omega))).
\]

Note that if $r(j, \alpha) < R$, then $a_{j,\alpha}(0, x) \neq 0$.

Associating a weight $\omega(j, \alpha) := j - r(j, \alpha)$ to each differential monomial $a_{j,a}(t, x) \partial_{t}^{j} \partial_{x}^{\alpha}$, we draw a Newton polygon $\Delta(P)$ using the points $(j + |\alpha|, -\omega(j, \alpha))$ $(j + |\alpha| \leq m)$ in (u, v)-plane as follows.

Definition 2.1 ([3]). (1) Put

\[
\Delta(P) := \text{ch} \left(\bigcup_{j + |\alpha| \leq m} \{(u, v) \in \mathbb{R}^{2} : u \leq j + |\alpha|, \ v \geq -\omega(j, \alpha) \} \right),
\]

where $\text{ch}(A)$ denotes the convex hull of A. This is called the *Newton polygon* of P.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 07 Dec 2019 at 19:39:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0027763000006139
(2) Put
\[\tilde{V} = \tilde{V}(P) := \{(j, \alpha) \in \mathbb{N} \times \mathbb{N}^n : (j + |\alpha|, -\omega(j, \alpha)) \text{ is a vertex of } \Delta(P)\}. \]

(3) Put
\[\omega = \omega(P) := \max \{\omega(j, \alpha) \in \mathbb{R} : j + |\alpha| \leq m\}, \]
which is the maximum weight of \(P \).

(4) The boundary of \(\Delta(P) \cap ([0, \infty) \times \mathbb{R}) \) is the union of two vertical half-lines and a finite number of compact line segments with distinct slopes. Each of these compact line segments is called a lower side of \(\Delta(P) \). The set of the slopes of the lower sides of \(\Delta(P) \) is denoted by \(S = S(P) (\subseteq \mathbb{Q}) \). For \(\mu \in S(P) \), the lower side of \(\Delta(P) \) with slope \(\mu \) is denoted by \(L_\mu = L_\mu(P) \). Put
\[I_\mu = I_\mu(P) := \{(j, \alpha) \in \mathbb{N} \times \mathbb{N}^n : (j + |\alpha|, -\omega(j, \alpha)) \in L_\mu(P)\}. \]

Let the right end points of \(L_\mu(P) \) be \((u, v) \). We put \(d_\mu(P) := u \), and call it the degree of the slope \(\mu \).

If \(0 \not\in S \), we put \(L_0(P) := \{(0, -\omega(0,0))\} = \{(0, -\omega(P))\} \subseteq \mathbb{R}^2 \), \(I_0(P) := \{(0,0)\} \subseteq \mathbb{N} \times \mathbb{N}^n \), and \(d_0(P) := 0 \).

By the use of these notions, Fuchsian operators in the sense of M. S. Baouendi and C. Goulaouic [1] are characterized as follows. (In fact, they assumed that the
coefficients belong to $C^m([0, T]; \Theta(\Omega))$. This difference is, however, not essential and hence we ignore the difference of the classes of coefficients.)

Proposition 2.2. The operator P is Fuchsian if and only if $\omega(P) \geq 0$, $S(P) = \{0\}$, and there exist no $(j, \alpha) \in I_0(P)$ such that $\alpha \neq 0$.

We consider a class of operators wider than the class of Fuchsian operators. First, we assume the following condition.

(A-1) For all $\mu \in S(P)$, there exist no $(j, \alpha) \in I_\mu(P)$ such that $\alpha \neq 0$.

Definition 2.3. For $\mu \in S(P)$ with $\mu > 0$, we put

$$E_\mu[P](x; \lambda) := \sum_{(j, \alpha) \in I_\mu(P)} \bar{a}_{j,\alpha}(0, x) \lambda^j \in \Theta(\Omega)[\lambda].$$

We also put

$$E_0[P](x; \lambda) := \sum_{(j, \alpha) \in I_\mu(P)} \bar{a}_{j,\alpha}(0, x) \lambda^j \in \Theta(\Omega)[\lambda].$$

The polynomial $E_\mu[P]$ of λ is called the indicial polynomial of P associated with the slope $\mu \in S(P) \cup \{0\}$. Note that $d_\mu(P) = \deg E_\mu[P]$.

For $\mu \in S(P) \cup \{0\}$, we consider the following condition.

(A-2; μ) If $(j, 0) \in \tilde{V}(P)$ and $j \geq d_\mu(P)$, then $\bar{a}_{j,0}(0,0) \neq 0$.

This is equivalent to the following.

(A-2; μ) For every $\nu \in S(P)$ with $\nu \geq \mu$, the coefficient of the top order term of $E_\nu[P](x; \lambda) \in \Theta(\Omega)[\lambda]$ does not vanish at $x = 0$.

Remark 2.4. Note that if $(j, 0) \in \tilde{V}(P)$, then $\bar{a}_{j,0}(0, x) \neq 0$. Thus, the condition $(A-2; \mu)$ is a kind of non-degeneracy at $x = 0$. Further, the condition $(A-2; \mu)$ for $\mu > 0$ is weaker than the condition $(A-2; 0)$, and $(A-2; 0)$ is equivalent to $(A-2)$ in [3].

Now, the following is one of the three main theorems in this article.

Theorem 2.5. Assume that P satisfies $(A-0)$ and $(A-1)$. Let $\mu_0 \in S(P) \cap N/q$, $\mu_0 > 0$, and assume the condition $(A-2; \mu_0)$. If λ_0 is a simple root of $E_{\mu_0}[P](0; \lambda) = 0$, then there exist

(i) $M \in N,$
(ii) \(\mu[j] \in \mathbb{N}/q (j = 0, 1, \ldots, M) \), where \(\mu_0 = \mu[0] > \mu[1] > \cdots > \mu[M] > 0 \).

(iii) a subdomain \(\Omega_0 \) of \(\Omega \) including 0,

(iv) \(\lambda[j] \in \partial(\Omega_0) \) \((j = 0, 1, \ldots, M + 1) \), where \(\lambda0 = \lambda_0 \),
such that the following holds.

For an arbitrarily given \(v_{0,0}(x) \in \partial(\Omega_0) \), there exists \(v_{1,p}(x) \in \partial(\Omega_0) \) \((l \geq 0; 0 \leq p \leq |m|) \) such that a formal series

\[
(2.3) \quad u(t, x) := \exp \left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \cdot \sum_{l=0}^{\infty} \sum_{p=0}^{l/m} (\log t)^p v_{1,p}(x)
\]

is an asymptotic solution of \(Pu = 0 \). That is, for every \(N \in \mathbb{N} \) there holds

\[
(2.4) \quad t^{-1(M+1)q} \cdot \exp \left(\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \cdot P \left(\exp \left(-\sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \right) \\
\times t^{1(M+1)q} \cdot \sum_{l=0}^{N} \sum_{p=0}^{l/m} (\log t)^p v_{1,p}(x) = o(t^{N/q-r_0}),
\]

with some \(r_0 \in \mathbb{N} \).

This theorem shall be proved in Section 4. We shall also give a proposition which corresponds to the case of \(\mu_0 = 0 \) and \(M = -1 \).

Remark 2.6. Even if \(\mu_0 \in S(P) \) but \(\mu_s \notin \mathbb{N}/q \), we can retake another \(q \) such that \(\mu_0 \in \mathbb{N}/q \) and (A-0) is satisfied. Hence, we can always apply this theorem with this new \(q \).

Next, we consider the following condition for \(\mu \in S(P) \).

(A-6: \(\mu \)) If \(\nu \in S(P) \) and \(\nu > \mu \), then all non-zero roots \(\lambda \) of \(\mathbb{C}[P](0; \lambda) = 0 \) satisfy \(\text{Re} \lambda < 0 \). Further, there exists \(\lambda_0 \in \mathbb{C} \) which satisfies the following.

(i) \(\text{Re} \lambda_0 > 0 \),

(ii) \(\lambda_0 \) is a simple root of \(\mathbb{C}[P](0; \lambda) = 0 \) and the other roots \(\lambda \) satisfy \(\text{Re} \lambda < \text{Re} \lambda_0 \).

Remark 2.7. In this section, we define only the conditions (A-0), (A-1), (A-2: \(\mu \)), and (A-6: \(\mu \)). This apparently strange numbering is for the consistency with [3]. We shall introduce another condition (A-3) in Section 5.

Using the theorem above, we can show the existence theorem of smooth null-solutions, which is the second of the main theorems.
THEOREM 2.8. Assume the conditions (A-0), (A-1), (A-2; μ₀), and (A-6; μ₀) for some μ₀ ∈ S(P) with μ₀ > 0. Then, P has a C∞ null-solution at (0,0).

The C∞ null-solution given in this theorem is one of the most fastly decaying nontrivial solutions as t → + 0. In fact, we have the following theorem, which is the last of the main theorems.

THEOREM 2.9. Assume the conditions (A-0), (A-1), (A-2; μ₀), and (A-6; μ₀) for some μ₀ ∈ S(P) with μ₀ > 0. Assume that u is a C solution of Pu = 0 for t > 0. If there exist δ > Re λₜ and C₀ > 0 such that the inequality

| u(t, x) | ≤ C₀ exp(- δ t⁻μ₀)

holds for t > 0 in a neighborhood of (0,0), then u = 0 for t > 0 in a neighborhood of (0,0).

Theorems 2.8 and 2.9 shall be proved in Section 5.

Finally, let us consider a typical example.

EXAMPLE 2.10. First, we consider the following ordinary differential operator decomposed into first order operators.

$$P₀ := t^d (t^r g - λ_1(t, x)) \cdots (t^r g - λ_r(t, x)) (\partial_r - \tilde{λ}_{r+1}(t, x)) \cdots (\partial_r - \tilde{λ}_m(t, x)),$$

where m, r, d ∈ N, 0 ≤ r ≤ m, k_j ∈ N(1 ≤ j ≤ r) and λ_j, \tilde{λ}_j ∈ C∞([0, T]; \partial(Ω)) (1 ≤ j ≤ r; r + 1 ≤ l ≤ m). Assume that λ_j(0, x) ≠ 0 (1 ≤ j ≤ r) and k_1 ≥ k_2 ≥ ⋯ ≥ k_r ≥ 0. For this operator, S(P₀) = \{k_1, \ldots, k_r, 0\} if r < m, and S(P₀) = \{k_1, \ldots, k_m\} if r = m. The condition (A-1) is trivially satisfied, and the condition (A-2; μ) is “if k_j > μ then λ_j(0, 0) ≠ 0”. We can also show that

$$\mathcal{C}_μ [P₀](x; λ) = \prod_{j: k_j > μ} (- λ_j(0, x)) \cdot \prod_{j: k_j = μ} (λ - λ_j(0, x)) \cdot \lambda^{h(μ) + m - r}$$

for μ ∈ S(P₀) with μ > 0, where h(μ) is the number of k_j's that satisfy k_j < μ. Thus, the condition (A-6; μ₀) for μ₀ > 0 is the following.

If k_j > μ₀ then Re λ_j(0, 0) < 0. Further, there exists j₀ such that

(i) k_j₀ = μ₀,

(ii) Re λ_j₀(0, 0) > 0,

(iii) If k_j = μ₀ and j ≠ j₀, then Re λ_j(0, 0) < Re λ_j₀(0, 0).

Next, we consider a partial differential operator. Put μ_j := 0 (1 ≤ j ≤ m - r) and μ_m-r+j := k_{r+1-j} (1 ≤ j ≤ r). Also put ω_j := d + \sum_{l=1}^{j} μ_l (0 ≤ j ≤ m).

Consider an operator
$P = P_0 + \sum_{j=0}^{m} t^{j+1} B_j(t, x ; \vartheta, \partial_x),$

where $B_j(t, x ; \vartheta, \partial_x) = \sum_{|\alpha| \leq 1} b_{j, \alpha}(t, x) \partial_x^\alpha \vartheta^{j-|\alpha|}$ and $b_{j, \alpha} \in C^\infty([0, T] ; \Theta(\Omega)).$

Then, P satisfies the condition (A-1), and there hold $\Delta(P) = \Delta(P_0)$, $S(P) = S(P_0)$, $\mathcal{C}_u[P] = \mathcal{C}_u[P_0]$. (See Lemma 3.1.) Hence, P satisfies the condition (A-2; μ_0) (resp. (A-6; μ_0)), if and only if P_0 satisfies (A-2; μ_0) (resp. (A-6; μ_0)).

§3. Preliminaries

In this section, we give some preliminaries for the proofs of the main theorems.

Let P be an operator (1.1) satisfying (A-0). By $t^j \partial_t^j = \vartheta(\vartheta - 1) \ldots (\vartheta - j + 1) = (\vartheta)_j$, we can easily show the following lemma, which is useful in our arguments.

Lemma 3.1. We can rewrite P as

$$P = \sum_{j+|\alpha| \leq m} b_{j, \alpha}(t, x) \vartheta^j \partial_x^\alpha,$$

with $b_{j, \alpha} \in \hat{\mathcal{F}}_q([0, T] ; \Theta(\Omega))$. For this $b_{j, \alpha}$, we define the generalized vanishing order

$$r'(j, \alpha) := \sup \{r \in \mathbb{Z} / q : t^r b_{j, \alpha} \in \hat{\mathcal{F}}_q([0, T] ; \Theta(\Omega)) \}.$$

For $\mu \geq 0$, we put $\omega_\mu(P) := \max(-r'(j, \alpha) + \mu(j + |\alpha|) : j + |\alpha| \leq m)$.

Then, we have

$$\Delta(P) = \text{ch}\left(\bigcup_{j+|\alpha| \leq m} \left\{ (u, v) \in \mathbb{R}^2 : u \leq j + |\alpha|, v \geq r'(j, \alpha) \right\} \right),$$

$$\hat{V}(P) = \left((j, \alpha) \in \mathbb{N} \times \mathbb{N}^n : (j + |\alpha|, r'(j, \alpha)) \text{ is a vertex of } \Delta(P) \right),$$

$$\omega(P) = \max(-r'(j, \alpha) \in \mathbb{R} : j + |\alpha| \leq m) = \omega_\mu(P),$$

$$I_\mu(P) = \left\{ (j, \alpha) \in \mathbb{N} \times \mathbb{N}^n : -r'(j, \alpha) + \mu(j + |\alpha|) = \omega_\mu(P) \right\}.$$

Further, the condition (A-1) is stated as follows:

(A-1) For every $\mu \in S(P)$, if $-r'(j, \alpha) + \mu(j + |\alpha|) = \omega_\mu(P)$, then $\alpha = 0$.

Under (A-1), there holds

$$\| \mathcal{C}_u[P](x ; \lambda) \| = \sum_{j=0}^{m} \{ b_{j, \alpha}(t, x) t^{\omega_\mu(P) - j} \} \left| t = 0 \right| \lambda^j$$

$$\begin{cases} [t^{\omega_\mu(P)} e^{it\varphi x} P(e^{-it\varphi x})] \left| t = 0 \right| (\mu > 0), \\ [t^{\omega_\mu(P)} t^{-j} P(t^j)] \left| t = 0 \right| (\mu = 0), \end{cases}$$
and the condition \((A-2; \mu)\) is stated as follows:

\((A-2; \mu)\) If \((j, 0) \in \hat{V}(P)\) and \(j \geq d_u(P)\), then \(\{b_{j,0}(t,0)\} |_{t=0} \neq 0\).

It is convenient to consider the operator in the form (3.1) rather than the form (1.1).

Remark 3.2. For \(\mu \geq 0\), we can define \(C\mu(P)\) by (3.2), even if \(\mu \not\in S\). If \(\mu \in S\) and \(\mu > 0\), then \(C\mu(P)\) has more than one term as a polynomial of \(\lambda\). If \(\mu \not\in S\) and \(\mu > 0\), then \(C\mu(P)\) has only one term.

The key tool for the proofs of main theorems is the following type of transformation of operators.

Lemma 3.3. Assume that an operator \(P\) of the form (1.1) (or (3.1)) satisfies the conditions \((A-0)\) and \((A-1)\). Let \(\mu \in S(P) \cap \mathbb{N} / q\), \(\mu > 0\), and assume \((A-2; \mu)\). Let \(\lambda_1\) be a simple root of \(C\mu(P)(0; \lambda) = 0\). Take a subdomain \(\Omega'\) of \(\Omega\) including 0 and \(\lambda(x) \in \partial(\Omega')\) so that they satisfy \(\lambda(0) = \lambda_1\) and \(C\mu(P)(x; \lambda(x)) \equiv 0\) on \(\Omega'\). If we put
\[P' := \exp \left(\frac{\lambda(x)}{\mu} t^{-u} \right) \cdot P \cdot \exp \left(-\frac{\lambda(x)}{\mu} t^{-u} \right), \]

then \(P' \) is an operator on \([0, T] \times \Omega'\) of the form (1.1) and satisfies the following:

(a) The operator \(P' \) satisfies (A-0) and (A-1).
(b) \(S(P') \cap (\mu, \infty) = S(P) \cap (\mu, \infty) \).
(c) \(\mathcal{C}_\nu[P'](x; \cdot) = \mathcal{C}_\nu[P](x; \cdot) \) for every \(\nu > \mu \) and \(x \in \Omega' \).
(d) There holds \(\mathcal{C}_\nu[P'](x; \lambda) = \mathcal{C}_\nu[P](x; \lambda + \lambda(x)) \). Further, if \(d_\mu(P) > 1 \), then \(\mu \in S(P') \); if \(d_\mu(P) = 1 \), then \(\mu \notin S(P') \).
(e) There exists \(\mu' < \mu \) such that \(\mu' \in \mathbb{N}/q \) and \(S(P') \cap [0, \mu) = \{ \mu' \} \).
(f) \(d_{\mu'}(P') = 1 \) and \(P' \) satisfies (A-2; \(\mu' \)).

The upper part of the dotted line is \(\Delta(P) \).

The upper part of the real line is \(\Delta(P') \).

Figure 3. \(\Delta(P') \) and \(\Delta(P) \)

Proof. First, note that
\[
\exp\left(\frac{\lambda(x)}{\mu} t^{-\mu}\right) \odot \delta \cdot \exp\left(-\frac{\lambda(x)}{\mu} t^{-\mu}\right) = \delta + \lambda(x) t^{-\mu},
\]
(3.3)
\[
\exp\left(\frac{\lambda(x)}{\mu} t^{-\mu}\right) \odot \partial_x \cdot \exp\left(-\frac{\lambda(x)}{\mu} t^{-\mu}\right) = \partial_x + \frac{-\lambda(x)}{\mu} t^{-\mu}.
\]

From these, it is easy to see that \(P' \) is an operator of the form (3.1) and satisfies the conditions \((A-0), (A-1), \) and \((A-2; \mu). \) It is also easy to see that there hold the conclusions \((b), (c). \) Further, we have \(\mathcal{C}_{\mu}[P'](x; \lambda) = \mathcal{C}_{\mu}[P](x; \lambda + \lambda(x)). \) Since \(\mathcal{C}_{\mu}[P'](x; 0) \equiv 0 \) and since \(\left(\partial_\mu \mathcal{C}_{\mu}[P']\right)(0; 0) = \left(\partial_\mu \mathcal{C}_{\mu}[P]\right)(0; \lambda_1) \neq 0, \) we have \((1, 0, \ldots, 0) \in \tilde{V}(P') \subset \mathbb{N} \times \mathbb{N}^n. \) Hence, if \(d_\mu(P) > 1, \) then \(\mu \in S(P'). \) Further, there exists \(\mu' \in \mathbb{N}/q \) such that \(\mu' < \mu, \) \(S(P') \cap [0, \mu] = \{\mu'\}, \) and \(d_{\mu'}(P') = 1. \) The condition \((A-2; \mu)\) and the fact that \(\left(\partial_\mu \mathcal{C}_{\mu}[P']\right)(0; 0) \neq 0 \) imply \((A-2; \mu'). \)

By an iterative use of this lemma, we have the following.

Proposition 3.4. Assume that \(P \) satisfies \((A-0)\) and \((A-1).\) Let \(\mu_0 \in S(P) \cap \mathbb{N}/q, \mu_0 > 0, \) and assume \((A-2; \mu_0). \) Let \(\lambda_0 \) be a simple root of \(\mathcal{C}_{\mu_0}[P](0; \lambda) = 0. \) Then, there exist

\begin{enumerate}[(i)]
 \item \(M \in \mathbb{N}, \)
 \item \(\mu[j] \in \mathbb{N}/q (j = 0, 1, \ldots, M), \) where \(\mu_0 = \mu[0] > \mu[1] > \cdots > \mu[M] > 0, \)
 \item a subdomain \(\Omega_{M+1} \) of \(\Omega \) including 0,
 \item \(\lambda[j] \in \mathcal{O}(\Omega_{M+1}) (j = 0, 1, \ldots, M), \) where \(\lambda0 = \lambda_0, \)
\end{enumerate}

such that the operator

\[
P^{(M+1)} := \exp\left(\sum_{j=0}^M \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right) \cdot P \cdot \exp\left(-\sum_{j=0}^M \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]}\right)
\]

is an operator on \([0, T] \times \Omega_{M+1}\) of the form (1.1) and satisfies the following:

\begin{enumerate}[(a)]
 \item The operator \(P^{(M+1)} \) satisfies \((A-0)\) and \((A-1).\)
 \item \(S(P^{(M+1)}) \cap (\mu_0, \infty) = S(P) \cap (\mu_0, \infty). \)
 \item \(\mathcal{C}_{\mu}[P^{(M+1)}](x; \cdot) = \mathcal{C}_{\mu}[P](x; \cdot) \) for every \(\nu > \mu_0 \) and \(x \in \Omega_{M+1}. \)
 \item There holds \(\mathcal{C}_{\mu_0}[P^{(M+1)}](x; \lambda) = \mathcal{C}_{\mu_0}[P](x; \lambda + \lambda[0](x)). \) If \(d_{\mu_0}(P) > 1, \) then \(\mu_0 \in S(P^{(M+1)}); \) if \(d_{\mu_0}(P) = 1, \) then \(\mu_0 \not\in S(P^{(M+1)}). \)
 \item \(S(P^{(M+1)}) \cap [0, \mu_0] = \{0\}. \)
 \item \(d_{\mu}(P^{(M+1)}) = 1 \) and \(P^{(M+1)} \) satisfies \((A-2; 0). \)
\end{enumerate}
The upper part of the dotted line is $\Delta(P) = \Delta(P^{(0)})$.
The upper part of the real line is $\Delta(P^{(j)})$ $(1 < j < M)$.
The upper part of the bold real line is $\Delta(P^{(M+1)})$.

Figure 4. $\Delta(P) = \Delta(P^{(0)})$ and $\Delta(P^{(M+1)}) \subset \cdots \subset \Delta(P^{(i)})$

Proof. Since λ_0 is a simple root, we can take a subdomain Ω_1 of Ω including 0 and $\lambda[0](x) \in \mathcal{O}(\Omega_1)$ such that they satisfy $\lambda0 = \lambda_0$ and $\mathcal{O}_0(P)(x; \lambda[0](x)) \equiv 0 \text{ on } \Omega_1$.

Put $P^{(0)} := P$ and $\mu[0] := \mu_\psi$. If we put

$$P^{(1)} := \exp\left(\frac{\lambda[0](x)}{\mu[0]} - t^{-\mu[0]}\right) \cdot P^{(0)} \cdot \exp\left(-\frac{\lambda[0](x)}{\mu[0]} t^{-\mu[0]}\right),$$

then by Lemma 3.3, the operator $P^{(1)}$ is also an operator of the form (1.1) on $[0, T] \times \Omega_1$ and satisfies the following:

(a) The operator $P^{(1)}$ satisfies (A-0) and (A-1).
(b) \(S(P^{(1)}) \cap (\mu[0], \infty) = S(P^{(0)}) \cap (\mu[0], \infty) \).

(c) \(\mathcal{C}_\nu(P^{(1)}) (x ; \cdot) = \mathcal{C}_\nu(P^{(0)}) (x ; \cdot) \) for every \(\nu > \mu[0] \) and \(x \in \Omega_1 \).

(d) There holds \(\mathcal{C}_{\mu[0]}(P^{(1)}) (x ; \lambda) = \mathcal{C}_{\mu[0]}(P^{(0)}) (x ; \lambda + \lambda[0](x)) \). If \(d_{\mu[0]}(P^{(0)}) > 1 \), then \(\mu[0] \in S(P^{(1)}) \); if \(d_{\mu[0]}(P^{(0)}) = 1 \), then \(\mu[0] \in \not S(P^{(1)}) \).

(e) There exists \(\mu[1] < \mu[0] \) such that \(\mu[1] \in \mathbb{N}/q \) and \(S(P^{(1)}) \cap [0, \mu[0]) = \{ \mu[1] \} \).

(f) \(d_{\mu[1]}(P^{(1)}) = 1 \) and \(P^{(1)} \) satisfies (A-2; \(\mu[1] \)).

By (f), we have \(\mathcal{C}_{\mu[1]}(P^{(1)}) (x ; \lambda) = a[1](x) \lambda - b[1](x) \) for some \(a[1], b[1] \in \mathcal{O}(\Omega_2) \) with \(a[1](0) \neq 0 \).

If \(\mu[1] = 0 \), then put \(M = 0 \). Consider the case when \(\mu[1] > 0 \). We can take a subdomain \(\Omega_2 \) of \(\Omega_1 \) including 0 such that \(a[1](x) \neq 0 \) on \(\Omega_2 \), and hence we can take \(\lambda[1] \in \mathcal{O}(\Omega_2) \) such that \(\mathcal{C}_{\mu[1]}(P^{(1)}) (x ; \lambda[1](x)) \equiv 0 \) on \(\Omega_2 \).

If we put

\[
P^{(2)} := \exp\left(\frac{\lambda[1](x)}{\mu[1]} \cdot t^{-\mu[1]} \right) \ast P^{(1)} \ast \exp\left(\frac{-\lambda[1](x)}{\mu[1]} \cdot t^{-\mu[1]} \right),
\]

then by Lemma 3.3 and by \(d_{\mu[1]}(P^{(1)}) = 1 \), the operator \(P^{(2)} \) is also an operator of the form (1.1) and satisfies the following:

(a) The operator \(P^{(2)} \) satisfies (A-0) and (A-1).

(b) \(S(P^{(2)}) \cap (\mu[1], \infty) = S(P^{(1)}) \cap (\mu[1], \infty) \).

(c) \(\mathcal{C}_\nu(P^{(2)}) (x ; \cdot) = \mathcal{C}_\nu(P^{(1)}) (x ; \cdot) \) for every \(\nu > \mu[1] \) and \(x \in \Omega_2 \).

(d) There holds \(\mathcal{C}_{\mu[1]}(P^{(2)}) (x ; \lambda) = \mathcal{C}_{\mu[1]}(P^{(1)}) (x ; \lambda + \lambda[1](x)) = a[1](x) \lambda \), and \(\mu[1] \in \not S(P^{(2)}) \).

(e) There exists \(\mu[2] < \mu[1] \) such that \(\mu[2] \in \mathbb{N}/q \) and \(S(P^{(2)}) \cap [0, \mu[1]) = \{ \mu[2] \} \).

(f) \(d_{\mu[2]}(P^{(2)}) = 1 \) and \(P^{(2)} \) satisfies (A-2; \(\mu[2] \)).

We can continue this procedure unless \(\mu[j] = 0 \). Since \(\mu[j] \in \mathbb{N}/q \) and \(\mu[0] > \mu[1] > \cdots \geq 0 \), we necessarily reach \(\mu[M+1] = 0 \). □

The following lemma is used to construct each term of infinite series in asymptotic solutions.

Lemma 3.5. Let \(Q(x ; \lambda) \in \mathcal{O}(\Omega)[\lambda] \) and \(\Lambda \in \mathcal{O}(\Omega) \). Assume that \(Q(x ; \Lambda(x)) \neq 0 \) on \(\Omega \). Then, we can solve the equation

\[
Q(x ; \theta) v = t^{\Lambda(x)} \sum_{p=0}^{L} g_p(x) \left(\log t \right)^p, \quad g_p \in \mathcal{O}(\Omega) \quad (0 \leq p \leq L)
\]
as \(v = t^{A(x)} \sum_{p=0}^{L} v_p(x) (\log t)^p \), \(v_p \in \mathcal{C}(\Omega) \) (0 \(\leq p \leq L \)).

Proof. By an easy calculation, we have

\[
Q(x; \theta)(t^{A(x)}(\log t)^p) = \sum_{j=0}^{\infty} \binom{p}{j} (\partial_j^i Q)(x; \Lambda(x)) \cdot t^{A(x)}(\log t)^{p-j}.
\]

Hence, (3.4) is equivalent to

\[
Q(x; \Lambda(x)) \cdot v_p(x) + \sum_{j=1}^{L-p} \binom{p+j}{j} (\partial_j^i Q)(x; \Lambda(x)) \cdot v_{p+j}(x) = g_p(x) \quad (p = 0, 1, \ldots, L).
\]

Thus, by \(Q(x; \Lambda(x)) \neq 0 \), we can uniquely determine \(v_L, v_{L-1}, \ldots, v_0 \).

§4. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. First, we give the existence of an asymptotic solution with no exponential factor, which corresponds to the case \(\mu_0 = 0 \) and \(M = -1 \) in Theorem 2.5. Although we use only the case when \(\deg_{x} \mathcal{C}_0[P] = 1 \) in the proof of main theorems, this proposition has its own value.

Proposition 4.1. Assume that \(P \) satisfies (A-0), (A-1), and (A-2; 0). Let \(\lambda(x) \in \mathcal{C}(\Omega_0) \) satisfy

(i) \(\mathcal{C}_0[P](x; \lambda(x)) \equiv 0 \) on \(\Omega_0 \),

(ii) \(\mathcal{C}_0[P](x; \lambda(x) + 1/q) \neq 0 \) on \(\Omega_0 \) for \(l \in \mathbb{N} \setminus \{0\} \),

for some subdomain \(\Omega_0 \) of \(\Omega \) including 0. Then, for an arbitrarily given \(v_{0,0}(x) \in \mathcal{C}(\Omega_0) \), there exist \(v_{i,p}(x) \in \mathcal{C}(\Omega_0) \) (\(i \geq 0 \); 0 \(\leq p \leq lm \)) such that

(4.1)

\[
\begin{align*}
\quad u(t, x) &:= t^{i(x)} \cdot \sum_{i=0}^{\infty} \sum_{p=0}^{lm} (\log t)^p v_{i,p}(x) \\
\quad &\text{is an asymptotic solution of } Pu = 0. \quad \text{That is}
\end{align*}
\]

\[
t^{i(x)}P \left(\sum_{i=0}^{N} \sum_{p=0}^{lm} (\log t)^p v_{i,p}(x) \right) = o(t^{N/q-\omega(P)}),
\]

for every \(N \in \mathbb{N} \).

Proof. We can formally expand \(P \) with respect to \(t \) as
\[P = t^{-\omega} \left(\mathcal{C}_0[P](x ; \varrho) + \sum_{h=1}^{\infty} B_h(x, \partial_x ; \varrho) t^{h/q} \right), \]

where \(B_h(x, \partial_x ; \varrho) = \sum_{|\alpha| \leq m} b_{h,\alpha}(x) \partial_x^\alpha \varrho^l \) with \(b_{h,\alpha} \in \mathcal{O}(\Omega) \) and \(\omega := \omega(P) \).

Hence, we have only to find \(v_{i,p} \) that satisfy

\[\mathcal{C}_0[P](x ; \varrho) \left(t^{i(x)+1/q} \sum_{p=0}^{km} (\log t)^p v_{i,p}(x) \right) = - \sum_{h=0}^{l-1} B_{l-h}(x, \partial_x ; \varrho) \left(t^{i(x)+1/q} \sum_{p=0}^{km} (\log t)^p v_{h,p}(x) \right) (l \in \mathbb{N}). \]

Since

\[\mathcal{C}_0[P](x ; \varrho) \left(t^{i(x)} v_{0,0}(x) \right) = \mathcal{C}_0[P](x ; \lambda(x)) \cdot t^{i(x)} v_{0,0}(x) = 0, \]

\[\partial_x (t^{i(x)+1/q} (\log t)^p v(x)) = t^{i(x)+1/q} (\log t)^p (\partial_x v)(x) + t^{i(x)+1/q} (\log t)^{p+1} (\partial_x \lambda)(x) v(x), \]

and since

\[\mathcal{C}_0[P](x ; \lambda(x) + l/q) \neq 0 \ (l \geq 1) \quad \text{on} \quad \Omega_0, \]

we can get \(v_{i,p} \) with an arbitrarily given \(v_{0,0} \) by applying Lemma 3.5.

Proof of Theorem 2.5. We can apply Proposition 3.4 to \(P \). By (f) of the proposition, we have

\[\mathcal{C}_0[P^{(M+1)}](x ; \lambda) = a[M+1](x) \lambda - b[M+1](x) \]

for some \(a[M+1], b[M+1] \in \mathcal{O}(\Omega_{M+1}) \) with \(a[M+1](0) \neq 0 \). Hence, we can take a subdomain \(\Omega_0 \) of \(\Omega_{M+1} \) including 0 such that \(a[M+1](x) \neq 0 \) on \(\Omega_0 \). We can take \(\lambda[M+1] \in \mathcal{O}(\Omega_0) \) such that \(\mathcal{C}_0[P^{(M+1)}](x ; \lambda[M+1](x)) = 0 \) and \(\mathcal{C}_0[P^{(M+1)}](x ; \lambda[M+1](x) + l/q) \neq 0 \) on \(\Omega_0 \) for \(l \in \mathbb{N} \setminus \{0\} \).

By applying Proposition 3.4 to \(P^{(M+1)} \), we can construct an asymptotic solution

\[v = t^{i(M+1)/x} \cdot \sum_{l=0}^{\infty} t^{l/q} \sum_{p=0}^{km} (\log t)^p v_{l,p}(x) \]

of \(P^{(M+1)} v = 0 \) for an arbitrarily given \(v_{0,0} \in \mathcal{O}(\Omega_0) \).

Thus, the proof of Theorem 2.5 is completed.
§5. Proof of Theorems 2.8 and 2.9

In this section, we prove Theorems 2.8 and 2.9.

First, we introduce another condition (A-3).

(A-3) If \(\mu \in S(P) \) and \(\mu > 0 \), then all the non-zero roots \(\lambda \) of \(\mathcal{C}_\mu[P](0; \lambda) = 0 \) satisfy \(\operatorname{Re}\lambda < 0 \).

From the results in [3], we easily get the following theorem, which shall be used later.

Theorem 5.1. Assume the conditions (A-0), (A-1), (A-2; 0), and (A-3). Then, there exist \(N_0 \in \mathbb{N}, T_0 > 0 \), and a domain \(\Omega_0 \) including 0 for which the following holds:

1. For every \(N \geq N_0 \) and every \(f \in \mathcal{C}[\sigma^{(P)}]([0, T]; \theta(\Omega)) \), there exists a unique \(u \in \mathcal{C}([0, T_0]; \theta(\Omega_0)) \) such that \(Pu = f \) on \([0, T_0] \times \Omega_0\).
2. If \(u \in t^{N_0} \times \mathcal{C}([0, T]; \theta'(\Omega \cap \mathbb{R}^n)) \) and \(Pu = 0 \) for \(t > 0 \) in a neighborhood of \((0,0)\), then \(u = 0 \) for \(t > 0 \) in a neighborhood of \((0,0)\). Especially, there exists no sufficiently smooth null-solution for \(P \) at \((0,0)\).

In (2) of this theorem, the domain where \(u = 0 \) may depend not only on the domain where \(Pu = 0 \) but also on \(u \) itself. As for solutions in \(\mathcal{C}([0, T]; \mathcal{C}(\Omega \cap \mathbb{R}^n)) \), however, we can show the existence of a common domain of uniqueness, by a standard argument as follows.

Corollary 5.2. Assume the same assumptions as in the theorem above. Then there exists \(N_0 \in \mathbb{N} \) such that for every \(T' \in (0, T) \) and every open neighborhood \(U' \) of \(0 \in \mathbb{R}^n \), there exist \(T'' \in (0, T') \) and an open neighborhood \(U'' \) of \(0 \) for which the following holds. If \(u \in t^{N_0} \times \mathcal{C}([0, T]; \mathcal{C}(\Omega \cap \mathbb{R}^n)) \) and \(Pu = 0 \) on \((0, T') \times U'\), then \(u = 0 \) on \((0, T'') \times U''\).

Proof. Put \(K := \{u \in t^{N_0} \times \mathcal{C}([0, T]; \mathcal{C}(\Omega \cap \mathbb{R}^n)) : Pu = 0 \text{ on } (0, T') \times U'\} \). This is a closed subspace of a Fréchet space \(t^{N_0} \times \mathcal{C}([0, T]; \mathcal{C}(\Omega \cap \mathbb{R}^n)) \), and hence it is also a Fréchet space. Let \(\{T_n\}_{n \in \mathbb{N}} \) be a decreasing sequence of positive real numbers converging to 0 and let \(\{U_n\}_{n \in \mathbb{N}} \) be a fundamental system of open neighborhoods of 0. Put \(L_n := \{u \in K : u = 0 \text{ on } (0, T_n) \times U_n\} \), which are closed subspaces of \(K \). By Theorem 5.1-(2), there holds \(K = \bigcup_{n=0}^\infty L_n \). Since a Fréchet space is a Baire space, there exists an \(n \) such that \(L_n \) has an inner point, that is \(L_n = K \). \(\square \)
Now, we give a proof of Theorem 2.8.

Proof of Theorem 2.8. We may assume that $\mu_0 \in \mathbb{N}/q$ without loss of generality, and we can apply Proposition 3.4 to P. The operator $P^{(M+1)}$ satisfies (A-0), (A-1) and (A-2; 0). By the assumption (A-6; μ_0) for P and by the conditions (c), (d), (e) in Proposition 3.4, the operator $P^{(M+1)}$ satisfies (A-3). Further, as we have shown in the proof of Theorem 2.5, the operator $P^{(M+1)}$ has a formal solution (4.2) with $v_{0,0} \equiv 1$.

If we put

$$v_N := t^{(M+1)(x)} \sum_{l=0}^{q^N} \sum_{p=0}^{l_m} (\log t)^p v_{l,p}(x)$$

and $g_N := P^{(M+1)}(v_N)$ for sufficiently large $N \in \mathbb{N}$, then we have

$$g_N \in C^2_{\text{flat}}([0, T_0] ; \partial(\Omega_0)),$$

where Ω_0 is a subdomain of Ω including 0 and $r_0 \in \mathbb{N}$, both independent of N. By Theorem 5.1, we get $w_N \in C^{(M+1)}([0, T_0] ; \partial(\Omega_0))$ such that $P^{(M+1)}(w_N) = -g_N$, where $T_0 > 0$ and Ω'_0 is a subdomain of Ω_0 including 0. Thus, $v := v_N + w_N$ satisfies $P^{(M+1)}(v) = 0$ and $t^{-\lambda_{M+1}(x)} v(t, x) \to 1(t \to + 0)$. Note that Corollary 5.2 implies that v is independent of N for sufficiently large N in a neighborhood of $(0,0)$.

Since $\Re \lambda0 > 0$ by the assumption, we can easily show that

$$u(t, x) := \exp \left(- \sum_{j=0}^{M} \frac{\lambda[j](x)}{\mu[j]} t^{-\mu[j]} \right) \cdot v(t, x)$$

belongs to $C^\infty_{\text{flat}}([0, T_0] ; \partial(\Omega'_0))$. Thus, u is a C^∞ null-solution for P.

Next, we give a proof of Theorem 2.9.

Proof of Theorem 2.9. If we take δ' as $\delta > \delta' > \Re \lambda_0$, and if we put $v := \exp(\delta' t^{-\mu_0}/\mu_0) u$, then we have $v \in C^0([0, T] ; \partial(\Omega_0 \cap R^n))$ for every $N \in \mathbb{N}$ with some domain Ω_0 and $T > 0$. We also have

$$0 = \hat{P} \left(\exp \left(- \frac{\delta'}{\mu_0} t^{-\mu_0} \right) v \right) = \exp \left(- \frac{\delta'}{\mu_0} t^{-\mu_0} \right) \hat{P} v,$$

that is, $\hat{P} v = 0$, where $\hat{P} := \exp(\delta' t^{-\mu_0}/\mu_0) \cdot P \cdot \exp(- \delta' t^{-\mu_0}/\mu_0)$. We have only to show that $v = 0$ for $t > 0$ in a neighborhood of $(0,0)$.

By an argument similar to and easier than that in the proof of Lemma 3.3, the
operator \tilde{P} is an operator of the form (1.1) and satisfies the following:

(a) The operator \tilde{P} satisfies (A-0), (A-1), and (A-2; μ_0).
(b) $S(\tilde{P}) \cap (\mu_0, \infty) = S(P) \cap (\mu_0, \infty)$.
(c) $\mathcal{E}_\nu[\tilde{P}](x ; \cdot) = \mathcal{E}_\nu[P](x ; \cdot)$ for every $\nu > \mu_0$ and $x \in \Omega_0$.
(d) $\mathcal{E}_{\nu_0}^{\prime}[\tilde{P}](x ; \lambda) = \mathcal{E}_{\mu_0}^{\prime}[P](x ; \lambda + \delta')$.
(e) $S(\tilde{P}) \cap [0, \mu_0] = \{\mu_0\}$.

By (d) and the condition (A-6; μ_0) for P, all the roots λ of $\mathcal{E}_{\nu_0}^{\prime}[\tilde{P}](0 ; \lambda) = 0$ satisfy $\text{Re} \lambda < 0$. This and the conditions (c), (e) imply that the operator \tilde{P} satisfies (A-3). Further, also by (d), we have $\mathcal{E}_{\nu_0}^{\prime}[\tilde{P}](0 ; 0) \neq 0$. This and the assumption (A-2; μ_0) imply (A-2; 0). Thus, we can apply Theorem 5.1 to \tilde{P}, and hence, we have $v = 0$ for $t > 0$ in a neighborhood of (0,0). □

REFERENCES