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92 MAKOTO OHTSUKA

Introduction

The object of this paper is an investigation of existence problems and

Dirichlet problems on an abstract Riemann surface in the sense of Weyl-RadόJ)

or on a covering surface over it,2) and of boundary correspondence in the con-

formal mapping of the surface.

In 1923 O. Perron introduced a new method to Dirichlet problem3) and this

was developed by M. Brelot.4) M, H. Heins remarked in 1949 that this method

is available also on a compact domain in a Riemann surface,5* and it has been

used after him.fi) In Chapter I, § 1 a brief exposition of this method is given,

and in §2 abstract Riemann surfaces are classified into two types after R.

Nevanlinna;7' either with null or positive boundary. The types can be decided

by Perron-Brelofs method without using any exhaustion, and the separability of

any Riemann surface8* can be deduced from the existence of a harmonic mea-

sure. Further some properties of surfaces with null boundary are stated there

in preparation for the next chapter.

Chapter II is concerned with existence problems of harmonic functions on

Riemann surfaces, which have the singularities given in compact parts. The

well-known method using the Dirichlet principle is described in detail in H. Weyl

[1]. Along this line he published the method of orthogonal projection^ and

this method has been used by K. Kodaira to show the existence of functions.10*

Also L. Ahlfors strengthened the base of the Dirichlet principle.1 J) The harmonic

functions thus obtained have finite Dirichlet integrals outside the singularities.

Another method is alternierendes Verfahren due to H. A. Schwarz and C. Neu-

mann. The latter showed already in 19-century the existence of the harmonic

function having a preassigned singularity on a closed covering surface over a

Riemann sphere,12) and this existence theorem was extended to the case when

J> This is a complex 1-dimensional analytic manifold. Cf. H. Weyl [1], T. Radό [1],
2 ) As to covering surface, see S. Stoϊlow LI].

3> O. Perron [1]. Cf. also R. Reniak [1], T. Radό and F. Riesz [1], C. Caratheodory [3].
4) M. Brelot [2], [4].
5> M. H. Heins [1]. Cf. also L. Ahlfors [2].
6) In M. Parreaυ [1], for instance.
?) R. Nevanlinna [3].
8> This was first proved in T. Radό [1].

°) H. Weyl [2].
10> K. Kodaira [1], [2].

"> L. Ahlfors [3], [4]
12> C. Neumann [1]. Cf. also W. F. Osgood [1].
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the surface has a null boundary by R. Nevanlinna*13) Quite recently L. Sario

applied alternierendes Verfahren more widely14* and R. Nevanlinna discussed

existence problems from the viewpoint of integral equations.15* When the surface

has a null boundary, the solution, which is bounded outside the singularity given

in a compact part, has a finite Dirichlet integral there and vice versa.J6) But

this is not true generally, when the surface has a positive boundary.17' In Chap-

ter II the existence problems are discussed by Perron-Brelot's method on a sur-

face with positive boundary, and by a method due to M. H. Heinsia) on a sur-

face with null boundary.19*

Once existence theorems are established, uniformization becomes possible

for instance, by Koebe's original proof.20) Chapter III is devoted to the study

of boundary correspondences in conformal mappings. In the first half the image

on the unit circle Γ : | z | =1 of accessible boundary points is investigated when

the universal covering surface of SR is mapped conformally onto a unit circular

domain U : \z\ <1,2J) where 9ί is a covering surface over an abstract Riemann

surface % In R. Nevanlinna [3] he stated without detailed proof that if the

transfinite kernel of 3t-9ί is non-empty on 5R then the measure of the image

on Γ of the accessible boundary points is 2π under the following assumptions:

(A) the projection of 3ί is compact in 9t (B) 3ϊ covers 9t simply, and proposed

the question: Is it possible to remove the assumption (B) ? An answer to it

is given in § 2. Next, the boundary correspondence in the mapping of multiply-

connected plane domains was studied systematically in the first edition of L.

Bieberbach [1], but some parts were omitted in the second edition. R. Nevanlinna

and O. Teichmuller22) pointed out the faults in the first edition and corrected some

of them, but the part concerning parabolic fixed points remains still indistinct.

In the second half of this chapter the correspondence between ideal boundary

») R. Nevanlinna [5],

") L. Sario [1].
35> R. Nevanlinna [7], [8].
16> This was shown in R. Nevanlinna [6].
1?) L. Sario [1] discussed a case in which a solution exists such that it is bounded and

has a finite Dirichlet integral at the same time outside the singularity.
18> M. H. Heins [1].
19> I could not refer to the works in J4> and J5) until my manuscript was almost completed,

and have no access to the details of some of them still now.

-°) P. Koebe [1].
2 1 > Throughout this paper Γ and U denote | z | = 1 and | z | < 1 respectively.

-) K. Nevanlinna [1]. O. Teichmϋller [1].
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94 MAKOTO OHTSUKA

components (Randstϋcke due to B.v. Kerekjartό23)) of an abstract Riemann surface

and the points on Γ are studied by making use of the corrected form of Bieber-

bach's method.

Chapter IV deals with Dirichlet problems on Riemann surfaces. § 1 is devoted

to the continuation of Chap. I, § 1. It is shown there that any continuous bounda-

ry function is resolutive,2^ and that the similar considerations as in euclidean

spaces are possible. Next let 9ϊ be a covering surface over an abstract Riemann

surface, with relative boundary and satisfying (A) and the following condition:

tι(P)^0 on 3? whenever u(P) is upper bounded continuous subharmonic such

that lim u(P) *= 0, where %<$ denotes all the accessible boundary points. In §§ 2-4

Dirichlet problem is treated on 9ϊ by making use of the theory of conformai

mapping in the special case when the connectivity of 9ΐ is finite. But it is

desirable that some resolutive functions can be assured without using the theory

of conformai mapping and in general case. The concept of regular and irregular

points on the boundary is important in the theory of Dirichlet problem. In the

present case, however, I have scareceίy any knowledge about them. Thus there

are left many questions open in this chapter. Moreover it may be interesting

to investigate potential theory on Riemann surfaces further in connexion with

the recent researches by R. Bader and M. Parreau,25) or to treat Dirichlet problem

on an abstract Riemann surface having all the ideal boundary components as

its boundary.

Now let w=f(z) be a regular bounded function in U, and suppose that it is

continuous on U+Γ and the length of the w-image of Γ is finite. It was proved

by Brother Riesz that the null sets on Γ and the sets of zero length on the

image of Γ correspond to each other.26) Given a domain D in the z^-plane, when

does the mapping function of U onto D satisfy the condition stated above ? It

is surely so when D is bounded by a rectifiable Jordan curve. W. Seidel defined

the length of the boundary of any simply-connected plane domain and showed

that if the length is finite the mapping function satisfies the required condition.27'

In Chapter V such problem is treated for a covering surface Dΐ over a metric

Riemann surface <;. Under some additional conditions I define the rectifiability

of the boundary of 3ί, and show that the mapping function of U into a has similar

properties as above f(z) and that Riesz's theorem holds good also in this case.

" ' B. v. Kerekjartό [1]. Cf. also S. Stoϊlow [1].
24J For the definition of resolutivity, see Chap. I, § 1.

="» R. Bader [1], M. Perreau [2]. Cf. also L. Ahlfors [1].

-«> F. and M. Riesz [1]. Cf. also F. Riesz [1], N. Lusin and J. Priwaloff [1], M. Tsuji [1],
27ί W. Seidel [1], esp. pp. 194-204.
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It seems to me that, in addition to the subjects taken up in this paper,

there remain still many, which have ever been discussed only on planes but may

be treated on Riemann surfaces with interest

I wish to express my warmest gratitude to Prof. Noshiro for his perpetual

encouragement and valuable remarks during my investigation.

CHAPTER I. PERRON-BRELOT'S METHOD AND THE

TYPES OF RIEMANN SURFACES

1. Perron-Brelot's method28'

We shall explain Perron-Brelot's method for Dirichlet problem on an abstract

Riemann surface 9? in this section.

The following lemma used by M. Brelot in euclidean spaces holds good also

on SR:

LEMMA 1.1. The upper cover {defined by the supremum at each point) of a

class of positive harmonic functions in a domain on 9ΐ is continuous subharmonk

or equal to the constant +oo.

For an open compact true subset © in SJ? and a real function φ (admitting

± co) defined on the boundary C29) of Φ, the lower class Wψ is denned by all

the upper bounded continuous subharmonic functions {u{P)} such that Mm u{P)

^ φ{F), adding ~oo to U®. Then it follows by Lemma 1.1 that the upper cover

Hψ(P) of Wψ, which will be called hypo function, is harmonic or equal to the

constant -f- oo or — oo in each component of -£>. Similarly the upper class 33-

and its lower cover H^(P), which will be called hyper function, are defined for

superharmonic functions and H^(P) has the similar character as Hf(P). Fur-

ther, Hψ(P) ^ϊϊψ{P) on Φ, and if they coincide at a point they are identical in

the component containing the point. When H®(P) == Hf(P), we shall denote it

by Hψ(P) and call it the general solution, and if, in addition, it is finite, <p will

be called a resolutive boundary function.

A point P' on C will be called regular or irregular if in a local parameter

circle the image of P' is regular or irregular with respect to the image of Φ.^Jϊ

This definition does not depend upon the local parameter selected there. At a

regular point Pr a barrier™ exists and by it there holds

-^ As to the contents of this section, cf. M. Brelot [2].

-^ Here, the boundary point is the one in the usual sense it is the point, in any whose

neighborhood both Φ and 3ft — Φ enter. It will be called an ordinary boundary point.

*(V) Dirichlet problem on a plane is supposed to be known.
31> We accept the barrier in a wider sense; it is continuous superharmonic on φ , tends

to zero as P -> P't and its lower bound outside every neighborhood of P' is positive.
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(1.1) m3f(P)έφ(P')9

if φ is upper bounded on C and upper semicontinuous at P', and

(1.10
P-+P'

if φ is lower bounded on C and lower semicontinuous at P\ Consequently if φ

is bounded on C and continuous at a regular point P', there holds

limgf(P) = lim
P-*Pf P-+P'

If every point of C is regular and ψ is continuous on C, follows H

and this gives the solution of the Dirichlet problem in the classical sense for

instance, it is so on a domain bounded by Jordan curves.

Near a simple closed Jordan curve γ draw another simple closed Jordan curve

r' and enclose a doubly-connected domain by them. The ε-niveau curve of the

solution with the boundary value 0 on r and 1 on γ' is a simple closed analytic

curve. Hence in an exhaustion {sJln} of 9ϊ we may, and shall, suppose that each

%ln is bounded by a finite number of analytic curves and no component of its

complement is compact in Of.

We cut off here the further description on the Dirichlet problem and shall

continue it in Chap. IV.

2. The types of Riemann surfaces

Open abstract Riemann surfaces are classified into two types. Usually it is

decided as follows:

Let Oϊ be an open abstract Riemann surface, and {9?«} its exhaustion with

boundaries {Cn} The harmonic measure of Cn on the domains bounded by C f

and Cn is monotone decreasing as n -» oo and its limiting function is harmonic

outside 3ϊi. According as this is zero or positive, Dϊ is said to have a null or

positive boundary, or 9ϊ is called of parabolic or hyperbolic type respectively.

We will define the type of 9ϊ by Perron-Brelot's method using no exhaustion.

Let Dίo be a domain of Dϊ, whose relative boundary C consists of a finite number

of simple closed analytic curves and whose complement is compact in 9f. We

define the lower class II by all the continuous subharmonic functions {u{P)} on

9ϊo such that, Γ^ denoting the ideal boundary of 9ΐ, ϊϊϊnu(P) === 13 2 ) and ϊϊϊnu(P)
/>> c

ί=0, and ω{P) is defined as the upper cover of H. Similarly the upper class 3$

and its lower cover ω(P) are defined for superharmonic functions. It follows

by Lemma 1.1 that ω(P) and ω{P) are harmonic on %. Further wa can show

32> The left side denotes the supremum of lim u(Pn) for Pn
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that ω(P) = ω(P) as follows: Let d be a finite number of simple closed analytic

curves on % surrounding C. If we take an arbitrary # ( P ) e $ and replace it

in the annular domains bounded by C and d by the solution of the Dirichlet

problem with the boundary value 0 on C and v(P) on Ci9 the replacing function

Vι{P) is not greater than v(P) and still belongs to 3$, Hence 0^ finΓω(P)
Γ,

^ lim Vi(P) = 0, Consequently ω(P)GlI5 whence ω(P) ̂ _ω(P). Since the inverse

inequality is valid, there follows the equality,

It is a simple matter to show that this function coincides with the usual one.

We shall call it the harmonic measure of Γ^ on 9ϊo at P and denote it by ω(P)

or ω(P, Γyt, JRo).

The property that ω(P) = 0 or >0 does not depend upon % selected there

and we decide the type of 9t as usual.33) The following is a criterion for it :

LEMMA 1.2, In order that 3ΐ has a positive boundary, it is necessary and

sufficient that there exists a non-constant upper bounded continuous subharmonic

function on 9ϊ.34)

Proof. If 9ΐ has a positive boundary, the function obtained by continuing

the harmonic measure ω(P9 ΓSR, %) by 0 outside 9ϊo is the required function,

where 9?0 is the domain taken to define the type of 9J

Conversely suppose that such a function u{P) exists. Without loss of gener-

ality it may be assumed that u(P) ^ 0 and sup u(P) = 1. Since u(P) is continuous

subharmonic on 9ϊ? supw(P) = l and 0^max«(P)<l , where C is the boundary
Sfro c

of 9ϊo in 9f. Thus u(P)- max u(P) belongs to the lower class II and is positive

at some point on 9ΐ0. Hence it follows that 9ΐ has a positive boundary.

Further we have

LEMMA L 3. Let 9f have a null boundary qnd siV be a domain on it. In order

that 9f has a null boundary, it is necessary and sufficient that the trans finite

kernel of 9ί~Dϊ' on 9ί is empty.*5)

Proof. Necessity : Suppose that the kernel K is not empty, and take a small

neighborhood Nm on 9ϊ of a boundary point of K such that at least one point

of 9i' lies outside N. Then we have a positive function in N, which is zero on

the boundary of N, harmonic in 31' p[N and not greater than 1. If we continue

' W ) When 5H is a closed surface, it will also be said to have a null boundary.
34> It is reported in M. Parreau [3] that also M. Brelot has found the sufficiency.
35> This means that in every parameter circle the image of 9ΐ—$' is of capacity zero.
?β< We suppose in this paper that a neighborhood is bounded by a simple closed analytic

curve.

https://doi.org/10.1017/S0027763000012253 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012253


98 MAKOTO OHTSUKA

this function by 0 outside N, the function satisfies the condition in Lemma 1.2

and hence 3ϊ has a positive boundary.

Sufficiency: Suppose that the kernel is empty. Let C be a simple closed

analytic curve in 3ϊ' which encloses a compact domain in 3ί', and denote the

non-compact part of 3?' by %. Since the image of 91-9i' in each parameter

circle, corresponding to a neighborhood on 3ΐ, is of capacity zero, it is removable

for the function ω(P) = ω(P, Γ^9 3lo), where Γ<R> is the ideal boundary of 3ί'.

Hence ω(P) is defined so as to be bounded harmonic on 3ΐ outside C. Since

ω(P) = 0 on C and 3ί has a null boundary, ω(P) = 0. Thus 3ί' has a null boundary.

Remark. When 3t has a positive boundary, any domain on it has a positive

boundary too on account of Lemma 1.2.

An open surface with null boundary has some properties as if it had no

boundary. We shall state two of them for later uses.

LEMMA 1.4. (Maximum principle) *7) Let 3ϊ have a null boundary ̂  31' be

a true subdomain with relative boundary C on 3f. For a non-constant upper

bounded continuous subharmonic function u(P) on 3i' there holds

u(P)<Umu{P).
c

Proof. Since u(P) does not attain its maximum in 3ϊ', it is sufficient to show

tι(P)t= Umu(P). To the contrary suppose that there existed a point Po on 3ϊ'
c

such that u(P0)> fiΐnw(P). Take a number Λf between the numbers of both
c

sides. The function Uι(P), which is equal to max(u(P), M) on 31' and to M

outside 3ΐ', would bev non-constant upper bounded continuous subharmonic on 3ϊ.

By Lemma 1.2 3ί would have a positive boundary.

LEMMA 1.5. Let 31 have a null boundary, 31' be a subdomain with relative

boundary C consisting of a finite number of simple closed analytic curves, and

u(P) be a bounded harmonic function on 31'-f C. Then

Proof. This lemma is obvious when 3ί' is compact in 3ϊ. Hence suppose

that 31' is not compact in 3ί and let {3ϊn} be an exhaustion of 3ί. If n is suf-

ficiently large, 3ί'Π3ί« is a domain bounded by C and a part Γn of the boundary

37> In R. Nevanlinna [5] this theorem was proved when a one-valued regular quadratically
integrable differential dw = du + idv is defined on di and u is its one-valued integral on 9ϊ.

33) Cf. ™).
39> d/dι> represents the normal derivative inward to $'.
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of 9ϊM. By applying Green's formula for u(P) and the harmonic measure ωn(P)

= ω{P, Γn, 3ϊ'Π3ί«)? we have

(1.2) f ^ & = 0

and

J ^ - * 1 — > £
whence follows

(1.3)

£)*-"•

Since «(P) is bounded: \u(P)\ < M < + oo, follows from (1.2) and (1.3)

(1.4) ί | « Λ
\JCOV

c+rn Ov

Because 9ί has a null boundary, ωn(P) I 0 and hence -~- I 0 as w-> oo. Therefore

from (1.4)
duί« 9 P

Remark. We took an exhaustion of 9ί only in proving Lemma 1.5, which will

be used at the end of the proof of an existence theorem on 9ΐ with null boundaryβ

We shall give an outline of the proof, based upon the existence of a harmonic

measure, for the fact that any Riemann surface 9ί is separable.

Let S) and ©' be two disjoint domains which correspond to circular domains

in a parameter circle, and denote the domain 9ί~Φ~Φ' by 9ίo In order to prove

the separability of 91 it is sufficient to show it for Dio The harmonic measure

ω(P) of the boundary of ® on 9?0 is positive. If ω(P) is its conjugate function,

the function w(P)=ω(P) + iώ(P) is many-valued in general and its existence

domain is a regular covering surface 9f over 9ϊo.4O) The inverse function P=f(ιv)

is many-valued too and its existence domain is a covering surface 9ϊu> over the

e^-plane, to which 9t is conformally equivalent. It follows by the usual method

that 9tw and hence 9ί is separable. Then by the projection we can see that 3ι\>

is separable too. It is a simple matter to obtain an exhaustion from an open

base when 9ί is an open surface.

It is to be remarked that since the separability of 3ί is unknown, the basic surface
of 9R is not yet a surface in the usual meaning.
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CHAPTER II. EXISTENCE PROBLEMS

1. Existence theorem on JR with positive boundary

Our purpose in this chapter is to obtain a one-valued harmonic function,

which has the singularity given in a compact part of 3ΐ and is bounded near

the ideal boundary, if 3ΐ is open.4J) We shall treat this problem distinguishing

two cases either the boundary of 3ϊ is null or positive. The proof will be based

upon Perron-Brelofs method, in Theorem 2,1, and an idea due to M. H. Heins,42)

in Theorem 2.2. Hereafter in this chapter let 3?0 be a domain, whose relative

boundary C consists of a finite number of simple closed analytic curves and

whose complement is compact in 3?, and suppose that (SRj*)f' = 9io.43) Further, put

9ΐ-9ϊo-C=£) and let U0(P) be a one-valued function harmonic on C, that is, in

an open set ®0 containing C.

When 3ΐ has a positive boundary, the problem can be solved always by

THEOREM 2.1.44) Let 9ί have a positive boundary Γ$. Denote by U the class,

ivhich will be called the lower class, of all the functions {u{P)} such that each

u(P) is continuous and subharmonic on SϊoU^o, u(P) — U0(P) can be continued

into Φ preserving the subharmonic character and ίΐmw(P)?=0. Similarly the

tipper class 33 is defined and both classes are not empty. The upper cover U(P)

of U is equal to the lower cover V(P) of 93, is harmonic in 9toU®o and bounded

on 9ίo, and the harmonic continuation of U(P)~UQ(P) into S is possible. If 3ί

is contained in another Riemann surface 3?, then lim£/(P)=0 on the relative

boundary of 31 except at irregular points.^

Proof First we remark that, as is shown easily, when a function harmonic

on Φ + C is added to U0(P), It and SS do not change. Since UQ(P) -B^o(P) is

zero on C, it and hence H^Q(P) is harmonic on C by the principle of reflexion.

Therefore the classes for U0(P) -H^(P) are equal to U and $. Hence we shall

suppose that UQ(P) itself is zero on C.

Next we shall show that U and 35 are not empty,46) It is sufficient to show

41> R. Nevanlinna [8] discussed a wider problem, which includes our existence problem,
from the viewpoint of integral equations.

42> M. H. Heins [1].
43> Suffixes a and / indicate to take the closure and the open kernel respectively.

44) \γ e g e t j-he f u n ction U(P) in this theorem also by alternierendes Verfahren.
45J Even if 91 is not compact in 5g, a point on the relative boundary of ΪR will be called

regular or irregular if its image is so in a local parameter circle corresponding to a

neighborhood on 3$.
46> The idea is indebted to M. Brelot [4].
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it for II, because if u{P) belongs to the lower class for -Z70(P) then -u(P)

belongs to the upper class for U0(P). Since 9i has a positive boundary, ω(P,

Γ$ί, %)^ω(P)>0 on 9ϊo. Since ω(P)=0 on C it is harmonic also on C by the

principle of reflexion. Let A : \t\ < 1 (t = x+iy) be a local parameter circle,

which corresponds to a neighborhood on 3ί and in which the image of 9ί0 is

equal to the upper semicircular domain. Then the composed function ω(P(t))

is harmonic in ά and ~~~>0 on - 1 < # < 1 . Hence if y0 is taken sufficiently small,

a ~ > α > 0 and -g-1<UL< + oo on the rectangle

Taking a finite number K{>—, we have for y

Hence ~iΓ]H-Uo™~i£ι(l-~ω) on A Since C is covered by a finite number of

images of such rectangles, the function defined by ~K0 + U0 on ® 0 Π ^ and by

Ko(ω — 1) on 3ϊ0 is subharmonic also on C and belongs to U, if Ko is taken suf-

ficiently large. Clearly this function is bounded on 3ί0.

Since any »(P)GU is not greater than any v(P)eS5, there holds ί/(P)

^ F ( P ) and both are bounded on 3ί0. Further they are harmonic on 3ϊoU^o on

account of Lemma 1.1. Similarly we can show that U(P)-UQ(P) and V(P)

—£7o(P) are harmonically prolongable into φ.

Now we shall show that U(P) = V(P). Since © is bounded by a finite number

of simple closed analytic curves, it consists of a finite number of compact do-

mains. Excluding a smaller compact domain from each component, define har-

monic measures there respectively. Thus we have a positive function H(P)

which is harmonic near C in © and zero on C. For a number k>0 denote by

tfί(P) and LΓ-(P) the functions which are equal to U0(P)+kH(P) and fcfif(P)

respectively. Then both are harmonic also on C and U0{P) =U+(P) -U^(P)?

and, for large &, £7+(P)>0 near C in ©. Taking Z7+(P) and C/-(P) instead of

Uo(P) used hitherto, we obtain the lower and upper classes ll+, U"", 53+, 55" and

their covers ί/+(P)9 *7-(P), F + (P), V~(P) respectively. If we define a func-

tion by 0 on 3i0 and by Ui(P) on Φ 0 Π ^ it belongs to U+. Therefore W{P)

^ 0 on 3ίo and hence e φ + . Thus Z7 + (P)^F + (P). Since the converse is obvious,

there holds the equality. Similarly we have U~(P) = V~(P). Let w+, ίί^, z;+, v

be any functions belonging to U+, U~, ΰ + , 5>"~ respectively. Then u+-v~&ll

and ^+"-w"G5S, and hence w+ — v^U^ V^v* —u~. Since w1" and w° can be

chosen arbitrarily near υ+ and v~ respectively, we have U{P) = V(P).

When 3i U 3ί and iVis a neighborhood on S of a point of the relative boundary

of 9ί, U(P) coincides with the general solution of the Dirichlet problem on
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with the boundary value 0 on Γm and U(P) in 9ϊ. Therefore lim U(P) = 0 on

the relative boundary of 3i except at irregular points. Thus the proof is completed.

In the sequel we shall call U(P) the solution for U0(P).

2. Existence theorem on 9ΐ with null boundary

In this case we can solve the problem in the following form:

THEOREM 2.2.47) Let 3? have a null boundary and choose any point Po on 3ΪO.

Then there exists a one-valued harmonic function U(P) on 3ϊoU®o~{^o} such

that it is bounded on 9ίo except near Pθ9 the harmonic continuation into © of

U{P) -Uo(P) is possible and the development of U(P) in a local parameter circle

A: \t\ < 1 , ivhose centre corresponds to PQ, has the form:

a0log-γjγ + a harmonic function*®

where aQ=Ίς-\-~-ds**) The function U(P) is determined uniquely up to an

additional constant.

Proof. Let Cn be the image on 3ί of the circle 11 | = — in J, and 3ί« the

domain outside Cn on 9ϊ. Since 3ϊ* has a positive boundary, the solution Un(P)

for Uo(P) exists on ΰtn for each ^.by theorem 2.1.

In the first place suppose that there exists an infinite subsequence {Umi)(P)}

such that max£7n(, )(P)^0. If we denote by Vi(P) the function Un{i)(P)
c

-mnxUmiAP), then Vi(P)ώO on SR«(ί)n3ίo by Lemma 1.4 and max F, (P)=0.
c c

Further it follows that max Vi(P)^~m3.x UΊ(P) for every i on account of
fj C

Lemma 1.4. Therefore we can extract from {Vi(P)} a subsequence which con-

verges uniformly in the wider sense on %-{P0} to a one-valued harmonic

function U{P) which is non-positive on %. Hence U(P) is developed in Δ in

the form:

<2(i log Tyyf a harmonic function (ao ^ 0).

In addition, U(P) is bounded on 9?,Π9io, because T7ί(P)^min Vi(P) by Lemma
C + C

In case «o = O this theorem may be proved by alternierendes Verfahren as stated in R.
Nevanlinna [5], L. Sario [1], or by the method used in K. Kodaira [1] in a special
case. The general case of our form can be deduced from the case: <zo=O without
difficulty.

We shall call this a logarithmic singularity of U(P) when αo^O. do will be called the
residue of U(P) at P o .

The normal v is drawn inward to 5Ho.
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1.4 and the convergence is uniform on C-fd. Further it follows without

difficulty that the harmonic continuation into 3D of U(P)-UQ(P) is possible.

When there is no infinite subsequence stated above, consider the functions

{ — Un(P)} and treat them in the same manner. By changing again the sign of

the limiting function we have a function U(P) with the development:

tfolog-TTT+a harmonic function («o~0).

According to Lemma 1.5 1 ~^-ds=0. Hence a0 = - «— \ -̂ — ds = -̂ — \ -̂ —<is

1
"" 2τr

The uniqueness of U(P) is the direct consequence of Lemma 1.4.

3. Variation of preassigned singularities

We shall answer to the problem how the solution U(P) varies as the

preassigned function UQ(P) does, by

THEOREM 2.3. When U{

o

i](P) tends to UQ(P) uniformly in an open set ®0

DC as ί-» oo, the solution Ui{P) for U«]{P) tends to the solution U(P) for UQ(P)

uniformly on 9ϊ0 when 9ϊ has a positive boundary. When 9i has a null boundary9

designate a point Po to the common possible logarithmic singular point and

normalize all the solutions by £7V(Pj) = £/(P,) at a point Pj(#Po)e9ΐo. Then the

convergence is uniform on any closed set in 9ϊo-{Po}.

Proof. First consider the case when 9ί has a positive boundary., Without

loss of generality we may suppose U\*](P) = ί/0(P)=0 on C. For any w(P)eit

define a function by u(P)-Ki(l-ω(P)) on 9fo and u(P)-UQ{P)~bU{

o

i)(P)-Ki

on ©Π^o, where Ki>0 is a constant. If Ki is chosen suitably, this function

is subharmonic also on C and hence belongs to the lower class for Uo

t](P).

Especially on %+C there holds u(P)-Ki(l-ω(P))έUi(P). Since u(P) is

taken arbitrarily near U(P), follows U(P) - Ki^Ui(P) on 9io+C Similarly we

can show Ui(P) -Ki^U(P) on 9io + C, where Ki is a positive constant. Hence

\U(P)-Ui(P)\έKi+Ki on 9io+C. Since Uf(P) tends to U0(P) uniformly

in ®0> we may take Ki and Ki arbitrarily small as i -* oo. Consequently Ui(P)

tends to U(P) uniformly on sJϊ0 + C.

Next we shall treat the case when 9ί has a null boundary. We shall denote

the solution for U{

o

i]{P) on the domain % outside CY)0; by Wi{P). Since 9ί, has

a positive boundary, Wi(P) converges uniformly on C. Hence | Wι(P) \ <x

•oo on C for all L In case there exists an infinite subsequence {aij} with

50- We use notations in the proof of Theorem 2.2.
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<ii(j)^O, we define functions {Xj(P)} by Xj(P) = Ui{j){P)-max £//</) (P). Then

Xj(P)*=Q on 3ϊo by Lemma 1.4 and max J ; (P) = 0. Further there follows

max Xj(P)^ - max Wiφ(P) > - α . Therefore a subsequence {Xj{k)(P)} con-
(i C

verges to a function X(P) uniformly on any closed set in 9ΐo-{Po}. We can see

easily that X(P) is a solution for Uo(P). By the uniqueness of the solution there

holds X(P)-X(P1)=U(P)"U(P1). Since max!/,•</(*»(P) = Unj{k))(Pi)-:
tends to U{Pι)~X{Pι), Ui(j{k)AP)=Xj(k)(P)+maxUnj{k))(P) tends to

c

-f U(Pi)-X(Pι) = U(P) uniformly on any closed set in s<Ro-{Po}. Incase almost

all cn>0 consider the functions { — Ui{P)} and treat them in the same manner.

By changing the sign again we know that a subsequence of {UdP)} converges

to U(P) uniformly on any closed set in 9ΐo-{Po}. Because from any subsequence

of {Ui(P)} we can extract a convergent subsequence, Ui{P) itself converges to

U{P) uniformly on any closed set in 9ίo~{Po}

4. The simplest harmonic functions on SR.

Given a Riemann surface 9ί we will decide the simplest function on it, which

is one-valued harmonic outside isolated singularities and bounded near the ideal

boundary.

Now suppose that sJί has a null boundary. By Lemma 1.2 there does not

exist not only bounded but also positive non-constant harmonic function on 9ϊ.

Moreover no Green function exists on 9ϊ, because if the Green function G(P)

existed on 3f, -min {G(P),M) for a constant ikf>0 would be a non-constant

negative continuous subharmonic function on 3ϊ and hence by Lemma 1.2 9i would

have a positive boundary. The simplest function is the one with two logarithmic

singularities or a non-logarithmic singularity of the local form: —-— or -??5- .

The existence of these functions is assured by Theorem 2.2.

Next suppose that 9ϊ has a positive boundary. It is reported that L. Ahlfors

found a surface with positive boundary on which no non-constant bounded har-

monic function exists.5'> But it is unknown whether there exists or not a surface

with positive boundary on which no non-constant positive harmonic function

exists.52) The existence of the function having any assigned singularities is as-

sured by Theorem 2.1; especially, the Green function exists always there.53)

51> Cf. L. Sario [2], K. I. Virtanen [1], R. Nevanlinna [8].
5 2 ) M. Parreau [3] presented this question.
5 3 ) In P. J. Myrberg [1] this was proved in a special case. R. Nevanlinna [3], [4] stated

that the Green function exists if and only if the boundary of ίfϊ is positive. A proof
to it is given above and proofs are found also in L. Sario [2], M. Parreau [1], K. I.
Virtanen [1],
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CHAPTER III. BOUNDARY CORRESPONDENCES IN CONFORMAL MAPPINGS

1. One-to-one correspondence between boundaries

In the former half (§§ 1^2) of this chapter we shall investigate the image

oί the accessible boundary points (which will be abbreviated by A.B.P.s), when

the universal covering surface 91* of an open covering surface 9ΐ over a Riemann

surface 3? is mapped conformally onto a unit circular domain U: \z\ < 1, under

the following conditions:

(A) the projection 3?' of 3ί is compact in 9? ;M )

(C) when jft is a closed surface of genus zero or one, <R-jR' contains at

least three or one point respectively.

When 9ί is a covering surface over a Riemann sphere σ0, O. Teichmϋller

introduced a metric on 3i by mtd(P^P2)9 where £(PjP«) is the diameter of the

projection Into σ0 of F\Pi which connects Px with P 2 on sJt, and he defined A.B.P.s

of 3i by the completion of 31 with respect to this metric.55* Now we consider

any inner covering surface 3ί over 3f. Since there exists always a non-constant

one-valued meromorphic function on 9Ϊ/561 3ϊ is conformally equivalent to a cover-

ing surface over σ0. Regarding 3ΐ itself as a covering surface over σ0> a metric

and A.B.P.s are defined as above. We shall call this metric a Teichmuller's

metric, these A B.P.s A.B.P.s in the sense of Teichmϋller, and denote all the

A.B.P.s by %t We can give their definition in an equivalent way by deciding

the equivalency of two curves which determine A.B.P.s.

On the other hand R. Nevanlinna limited further the range of the equiva-

lency of two determining curves and defined A.B.P.s of different kind.57) Using

this definition he investigated the image on Γ : | z | = 1 of the A.B.P.s, when 91

is a compact domain in 91. Similarly we can prove the following theorems,5^

in which A.B.P.s mean those in the sense of Nevanlinna, under the conditions

(A) and (C):

THEOREM 3.1. The images of the curves, which determine one and the same

A.B.P. of 9ϊ, terminate at points on Γ which are equivalent with respect to a

Fuchsian group. However, if two curves determine different A.B.P.s, the images

terminate at no same point on Γ.

54> See introduction. We shall call a covering surface satisfying the condition (A) an

inner covering surface.

^ O. Teichmϋller [1]

"̂  Cf. J. Tamura [1], for instance.

^ R. Nevanlinna [1], [3]. Cf. also E-. Kaila [1]
r*) Cf. R. Nevanlinna [3], E. Kaila [1],
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THEOREM 3.2. If z tends to a point on Γ, which corresponds to an A.B.P. of

9ϊ, along any Stolz's path, the image of the path determines the same A.B.P. of 9ί.

Theorem 3.1 shows that all the A.B.P.s and the classes of points corre-

sponding to them correspond to each other in a one-to-one manner. Therein

lies the reason why A.B.P.s are defined in Nevanlinna's sense here. But the

image on Γ of all the A.B.P.S is the same by either of two definitions. If we

accept A.B.P.s in Teichmuller's sense, the mapping of 3ΛR* into Γ is uniformly

continuous with respect to the Teichmuller's metric.59'

2. Measure of the image of the accessible boundary points

R. Nevanlinna stated that, when 9ϊ is compact in 9ϊ, the linear measure of

the image on Γ of all the A.B.P.S of 9i is 0 or 277 according as the transfinite

kernel of g?-9t on 9? is empty or not, and that, the proof is similar to the case

when SR is a plane domain/01 We shall give generalizations of this result for

9ί satisfying the conditions (A) and (C).

First we will prove

LEMMA 3.1. For any continuum E on a plane there exists a totally-discon-

nected closed subset of positive capacity.

Proof. It E contains a segment, let the segment be PQ. Otherwise take

two points P and Q on E. We may suppose that PQ = 01 on the #-axis. The

set of all the irrational points on 01 is of positive capacity, and hence has a

closed subset Eι of positive capacity. If 5ΪC.E, Eι is the required set Other-

wise draw orthogonal lines to the #-axis at every point of Eι and let Er be the

intersection of these lines with E. Then Ef is closed and totally-disconnected,

since both sets are closed, Eι is totally-disconnected and E contains no segment.

Further the capacity of Ef is positive, because the capacity of a set is greater

than that of its projection on a line. Thus we have a required set.

Using this lemma we can show

THEOREM 3.3. If 91 satisfies (A) and if the transfinite kernel of 9ϊ~9ϊ' is

non-empty, the linear measure of the image on Γ of all the A.B.P.s of 9ί is 2π.

Proof, On account of Lemma 3.1 there exists a closed totally-disconnected

true subset E, having a non-empty transfinite kernel, of 9ί-9ϊ'. By Lemma 1.3

9f - E has a positive boundary and hence there exists the Green function G(P)

on 9f~£ with a pole at a point Qo of 9 ? - 9 ϊ ' - £ . Let H(P) be the conjugate

^ Cf. O. Teichmuller [1].
r)) R. Nevanlinna [3], Cf. also M. Tsuji [4].
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function of G(P) on $ - E and put exp(-G(P) - iH(P)) = W{P). Compose

the mappings £/-> 9ϊ-»9? -> PF-plane and denote the corresponding function by

W~g{z), taking an arbitrary branch of W(P). Then g(z) is a bounded regular

function in U and hence there exist radial limits a.e.61) on Γ by Fatou's theorem.

We shall prove that if g(z) tends to a limit Wo on the W-plane along a

radius terminating at a point on Γ, the image C on 9? of the radius terminates

at a point on 9?, i.e., the image on 9ΐ determines an A.B.P.

To the contrary suppose that C oscillated on 9?. Then there would be a

point Po of W-E-{QQ} and its neighborhood N in ??-£--{ζ)0} such that C

would accumulate on Po and intersect the boundary of N infinitely often, since

E is totally-disconnected. Let a local parameter circle corresponding to N be

Δ : 111 < 1, where £ = 0 corresponds to Po. The image of C in it consists of an

enumerably infinite number of arcs {ln} passing nearer to t = 0 as n-> oo. if

the mappings t -> 9? -> P7-plane are composed, if the branch on /„ corresponding

to the function g(z) is continued analytically everywhere in Δ and if the branch

obtained is denoted by Wn(t), then Wn{t) would tend to Wo uniformly on ln as

n-* oo. Since | Wn (t) \ < 1 , {Wn(t)} would form a normal family in Δ and hence

we could extract a subsequence {Wn(t)(t)} tending to a regular function in Δ as

2-̂  co. Because FFrcmW -* Wo uniformly on /«,,-,, which would come near f = 0

but would be a cross-cut of,J, the limiting function would be equal to the con-

stant Wo. However, j Wmi)(t) \ =exp(—G{P)) independently of i and so this

is not a constant. Thus we have a contradiction and it is proved that C does

not oscillate on 9ί.

We will say that an inner covering surface 9ΐ over 9? is of F-type when the

function corresponding to the mappings C/-*^00-*^-* 9? has limits along Stolz's

paths a.e. on Γ. Theorem 3.3 gives a condition so that 9ί is of F-type.

M. Tsuji has given the following interesting extension of Lusin-Priwaloffs

theorem.62) His proof will be simplified a little by using the terms of Dirichlet

problem.

LEMMA 3.2. Let w = F{z) be a meromorphic function in U,E a measurable

set of positive linear measure on Γ and Er a set of {inner) capacity zero on the

iv-plane. If the cluster set of F(z), ivhen z tends to points of E along Siolz's

paths, is contained in E\ then F(z) is a constant belonging to E\

Proof. Since E' is of inner capacity zero, it does not contain any continuum

and hence F(z) has a limit: F(eiQ)&E' along Stolz's paths at every point

This is an abbreviation of "almost everywhere."

N. Lusin and J. Priwaloff [1]. M. Tsuji [3].
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ei0 of E.

In a usual way we get a domain D, whose boundary is a rectifiable curve

C consisting of a closed subset Ei9 with a positive linear measure, of E and

segments in 17, such that the number of the poles on D-\-C of F(z) is finite

and E[ = {F(eiq) £ l θ e£j} is a bounded closed set in the w-plane. Further ex-

clude the poles by cross-cuts from DΛ-C such that the remaining domain Dj

is bounded by a rectifiable Jordan curve Ci and Eϊ lies on d . Then the harmo-

nic measure on Dj of £Ί is positive on account of F. and M. Riesz's theorem.**1

Now let v{w) be the potential due to G. C. Evans041 in the w-plane. It is

induced by a mass distributed on E\ and takes +00 on E'r We shall denote

the composed function v(F(z)) by V(z). When V(z) * -f 00, this is super-

harmonic in Di and tends to + 00 when z-*Eι from the inside of £>j. Further

there exists a number a > — co such that V{z) M <x in Dj. If a boundary function

φ of A is given by limV on Ci9 V(z) belongs to the upper class 9S£J,6T) irre-

spective of whether V(z) = +00 or not, and hence there holds ΈP^(z) ύ.V(z) in

Dι. Since the harmonic measure of Eι with respect to Dj is positive and φ = + c»

on £Ί, Hξι(z) = +co and hence F(s) s +00. This means that w = F(z) is a con-

stant belonging to £ ' and the theorem is proved.

From this lemma we get easily

THEOREM 3.4. Suppose that 91 satisfies (A) and (C) and let © be a subset

of %<$. If the transfinite kernel of any closed subset of the projection on ΪR of @

is empty, the linear inner measure of the image E on Γ of K is zero.

Proof. There exists always a non-constant one-valued meromorphic function

tv = Ψ(P) on 9L Compose the mappings U-* 91 -> 9ϊ-> w-plane and let w = F(z)

be the corresponding function in U. According to Theorem 3.2 F(z) has a limit

along Stolz's paths at every point of Eanά the set {limF(2)} is of inner capacity

zero on the w-plane. On account of Lemma 3.2 the measure of any measurable

subset of E is zero, whence the inner measure of E is zero.

Remark. If @ = %$ then E is measurable, because it is the continuous image

of the complete metric space %$*> and hence an analytic set.

This and Theorem 3,3 can be regarded as generalizations of Nevanlinna's
result.

63J F. and M. Riesz [1]. See Chap. V, § 5 of our present paper.
G4) G. C. Evans [1].
Cj-> We suppose here that the upper class includes non-continuous superharmonic functions.
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3. Mapping of an abstract Riemaxm surface

Suppose that the universal covering surface of an abstract Riemann surface

9ί is mapped conformally onto U: | z | „<1. Then U is divided as usual into

non-overlapping fundamental domains in the following manner : 6 δ )

Let {an) be a class of points corresponding to a point P0(=3i and Un be the

set of points {z} in U such that

p{an, z) f£β(cik, z) for all au

where p{zl9 z») represents the non-eucίidean distance Un is bounded

by at most an enumerably infinite number of circular arcs perpendicular to Γ:

\ z\ = 1 6 7 ) and possibly by a part of Γ, and is circular convex. The boundary

of Un in U is divided into pairs of equivalent sides and by excluding one side of

every pair a fundamental domain Un is obtained* This will be called a normal

polygon with centre an and denoted by N.P. All the {Un} cover U without any gap.

We shall investigate in detail "the boundary correspondence in the case when

91 is a non-simply-connected open abstract Riemann surface, whose universal

covering surface is of hyperbolic type, in the sequel. In this case, every N.P.

is non-compact in U

4, Regular points

The cluster set S^ of f{z), which is the mapping function of U onto 9f,

at a point zQ on Γ will be defined as the set of all the points {P} of 9ί for each

of which there exists a sequence {zk} tending to z0 in U such that /(**) ->Pas

k -» 00β A point ZQE^Γ will be called regular or singular according as SfJ = <β

or #0.β8) Since fixed points of non-trivial linear substitutions of the Fuchsian

group ©, with, respect to which f(z) is automorρhic5 are singular, at least one

singular point always appears, but regular points,do not necessarily as in the

case when f(z) is a modular function.

The intersection of a circular domain with centre z0 with U will be called

a vicinity of zQ in U.

We shall investigate the regular points in this section. First we will prove

THEOREM 3,5. Let zQ be a regular point on l\ Then tve can take a vicinity

of z0 in U such that f(z) is univaleni there,

m) Cf. H. Weyl [1], pp. 154-156, L, Bieberbach [1], 1 Aufl., pp. 45-53.
67> We will call these arcs the sides. They are non-euclidean (N,E.) segments, or half-

lines, or lines,
68> 0 denotes empty set.
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Proof. If there were a infinite number of sides in any vicinity of z0, z0

would be a singular points * Hence if a vicinity V of zQ is taken sufficiently

small, either there is no side of N.P. in V or V is divided into a finite number

of wedge-shaped parts of N.P.s with z0 as a common vertex. In the former case

f(z) is univalent in V. In the latter case suppose that f(z) were not univalent

in any vicinity of z0. Then there would be two disjoint infinite sequences {zk}

and {z'k} tending to z0 such that f{zk)-f{z'k). We could find infinite subsequences

{zk(i)} and {z'k^} in some two of the wedge-shaped parts of N.P.s: N and N'

respectively. The linear substitution which transforms JV to Ar/ would leave z0

fixed. This is a contradiction, because fixed points are singular. Thus f(z) is

univalent in a vicinity of z0.

The following lemma will be used often:

LEMMA 3.3. Let γ be an inscribed circle passing through ao&U and touching

Γ at z0. According as a point a'Q # a0 in U lies inside, or upon, or outside r, the

N.E. line equidistant from a0 and a'o intersects the N.E. half line aozo, or passes

through Zo, or is disjoint to aQz0 respectively.

Proof. We may suppose without loss of generality that a0 = 0 and z0 = 1.

Put a'0-reiQ and let 2 = ̂  ( 0 < p < l ) be the point equidistant from a\ and 0.

Then it follows from p = **~£z ' t h a t

Since p 2 ^ l and r*0, r(l+p 2)-2pcos (θ-φ)=Q.

This equation expresses the N.E. line equidistant from 0 and a'o, and accord-

ing as cosθ — r>, = , <0 it intersects the radius OT at only one inner point,

at 1, at no point respectively. These correspond to the cases: a'o lies inside,

upon, outside γ respectively.

Using this lemma we can show

THEOREM 3.6. Let z0 be a regular point on Γ. If centres {an} are suitably

chosen, zQ is the boundary point of only one N.P.

Proof. Taking the proof of Theorem 3.5 into account, we see that it is

sufficient to prove that none of the sides of the N. P., having z0 as its boundary

point, ends at z0, if centres are suitably chosen. According to Theorem 3.5

there exists a vicinity V of z0 in which f(z) is univalent. Let aQ be a point in

V and r be the inscribed circle, which passes through a0 and touches Γ at z9.

In view of Lemma 3.3 the circular arcs equidistant from #o and its equivalents

*> Cf. L. Bieberbach [1], 1 Aufl., pp. 57-58.
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{an} do not intersect the arc aozQ. Therefore aΓzQ belongs to the N.P. with

centre ao> and the sides of this N.P. do not end at z0. Thus the proof is completed.

By Theorem 3.5 all the regular points on Γ form an open set. We shall

call each component a regular arc.

5, Ideal boundary components70)

Let {9ί*} be a sequence of non-compact subsurfaces of 31 such that 9iiD9ί2

D . . . , Γ\3ί* = ψ and the boundary, relative to 3ϊ, of $ln is a simple closed
n

curve on 9ΐ. Two such sequences {3ίw} and {dl'n} are called equivalent if for

given m there exists n such that 3ϊ m3%ϊ'n and 9SJHD31W:J) TO equivalent sequences

an ideal boundary component is made to correspond. We shall denote the set

of all the ideal boundary components by (£$. A topology is introduced on 91 + ^

by neighborhoods as follows:72)

Original neighborhoods are taken on 3t. For a domain 3ϊ« of a sequence

determining Pj$e(£$, 9ϊ« is defined by the set consisting of 3tM and all the ideal

boundary components {Q$} such that a domain of a determining sequence of

Qd is contained in 9ί«. {9T«} are taken as neighborhoods of Pg.

An ideal boundary component is said to belong to the first class if a domain

of its determining sequence is of planar character. Otherwise it belongs to the

second class. If 9ϊw is a surface of planar character of a determining sequence

of P^eKft of the first class, it is mapped by Koebe's theorem™ conformally

onto a plane domain D. If Pg corresponds to an isolated boundary point of D,

we will call P@ parabolic, and any non-parabolic ideal boundary component,

regardless of its class, hyperbolic. These definitions do not depend upon the

choice of 9ΐn and the way of its mapping.

6. Parabolic fixed points

Similarly as in the case when 9ί is a plane domain, we can show that the

cluster set Ŝ > coincides with 91 at every singular point z0. Clearly fixed points

and their limiting points are singular, and conversely the singular points consist

only of them. We shall investigate the parabolic fixed points in this section.

Let Zo be a parabolic fixed point on Γ and ©0 be the subgroup of © con-

sisting of all the parabolic substitutions having z0 as their common fixed point

70> Cf. B.v. Kerekjartό [1], Abschn. V, § 1, S. Stoϊlow [1], pp. 85-92. They have called
them Randstiicke and όlέments-frontieres respectively, but here the terminology above
is used to avoid the confusion with boundary elements, which will be defined in Chap. V.

71> As is shown in S. Stoϊlow [1], one induces the other of these inequalities.
72) It can be shown that Sft + (£& is a compactum and (£?£ is totally-disconnected.
73> P. Koebe [1].
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Since ©o is properly discontinuous in U, it is a cyclic group generated by a

substitution To; that is, (So = {77} (w = 0, ±1, ±2, . . . ).

First we give

THEOREM 3.7. Let Zv be a parabolic fixed point and divide U into N.P.s in

an arbitrary way. If an inscribed circle touching Γ at z0 is drawn sufficiently

small, its inside is divided into a finite number of wedge-shaped parts of N.P.s.

Proof.:A) Let γ be an inscribed circle touching Γ at z0. By the diameter

of r and its equivalents with respect to {T"}9 the inside of γ is divided into

wedges {Wn} (fl = 0, ±1, ±2, . . . ).

Any N.P. lies between the two N.E. lines, which are equidistant from its

centre aQ and T0(a0) or To"
J(^o) and terminate at zQ. Hence if an infinite sequence

of N.P.s {Nk} has common points with Wo, it tends to z0 within FΓj-f Wo~\- W-\.

Therefore an infinite subsequence {Nktf)) exists such that their centres {akm} He

in Wo and every Nkd) has zQ as its sole boundary point on Γ. The substitution

which transforms ctk{\) to #&(2) leaves z0 invariant and so is parabolic. This con-

tradicts the fact that To is the generating one. Consequently only a finite number

of N.P.s has common points with WQ. Hence if an inscribed circle is drawn

sufficiently small, its inside is divided into a finite number of wedge-shaped

parts of N.P.s.

Now we can prove the following theorem which is well-known when Oϊ is

a plane domain::5)

THEOREM 3.8. The classes of the equivalent parabolic fixed points on Γ and

the parabolic ideal boundary components of 9ϊ correspond to each other in a one-

to-one manner.

Proof. Similarly as in the plane it can be shown that to a parabolic ideal

boundary component there correspond equivalent parabolic fixed points on Γ.

The converse needs somewhat careful considerations. Divide U into N.P.s

in an arbitrary way. If an inscribed circle touching Γ at a parabolic fixed point

Zo is drawn sufficiently small, a wedge Wo defined by To is divided into a finite

number of smaller wedge-shaped parts {W{k)} (k = l9 . . . , p) of N.P.s by Theo-

rem 3o7. Suppose that, however small an inscribed circle γ may be taken, f(z)

were not univalent in Wo inside γ. Then there would exist a substitution which

transforms W(iί to WuΊ (i^j) and leaves zύ fixed. This contradicts the gener-

ating property of To. Hence f(z) is univalent in WQ inside a small γ.

ΊA) We make use of the ideas in L. Bieberbach [1], 1 Aufl., pp. 59-60.
75> Cf. L. Bieberbach [1], 1 Aufl.. pp. £0-31 and 60-61, G. Julia [1], pp. ^1-34, for instance.
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In the second place map U conformally onto the left half of the JF-plane

by W{z) such that zQ corresponds to W=oo, Then to To there corresponds a

translation parallel to the imaginary axis and with the breadth 2πλ. Consider

the function Z= exp(W/λ) and compose the mappings Z-»FΓ-*;ε->3ϊβ The corre-

sponding function P~<p(Z) is one-valued univalent in a sufficiently small D : 0

< \Z\ <r0 (<1). Consequently D is conformally equivalent to a subsurface of

planar character of 5R and hence a parabolic ideal boundary component of 3ϊ

corresponds to Z=(λ Thus the proof is completed.

Moreover we can see that the generating To corresponds to one rotation

about the corresponding parabolic ideal boundary component.

Further, corresponding to Theorem 3,6 there holds

THEOREM 3.9, Let Zo be a parabolic fixed point on Γ. Then a division of

U into N.P.s and an inscribed circle γ touching Γ at zQ can be chosen such that

inside of γ is divided into wedge-shaped parts of N.P.s and these parts are

equivalent with respect to the generating parabolic substitution To*

Proof As shown in the preceding proof, f(z) is univalent in a wedge W9

defined by To inside a small circle touching Γ at 20. Take a point a0 in Wo

and divide U into N.P.s having aQ and its equivalents as centres. The N.P.

with the centre a0 will be denoted by No, and the circle touching Γ at zQ and

passing through a0 by γQa Since f{z) is univalent in Wo, there is no equivalent

of a0 inside TΌ Hence by Lemma 3.3 aozo is contained in No, and by Theorem

3.7 there exitst two sides of No which terminate at z0. According to Lemma

3.3 again these sides are equidistant from aQ and its two nearest equivalents on

ro : To(<Zo) and T~J(^o). Hence the two sides are equivalent to each other with

respect to To. Thus an inscribed circle sufficiently small is the required one.

Theorem 3,7 teaches us that only a finite number of the curves on 9f, which

are the images of the sides of N. P. s, terminates at the parabolic ideal boundary

component corresponding to z0, and Theorem 3.9 that if a point P0SDϊ is taken

sufficiently near the component, and if the images of Po in U are taken as cen-

tres, a sole image of the sides terminates at the component.

The parabolic fixed points are dense in itself on Γ, if 9? has at least one

parabolic ideal boundary component, excepting the case when 3ϊ is doubly-

connected.

7, Hyperbolic fixed points

We shall call a regular arc, whose end points are fixed points, completely

regular. Except in the case when 3ϊ is a doubly-connected surface with a para-

bolic and a hyperbolic ideal boundary components, two end points of every com-
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pletely regular arc are fixed points of a hyperbolic substitution.

Corresponding to Theorem 3.8, we can show

THEOREM 3.10. The classes of the equivalent completely regular arcs and the

isolated hyperbolic ideal boundary components of 3ί correspond to each other in

a one-to-one manner.

Except in the cases when 9f is of genus zero and its ideal boundary com-

ponents consist of three parabolic, or of one parabolic plus one hyperbolic ideal

boundary components, there exists always a curve on 9ϊ, which is homotopic to

neither zero nor a curve surrounding a parabolic ideal boundary component.

Therefore the Fuchsian group © contains at least one hyperbolic substitution.

Further, hyperbolic fixed points are dense in itself on Γ.

8. Non-fixed singular points

All the singular points on Γ form a closed set S and are dense in itself on

Γ except in the case when 9ϊ is a doubly-connected surface. Hence S has a

power of continuum. Since fixed points are enumerable, the power of non-fixed

singular points is of continuum.

Every parabolic fixed point is a boundary point of some N.P.s but none of

hyperbolic fixed points is so. Similarly as in a plane76) we have

THEOREM 3.11. The following propositions are equivalent to each other:

1) the connectivity of 3ϊ is finite;

2) there appears no non fixed singular point on the boundary of every N.P.;

3) the boundary of an N.P. consists of only a finite number of sides.

In the proof of this theorem use is made of Theorems 3.7, 3.8 and 3.10 and

the fact that if the Fuchsian group ® is generated by a finite number of substi-

tutions the connectivity of 9ϊ is finite.

CHAPTER IV. DIRICHLET PROBLEMS

1. Problem on an open compact set in pf

In Chap. I we treated Dirichlet problem in the case when ® is an open

compact true subset in % We shall continue it in this section, assuming that

the transfinite kernel of 3ϊ-Φ is non-empty on 9f.

If we can show that any continuous boundary function ψ is resolutive, the

similar treatments as by M. Brelot in euclidean spaces become possible. Actu-

ally we shall proceed on this way.

First we will prove

76> Cf. L. Bieberbach [1], 1 Aufl., pp. 63-64.
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LEMMA 4.1. There exists in © a positive harmonic function U0(P) such that
UQ{P)-> + CC when P tends to every irregular point on the boundary C of Φ.

Proof. Since C is compact in 9ϊ, it is covered by a finite number of simply-

connected domains {Nk} (* = 1, . . . , n) bounded by analytic curves on 9ϊ. We

may, and shall, suppose that the transfinite kernel of the part of C on each N%

is non-empty on 9ϊ. The mapping function t=fk(P) of Nk onto Δ : 11 | < 1 , is

analytic univalent also in a domain Nk'"DN% by the principle of reflexion. We

shall provide a positive function on the ί-plane such that it is harmonic outside

the image Cι on Aa of C, even at £=oo, and tends to +00 as / tends to the

image Eι on Δa of the irregular points E on C.

Since Eι is of capacity zero and an Fσ set,77) there exists a distribution of

a unit mass on Eλ such that the potential Uι(t)9 induced by it, is -f 00 on Eι77)

Further, since C\ is of positive capacity, there exists the equilibrium potential

u«{t) induced by a unit mass on Cj.78) Then Ui(t)-u2(t) is bounded below near

Cl9 tends to -f 00 as t tends to El9 and is harmonic outside Ci9 even at f=co,

whence

J\ t\ =1+6 OV

where ε>0 is taken sufficiently small so that 11 | ?=l+ε is contained in fk(Nk')

— {fk{P)\ -PEΞiVy}. By adding a constant the required positive function in the

f-plane is obtained.

Thus Theorem 2.1 or 2.2 can be applied according as the boundary of 9ί

is positive or null, and we obtain a positive function, which is harmonic on 9f

outside Λτ£ Π C and tends to -f oo as P tends to Nk Π E. The sum of such functions

for all {Nk} gives the function required in the theorem.

Now let c be a continuous function on C. By (1.1) and Lemma 4Λ

Hf{P)-εUQ(P) belongs to Vif for any e>0. Hence ϊϊf{P)-eU0(P)^Hψ{P).

ε being arbitrarily small, there follows H<f(P)^H^)(P)9 whence the equality.

Since H®(P) is bounded clearly, ψ is resolutive. Further it can be shown that

Wiener's solution exists and coincides with E^(P).70)

Since H^{P) is a linear functional of continuous φ, it is expressible by

\ ψdμp, where μp is a measure defined on the Borel class on C and equal to the

harmonic measure. For any <p define lower and upper integrals by

77> Cf. M, Brelot [1].
7S> Cf. O. Frostman [1].
7°) Cf. M. Brelot [2].
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and

\ <pdμp = suτpl\ φdμF φ^ψ and ψ is upper bounded ^-measurable}

\ ψdμp = \nί\ \ ψdμp ψ^ψ and ψ is lower bounded ^-measurable)
J C * v C '

respectively, where ± co are granted to φ. Then after M. Brelot80) we can show that

and

If the class of ^immeasurable sets are defined as usual, it follows from these

relations that in order that ψ is resolutive it is necessary and sufficient that

<ρ is μF-integrable in the narrow sense.

2. Problem on 31 as a covering surface

Let 9ί be an inner covering surface81) with relative boundary82* over another

Riemann surface. Then there exists at least one accessible boundary point of

9ί. Further suppose that 9i has a positive boundary. We shall consider Dirichlet

problem on the complete metric space 9ϊ + ̂  hereafter in this chapter, where

3ΛR represents the set of all the accessible boundary points of 9i.sl)

Similarly as in euclidean spaces lower and upper classes U^and 33 ,̂ and hypo

and hyper functions Hf(P) and ϊjf(P) are defined for any real function ψ on

%<&. If there holds u{P)^Q on 9t whenever u(P) is upper bounded continuous

subharmonic on 9ί such that ϊίrrΓ u(P) <== 0, we will call 9i a surface of D-type.

On 9t of D-type there holds Hf(P)^Hf{P)β

Since at present we are not able to show the resolutivity of continuous ψ

generally, we shall consider the special case when 9ΐ is of finite connectivity

and fulfills the condition (C)SJ) henceforth in this chapter.

Make 9i into 9ίo of planar character by p disjoint simple closed analytic

curves {n} (f = 1, . . . , p). Since the number 2p+n9 where n is the number

of the ideal boundary components of the first class of 9ϊ, is equal to the con-

nectivity of 9ϊ, n and p are finite. Hence % can be mapped onto a domain

outside 2p + n circles or points in the C-plane. By the identification of each of

p pairs of corresponding circles, we obtain a Riemann surface 9ϊ̂  to which 9f

is conformally equivalent. If each pair is identified for the plane domain bounded

only by above 2p circles, a closed Riemann surface ΪRζ is obtained and this

includes % as its true subsurface. The boundary Q of 9ϊ$ corresponds to n

8°) M. Brelot [2], [5]. In euclidean spaces he expressed H and H by Daniell integrals.
81> Cf. Chap. Ill, §1.
82) This means that Sft is begrenzt in WeyΓs sense. Cf. H. Weyl [1], p. 47.
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circles or points in the C-plane, where at least one circle exists because 9ϊ has

a positive boundary.

Further map the universal covering surface 9?f conformally onto U: \z\

< 1. Then to the boundary circles C of 3lζ there correspond completely regular

arcs on Γ : ' 2 I = 1. Taking Theorems 3.1 and 3.2 into account in the mapping

9i( -> 9ί$) -* U, we see that %<& is mapped in a one-to-one continuous manner

onto a set E> on Cζ and the image on 9ί of any curve terminating at a point

on EζΓ\C but not touching C determines a point of ϊ^. 8 3 ) Hence the function

ψ on %ft is transformed into a function on Eς, which will be denoted by the

same letter (f.

Since the transfinite kernel of 9t$—9Ϊ£ is non-empty on jR ,̂ Dirichlet problem

is manageable on 3Ϊ£ by the procedure in the preceding section.

First we will prove

THEOREM 4.1. Let 'Si be a Riemann surface stated above and of D-type, and

φ a bounded Borel function on 2ΛR. Then ψ is resolutive, and if it is extended

to a function Φ on Cζ by an arbitrary way, there holds

Proof. First we fix a point Co on 9?£. Since the mapping of the complete

metric space 3^ onto Eζ is one-to-one continuous, the image of a Borel set on

3ΛR is a Borel set on Eζ. Therefore the function (0 on Cζ, which is the extension

of <p by a constant M > sup φ, is /^-measurable, where μ& is the harmonic mea-
Eζ

sure on 9Ϊ£ at ζ0. On account of Lusin's theorem, we can find for any integer

n an open set GnCCζ such that μζ°(Gn)<l/n and Φ is continuous on Cζ — Gn

= Fn. A function Φn defined by Φ on Fn and by M=ϊnίψ on Gn is upper
. H

semicontinuous Hence there holds UmH^ζ(ζ)^Φn(ζf) on C by (LI). Especi-
ζ +ζ1

ally on Eζ(\C
liin flgf(C) ^ Φn(ζ') έ Φ(ζ')=ψ(C).
ζ-*ζ'

According to Lemma 4.1 there exists on ΪRζ a positive harmonic function UΌ(ζ)

such that UnC) -> +OD when ζ tends to every isolated point of Cζ. Consequently,

if HftiO-sUoiζ) for any ε>0 is regarded as a function on 3ί, it belongs to

the lower class VLf and hence HfS(ζ)-εU0(ζ) ^Hf(P(ζ)). e being arbitrarily

small, there follows H$j>(ζ)έHf(P(ζ)). Further there holds

8;ί< If these facts are known to us in some way, it is needless to impose the condition

(C) upon 9t.
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When n -> oo the last term tends to zero and follows

If we define Φ by extending ψ by M, we obtain

Hf (P(Co)) ̂  # f <

in a similar way. Since Ef(P) = Hf(P), there holds

Co being arbitrary, ^ is resolutive and on

In this we see that the harmonic measure of Cζ—Eζ on 9ϊ$ is zero and hence the

way of extension of ψ is arbitrary.

We shall use the same letter ψ to represent the function on Cζ9 which is

an extension of ψ defined on Eζ.

This theorem shows that 9t of D-type is of F-type34) under our conditions.

The converse is given by

THEOREM 4.2. If ft is of F-type, then it is of D-type.m)

Proof. Let u(P) be an upper bounded continuous subharmonic function on

9ϊ such that ϊϊmu(P)^0 as P-> P ' e % . We shall denote the function u(P(z))

in U by ϋ(z), and the image on Γ of %^ by E2. Along any radius terminating

at a point of EZ9 there holds lirnw(2)^0.

Now fixing any point z0 we shall show ΰ(z0) ^ 0. Without loss of generality

we may suppose z0 = 0. By Egoroff's theorem we can find for any integer n a closed

set FnC.Ez such that the linear measure rn{Γ-Fn)<l/n and Mr- sup {ΰ(reiθ)

έ j ί l εF n } tends to a non-positive value as r~> 1. For a function ψr defined on

j z I = r by ΰ(reiθ) for eiB^.Fn and by M = sup u for other z, there holds

Since as r -> 1 lim Λfr ^ 0 and /z may be taken arbitrarily large, ΰ(0) ^ 0. Thus

the proof is completed.

Consequently if 3ί does not cover a set having a non-empty kernel on the

«) See Chap. Il l, § 2.
85> We impose no other condition upon 91 here.
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basic surface, 3ί is of D-type by Theorem 3.3, Hereafter in this chapter we

shall suppose that 9ί is of D-type.

If for a fixed P0G3ϊ a set function μF{B) on the Borel class 23 on %<& is

defined by Hψβ(P), where χB is the characteristic function of B, it is a measure

on 23 on account of Theorem 4.1. Hence we can define lower and upper integrals

for any function, and μp-measurability of sets on U&R.

The following two lemmas are given to represent H^{P) and Hf-(P) by

integrals:

LEMMA 4.2.86) Hf{P) is the upper cover of H®(P), where ψ*=φ and ψ is

upper bounded and upper semicontinuous on 3ΛR. The similar fact holds for H^

LEMMA 4, 3. If <f is an upper bounded Borel function on %<&, then

on at.

Proof It is sufficient to prove this for φ£θ, because Hf_M{P) =H®(P)-M

and Hf^M(P) =ϊϊf(P)-M for any finite constant M Hence <ρ will be supposed

to be non-positive.

When φ is bounded, it can be shown without difficulty that Hf{P) = \ φdμp.

For any Borel φ ̂  0 we have by Lemma 4.2 and Vitali-Caratheodory's theorem8^

Hf(P) =

where ψ^φ and ψ is bounded lower semicontinuous on 2^. If f <fdμp~ -oo

there holds Hf(P) =Hf(P) = - oo. Hence suppose f ψdμp > - oo.

Now divide [09 -oo) such that O = co>Cj>c2> . . and denote the set {P;

Cn<ψ{P)^cn-ι) άy gΛ. Then f ^ P = Σ ( _ φdμ?= ̂ HflP),where φn = φ on

(&n and =0 on S$H~SW. Let un(P) be a continuous subharmonic function such

that given ε>0 and a fixed point Po, Hf(Pύ) <un(Po) +4nr and Km un(P)

^φn(P'). Then^Un(P) is subharmonic on 3£ and ίίm" Σw«(P) ^ lϊm" un(P)

<gφn(P')=φ(P'). This shows that *Σun(P)(Ξllf.m Therefore

Cf. M. Brelot [2]. He proved this lemma in euclidean spaces.

Cf. S. Saks [1], pp. 75-76.

If X««(P) is not continuous, it is necessary, and possible, to replace it by the greater
n

continuous one which belongs to U^. Cf. M. Brelot [2]
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f + t. ε being arbitrarily small, ff

Since this holds for any P u e9ί, we have ~Σ,HfJp) άHf{P). Therefore holds

Hence there follows

Hf(P)=Hf(P)= ( ψdM

p.

Taking Lemmas 4.2 and 4.3 into account we have at once

THEOREM 4.3. There hold for any ψ

and

Corollary. In order that <f is resolutive it is necessary and sufficient that

ψ is μp-integrable in the narrow sense.

According to Theorem 4.1 there holds Hy(P(ζ))=Hft(ζ) for any bounded

Borel function <f on %%. Any upper bounded Borel function ψ can be approxi-

mated by bounded Borel functions {<pn} such that <ffiϊψ. Since Hfn(P(ζ))

-Hf^(ζ) and we can express them by integrals, the limits may be taken and

we have Hf(P(ζ))-Hfζ(ζ). Borel sets corresponding to each other on %<$ and

Cζ. we get further by Lemma 4. 2

THEOREM 4.4. There hold for any φ

and

Let 9ϊ' be a covering surface of finite connectivity over 9ϊ which has been

considered hitherto. Then the set %^ of all the accessible boundary points of

ίϊV are defined relatively to the basic surface of 9?, and 9i'-f 2ΛR' may be con-

sidered as a kind of covering surface over 9{ + ̂ . Further we assume that 9ϊ'

is of D-type too.9fn Under these conditions we can prove in a similar way as

M. Brelot00*

THEOREM 4.5. Let <f(P) be a function 1^ ? and define a function ψ{P') on

%w by Hf(P) or Ήf(P) ivhen Pr lies over an inner point P of 3ΐ5 and by ψ(P)

ivhen P' lies over a point P of 2ΛR. Then there holds

Hf(Pf)=Hf{P) or fiW(P')=Hf(P)

89) We will propose a question whether W over 3ft of D-type is always of D-type too or
not necessarily so.

9°) M. Brelot [5].
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respectively,

Up to this place in this section we have investigated Dirichlet problem on

9ΐ of finite connectivity. But when 91 is a compact domain φ in a Riemann

surface and the transfinite kernel of its complement is non-empty, Dirichlet

problem on Φ -f %% can be solved in a similar way as by M. Brelot in euclidean

spaces,9^ even if the connectivity of Φ is infinite.

On the other hand, R. Nevanlinnaon treated Dirichlet problem on Φ as follows :

Map ΦM onto U \ \ z \ < 1 conformally. Then by Theorem 3.3 %% is mapped

to a set Ez with measure 2- on Γ: I 2 | = 1, and a function φ on S$ is trans-

formed into a function Φ on E2, where the function may be supposed to be

defined on Γ. If the image on Γ of a set Z f C ^ is linearly measurable on Γ,

E is called harmonically measurable, and if ψ is integrable on Γ the Poisson

integral'™ with the boundary function ψ on U is transformed into a one-valued

harmonic function on Φ and this is called the solution.

We can prove a theorem similar to Theorem 4β5: There hold H^(P')

= Hψ(P) and Π®κ(P') = Bf(P), where ψ is the function on %$*> defined by

means of <r. From this and Theorem 4*4 we have

)=-H^(z) and Bf{P(z))=3*(z).

In these relations we see that Nevanlinna's method is equivalent to the method

by Brelot and us,

Though our method was applied only for a compact domain in a Riemann

surface or an inner covering surface of finite connectivity, Nevanlinna's method

is available for any surface of F-type irrespective of its connectivity.93* This

gap is not yet filled at present

3β Applications

Applications of Theorem 4.5 will be discussed in thie section.

Application 1. {Extension of Lόivnefs lemma™). Let iv=f(z) be a bounded

regular function in U : ' z | < 1 and suppose /(0) = 0, |/(2), ! <1. Denote by

/I*?1'8) the limiting value of f(z) at z-ei% along Stolz's paths, which exists a3eα

9J> R. Nevanlinna [3], He treated the case when ψ is defined on the ordinary boundary

€ oi %. \i φ is ϊftsaτά«d as -h bov^feey ί\wκΛύκ\ OΪ\ %%, the hypo aud hy^er functions

obtained on D as on 5ft in this section coincide with those discussed in § 1 of this

chapter,

•'2> For any integrable φ the Poisson integral equals Πτ/p.

as) \ye c a n p rOve that any Borel set on %% is harmonically measurable.
04) K. Lδwner [1], Y. Kawakami [1]. S. Kametani and T. Ugaheri [1]. M. Tsuji [2].
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on Γ : I z | =1 by Fatou's theorem. Taking a set X on Γ where 1 f(eiθ) | = 1, the

set {/(£lθ) ^ ' 9 ε l } on the w-plane will be denoted by Xw.

Now we shall apply Theorem 4.5, by considering [ w |<1 as 3ϊ, the Riemann

surface of the inverse function of f(z) as 91' and the characteristic function of

Xw as the boundary function φ on £$ = { j w | = 1}. Then by Theorem 4.5

m{Xw) =Sf(0) = H^' (ί01)^Hfί'([0'])Ji5)

where ψι is a function on %<$ defined by 1 at points which correspond to points on

X and by 0 at other points and [0] is the point on 3ί; corresponding to z=0.

By Theorem 4.4

and hence we have

Similarly there holds

If X is an analytic set on Γ, Xw is so too and hence linearly measurable.

Therefore we can write the above inequalities in m(Xw)~m(X). However, even

if X is measurable on Γ, Xw is not necessarily measurable on 3ΛR. N. Lusin-J.

Priwaloff and P. J. Myrberg96) have shown that there exist cases in which m(X)

= 0 but m(Xw)>0. If a non-measurable subset XwdXw is chosen, the set

{z; f(z)&Xw}ΠX^X' is a null set on Γ. Thus X' is measurable but X'w is

not so. Conversely let Xw be a measurable set, and put {2; f(z)ζ£Xw) =X.

Since by Theorems 4.4 and 4.5 there holds Hf{w) = Hf (Pf) =H%(z), φ is meas-

urable. Thus X= {z; φ{z) = 1, 1/(2)| = 1} is measurable.

Next we shall investigate the sign ^ . Taking account of Theorem 4.3 there

holds

=Hf(0) = Hψ

where [%] and [3ί] mean the subsets of 2 ^ whose projections lie on % and

9i respectively. If tn(Xw)>09 then ff?(0) and hence Hf{w)>Q. If ^ ( [ 3 ί ] )

= 0, then the harmonic measure of the points on Γ, whose image by f(z) lies

9:>) m and rh denote the Lebesgue linear inner and outer measure respectively. When m—mf

it is denoted by m.
%) N. Lusin and J. Priwaloff [1], P. J. Myrberg [2].

9:) This equality holds, because H^ is harmonic and hence /^-measurable.
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in 3ϊ, is zero by Theorem 4.4. This means that f(z) belongs to class (U),ίW)

and conversely if f(z) belongs to class (U) then ^([9t])== 0. Now it has

become clear that itf(z)φ class (U) and m{Xw)>0, then m(Xw)>m{X). The

same is true for rh. Moreover we can show that if f(z) e class (U) and

X={z; /(2)£l«,}, then m{Xw)^m(X) and m(Xw) = m(X).

These results include all the known results as the extension of Lδwner's

lemma*

Application 2. Let f(z) be the same function as in the preceding applica-

tion. If a harmonic function u(w) can be expressed by a Poisson integral in

9ΐ : |zέ;|<l, the composed function u(/(z)) is also so in U.m We shall prove

this theorem using Theorem 4.5.

Let φ be the boundary value of the Poisson integral of u{w). Using the

notation ψ in Theorem 4.5, it follows by Theorems 4.4 and 4.5 that

u(ιv) = Hf{w) = Hf (P') = H%(z).

Hence u(f(z)) = Hy{z). This shows that u(f(z)) can be expressed by the Pois-

son integral with the boundary function ψ.

4. Regular points

We shall call P 0 G%t a regular point, if lim Hf-(P) = ψ(Po) for any bounded

function ψ on <£<$ continuous at Po. Otherwise the point will be called irregular.

At a regular point Po (1.1) and (1.1') hold good. Further, if lim u(P) = Λ < +oo
P->PQ

for a subharmonic function u(P) and if the inner harmonic measure of a set

is zero, then Po is an accumulating point of %<$-Έ and there holds

lim ( lim

Therefore at regular points a principal theorem of cluster sets for analytic

functions1011 is valid.

At irregular points, however, it holds not necessarily, differing from the

case in euclidean spaces. We shall show an example for it.

Let 9ϊ be the part, over |w; |<l, of the Riemann surface of the function

\ogιv, and map 5ft onto U: \z\ < 1 . Then w-0 corresponds to a point z0 on Γ:

\z\ = 1 . When 3ί represents the part of 3? which corresponds to a semi-circular

disc of U divided by the diameter through z*9 the harmonic measure on ?)ϊ of

M> Cf. W. Seidel [2] and O. Frostman [1].
M> Cf. M. Ohtsuka [1].

I0°) Cf. M. Brelot [3], [5]. He proved these results in euclidean spaces.
I01; See Lemma 5.1.
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the part of its boundary over \ιv\ = 1 will be denoted by u(P). This function

tends to 0 as P tends to the boundary point Po over tv = 0 along the boundary

of 9ί, but to positive values as P tends to Po on paths, whose images in U make

angles between 0 and -| with Γ. Consequently if exp(u(P)-tiv(P)), where

r(P) is the conjugate function of u(P), is considered on 31, the theorem cor-

responding to Lemma δ. 1 does not hold for it at PQ.

There exists the Green function on 3ϊ, and it tends to 0 even at the irregu-

lar point Po, differing from the case in euclidean spaces.

Next subject tasked to us is to estimate the measure of irregular points on

£<R. At present, however, we have no knowledge about it.

CHAPTER V. CONFORMAL MAPPING OF A RIEMANN SURFACE

WITH A RECTIFIABLE BOUNDARY

1. A lemma from the theory of cluster sets

In the usual theory of cluster sets we investigate cluster sets of functions

on a plane domain into another plane. If a Riemann surface 9t is an inner

covering surface1023 over a basic surface, and if f(z) is an analytic function on

9i into another Riemann surface, then cluster sets can be defined for f(z) at

any point of S$. However, a case where a fundamental theorem (below Lemma

5.1) does not hold was shown in the end of Chap. IV. Therefore we shall con-

sider functions on plane domains into Riemann surfaces. For these functions

usual methods are available to some extent, and certain results are obtained. But

merely a fact, which will be used later in this chapter, will be stated in the

following.

Let D be a plane domain, C its boundary, z0 a point on C, 91 a Riemann

surface, and f(z) an analytic function on D into 91. We denote the part of D

and C in j z — zo \ < r by Dr and Cr respectively, and the set of values taken by

f{z) in Dr by φ r . Then S'f^ is defined by n(®r)β, l03> S^ by Π( U S^) β .
r>0 r>0 ZQΦz&r

Using these notations we have
LEMMA 5.1. (Extension of Iυerseήs theorem m)). Let z0 be a non-isolated

boundary point of D. Then there holds (Si™)6C(SΓ0V, where Sb denotes the

boundary of S taken relatively to 3ί.

Proof. Suppose that there is a point fteϋR such that it belongs to (S^)*

but not to (S{

z

f

0

])b. Then we can select a small number r > 0 and a neighborhood

102) g e e 54)#

m> Closure is taken relatively to 3t. S{

z™ may be empty, different from the usual case.
104> F. Iversen [1]. K. Kunugui [1J. M. Brelot [3].
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N of Po such that Naf\( U Sz

Ό))a = 0. Let 11 | < 1 be a local parameter circle

corresponding to iV, in which t = 0 is the image of PQ, and Δ the inverse image

of N by /(z) in D. Then 20 is a n.on-isolated boundary point of Δ, and for the

composed function t(f(z)) on Δ into the ί-plane, the cluster set S£b) lies on

111 = 1. On the other hand S^ has t = 0 as its boundary point. This contradicts

the following theorem due to M. Brelot:105)

If D is a bounded open set in the z-plane, if zQ is a non-isolated boundary

point of D, and if f{z) is regular bounded in D, then {S^))bC(S!^))b.

2. Measure-theoretic lemmas

In the first place a theorem due to H. FedererJ06) will be cited as

LEMMA 5.2. If P=f(p) is a function on a metric space Ω into another space

σ, if Λ is an outer measure on σ, if f(B) is A-measurable for every Borel set

B and if ($yC33 {Borel class on Ω) is a sequence of finite partitions of a set

5 G S such that suρ{<5(S); Se©y}107)-*0 as j-»<*>, then the function nB(P),

which is defined on a by the number of pEϊB such as f(p) = P, is A measurable,
n n

and for the set function λ(B) defined on 33 by sup {*ΣA(f(Bi)); *ΣBi = B} there

holds
l = f n*(P)dΛ(P).

From these equalities we know that λ(B) is completely additive on 29. The

λ-measurability of sets in Ω is defined as usual and λ becomes a measure on the

class of Λ-measurable sets.
We shall say that a not necessarily additive interval function U(I) is abso-

n

lutely continuous on /if for a given e >0 there exists y >0 such that *Σ\U(Ii)\<e

whenever the sum of the lengths of non-overlapping intervals {/,} (i = 1, . . . , ή)

in / is less than y.
We will give two lemmas concerning the length of a curve.

LEMMA 5.3. // f(t) is a continuous function on 70: 0 ^ t ^ 1 into a metric

space σ, if p is the distance on a, if L is the length defined in the usual sense,

and if Z(/o)< + co, then

Δt

1(15> M. Brelot [3].
lf)6) H. Federer [1],
I07> ό(S) denotes the diameter of S.
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exists a.e. and, denoting it by H(t), we have H(t) = L'(t) a.e. on h and

\ H(t)dt*kL(L)

for any interval lido, equality holding if and only if the interval function

= j 0(/(ί J),/(/2)), where 7=[/j, ί j , is absolutely continuous on 7,.I08)

Proof. The upper Burkill integral of the interval function U(I) gives the

usual length L{I) of the curve {f{t)\ / e / } , and we can prove the existence of

ffw a.e. on /,
and the equality

H(t)=:L'(t) a.e. on 70

as properties of the Burkill integral.I09)

It is easily shown that the absolute continuities of L{I) and of U(I) are

equivalent, and well-known that there holds the inequality

f L'{f)dt£L(Ii) for any /,C4

equality holding if and only if the interval function L(I) is absolutely con-

tinuous on 7,.ll0) From these facts the proof will be readily completed.

LEMMA 5.4 If f(t) is a continuous function on 70 : 0 ̂  t ^ 1 into a metric

space a, if L(I) is the length defined in Lemma 5.3, if A is the outer lengthlll)

on a, and if λ{B) is the measure defined on S3 in Lemma 5.2,m) then there holds

Proof There holds for any interval [t\, U~] in 70

Hence if £(70) and λ(I0) axe finite, then given ε>0 we have for a sufficiently

small subdivision of 70: 0 = U < ti < - - < tn = 1,

and

los) Then we shall say that f{t) is absolutely continuous on /i.
m) Cf. S. Saks [1], pp. 165-169, T. Radό [2], Part III, § 1.
J1°) Cf. S. Saks [1], p. 119.
]11> C. Carathέodory [2], Cf. S. Saks [1], p. 54.
112> It is to be remarked here that f{B) is an analytic set and hence /]-measurable.
1 1 3 ) Cf. S. Saks [1], pp. 123-124.
1 1 4 ) Since Λ = 0 for a single point, Λ-measures are equal for open, half open and closed

intervals.
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where use is made of Lemma 5.2. Thus L(IQ)~ λ{IQ). By similar inequalities

we can show that the infinity of one induces the infinity of the other.

3. Rectifiabiljty of boundary of a Riemann surface

In this chapter let 3ί be a simply-connected Riemann surface of hyperbolic

type as an inner covering surface over a metric Riemann surface a. Let the

distance on a be p(P j9 P2) and assume that at every point Pε<7 there exists a

neighborhood N and a local parameter iv such that

(5.1) 0 < m <
 \W(PΪ)W(&)\-

 fc{w{Pi)>

for Pi # Po e N, where m and M may depend upon P and w. If ω is another

local parameter of iV, a similar inequality holds in such neighborhood iV' of P

as N'aCN also for *(ω(Pi), ω(P2))> which is defined similarly as in (5.1), be-

cause w/(α>)#0 on iV' and hence

for

Let us consider the accessible boundary points of 51. A curve on 9?, which

terminates at two different accessible boundary points, is called a cross-cut and

divides 3ί into two parts. Take an infinite sequence of cross-cuts {qn} on 9ί,

whose end-points are different from each other and whose projections on a tend

to a point as w-» oo. Further suppose that qn~\ and qn+ι He in different parts,

into which 9t is divided by qn, and denote the part which contains qn+ι by 3ϊ«.

We designate such a sequence {9tn} a fundamental one. Two fundamental se-

quences {9ί«} and {3t'Λ} are called equivalent when for any assigned integer m

there exists an integer n such that 3ίmD9ί'« and 3^mD9i«. To every class of

equivalent fundamental sequences let a boundary element be made to corre:

spond.116) Now we can introduce a topology into the space consisting of 3ϊ and

the set (% of all the boundary elements quite similarly as in Chap. Ill, §5,

The intersection of the closures of the projections on a of {9tΛ}, which deter-

mine a boundary element P§, will be called the projection of Pg, and P@ will

be said to lie over P when P belongs to the projection of Pg.

If 3t-ffeft is a compact space,117' and if there holds

I15> This assumption expresses that the distance p is comparable locally with the euclidean

distance.
116> C. CaratheΌdory defined this for a plane domain in [1].
J j 7 ) ΐfi + (Sift is not necessarily compact. Compare this with 7 2 ). It can be shown that it is

compact when the maximal covering number of 3ft over σ is finite.
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(5.2) [n{P)dΛ(P)<+ <*>"»

where n(P) is the number of the boundary elements lying over P and A is the

outer length on a, then we shall say that the boundary of 3i is rectifiable.

4. Continuity of the mapping function
Hereafter we suppose that the boundary of 3ϊ is rectifiable. Mapping U:

I z I < 1 onto 3ί conformally and taking the projection 3ί -> a, we denote the map-

ping function of U into a by f(z). For this function we have

T H E O R E M 5.1. f(z) can be defined also on \z\<ύ\ so that it is still continu-

ous there.

Proof. The part of σ over which the boundary elements lie is equal to

Π (/(£>*) )VJ9) where Dn is the ring domain 1 - — < | 2 | < 1 . As that part is

closed and has finite Λ-measure by (5.2), f(z) does not take values of an open

set on </ in U sufficiently near Γ. Then it is easy to show the one-to-one cor-

respondence between % and Γ by making use of Lindelof s and Koebe's theo-

rems.120* Thus n(P) is equal to such a number of 2 G Γ a s P^Sf].

Let F be a closed arc on Γ, and take a sequence oί cross-cuts in U which

cut off open arcs {Gn} from Γ and {Un} from U such that GniF and U% \ F.

Then f(Un)
a I SF as w-» oo, where S* = U S{

z

u). Therefore SF is a continuum or

a point on a. When E is a half open arc, SE is the union of an enumerably

infinite number of closed sets and hence A-measurable.

Let ZQ be any point on Γ, take a sequence of open arcs {Gn} such that

Gn I zo, put Gn - Gn+i = ̂  + E{*, where j?^ and E(n are half open arcs lying

on each side of z0, and put gE? = Δf (f = i, 2). Since by (5.2)

i)) tends to zero as n-> oo. Then we can assert that the di-

ameter of SΛ^J) tends to zero as n-> oo. For if the diameter did not tend to

zero, there would be two points of S^] for all n, which have positive distance

Po to each other. Then Λ-measure of S^n would be not less than p 0 >0 for all

n and this is a contradiction. Now S{Q)nu = ΓUSΔJ/O* turned out to be a single

For the definition of lower integral see Chap. IV, § 1.

(f(Dn))a means the closure of the set tf(z) s e Dw}.

Is it possible to show the one-to-one correspondence without using the condition (5.2)?

.Γj and Γ« are two sides of zo on /λ

https://doi.org/10.1017/S0027763000012253 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000012253


RIEMANN SURFACES 129

point. The same is true of S^s\ As it is seen previously that S%] is not

identical with o, there holds

Si™ = S£ f ) = Sff=one point

by Lemma 5.1. By the arbitrariness of zθ9 f(z) can be defined so as to be con-

tinuous everywhere on | z | ^ 1.

5. Correspondence of null sets

We shall denote the set {2GΓ; f{z)&E') for a set Ef on a by f~ι(Ef) and

say that/-His7) on Γ corresponds to E\

When a function is bounded regular in U and continuous on U-\ Γ and the

image of Γ is rectifiable, it was shown by F. and M. Riesz122) that the image of

a null set on Γ has a linear measure zero and vice versa. Also in the present

case we can prove

THEOREM 5.2. Under the same condition as in §4 the null sets on Γ and

the null sets on σ correspond to each other.

Proof. First we assume that f(z) is absolutely continuous on Γ. Since

Λ(/o) = f n{P)dΛ{P)< + 00 (7o = [0, 2τr]) by Lemma 5,2 and (5.2), it follows by

Lemmas 5.3 and 5.4 that there exists H(θ) = limp(/V ( θ + Δ 9 ))? f(eiQ))/J6 a.eβ on

Γ and holds

(5.3)

where / = [#i, #2] and L(I) is the length of the image on a of eiBieiQ*. From

(5.3) follows λ(G) = f H(d)dO for any open set GCX Further holds for any
JG

Borel set B
) - inf

Taking account of Lemma 5.2 nB(P) is A measurable and

(5.4) f ns(P)dA{P) = [ H(d)dβ.

Now let E be a null set on Γ. Then there exists a G5 null set EιZ)E and

(5.4) holds for £,. Hence ( nFidA = 0. Since /(£,) is equal to {P; nEi(P)^l}9

Jσ

A(f(Ei))~Q whence also Λ(/(Zs)) = O. Thus a null set on σ corresponds to a

null set on Γ.

Next suppose that H(θ) vanishes only on a null set on Γ. If Er is a null

I - gee sβ).

m> Cf. A. P. Morse and J. P. Randolph [1].
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set on a, there exists a Gδ null set £ l l )£ ' 1 2 3 ) and f'^EΊ) is a Gδ set on T.

Therefore (5.4) holds for f-ι(E\). Since f tf/-j(ί ;)rfΛ = ί τί<2Λ = 0, there fol-

lows f , H(θ)dθ = 0. Hence m(/-J(£Ί)) = m(f'1{Ef)) = 0. Thus a null set
J/-J(/Γj)

on Γ corresponds to a null set on a.

In the following we shall show that f(z) is absolutely continuous on Γ and

H(θ) vanishes only on a null set on Γ.

As we have seen in the proof of Theorem 5.1, near Γ f(z) does not take

values of an open set on σ. Hence we can map the universal covering surface

of a on the w -plane such that, taking a branch, the meromorphic function w(z)9

which corresponds to the mappings U -><?-» w -plane, is bounded near Γ. It is

resolved in U in the form:

(5.5) w(z) = ( Π ~^~)g(z) = Hz)g(z),

where {ock} are poles of w{z) in U and g(z) is regular in U and continuous

on Γ.

We shall evaluate the usual length Lg(I0) of the curve {g(eiQ); 0e/o} on

the w-plane. w may be taken as a local parameter for every iV in §3. Since

the ft -image of Γ is closed in the w-plane, it is covered by a finite number of

the w images of such A7' as N'a(ZN. Let the selected N' be {Ni} (i = 1, 2, . . .,

n). Since (5.1) holds in every Λr, for the selected branches, there exist m and

M such that

(5.6) 0<m<κ(w(Pι)9 w(P»))<M< + «>,

where Pj and P? (Pi # P2) belong to some one Ni and w(P}) and e#(P2) are the

images by a certain branch selected for Ni. Since f(eiQ) is continuous on /',

we can take a subdivision of Γ such that the image of every piece lies in a

certain A7/. For such a subdivision we have by (5.5)

± \

From (5.6)

the first sum ^ ^ ^ ^ * ^ ^ ' ) , / ( ^ ) ) - £ Z<Λ) < +

(such terms as w{eiQk-i) = w(eiQk) are excluded),

the second sum ^ Λf,l] | A(^'θ*-0-- h(ei6*)\
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where LA(/O) is the length of the curve {h(eiQ); 0G/O}, and is finite, since h(z)

is regular also on Γ. Therefore Lg{I0) = sup^Σ\g(ei^-ή-g(eiQk)\ is finite.

This once established, it is possible by the usual method124) to show that

g\z) is of bounded type in U, that g{eiQ) is absolutely continuous and that

g'{e^) exists a.e. on Γ. Therefore w'(z) -gr{z)h(z) + g(z) h\z) is of bounded

type and w'(eiθ) exists a.e. on Γ. Furthermore since for such θ and 0p

as f(e^') lies in a certain ΛV, and f(eiQ)*f(e'9') there holds

)9 zv(eiQ'))\w{eiQ)-w{ei0')\

M | ^ / θ ) - # ( ^ " θ ' ) | + MM, \h{eiQ) -h(eiQ')\

and g(ei0) and Λ(£ίθ) are absolutely continuous, f(eiθ) is also absolutely con-

tinuous on Γ.
Since on account of Lemma 5.3 H(d) exists a.e. on Γ, also

lim κ(w(e^+AQ)), w(eiQ)) = H(θ)/ \ w'(eiQ) \
ΔΘ-»0

exists a.e. on Γ. If we denote this by tcw(θ)9 there holds

(5.7) H{β) = κw{d)\w\ei"){.

Since w'{z) is of bounded typeJ25) and /cw(θ)^im>0 by (5.6), H(d) vanishes

only on a null set. Thus the proof is completed.

This theorem may be regarded as a generalization of R and M. Riesz's

theorem and be stated in the following form in connexion with Chap. IV:

THEOREM 5.3. On a Riemann surface ivith a reciifiable boundary Dirichlct

problem is manageable by the procedure in Chap. IV, §2, and a set on the

boundary has harmonic measure zero if and only if its projection on a has zero

Λ-measure.

This is applicable, for instance, to the following theorem due to P. J.

Myrberg:12ίi)

Let {an} be a sequence of points in \w\ < 1 and radial slits be drawn from

every an to γ : j w \ — 1. If the total length of the slits is finite, the harmonic

measure of γ with respect to the slit domain is positive.

It is known that if the total length is infinite there appear cases in which

the assertion of this theorem is not true.127) Hence the condition (5.2) is neces-

sarily to be imposed.

Let D b e a plane domain outside a set C of positive capacity, but of outer

ί24> Cf. F. Riesz [1], M. Tsuji [1].
1?5> See the extension of F. and M. Riesz's theorem in p. 197 of R. Nevanlinna [2].
126> P. J. Myrberg [2].
J2?) Ibid, and N. Lusin and J. Priwaloff [1].
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length (linear measure) zero. When the universal covering surface of D is

mapped conformally onto U, C corresponds to a set of linear measure 2π on Γ.

From this example we know that the compactness of 9ϊ -ί- @5« is necessary for

the validity of Theorem 5.3, even if Dirichlet problem is manageable on the

Riemann surface by the procedure in Chap. IV, §2.

6. Equalities for the length

We obtained some equalities for the lengths of sets on Γ in §5. Now we

shall complete them in this section.

Let E be any linearly measurable set on Γ. Then there exist an Fo set Ex

and a Gδ set E2 such that E1C.EC.E2 and mEi = tnE=nιE2. From (5.4) we

know that \ nEldΛ - \ nEodA and this shows the Λ-measurability of the func-
Ja Jo

tion nE(P), because nEι(P)£nE(P)^nE2{P) and both nEι(P) and nE2(P) are

yl-measurable. Further there holds

(5.8) j nκ(P)dΛ{P) = ̂  H(θ)dθ.

It can be proved similarly that for any Λ-measurable set E' f~ι(Ef) is linearly

measurable on Γ.

From (5.7) and (5.8) there follows

f nE(P)dA(P) = [ κw(θ)\u/(eiQ)\dθ
Jσ JE

for any linearly measurable set ECΓ. We can show this equality also in the

case when a is mapped on the w-plane so that the function w{z) on U is not

bounded near Γ9 i.e., w(z)= 00 at some points on Γ.

Finally let W=Ψ(P) be a non-constant one-valued meromorphic function

on a and denote the function Ψ(f{z)) by W{z)Λ Then also in this case W'(ei9)

and κw(θ) = lim tc{W(ei{Q+AΌ)), W(e'*)) exist a.e. on Γ and there holds for any
ΔΘ-»0

linearly measurable set E

f nE(P)dΛ(P)A κw(β)\W{eiQ)\dθ.

Examples. The variables w and W in examples are supposed to have the

same meaning as above.

1) Let a be a simply-connected Riemann surface of elliptic or parabolic type

and define the distance p(Pi, ft) by | w ( f t ) - κ;(ft)|/Άl-f |w(Pj)i2)(H-

Then κw(θ)=l/(l+\w{ei0)\η.

2) Let a be a. closed surface of the genus 1 and define the distance ρ(Pu

P2) by min|M;(Pi)-z(;(P2)|, where tv(Pι) and w(Pz) represent the points cor-

responding to Pi and P2 respectively on the w-plane. Then κw(θ)= 1.
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3) Let a be a Riemann surface different from those stated in 1) and 2), and

define the distance p(P,, P2) by min | w(P,) - ιυ{P2)\/\ 1 - iϋ(Pi) w(P2) |, where

and w(P2) represent the points corresponding to Pi and P2. Then Λ:M;(

- |w(e ί θ ) | 2 ). If the distance is given by log ((l + p(P,, P 2))/(l-p(P,, P s))),

the value of K doubles.

4) Let ί b e a covering surface over the Riemann sphere and define the

distance p(P,, P2) as in Teichmiiller's metric.12S) Then locally ρ(Pj,P ) =

\W{P1)\2)(l+\W(P2)\-) except over W=oo or at the branch
points of a and κw{θ) = 1/(1 + | W(eiQ)\2).

5) Let a be a Riemann surface regarded as a Finsler space, ds- = F(#, jy,

dx, dy) the infinitesimal distance represented in a local parameter circle, and

C={P(t); O^t^l} a continuous curve on a, whose image in any parameter

circle is absolutely continuous and rectifiable in the usual sense. Then the in-

tegral arc length \ of C will be defined by I y F(X, y, ~9 -zfAdt as a Lebes-

gue integral, and a metric on o will be introduced by distance p(Pi, Pa)

= inf \ , where C is a curve possessing the properties stated above and joins
Jc

Pi with P2. We shall call this the geodesic distance. It is known that this met-

ric gives the topology equivalent to the original one of σ9 that it satisfies the

inequality (5,1), and that the Z-length defined by this metric is equal to \ for
») c

any C mentioned above.129' Further there holds d^ldt=sjF(x, y, ~, ^ a.e.

on [0, 1].
Applying these results we have from (5.3) and (5.7) a.e. on Γ

where ιv = x + iy. The same is true of the variable W, In examples 1) to 4)

every a can be regarded as a Riemann space with the infinitesimal distance of

the form: ds = λ(w)\dw\ or λ{W)\dW\. Then fcw(θ) = λ(w(ei0)) or κiV{θ)

- λ{W{eU))) a.e. on Γ. The geodesic distance is equal to an arc length along

a great circle on a Riemann sphere in 1), to p(Pj, P2) in 2) and 4), and to

,, P2)) in 3).

12S) Cf. Chap. I l l , § 1.
12ί)) Cf. M. Morse [1], pp. 67-68, S. B. Myers [1].
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