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Abstract

In this paper we aim to apply simple actuarial methods to build an insurance plan
protecting against an epidemic risk in a population. The studied model is an extended
SIR epidemic in which the removal and infection rates may depend on the number of
registered removals. The costs due to the epidemic are measured through the expected
epidemic size and infectivity time. The premiums received during the epidemic outbreak
are measured through the expected susceptibility time. Using martingale arguments, a
method by recursion is developed to calculate the cost components and the corresponding
premium levels in this extended epidemic model. Some numerical examples illustrate
the effect of removals and the premium calculation in an insurance plan.
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1. Introduction

Epidemics are a recurrent scourge in many countries that cause serious health problems
and significant financial costs. There exists a growing need for insurance coverage and some
companies are already offering to insure against the risk of epidemics and disease outbreaks.

Recently, traditional epidemic models have been proposed in different actuarial applications;
see Chen and Cox (2009) and Feng and Garrido (2011). The present work is concerned with a
Markovian epidemic model of the SIR (susceptible→infected→removed) type. Our purpose
is to apply simple actuarial methods used in life insurance for a population that is exposed to
such an epidemic outbreak.

An epidemic with removal-dependent rates. A variety of stochastic models have been
proposed to investigate the spread of infectious diseases. See, e.g. Daley and Gani (1999)
and Andersson and Britton (2000). A classical SIR epidemic model is the continuous-time
Markov process named the general epidemic. In this model, each infective remains infectious
during a period of time exponentially distributed of (constant) parameter μ. While infected, it
can contact any susceptible according to a Poisson process of (constant) rate β. At the end of
the infectious period, it is immunized and removed with no further role in the epidemic process.

The epidemic model studied here is an extended general epidemic in which the removal
and infection rates are allowed to depend on the number of registered removals. Let St , It ,
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and Rt be the numbers of suceptibles, infectives, and removed cases at time t ≥ 0. Initially,
S0 = n, I0 = m, and R0 = 0, with N = n+m as total size. The transition probabilities during
(t, t + dt) are defined by

P[St+ dt = s − 1, It+ dt = i + 1, Rt+ dt = r | St = s, It = i, Rt = r] = βrsi dt + o(dt),

P[St+ dt = s, It+ dt = i − 1, Rt+ dt = r + 1 | St = s, It = i, Rt = r] = μri dt + o(dt),

all the infection rates βr and removal rates μr being positive.
Introducing rates βr and μr that depend upon the numbers of removed cases enables us to

reflect different possible changes in response to the progress of the epidemic. This is especially
true for sexually transmitted diseases. For instance, a number of individuals could react by
reducing their risk of infection, giving a decreasing function for βr . However, when more
effective drugs are developed, treated patients could be indulging in more risky sexual behaviour,
implying an inverse effect on the function βr . In parallel, the worsening of the disease would
then be slowed down, so that the function μr is decreasing. Nevertheless, the detection of
infected cases is generally improving, hence again implying an inverse effect on μr . So, the
influence of the number of removals on the rates can be very diverse in practice.

An additional interest in considering a rate βr that is a function of r is to cover at the same
time the standard general epidemic and a well-known variant named the fatal epidemic (due
to Gleissner (1988)). For the general epidemic, the removal of an infective corresponds to its
immunization, so that the total population size remains constant over time; a usual assumption
is then to write βr ≡ β = α/N , say, independently of r . For the fatal epidemic, the removal of
an infective corresponds to its death, so that the surviving population decreases over time; in
that case, the natural assumption is to set βr = α/(N − r).

Epidemic models with removal-dependent rates have been little discussed so far. A note-
worthy exception is O’Neill (1997) who investigated a fatal epidemic with a removal-dependent
infection rate.

Organization of the work. Our motivation comes from current concerns about the coverage
of an epidemic risk in large companies. On the one hand, the occurrence of an epidemic implies
the reimbursement of medical expenses to the infected individuals during the period of their
treatment, and possibly the payment of a lump sum to the removed individuals (in case of death
or disability, for instance). On the other hand, the policyholders committed to paying premiums
are all the susceptible individuals as long as they remain healthy. The level of premium is then
obtained by applying the classical equivalence principle in life insurance, which requires that

E(benefit outgo) = E(premium income). (1.1)

The time horizon taken into account is the whole duration of the epidemic, i.e. until the first
instant T when there are no more infectives in the population. Note that no force of interest
has been incorporated in (1.1), which is an acceptable hypothesis when the outbreak does not
last very long (as for mild diseases like influenza).

Sections 2 and 3 are concerned with the SIR model above in which the rates are removal-
dependent rates. In Section 2 we construct a family of martingales to obtain the joint distribution
of the total epidemic size and infectivity time. This will allow us to calculate the mean benefit
outgo in the left-hand side of (1.1). In Section 3, by again applying a martingale argument, we
develop a recursive method to determine the expected susceptibility time. This will provide
us with the mean premium income in the right-hand side of (1.1). It is worth mentioning
that the susceptibility time has not been discussed so far in the epidemic literature. A more
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comprehensive study on this time will be the object of a future work. In Section 4 the analysis
is continued for the general and fatal epidemics. Using generating functions, we derive an
(almost) explicit solution to the recursion for the expected susceptibility time. In Section 5
we present three numerical examples for illustration: the general and fatal epidemics, a case
with exponentially-dependent rates, and a model with a single change in the infection rate. We
conclude in Section 6.

2. Infectivity time

A key component of the cost of the epidemic is the area under the trajectory of the infectives

At =
∫ t

0
Iu du, t ≥ 0,

which represents the sum of all the personal units of infection until time t . This area allows
us to measure the medical expenses necessary for providing care to the infected individuals.
Another important cost component is given by the number of removed cases until t when these
individuals are dead or in disability, partial or permanent.

Our attention is focused on these two random variables evaluated at the end of the epidemic,
i.e. AT and RT = N − ST . Much research has been devoted to the study of these statistics for
standard SIR models. For the general epidemic, we refer the reader to, e.g. Gani and Jerwood
(1972), Ball (1986), and Picard and Lefèvre (1990); for the fatal epidemic, see Picard and
Lefèvre (1993) and Ball and O’Neill (1993).

We are going to determine the joint distribution of (ST , AT ) for the extended epidemic with
removal-dependent rates presented before. To this end, our first step is to find a real function
a(s, i; θ), where 0 ≤ s ≤ n, 0 ≤ i ≤ n + m are integers and θ ≥ 0, such that the process

Mt ≡ a(St , It ; θ)e−θAt , t ≥ 0, (2.1)

forms a martingale with respect to the filtration F t = σ {(Su, Iu), 0 ≤ u ≤ t}. Let us recall
that (St = s, It = i) yields Rt = r with r = N − s − i.

Lemma 2.1. It holds that {Mt, t ≥ 0} is a martingale if the a(s, i; θ) satisfy the conditions

(θ + βrs + μr)a(s, i; θ) = βrsa(s − 1, i + 1; θ) + μra(s, i − 1; θ), i ≥ 1, (2.2)

where a(−1, i +1; θ) = 0, say. These relations define a(s, i; θ) recursively once the a(s, 0; θ)

are fixed.

Proof. Following the method of Picard (1980), we introduce

mt = E(Mt | Ft0), t ≥ t0

for any fixed t0 ≥ 0. By examining the time interval (t, t + dt), we have

mt+ dt = E{[βRt St Ita(St − 1, It + 1; θ) dt + μRt Ita(St , It − 1; θ) dt]e−θAt

+ a(St , It ; θ)[1 − βRt St It dt − μRt It dt][1 − θIt dt]e−θAt + o(dt) | Ft0}.
Letting dt → 0, we easily see that the right derivative m′

t exists and is given by

m′
t = E{[βRt St It (a(St − 1, It + 1; θ) − a(St , It ; θ))

+ μRt It (a(St , It − 1; θ) − a(St , It ; θ)) − θIta(St , It ; θ)]e−θAt | Ft0}.
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If a(s, i; θ) is chosen such that m′
t = 0, then mt = mt0 for all t ≥ t0 so that {Mt, t ≥ 0} is a

martingale. For that, it suffices to require that for all s, i,

βrsi[a(s − 1, i + 1; θ) − a(s, i; θ)] + μri[a(s, i − 1; θ) − a(s, i; θ)] = θia(s, i; θ),

where a(−1, i + 1; θ) = a(s, −1; θ) = 0, say. This condition is obviously satisfied for i = 0.
For i ≥ 1, it can be written as relation (2.2) after dividing by i. For the recursion, it suffices to
begin with s = 0 and i = 1, 2, . . . , n + m starting with a given value for a(0, 0; θ), then pass
to s = 1 and i = 1, 2, . . . , n + m − 1 from a given value a(1, 0; θ), and continue in the same
way by increasing s until n. �

Let us now look for an explicit solution to (2.2), if it exists. In fact, we will find n + 1
solutions which provide us with a family of n + 1 martingales.

Proposition 2.1. For any integer k ∈ [0, n], the associated process

Mt(k) ≡
(

St

k

) Rt∏
j=1

(
1 + θ + kβj−1

μj−1

)
e−θAt , t ≥ 0, (2.3)

constitutes a martingale.

Proof. Fix any integer k in [0, n]. We want to build an associated function a(·), denoted
ak(s, i; θ), of the form

ak(s, i; θ) ≡
(

s

k

) N−s−i∏
j=0

gj (k, θ), (2.4)

where g0(·) = 1 and gj (k, θ) are positive functions to be chosen. As before, we write r =
N − s − i, with 0 ≤ r ≤ N − 1. Substituting (2.4) in (2.2) then yields

(θ + βrs + μr)

(
s

k

) r∏
j=0

gj (k, θ) = βrs

(
s − 1

k

) r∏
j=0

gj (k, θ) + μr

(
s

k

) r+1∏
j=0

gj (k, θ). (2.5)

After division by
(
s
k

) ∏r
j=0 gj (k, θ), (2.5) can be expressed as

θ + βrs + μr = βr(s − k) + μrgr+1(k, θ),

which reduces to
θ + βrk + μr = μrgr+1(k, θ),

so that

gr+1(k, θ) = θ + βrk + μr

μr

.

Thus, the function ak(·) in (2.4) is completely defined as

ak(s, i; θ) =
(

s

k

) N−s−i∏
j=1

(
1 + θ + kβj−1

μj−1

)
. (2.6)

Inserting (2.6) in (2.1) then gives the martingale (2.3). �
We are in a position to determine the joint distribution of the statistics (ST , AT ) at the end T

of the epidemic.
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Proposition 2.2. For k = 0, . . . , n,

E

[(
ST

k

) N−ST∏
j=1

(
1 + θ + kβj−1

μj−1

)
e−θAT

]
=

(
n

k

)
. (2.7)

When θ = 0 in (2.7), we have

E

[(
ST

k

) N−ST∏
j=1

(
1 + kβj−1

μj−1

)]
=

(
n

k

)
. (2.8)

Considering successively k = n, . . . , 1, (2.8) forms a triangular system of n linear equations
in the state probabilities P(ST = s), 1 ≤ s ≤ n, giving then also P(ST = 0).

When k = 0 in (2.7),

E

[N−ST∏
j=1

(
1 + θ

μj−1

)
e−θAT

]
= 1, (2.9)

yielding, e.g.

E(AT ) = E

(N−ST∑
j=1

1

μj−1

)
. (2.10)

Proof. Applying the optional stopping theorem, we obtain, from (2.3),

E[MT (k)] = M0(k),

which yields (2.7) as IT = 0. Equation (2.8) directly follows. Differentiating (2.9) with respect
to θ and putting θ = 0 gives (2.10). �

Equation (2.10) for E(AT ) is easy to use, once the distribution of ST has been evaluated
from (2.8). Note that if the removal rates μr ≡ μ are independent of r , then

E(AT ) = N − E(ST )

μ
. (2.11)

In particular, (2.11) holds for the general and fatal epidemics. The expectations E(AT ) and
N − E(ST ) are two cost measures useful in insurance (see Section 5).

3. Susceptibility time

The revenue in the epidemic comes essentially from the susceptibles still present. The area
under the trajectory of the susceptibles

Bt =
∫ t

0
Su du, t ≥ 0,

represents the sum of all the personal units of susceptibility until time t . It provides us with a
measure of the payments received from the insured persons.

To the best of the authors’ knowledge, this area has not been examined in the epidemic
literature. Our focus is, as before, on the end T of the epidemic. Motivated by the actuarial
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applications, we will consider only the expected susceptibility time E(BT ). The joint distribu-
tion of (ST , BT ), however, can be determined using the framework developed here. This topic,
which is rather technical, will be the subject of a future paper.

To begin with, we observe that

BT =
∫ T

0
Su du =

∫ T

0
Su 1{Iu>0} du, (3.1)

i.e. substituting Su 1{Iu>0} for Su has no impact on the integral when it is taken until the end of
the epidemic. So, instead of Bt , we choose to work with the integral

∫ t

0
Su 1{Iu>0} du =

∫ t

0
Su 1{Su≥0, Iu>0} du

=
∑

0≤k≤n, 1≤l≤N−k

k

∫ t

0
1{Su=k, Iu=l} du, t ≥ 0. (3.2)

Let us write

Bt(k, l) ≡
∫ t

0
1{Su=k, Iu=l} du, t ≥ 0 (3.3)

for any fixed 0 ≤ k ≤ n, 1 ≤ l ≤ N − k. At time T , BT (k, l) measures the time spent
by the epidemic process in state (k, l) if this state has been reached. Therefore, BT (k, l), if
positive, has an exponential distribution with parameter βN−k−l kl+μN−k−l l. The probability
χk,l = P[BT (k, l) > 0] is of particular interest and will be provided by (3.12) below. As a
consequence, we will then be able to calculate E[BT (k, l)], and thus E(BT ) after insertion
in (3.1) and (3.2).

To obtain the distribution of BT (k, l), we again follow a martingale approach. Specifically,
we first find a martingale of a form similar to (2.1), i.e.

Mt ≡ a(St , It ; θ)e−θBt (k,l), t ≥ 0,

with θ ≥ 0. By arguing as for Lemma 2.1, we obtain the following result.

Lemma 3.1. It holds that {Mt, t ≥ 0} is a martingale if the a(s, i; θ) satisfy the conditions

(θδs,kδi,l +βrsi+μri)a(s, i; θ) = βrsia(s−1, i+1; θ)+μria(s, i−1; θ), i ≥ 1, (3.4)

where a(−1, i +1; θ) = 0, say. These relations define a(s, i; θ) recursively once the a(s, 0; θ)

are fixed.

Note that as l ≥ 1, (3.4) holds too for i = 0 with a(s, −1; θ) = 0, say. Moreover, we have
a(s, i; θ) ≡ ak,l(s, i; θ) as it depends on the value of (k, l). Let us examine (3.4) in more detail.

Lemma 3.2. (i) For s = 0,

a(0, i; θ) =

⎧⎪⎨
⎪⎩

a(0, 0; θ) if k ≥ 1 or k = 0, i < l,

a(0, 0; θ)μN−l l

θ + μN−l l
if k = 0, i ≥ l.

(3.5)

(ii) If the a(s, 0; θ) are independent of θ , this property holds too for the a(s, i; θ) when s < k

or s + i < k + l.
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(iii) When a(s, 0; θ) = 1 for all s, a(s, i; θ) can be expressed as

a(s, i; θ) =
⎧⎨
⎩

1 if s + i < k + l or s < k,

f (s, i) + g(s, i)

θ + βN−k−lkl + μN−k−l l
if s + i ≥ k + l and s ≥ k,

(3.6)

for appropriate real functions f and g.
In particular, if s = k and i = l,

a(k, l; θ) = βN−k−lkl + μN−k−l l

θ + βN−k−lkl + μN−k−l l
,

while if θ = 0, then a(s, i; 0) = 1 in all cases.

Proof. When s = 0, (3.4) reduces to

(θδ0,kδi,l + μri)a(0, i; θ) = μria(0, i − 1; θ), i ≥ 1.

Thus, for k ≥ 1, the a(0, i; θ) are all equal to a(0, 0; θ). For k = 0,

a(0, i; θ) = a(0, i − 1; θ)μr i

θδi,l + μri
,

and considering i < l and i ≥ l leads to (3.5). Now, each a(s, i; θ) is a linear function of
a(s − 1, i + 1; θ) and a(s, i − 1; θ) with coefficients that are independent of θ except when
s = k and i = l. This yields the assertion of (ii). Finally, from the recursion (3.4) and (ii), we
see that when the a(s, 0; θ) are equal to 1, a general expression for a(s, i; θ) is indeed given
by (3.6). When θ = 0, (3.4) shows that k and l have no real role, so that taking them arbitrarily
large yields a(s, i; 0) = 1 by the first identity of (3.6). �

In the sequel, we choose a(s, 0; θ) = 1 for all s, as in (iii) above. For clarity, the dependence
on (k, l) is now made explicit in the notation. Let us define

bk,l(s, i) =
[

d

dθ
ak,l(s, i; θ)

]
θ=0

. (3.7)

We show below how E(BT ) can be computed using the bk,l(n, m) for all k, l.

Proposition 3.1. We have

E[e−θBT (k,l)] = ak,l(n, m; ; θ), (3.8)

yielding, in particular,
E[BT (k, l)] = −bk,l(n, m). (3.9)

As a consequence,
E(BT ) = −

∑
0≤k≤n

∑
1≤l≤N−k

kbk,l(n, m). (3.10)

Proof. By the optional stopping theorem,

E[MT (k, l)] = ak,l(n, m; θ),

which gives (3.8) since ak,l(ST , 0; θ) = 1 by assumption. Differentiating (3.8) with respect
to θ yields (3.9), in the notation of (3.7). As for (3.10), it is directly obtained from (3.1), (3.2),
and (3.9). �

Thanks to (3.8), we can also deduce the complete distribution of BT (k, l).

https://doi.org/10.1017/jpr.2016.100 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.100


Epidemic risk and coverage 293

Proposition 3.2. We have

E[e−θBT (k,l)] = 1 − χk,l + χk,l

βN−k−lkl + μN−k−l l

θ + βN−k−lkl + μN−k−l l
, (3.11)

where χk,l ∈ (0, 1) is defined by

χk,l = −bk,l(n, m)(βN−k−lkl + μN−k−l l). (3.12)

As announced after (3.3), BT (k, l) has the distributional representation

BT (k, l)
d= Y 1{W>0},

where the random variable Y has an exponential distribution with parameter βN−k−lkl +
μN−k−l l, and the random variable W is independent of Y and is nonnegative with P(W >

0) = χk,l .

Proof. Since ak,l(s, i; 0) = 1, (3.6) with θ = 0 implies that

1 = fk,l(s, i) + gk,l(s, i)

βN−k−lkl + μN−k−l l
.

So, (3.6) for θ ≥ 0 can be written as

ak,l(s, i; θ) = 1 − gk,l(s, i)

βN−k−lkl + μN−k−l l
+ gk,l(s, i)

θ + βN−k−lkl + μN−k−l l
. (3.13)

Moreover, by definition, we obtain

bk,l(s, i) = − gk,l(s, i)

(βN−k−lkl + μN−k−l l)2 .

Thus, expressing (3.13) in terms of bk,l(s, i), we have

ak,l(s, i; θ) = 1 − bk,l(s, i)(βN−k−lkl + μN−k−l l)
2

θ + βN−k−lkl + μN−k−l l
+ bk,l(s, i)(βN−k−lkl + μN−k−l l).

(3.14)
From (3.8), we choose s = n and i = m in (3.14) and then obtain

E[e−θBT (k,l)] = 1 + bk,l(n, m)(βN−k−lkl + μN−k−l l) − bk,l(n, m)(βN−k−lkl + μN−k−l l)
2

θ + βN−k−lkl + μN−k−l l
,

which can be rewritten as (3.11) using the notation of (3.12). Finally, taking θ = ∞ in (3.11),
we see that

P[BT (k, l) = 0] = 1 − χk,l,

so that 0 < χk,l < 1. The distributional representation for BT (k, l) directly follows. �

To apply (3.10) and (3.11), the terms bk,l(n, m) need to be determined. This can be
achieved recursively as for ak,l(n, m; θ). Specifically, (3.4) and Lemma 3.2 easily yield the
following result.
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Proposition 3.3. The bk,l(s, i) satisfy the recursion

(βrsi +μri)bk,l(s, i) = βrsibk,l(s −1, i +1)+μribk,l(s, i −1)−δs,kδi,l , i ≥ 1, (3.15)

where bk,l(−1, i + 1) = 0, say, and starting with bk,l(s, 0) = 0 for all s.
In particular, when s = 0,

bk,l(0, i) =
⎧⎨
⎩

0 if k ≥ 1 or k = 0, i < l,

− 1

μN−l l
if k = 0, i ≥ l,

(3.16)

and when s > 0,

bk,l(s, i) =
⎧⎨
⎩

0 if s + i < k + l or s < k,

− 1

βN−k−lkl + μN−k−l l
if s = k, i = l.

(3.17)

Moreover, all the bk,l(s, i) are negative or null.

4. General and fatal epidemics

Let us continue the previous analysis for the two most classical SIR epidemic models. More
precisely, we will derive an (almost) explicit solution to the recursion (3.15) giving the bk,l(s, i).
The structure of the solution is simple and similar for both models.

General epidemic model. The rates are βr = β and μr = μ, i.e. independent of r . Then
(3.15) can be written as

(βsi + μi)bk,l(s, i) = βsibk,l(s − 1, i + 1) + μibk,l(s, i − 1) − δs,kδi,l , i ≥ 1, (4.1)

with (3.16) and (3.17) simplified accordingly. Let us define, for u, v ≥ 0,

πu,v(s, i) =
(

s

u

) s∑
j=u

(−1)j−u+1
(

s − u

s − j

)
μs+i−u−v

(μ + βj)s+i−u−v+1 . (4.2)

Proposition 4.1. Let s ≥ k and s + i ≥ k + l. For the general epidemic,

bk,l(s, i) = 1

l
πk,l(s, i) + β

s∑
j=k+l

bk,l(j − 1, 1)jπj,0(s, i), i ≥ 1. (4.3)

If k+ l > s, (4.3) reduces to bk,l(s, i) = (1/l)πk,l(s, i). If k+ l ≤ s, the unknown bk,l(j −1, 1)

in (4.3) are first computed through the recursion

0 = 1

l
πk,l(σ, 0) + β

σ∑
j=k+l

bk,l(j − 1, 1)jπj,0(σ, 0) for σ = k + l, . . . , s. (4.4)

Proof. We may consider a sequence of bk,l(s, i) defined by (4.1) for all i ≥ 1, and not only
for i ≤ n+m−s, still with s ≤ n. These bk,l(s, i) are negative or null and we see, by recurrence
from (4.1), that they remain bounded. So, it makes sense to define the generating function

Dk,l(s) =
∞∑
i=1

bk,l(s, i)x
i, 0 < x < 1. (4.5)
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Let us multiply (4.1) by xi/i and then sum over i ≥ 1. Noting that

∞∑
i=1

bk,l(s, i − 1)xi = xDk,l(s) + xbk,l(s, 0) = xDk,l(s),

∞∑
i=1

bk,l(s − 1, i + 1)xi = 1

x
Dk,l(s − 1) − bk,l(s − 1, 1), s ≥ 1,

we obtain, for Dk,l(s), the recurrence formula

(βs + μ − μx)Dk,l(s) = βs
1

x
Dk,l(s − 1) − βsbk,l(s − 1, 1) − δs,kx

l

l
. (4.6)

Recalling that by (3.17), bk,l(s, i) = 0, and, thus, Dk,l(s) = 0, when s < k. From (4.6), we
easily deduce that, for s ≥ k,

Dk,l(s) = −xk+l−sβs−k

l

s!
k!

s∏
j=k

1

βj + μ − μx

−
s∑

j=k+1

xj−s bk,l(j − 1, 1) βs−j+1 s!
(j − 1)!

s∏
t=j

1

βt + μ − μx
, s ≥ k. (4.7)

By (3.15), bk,l(j − 1, 1) = 0 when j < k + l, so that the sum in (4.7) is in fact over j ≥ k + l.
Now, the two products in (4.7) are rational fractions with distinct poles and a null integer

part. They can be decomposed in simple elements and then expanded as a power series in x.
For the first product, and similarly for the second, we have

s∏
j=k

1

βj + μ − μx
=

(−1

μ

)s−k s∑
j=k

mj (k, s)

βj + μ − μx
=

(−1

μ

)s−k ∞∑
u=0

xu
s∑

j=k

mj (k, s)μu

(βj + μ)u+1 ,

(4.8)
where the mj(k, s) are constants given by

mj(k, s) =
[ s∏

u=k; u
=j

β

μ
(j − u)

]−1

=
(

μ

β

)s−k

(−1)s−j k!
s!

(
s

k

)(
s − k

s − j

)
. (4.9)

By inserting (4.8) and (4.9) in (4.7), we can rewrite Dk,l(s) under the form

Dk,l(s) = 1

l

∞∑
u=0

xu+k+l−scu(k, s) +
s∑

j=k+l

bk,l(j − 1, 1)

∞∑
u=0

xu+j−sdu(j, s), (4.10)

the coefficients cj (k, s, u) and dj (k, s, u) being provided by

cu(k, s) = −
(−β

μ

)s−k
s!
k!

s∑
j=k

mj (k, s)μu

(βj + μ)u+1 =
(

s

k

) s∑
j=k

(−1)j−k+1
(

s − k

s − j

)
μu

(βj + μ)u+1 ,

du(j, s) = −β

(−β

μ

)s−j
s!

(j − 1)!
s∑

t=j

mt (j, s)μ
u

(βt + μ)u+1 = βjcu(j, s).
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Finally, to obtain the bk,l(s, i), the coefficients of xi , i ≥ 0, in the power series (4.5)
and (4.10) are identified. For i ≥ 1, we have

bk,l(s, i) = 1

l
cs+i−k−l (k, s) + β

s∑
j=k+l

bk,l(j − 1, 1)jcs+i−j (j, s),

which becomes (4.3) using the notation of (4.2). If k + l > s, the sum in (4.3) disappears.
Otherwise, the bk,l(j − 1, 1) must be first evaluated. This is done by taking i = 0 in (4.3) with
bk,l(s, 0) = 0, which yields the recursion (4.4). �

Fatal epidemic model. The rates are βr = α/(N − r) = α/(s + i) and μr = μ. Then, (3.15)
can be written as(

αsi

s + i
+μi

)
bk,l(s, i) = αsi

s + i
bk,l(s−1, i+1)+μibk,l(s, i−1)−δs,kδi,l , i ≥ 1, (4.11)

with (3.16) and (3.17) adapted accordingly. Let I (n1, n2, n3) = ∫ 1
0 νn1(1−ν)n2(1−να/μ)n3 dν

be the hypergeometric integral (when it exists), and define, for u, v ≥ 0,

φu,v(s, i) = −u + v

μ

(
s

u

)(
s + i

u + v

)
I

[
u

(
1 + α

μ

)
+ v − 1, s + i − u − v, s − u

]
. (4.12)

Proposition 4.2. Let s ≥ k and s + i ≥ k + l. For the fatal epidemic,

bk,l(s, i) = 1

l
φk,l(s, i) + α

s∑
j=k+l

bk,l(j − 1, 1)φj,0(s, i), i ≥ 1. (4.13)

If k+l > s, (4.13) reduces to bk,l(s, i) = (1/l)φk,l(s, i). If k+l ≤ s, the unknown bk,l(j−1, 1)

in (4.13) are first computed through the recursion

0 = 1

l
φk,l(σ, 0) + α

σ∑
j=k+l

bk,l(j − 1, 1)φj,0(σ, 0) for σ = k + l, . . . , s. (4.14)

Proof. Let us consider a sequence of bk,l(s, i) defined by (4.11) for all s ≥ 0, i ≥ 1, with the
border condition bk,l(s, 0) = 0 (also when s > n). As these extended bk,l(s, i) are bounded,
we may introduce the two generating functions

Gk,l(x, y) =
∞∑

s=0

∞∑
i=1

bk,l(s, i)
xs

s!
ys+i

s + i
, x real, 0 ≤ y < 1,

Mk,l(z) =
∞∑

s=1

bk,l(s − 1, 1)
zs

s! , 0 ≤ z < 1. (4.15)

To determine Gk,l(x, y), we multiply (4.11 ) by (xs/s!)(ys+i/ i) and then sum over s ≥ 0,
i ≥ 1. This provides the following identity:

S1 + S2 =
∞∑

s=0

∞∑
i=1

δs,kδi,l

xs

s! ys+i 1

i
= xk

k!
yk+l

l
, (4.16)
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where S1 and S2 are given by

S1 ≡ α

∞∑
s=0

∞∑
i=1

s[bk,l(s − 1, i + 1) − bk,l(s, i)]x
s

s!
ys+i

s + i

= α[xGk,l(x, y) − Mk,l(xy)] − αx
∂

∂x
Gk,l(x, y),

S2 ≡ μ

∞∑
s=0

∞∑
i=1

[bk,l(s, i − 1) − bk,l(s, i)]x
s

s! ys+i = μy2 ∂

∂y
Gk,l(x, y) − μy

∂

∂y
Gk,l(x, y),

after some calculations. Thus, (4.16) can be written as

−αx
∂

∂x
Gk,l(x, y)+μy(y−1)

∂

∂y
Gk,l(x, y) = xk

k!
yk+l

l
+αMk,l(xy)−αxGk,l(x, y), (4.17)

i.e. a partial differential equation for Gk,l(x, y) provided the function Mk,l(xy) is known.
We start by deriving two first integrals to (4.17). The associated characteristic system is

dx

−αx
= dy

−μy(1 − y)
= dGk,l(x, y)

(xk/k!)(yk+l/ l) + αMk,l(xy) − αxGk,l(x, y)
. (4.18)

The first equality in (4.18) yields the integral x = c1[y/(1 − y)]α/μ, c1 being an arbitrary
constant. The second equality leads to the linear differential equation

dGk,l(x, y)

dy
+ αxGk,l(x, y)

−μy(1 − y)
= (xk/k!)(yk+l/ l) + αMk,l(xy)

−μy(1 − y)
.

Its solution is found to be

Gk,l(x, y) = b(y) exp

[
c1

(
y

1 − y

)α/μ]
, (4.19)

where b(y) can be determined by the variation of constants methods. Then

b(y) = c2 +
∫ y

0
exp

[
−c1

(
w

1 − w

)α/μ]

× (ck
1/k!)[w/(1 − w)]αk/μ(wk+l/ l) + αMk,l(c1w[w/(1 − w)]α/μ)

−μw(1 − w)
dw,

(4.20)

with an arbitrary constant c2.
We can now derive the general solution to (4.17). Let us write c2 = f (c1) for some function f

to be determined. Making the change of variable ν = (w/y)(1 − y)/(1 − w) (∈ (0, 1)), we
obtain, from (4.19), (4.20), and with c1 given above,

Gk,l(x, y) = exf

[
x

(
y

1 − y

)−α/μ]

− ex 1

μ

xk

k!
yk+l

l

∫ 1

0
νk+l−1+kα/μ

[
1

1 + y(ν − 1)

]k+l

exp(−xνα/μ) dν

− ex α

μ

∫ 1

0
ν−1Mk,l

(
xy

ν1+α/μ

1 + y(ν − 1)

)
exp(−xνα/μ) dν. (4.21)
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Let us show that f is identically null. First, it can be seen from (4.21) that the function
f (x[y/(1 − y)]−α/μ) can be expanded near the point (0, 0) as

∑∞
r=0 xrhr(y), the functions hr

being analytic near 0. By differentiation, this implies that

(
y

1 − y

)−αj/μ

f (j)(0) = j ! hj (y), j ≥ 0.

As [y/(1 − y)]−αj/μ has an essential singularity at 0 when j > 0, this is possible only if
f (j)(0) = 0 for all j > 0. Thus, the function f is identically constant. From (4.21) with
y = 0, this constant is 0 since Gk,l(x, 0) = 0 = Mk,l(x, 0) by definition.

To obtain the bk,l(s, i), we determine the coefficients of xsys+i/s! (s + i) in the right-hand
side of (4.21) (where f ≡ 0). So, we substitute (4.15) for Mk,l and we expand the two other
functions of x and y as power series. In the first integral, the sought coefficient is given by

− 1

μ(k!)l
( −k − l

s + i − k − l

)
1

(s − k)!
∫ 1

0
νk+l−1+kα/μ(ν − 1)s+i−k−l (1 − να/μ)s−k dν.

Expressing
( −k−l
s+i−k−l

)
as [(k + l)/(l + i)](s+i

k+l

)
(−1)s+i−k−l , it can be written as (1/l)φk,l(s, i)

in the notation of (4.12). The coefficient in the second integral is derived in the same way,
hence (4.13) for bk,l(s, i). Note that the sum in (4.13) disappears if k + l > s. Otherwise, the
bk,l(j − 1, 1) are obtained from (4.13) with i = 0 and bk,l(s, 0) = 0, which yields (4.14). �

5. Illustrations in insurance

Compartment Markovian models provide a useful tool for the actuarial modelling of health
insurance plans. See, e.g. Haberman and Pitacco (1999) and Denuit and Robert (2007). For the
epidemic risk in a company, the three compartments of SIR models play significantly different
roles. Premiums are perceived from the group of susceptible policyholders and cover the health-
care benefits paid to infected insureds. This is the approach developed by Feng and Garrido
(2011) using a deterministic SIR model.

In the present Markovian context, the insurer reimburses part of the medical expenses to
each infective continuously at a rate c1 per time unit, and pays also a lump sum of amount c2
immediately at the moment of its removal. Thus, on the insurance liability side, the expected
value of the payments is given by E[∫ T

0 c1Iu du + c2RT ]. The susceptibles have to pay
premiums continuously at a rate π per time unit as long as they remain healthy. Thus, on
the revenue side, the expected value of all the received premiums is equal to E[∫ T

0 πSu du].
Now, by the classical equivalence principle (1.1), the premium level π is chosen in such a way
that

π = c1E(AT ) + c2[N − E(ST )]
E(BT )

. (5.1)

Equation (5.1) requires the calculation of E(ST ), E(AT ), and E(BT ). This can be done
using the results of the previous sections, as illustrated below.

General and fatal epidemics. We consider these two models when there are initially n = 30
susceptibles and m = 3 infectives (N = 33). The removal rate is μ = 1, while the infection
rates, β = α/N and βr = α/(N − r), respectively, are viewed as a function of α.

Equation (2.8) allows us to determine the probability mass function of ST for both models.
In Figure 1 we show the graphs obtained when α = 1 and α = 1.5. The final susceptible size
has a tendency to be less important when α = 1.5 and for the fatal epidemic, which is natural

https://doi.org/10.1017/jpr.2016.100 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.100


Epidemic risk and coverage 299

General epidemic Fatal epidemic

0 5 10 15 20 25 30 0 5 10 15 20 25 30

0 5 10 15 20 25 300 5 10 15 20 25 30

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

=
=

Figure 1: Probability mass function of ST when n = 30, m = 3, μ = 1 and α = 1 (upper) or 1.5 (lower).
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Figure 2: Plots of E(ST ) and E(BT ) when n = 30, m = 3, μ = 1, and α varying from 0 to 6.

since the infection rate is larger. In Figure 2 we have the graph of E(ST ) and E(BT ) when α

varies from 0 to 6. They are obtained from (2.8) and (3.10), (4.3), (4.4), (4.13), and (4.14). We
recall that E(AT ) is simply given by (2.11). These expectations are rather different between
the two models when α takes intermediate values (between 1 and 5). When α is large (small),
the infection is so strong (weak) that the general and fatal epidemics yield similar results. The
function E(BT ) is unimodal, which can be explained intuitively: when α is small, E(BT )

increases with α because the duration of the epidemic increases too, but when α is large, E(BT )

decreases to 0 because the epidemic becomes too severe. Note that E(ST ) tends to 0 much
faster.

Next, we examine the above insurance contract under the same conditions and when the
epidemic costs are c1 = 1 and c2 = 2. The graph of the premium π evaluated by (5.1) is shown
in Figure 3. As expected, for both models, the bigger the infection parameter α, the higher the
premium level π .
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Figure 3: Premium π when c1 = 1, c2 = 2 and n = 30, m = 3, μ = 1, for α varying from 0 to 6.

Exponentially-dependent rates. We now consider an SIR epidemic in which the removal
and infection rates are exponential functions of r of the form

μr = μ(1 + r)u and βr = α

N
(1 + r)v,

where u and v can be viewed as powers of removal, positive or not. For u = v = 0, the model
becomes the general epidemic. The removal rate μr increases (decreases) with the number of
removals when u > 0 (u < 0); the same arises for the infection rate βr in the function of v.
Our goal is to show the influence of the parameters u and v. The other parameters in the rates
are μ = 1 and α = 2, and the initial population contains n = 30 susceptibles and m = 3
infectives.

For ST , we see from (2.8) that its distribution depends only on the difference of powers u−v.
In Figure 4 we show the graphs obtained when u − v = −1, 0, 1, 2. The final susceptible size
has a tendency to be more important for larger values of u − v since the difference between the
removal and infection rates is then larger.

For AT and BT , their distributions depend on u and v taken separately. The insurance
contract is proposed to cover again the costs c1 = 1 and c2 = 2. The graphs of E(BT ) and π

are shown in Figure 5 when u−v = −1, 0, and 1 and u varies from −1 to 2. They are obtained
from (3.10), (3.15) and (5.1), (2.8), and (2.10). We see that E(BT ) varies when u − v is fixed,
sometimes strongly. Note also that π can be decreasing when u−v < 0 and u < 0. In Figure 6
we show the graphs of E(BT ) and π when u = −0.5, 0 or 1 and v varies from −2 to 2. The
function E(BT ) is unimodal here too. It is bigger for u and v < 0, and it tends to 0 when v is
large enough since the susceptibles are then infected very quickly. The function π is increasing,
with a nonmonotonous speed.

Single change in infection. To close, we consider a modified general epidemic for which the
value of the infection rate changes when the number of removals exceeds a given critical value,
i.e.

βr =

⎧⎪⎨
⎪⎩

α1

N
if r ≤ r∗,

α2

N
if r > r∗,

where α1, α2 are two constants. When r∗ = N , the model reduces to the general epidemic of
rate α1. A change in the infection rate could arise when the health services throw an alert further
to the recording of a large number of removed cases. The authorities expect the population to
change a little in its behaviour to better protect it from the infection, yielding α2 ≤ α1. A similar
situation could also exist with household epidemic models as the behaviour within a household
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Figure 4: Probability mass function of ST when n = 30, m = 3, μ = 1, α = 2 and u − v = −1, 0, 1, 2.
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Figure 5: Plots of E(BT ) and π when c1 = 1, c2 = 2 and n = 30, m = 3, μ = 1, α = 2, u−v = −1, 0, 1
and u varying from −1 to 2.

is expected to change once a case has been detected. For works related to this point, see, e.g.
Ball et al. (2007) and Ball et al. (2008).

For instance, let us fix α1 = 2 and let α2 vary from 0 to α1, for three different values of r∗.
The population has initially n = 30 susceptibles and m = 3 infectives, and the removal rate is
μ = 1 (independent of r). The cost components are c1 = 1 and c2 = 2.

In Figure 7 we show the graphs of E(ST ), E(AT ), E(BT ), and π as a function of α2, for
r∗ = 5, 10 or 20. For α2 = 2, these quantities correspond to those obtained for the general
epidemic. The observed monotonicity of E(ST ) and E(AT ), and π is intuitive. In particular,
the premium level increases with the infection rate and the threshold level r∗. For E(BT ), its
value for α2 = 0 is larger than for the general epidemic, as expected. Actually, the function
E(BT ) presents a peak which becomes less marked when r∗ is large.
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Figure 6: Plots of E(BT ) and π when c1 = 1, c2 = 2 and n = 30, m = 3, μ = 1, α = 2, u = −0.5, 0, 1
and v varying from −2 to 2.
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Figure 7: Plots of E(ST ), E(AT ), E(BT ) and π when c1 = 1, c2 = 2 and n = 30, m = 3, μ = 1, r∗ =
5, 10, 20, α1 = 2 and α2 varying from 0 to 2.

6. Conclusions

The main contribution of this paper is two-fold. On one hand, we considered a generalized
SIR model that allows the removal and infection rates to depend on the number of removal
cases. On the other hand, we proposed a simple actuarial approach to ensure that the financial
risk of an epidemic in a company is covered. This led us to focus on the expected infectivity and
susceptibility times which allow for the setting of insurance premiums based on the classical
equivalence principle.
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