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Introduction

The object of this paper is an investigation of existence problems and
Dirichlet problems on an abstract Riemann surface in the sense of Weyl-Rad6?
or on a covering surface over it,” and of boundary correspondence in the con-
formal mapping of the surface.

In 1923 O. Perron introduced a new method to Dirichlet problem® and this
was developed by M. Brelot.” M. H. Heins remarked in 1949 that this method
is available also on a compact domain in a Riemann surface,” and it has been
used after him.® In Chapter I, §1 a brief exposition of this method is given,
and in §2 abstract Riemann surfaces are classified into two types after R.
Nevanlinna ;” either with null or positive boundary. The types can be decided
by Perron-Brelot’s method without using any exhaustion, and the separability of
any Riemann surface® can be deduced from the existence of a harmonic mea-
sure. Further some properties of surfaces with null boundary are stated there
in preparation for the next chapter.

Chapter II is concerned with existence problems of harmonic functions on
Riemann surfaces, which have the singularities given in compact parts. The
well-known method using the Dirichlet principle is described in detail in H. Weyl
[1]. Along this line he published the method of orthogonal projection? and
this method has been used by K. Kodaira to show the existence of functions.”
Also L. Ahlfors strengthened the base of the Dirichlet principle.’) The harmonic
functions thus obtained have finite Dirichlet integrals outside the singularities.
Another method is alternierendes Verfahren due to H. A. Schwarz and C. Neu-
mann. The latter showed already in 19-century the existence of the harmonic
function having a preassigned singularity on a closed covering surface over a
Riemann sphere,’”” and this existence theorem was extended to the case when

1 This is a complex 1-dimensional analytic manifold. Cf. H. Weyl [1], T. Radé [1].

2) As to covering surface, see S. Stoilow [1].

% 0. Perron [1]. Cf. also R. Remak [1], T. Radé and F. Riesz [1], C. Carathéodory [3].
4) M. Brelot [2], [4].

5 M. H. Heins [1]. Cf. also L. Ahlfors [2].

6 In M. Parreau [1], for instance.

7) R. Nevanlinna [3].

% This was first proved in T. Radé [1].

9 H. Weyl [2].

M K. Kodaira [1], [2].

I 1. Ahlfors [3], [4].

17) C, Neumann [1]. Cf. also W. F. Osgood [1].
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the surface has a null boundary by R. Nevanlinna.® Quite recently L. Sario
applied alternierendes Verfahren more widely’ and R. Nevanlinna discussed

existence problems from the viewpoint of integral equations.””® When the surface
has a null boundary, the solution, which is bounded outside the singularity given
in a compact part, has a finite Dirichlet integral there and vice versa.’® But
this is not true generally, when the surface has a positive boundary.’”” In Chap-
ter II the existence problems are discussed by Perron-Brelot’s method on a sur-
face with positive boundary, and by a method due to M. H. Heins' on a sur-
face with null boundary.’”

Once existence theorems are established, uniformization becomes possible;
for instance, by Koebe’s original proof.?” Chapter III is devoted to the study
of boundary correspondences in conformal mappings. In the first half the image
on the unit circle I' : | z| =1 of accessible boundary points is investigated when
the universal covering surface of R is mapped conformally onto a unit circular
domain U : |z | <1,”Y where R is a covering surface over an abstract Riemann
surface . In R. Nevanlinna [3] he stated without detailed proof that if the
transfinite kernel of R —R is non-empty on R then the measure of the image
on I of the accessible boundary points is 27 under the following assumptions:
(A) the projection of R is compact in R; (B) R covers R simply, and proposed
the question: Is it possible to remove the assumption (B)? An answer to it
is given in § 2. Next, the boundary correspondence in the mapping of multiply-
connected plane domains was studied systematically in the first edition of L.
Bieberbach [1], but some parts were omitted in the second edition. R. Nevanlinna
and O. Teichmiiller?® pointed out the faults in the first edition and corrected some
of them, but the part concerning parabolic fixed points remains still indistinct.
In the second half of this chapter the correspondence between ideal boundary
M R. Nevanlinna [5].

) 1., Sario [1].
35) R. Nevanlinna [7], [8].

16) This was shown in R. Nevanlinna [6].
1

=)

) L. Sario [1] discussed a case in which a solution exists such that it is bounded and
has a finite Dirichlet integral at the same time outside the singularity.

1) M. H. Heins [1].

19 1 could not refer to the works in M and ' until my manuscript was almost completed,
and have no access to the details of some of them still now.

200 P, Koebe [1].
2 Throughout this paper I" and U denote |z | =1 and |z | <1 respectively.
22) R. Nevanlinna [1]. O. Teichmiiller [1].
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components (Randstiicke due to B.v. Kerékjart6*) of an abstract Riemann surface
and the points on I are studied by making use of the corrected form of Bieber-
bach’s method.

Chapter IV deals with Dirichlet problems on Riemann surfaces. §1 is devoted
to the continuation of Chap. I, §1. It is shown there that any continuous bounda-
ry function is resolutive,” and that the similar considerations as in euclidean
spaces are possible. Next let i be a covering surface over an abstract Riemann
surface, with relative boundary and satisfying (A) and the following condition :
u(P)=0 on N whenever #(P) is upper bounded continuous subharmonic such

that l;n—{u(P) < 0, where Ty denotes all the accessible boundary points. In §§2-4
®
Dirichlet problem is treated on R by making use of the theory of conformal

mapping in the special case when the connectivity of R is finite. But it is
desirable that some resolutive functions can be assured without using the theory
of conformal mapping and in general case. The concept of regular and irregular
points on the boundary is important in the theory of Dirichlet problem. In the
present case, however, I have scarecely any knowledge about them. Thus there
are left many questions open in this chapter. Moreover it may be interesting
to investigate potential theory on Riemann surfaces further in connexion with
the recent researches by R. Bader and M. Parreau,? or to treat Dirichlet problem
on an abstract Riemann surface having all the ideal boundary components as
its boundary.

Now iet w=f(z) be a regular bounded function in U, and suppose that it is
continuous on U+I and the length of the w-image of I is finite. It was proved
by Brother Riesz that the null sets on I" and the sets of zero length on the
image of I correspond to each other.” Given a domain D in the w-plane, when
does the mapping function of U onto D satisfy the condition stated above? It
is surely so when D is bounded by a rectifiable Jordan curve. W. Seidel defined
the length of the boundary of any simply-connected plane domain and showed
that if the length is finite the mapping function satisfies the required condition.*
In Chapter V such problem is treated for a covering surface i over a metric
Riemann surface ¢. Under some additional conditions I define the rectifiability
of the boundary of R, and show that the mapping function of U into ¢ has similar
properties as above f(z) and that Riesz’s theorem holds good also in this case.

2 B. v. Kerékjarté [1]. Cf. also S. Stoilow [1].

2H For the definition of resolutivity, see Chap. I,§ 1.

*» R. Bader [1]. M. Perreau [2]. Cf. also L. Ahlfors [1].

* F. and M. Riesz [1]. Cf. also F. Riesz [1], N. Lusin and J. Priwaloff [1], M. Tsuji [1].
¥ W. Seidel [1], esp. pp. 194-204.
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It seems to me that, in addition to the subjects taken up in this paper,
there remain still many, which have ever been discussed only on planes but may
be treated on Riemann surfaces with interest.

I wish to express my warmest gratitude to Prof. Noshiro for his perpetual
encouragement and valuable remarks during my investigation.

CHAPTER I. PERRON-BRELOT’S METHOD AND THE
TypeES oOF RIEMANN SURFACES
1. Perron-Brelot’s method®®
We shall explain Perron-Brelot’s method for Dirichlet problem on an abstract
Riemann surface I in this section.
The following lemma used by M. Brelot in euclidean spaces holds good also
on R:

Lemma 1.1. The upper cover (defined by the supremum ai each point) of a
class of positive harmonic functions in a domain vn R is continuous subharmonic
or equal to the constant + oo.

For an cpen compact true subset ® in §t and a real function ¢ (admitting
+20) defined on the boundary C* of D, the lower class UD is defined by all
the upper bounded continuoys subharmonic functions {z(P)} such thag)liyg (u(]")
Z¢(P), adding —o to UD. Then it follows by Lemma 1.1 that the upper cover
H?D(P) of UD, which will be called hypo function, is harmonic or equal to the
constant +o0 or —oco in each component of ®©. Similarly the upper class ‘l\'i’
and its lower cover HY(P), which will be called kyper function, are defined for
superharmonic functions and HP(P) has the similar character as HX(P). Fur-
ther, HD(P) =HD(P) on D, and if they coincide at a point they are identical in
the component containing the point. When H ;D(P) =H ,?P(P), we shall denote it
by H?(P) and call it the general solution, and if, in addition, it is finite, ¢ will
be called a resolutive boundary function.

A point P’ on C will be called regular or irregular if in a local parameter
circle the image of P’ is regular or irregular with respect to the image of ®.""
This definition does not depend upon the local parameter selected there. At a
regular point P’ a barrier®™ exists and by it there holds

montents of this section, cf. M. Brelot [2].

) Here, the boundary point is the one in the usual sense; it is the point, in any whose
neighborhood both ® and R%—D enter. It will be called an ordinary boundary point.

3 Dirichlet problem on a plane is supposed to be known.
31) We accept the barrier in a wider sense; it is continuous superharmonic on P, tends
to zero as P - P’, and its lower bound outside every neighborhood of P’ is positive.
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(L.1) lim HD(P) £ ¢(P'),
P->P’
if ¢ is upper bounded on C and upper semicontinuous at P’, and
(1.1) limHD(P)= ¢(P"),
PP
if ¢ is lower bounded on C and lower semicontinuous at P’. Consequently if ¢
is bounded on C and continuous at a regular point P’, there holds

lim HD(P) = lim HD(P)=¢(P).
P->P’

PP’

If every point of C is regular and ¢ is continuous on C, follows HD(P)=HD(P)
and this gives the solution of the Dirichlet problem in the classical sense; for
instance, it is so on a domain bounded by Jordan curves.

Near a simple closed Jordan curve r draw another simple closed Jordan curve
7' and enclose a doubly-connected domain by them. The e-niveau curve of the
solution with the boundary value 0 on v and 1 on 7’ is a simple closed analytic
curve. Hence in an exhaustion {R»} of N we may, and shall, suppose that each
t» is bounded by a finite number of analytic curves and no component of its
complement is compact in 3.

We cut off here the further description on the Dirichlet problem and shall
continue it in Chap. IV.

2. The types of Riemann surfaces

Open abstract Riemann surfaces are classified into two types. Usually it is
decided as follows :

Let i be an open abstract Riemann surface, and {Ji,} its exhaustion with
boundaries {C,}. The harmonic measure of C, on the domains bounded by C,
and C, is monotone decreasing as # —» o and its limiting function is harmonic
outside !R,. According as this is zero or positive, i is said to have a null or
positive boundary, or R is called of parabolic or hyperbolic type respectively.

We will define the type of %t by Perron-Brelot’s method using no exhaustion.
Let 9, be a domain of §i, whose relative boundary C consists of a finite number
of simple closed analytic curves and whose complement is compact in )t. We
define the lower class U by all the continuous subharmonic functions {#(P)} on
R such that, I'y denoting the ideal boundary of 3, III‘m u(P) = 1% and h?n_u(P)

®

=0, and w(P) is defined as the upper cover of . Sir}lilarly the upper class 8
and its lower cover w(P) are defined for superharmonic functions. It follows
by Lemma 1.1 that «(P) and w(P) are harmonic on %,. Further wa can show

) The left side denotes the supremum of im #(P,) for P, - I,
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that w(P)=w(P) as follows: Let C; be a finite number of simple closed analytic
curves on R, surrounding C. If we take an arbitrary »(P)&%8 and replace it
in the annular domains bounded by C and C; by the solution of the Dirichlet
problem with the boundary value 0 on C and »(P) on C,, the replacing function
v,(P) is not greater than »(P) and still belongs to B. Hence 0= lim o (P)
= licm v,(P)=0. Consequently w(P)ell, whence o(P) = w(P). Since the Cinverse
inequality is valid, there follows the equality.

It is a simple matter to show that this function coincides with the usual one.
We shall call it the harmonic measure of I'y on M, at P and denote it by w(P)
or w(P, I'g, W).

The property that w(P)=0 or >0 does not depend upon R, selected there
and we decide the type of it as usual® The following is a criterion for it:

LEMMA 1.2, In order that R has a positive boundary, it is necessary and
sufficient that there exists ‘a non-constant upper bounded continuous subharmonic
Sfunction on RNV

Proof. 1If | has a positive boundary, the function obtained by continuing
the harmonic measure w(P, I'y, Ro) by O outside %, is the required function,
where %, is the domain taken to define the type of .

Conversely suppose that such a function «(P) exists. Without loss of gener-
ality it may be assumed that #(P)=0 and sup #(P) =1. Since »(FP) is continuous
subharmonic on N, Sé‘;p #(P)=1and 0= maxu(P)<1 where C is the boundary
of N in N. Thus »(P) ~ max u(P) belongs to the lower class U and is positive

at some point on fy. Hence it follows that i has a positive boundary.
Further we have

Levmma 1.3. Let N have a null boundary and 2 be a domain on it. In order
that W' has a null boundary, it is necessary and sufficient that the transfinite
kernel of W—R' on N is empiy.™

Proof. Necessity : Suppose that the kernel K is not empty, and take a small
neighborhood N on % of a boundary point of K such that at least one point
of N’ lies outside N. Then we have a positive function in IV, which is zero on
the boundary of N, harmonic in R’ NV and not greater than 1. If we continue

3 When % is a closed surface, it will also be said to have a null boundary.
) It is reported in M. Parreau [3] that also M. Brelot has found the sufficiency.

%) This means that in every parameter circle the image of R—%’ is of capacity zero.
36)

We suppose in this paper that a neighborhood is bounded by a simple closed analytic
curve,
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this function by 0 outside N, the function satisfies the condition in Lemma 1.2
and hence R has a positive boundary.

Sufficiency : Suppose that the kernel is empty. Let C be a simple closed
analytic curve in R’ which encloses a compact domain in i/, and denote the
non-compact part of R/ by R,. Since the image of R—N’ in each parameter
circle, corresponding to a neighborhood on R, is of capacity zero, it is removable
for the function w(P)=w(P, I'y, Ny), where I'sy is the ideal boundary of R'.
Hence w(P) is defined so as to be bounded harmonic on ft outside C. Since
@ (P)=0 on C and N has a null boundary, w(P)=0. Thus R’ has a null boundary.

Remark. When R has a positive boundary, any domain on it has a positive
boundary too on account of Lemma 1.2.

An open surface with null boundary has some properties as if it had no
boundary. We shall state two of them for later uses.

LeMMA 1.4. (Maximum principle)’” Let R have a null boundary R’ be
a true subdomain with relative boundary C onm R. For a non-constant upper
bounded continuous subharmonic function u(P) on R’ there holds

u(P)< ﬁc;_nu(P).

Proof. Since #(P) does not attain its maximum in R/, it is sufficient to show
2 (P) éTiCrﬁ u(P). To the contrary suppose that there existed a point P, on R’/
such that #(P,)> lim #(P). Take a number M between the numbers of both
sides. The functio; u,(P), which is equal to max(«#(P), M) on R’ and to M
outside N/, would be_non-constant upper bounded continuous subharmonic on R.
By Lemma 1.2 ! would have a positive boundary.

Lemma 1.5. Let R have a null boundary, R’ be a subdomain with relative
boundary C consisting of a finite number of simple closed analytic curves, and
u(P) be a bounded harmonic function on R'+C. Then

au — 03
S S ds=0.

Proof. This lemma is obvious when R’ is compact in . Hence suppose
that R’ is not compact in R and let {N,} be an exhaustion of RN. If » is suf-
ficiently large, R’ N\ R~ is a domain bounded by C and a part I', of the boundary

3) In R. Nevanlinna [5] this theorem was proved when a one-valued regular quadratically
integrable differential dw = du+ idv is defined on R and # is its one-valued integral on R.

38) Cf, %),

3) a/ov represents the normal derivative inward to R’.
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of R By applying Green’s formula for x(P) and the harmonic measure w,(F)
:w(Pa rn: m’nmn), we have

1.2) [ 20nge=

Jet+ry ov

and

Sc+rn{ua—(1—;w_’l) —(1-wn) %?}ds:O,

gv

whence follows

ou , Own
(1.3) chds_—&m 200 gs.

Since #(P) is bounded: |u(P)| <M<+, follows from (1.2) and (1.3)

(1.4) ;ch‘gds AMS am,, ds 2M5 aw,,ds

C+I'n
Because 9t has a null boundary, w.(P) | 0 and hence aaa;"— 10 as n—> ., Therefore
from (1.4)

ou
Cg;ds =0,

Remark. We took an exhaustion of )i only in proving Lemma 1.5, which will
be used at the end of the proof of an existence theorem on it with null boundary.

We shall give an outline of the proof, based upon the existence of a harmonic
measure, for the fact that any Riemann surface ) is separable.

Let © and @’ be two disjoint domains which correspond to circular domains
in a parameter circle, and denote the domain i —® -9 by Ny. In order to prove
the separability of 3t it is sufficient to show it for ;. The harmonic measure
©(P) of the boundary of ® on R, is positive. If &(P) is its conjugate function,
the function w(P)=w(P)+i»(P) is many-valued in general and its existence
domain is a regular covering surface ) over 9%,.* The inverse function P=f(w)
is many-valued too and its existence domain is a covering surface R over the
w-plane, to which % is conformally equivalent. It follows by the usual method
that Rw and hence % is separable. Then by the projection we can see that 3,
is separable too. It is a simple matter to obtain an exhaustion from an open
base when It is an open surface.

40) It is to be remarked that since the separability of % is unknown, the basic surface ¥
of §{ is not yet a surface in the usual meaning.
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CuaprTER II. EXISTENCE PROBLEMS

1. Existence theorem on ! with positive boundary

Our purpose in this chapter is to obtain a one-valued harmonic function,
which has the singularity given in a compact part of it and is bounded near
the ideal boundary, if R is open.’” We shall treat this problem distinguishing
two cases ; either the boundary of % is null or positive. The proof will be based
upon Perron-Brelot’s method, in Theorem 2.1, and an idea due to M. H. Heins,"®
in Theorem 2.2. Hereafter in this chapter let i, be a domain, whose relative
boundary C consists of a finite number of simple closed analytic curves and
whose complement is compact in R, and suppose that (5¢)'=R..*¥ Further, put
R=RNo—C=D and let Uy(P) be a one-valued function harmonic on C, that is, in
an open set ®, containing C.

When Rt has a positive boundary, the problem can be solved always by

THEOREM 2.1.% Let R have a positive boundary I'q. Denote by U the class,
which will be called the lower class, of all the functions {u(P)} such that each
u(P) is continuous and subharmonic on No\J Do, u(P)—Us(P) can be continued

into D preserving the subharmonic character and l;ifnu(P)éO. Similarly the

upper class B is defined and both classes are not empt_g;;. The upper cover U(P)
of W is equal to the lower cover V(P) of B, is harmonic in R,\JDe and bounded
on N, and the harmonic continuation of U(P)—-Uy(P) into D is possible. If R
is contained in another Riemann surface R, then limU(P)=0 on the relative
boundary of R except at irrvegular points.”

Proof. First we remark that, as is shown easily, when a function harmonic
on D+C is added to Uy(P), Il and B do not change. Since Uy(P)—HRE (P) is
zero on C, it and hence HL%(P) is harmonic on C by the principle of reflexion.
Therefore the classes for Uo(P)—HZ%(P) are equal to 11 and B. Hence we shall
suppose that U,(P) itself is zero on C.

Next we shall show that Il and 8 are not empty.®® It is sufficient to show

4) R. Nevanlinna [8] discussed a wider problem, which includes our existence problem,
from the viewpoint of integral equations.

4 M. H. Heins [1].

43) Suffixes @ and 7 indicate to take the closure and the open kernel respectively.

#) We get the function U(P) in this theorem also by alternierendes Verfahren.

) Even if % is not compact in ®, a point on the relative boundary of % will be called

regular or irregular if its image is so in a local parameter circle corresponding to a
neighborhood on #.

%) The idea is indebted to M. Brelot [4].
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it for U, because if #(P) belongs to the lower class for —Uy(P) then —u(P)
belongs to the upper class for U,(P). Since i has a positive boundary, (P,
I'g, f)=w(P)>0on R. Since w(P)=0 on C it is harmonic also on C by the
principle of reflexion. Let 4 : [t]| <1 ({=x+iy) be a local parameter circle,
which corresponds to a neighborhood on it and in which the image of N, is
equal to the upper semicircular domain. Then the composed function w(P(¢))

is harmonic in 4 and %ai>0 on —1<x<1. Hence if y, is taken sufficiently small,

Zf’vl>a>0 and !2U°;<K<+oo on the rectangle A: —1+esx=1—¢, —y,=v=0.

Taking a finite number K,> f, we have for y (0<y=y,)

olU,

0
-K,+U0+K,(1—-w)=S_( +K.a )d77>( K+aK,)y>0.

Hence —-K,+Ui=-K;(1-0w) on A. Since C is covered by a finite number of
images of such rectangles, the function defined by —K,+U, on ®,ND and by
Ky(w—1) on R, is subharmonic also on C and belongs to U, if K, is taken suf-
ficiently large. Clearly this function is bounded on M.

Since any #(P)&WU is not greater than any v(P)E®, there holds U(P)
= V(P) and both are bounded on $R,. Further they are harmonic on R,\U%D, on
account of I.emma 1.1. Similarly we can show that U(P)-U,(P) and V(P)
—~Uy(P) are harmonically prolongable into D,

Now we shall show that U(P)=V(P). Since D is bounded by a finite number
of simple closed analytic curves, it consists of a finite number of compact do-
mains. Excluding a smaller compact domain from each component, define har-
monic measures there respectively. Thus we have a positive function H(P)
which is harmonic near C in ® and zero on C. For a number 2>0 denote by
U (P) and U; (P) the functions which are equal to Uy(P)+kH(P) and EH(P)
respectively. Then both are harmonic also on C and Uy(P)=U{(P)-U;(P),
and, for large &, Uf (P)>0 near C in ®. Taking U} (P) and U, (P) instead of
U,(P) used hitherto, we obtain the lower and upper classes U+, -, B+, B~ and
their covers U*(P), U-(P), V*(P), V-(P) respectively. If we define a func-
tion by 0 on %, and by Uj(P) on D,ND it belongs to U*. Therefore Ut (F)
=0on J and hence &B*. Thus U*(P)=V*+(P). Since the converse is obvious,
there holds the equality. Similarly we have U-(P)=V~(P). Letu*, u*, v*, v~
be any functions belonging to U*, U-, B*, V- respectively. Then u*—v- Ul
and v*—u-E9P, and hence u*t—v-=U=V=v*—y-. Since %" and »u~ can be
chosen arbitrarily near »* and v~ respectively, we have U(P)=V(P).

When iU Jt and Nis a neighborhood on R of a point of the relative boundary
of R, U(P) coincides with the general solution of the Dirichlet problem on N\ )t
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with the boundary value 0 on I'y and U(P) in R. Therefore limU(P) =0 on
the relative boundary of i except at irregular points. Thus the proof is completed.
In the sequel we shall call U(P) the solution for U,(P).

2. Existence theorem on R with null boundary
In this case we can solve the problem in the following form:

THEOREM 2.2.%0 Let R have a null boundary and choose any point P, on R.
Then there exists a one-valued harmonic function U(P) on Re\UDe—{Fo} such
that it is bounded on RN, except near P,, the harmonic continuation into ® of
U(P)~Uy(P) is possible and the development of U(P) in a local parameter circle
d:|t| <1, whose centre corresponds to P,, has the form:

a, log—l—}T + a harmonic function,®

where a"="21?Sc%[§ods‘m The function U(P) is determined uniquely up to an
additional constant.

Proof. Let C, be the image on R of the circle || =—’1~1— in 4, and R, the
domain outside C, on R. Since N, has a positive boundary, the solution Un(P)
for U,(P) exists on RN, for each #.by theorem 2. 1.

In the first place suppose that there exists an infinite subsequence {Uni)(P)}

such that max U, (P)=0. If we denote by V;(P) the function Uy (P)
—max U,,(,-,(PC), then Vi(P)=0 on R,: NN by Lemma 1.4 and max Vi(P)=0.
Further it follows that rr:ax V,'(P)i—-m(ax U,(P) for every i on account of
Lemma 1.4. Therefore we lczm extract frc;m {Vi(P)} a subsequence which con-
verges uniformly in the wider sense on Ny—{F} to a one-valued harmonic
function U(P) which is non-positive on ;. Hence U(P) is developed in 4 in
the form:

a, log vi—w%v,—»—k a harmonic function (ap £ 0).

i

In addition, U(P) is bounded on R, Ny, because Vi(P)= rrcu? Vi(P) by Lemma
+C3

40 In case @o=0 this theorem may be proved by alternierendes Verfahren as stated in R.
Nevanlinna [5], L. Sario [1], or by the method used in K. Kodaira [1] in a special
case. The general case of our form can be deduced from the case: ao=0 without
difficulty.

45 We shall call this a logarithmic singularity of U(P) when aox0. ao will be called the
residue of U(P) at Px.

49) The normal v is drawn inward to Ro.
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1.4 and the convergence is uniform on C+C,. Further it follows without
difficulty that the harmonic continuation into © of U(P)—-U,(F) is possible.

When there is no infinite subsequence stated above, consider the functions
{—=Un(P)} and treat them in the same manner. By changing again the sign of
the limiting function we have a function U(P) with the development:

ay Iogl—}—l»+ a harmonic function {(ay=0).

. oU , __l¢oUu, 12U
According to Lemma 1.5 S“Cl E» ds=0. Hence a,= % o, O S=5) 5 ds
1 ¢ oy
T 2r Jcov T

The uniqueness of U(P) is the direct consequence of Lemma 1.4.

8. Variation of preassigned singularities
We shall answer to the problem how the solution U(P) varies as the
preassigned function U,(FP) does, by

THEOREM 2.3. When U (P) tends to U,(P) uniformly in an open set D,
DC asi- w, the solution U;(P) for U{'(P) tends to the solution U(P) jor Uy(P)
uniformly on Ro when R has a positive boundary. When R has a null boundary,
designate a point Py to the common possible logarithmic singular point and
normalize all the solutions by U;(P)=U(P,) at a point P,(xP)&ENR. Then the
convergence is uniform on any closed set in No—{F).

Proof. First consider the case when R has a positive boundary. Without
loss of generality we may suppose U (P)=Uy(P)=0 on C. For any #(P)ell
define a function by #(P)—K:(1—w(P)) on Ry and u(P)—U(P)+U ' (P)—-K;
on DND,, where K; >0 is a constant. If K; is chosen suitably, this function
is subharmonic also on C and hence belongs to the lower class for U(,"’(P).
Especially on R,+C there holds «#(P)—-K;(1—w(P))=U;(P). Since u(P) is
taken arbitrarily near U(P), follows U(P)~ K;=U;(P) on Re+C. Similarly we
can show U;(P)— K/ =U(P) on R+C, where K is a positive constant. Hence
| U(P)—U;i(P)| £Ki+K/ on R+C. Since U/ (P) tends to U,(P) uniformly
in @y, we may take K; and K, arbitrarily small as i > «. Consequently U;(P’)
tends to U(P) uniformly on ¥t + C.

Next we shall treat the case when §! has a null boundary. We shall denote
the solution for U{'(P) on the domain %, outside C,” by Wi(P). Since X, has
a positive boundary, W;(P) converges uniformly on C. Hence | Wi(P)| <a
<+ on C for all i. In case thete exists an infinite subsequence {a;;} with

%0} We use notations in the proof of Theorem 2.2.
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aijy =0, we define functions {X;(P)} by X,-(P):U,m(P)—mcax Uii;)(P). Tten
Xj(P)20 on Ry, by Lemma 1.4 and max Xj(P)=0. Further there follows
m'alxx X;(P)=- mcax Wij(P)>—a. Therefore a subsequence {Xj(P)} con-
verges to a function X(P) uniformly on any closed set in f,—{F,}. We can see
easily that X(P) is a solution for Uy(P). By the uniqueness of the solution there
holds X(P)-X(P)=U(P)-U(P,). Since max Uiiiky (P) = Uik (Pr) — Xy (Py)
tends to U(P)-X(P), [Ji(j(k))(P)=Xj(k)(P)+m%XUi(j<k))(P) tends to X(P)
+U(P,)~X(P)=U(P) uniformly on any closed set in Jty—{P,}. In case almost
all a;>0 consider the functions {—U;(P)} and treat them in the same manner.
By changing the sign again we know that a subsequence of {U;(P)} converges
to U(P) uniformly on any closed set in Ro—{Fs}. Because from any subsequénce
of {U;(P)} we can extract a convergent subsequence, U;(P) itself converges to
U(P) uniformly on any closed set in Ro—{FP}.

4, The simplest harmonic functions on R.

Given a Riemann surface it we will decide the simplest function on it, which
is one-valued harmonic outside isolated singularities and bounded near the ideal
boundary.

Now suppose that @ has a null boundary. By Lemma 1.2 there does not
exist not only bounded but also positive non-constant harmonic function on .
Moreover no Greern function exists on R, because if the Green function G(P)
existed on N, —min (G(P), M) for a constant M >0 would be a non-constant
negative continuous subharmonic function on it and hence by Lemma 1.2 R would
have a positive boundary. The simplest function is the one with two logarithmic

singularities or a non-logarithmic singularity of the local form: ng_ﬁ or Sin 8 “

The existence of these functions is assured by Theorem 2.2.

Next suppose that t has a positive boundary. It is reported that L. Ahlfors
found a surface with posi¢ive boundary on which no non-constant bounded har-
monic function exists.’” But it is unknown whether there exists or not a surface
with positive boundary on which no non-constant positive harmonic function
exists.”® The existence of the function having any assigned singularities is as-
sured by Theorem 2.1; especially, the Green function exists always there.”®

5 Cf. L. Sario {2], K. 1. Virtanen [1], R. Nevanlinna [8].
5?) M. Parreau [3] presented this question.

%) In P. J. Myrberg [1] this was proved in a special case. R. Nevanlinna [3], [4] stated
that the Green function exists if and only if the boundary of % is positive. A proof
to it is given above and proofs are found also in L. Sario [2], M. Parreau [1], K. L
Virtanen [1].

https://doi.org/10.1017/5S0027763000012253 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012253

RIEMANN SURFACES 105

CHAPTER III. BounNDARY CORRESPONDENCES IN CONFORMAL MAPPINGS

1. One-to-one correspondence between boundaries

In the former haif (§§1-2) of this chapter we shall investigate the image
of the accessible boundary points (which will be abbreviated by A.B.P.s), when
the universal covering surface R of an open covering surface it over a Riemann
surface R is mapped conformally onto a unit circular domain U: |z | <1, under
the following conditions:

(A) the projection R’ of N is compact in R ;™

(C) when R is a closed surface of genus zero or one, i —R’ contains at
least three or one point respectively.

When R is a covering surface over a Riemann sphere ¢, O. Teichmiiller
introduced a metric on i by info (ﬁff’g), where 8(P,P,) is the diameter of the
projection into g, of ﬁ\ﬁz which connects P, with F; on Jt, and he defined A.B.P.s
of R by the completion of R with respect to this metric.’> Now we consider
any inner covering surface N over R. Since there exists always a non-constant
one-valued meromorphic function on i, R is conformally equivalent to a cover-
ing surface over #,. Regarding Nt itself as a covering surface over gy, a metric
and A.B.P.s are defined as above. We shall call this metric a Teichmiiller’s
metric, these A.B.P.s A.B.P.s in the sense of Teichmiiller, and denote all the
A.B.P.s by T. We can gi\}e their definition in an equivalent way by deciding
the equivalency of two curves which determine A.B.P.s.

On the other hand R. Nevanlinna limited further the range of the equiva-
lency of two determining curves and defined A.B.P.s of different kind.”” Using
this definition he investigated the image on I': |z| =1 of the A.B.P.s, when )t
is a compact domain in Jt. Similarly we can prove the following theorems,”
in which A.B.P.s mean those in the sense of Nevanlinna, under the conditions
(A) and (C):

TueoreM 3.1. The images of the curves, which determine one and the same
A.B.P. of R, terminate at points on I' which are equivalent with respect to a
Fuchsian group. However, if two curves determine diffevent A.B.P.s, the images

terminate at no same point on I.

54) See introduction. We shall call a covering surface satisfying the condition (A) an
inner covering surface,

%) Q. Teichmiiller [1].

%) Cf. J. Tamura [1], for instance.

57 R. Nevanlinna [1], [3]. Cf. also E. Kaila [1].

%) Cf, R. Nevanlinna [3], E. Kaila [1].
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THEOREM 3.2. If z tends to a point on I', which corresponds to an A.B.P. of
R, along any Stolz’s path, the image of the path determines the same A.B.P.of Q.

Theorem 3.1 shows that all the A.B.P.s and the classes of points corre-
sponding to them correspond to each other in a ome-fo-one manner. Therein
lies the reason why A.B.P.s are defined in Nevanlinna’s sense here, But the
image on I" of all the A.B.P.s is the same by either of two definitions. If we
accept A.B.P.s in Teichmiiller’s sense, the mapping of Tg= into I is uniformly
continuous with respect to the Teichmiiller’s metric.’”

2. Measure of the image of the accessible boundary points

R. Nevanlinna stated that, when ® is compact in R, the linear measure of
the image on I' of all the A.B.P.s of N is 0 or 2~ according as the transfinite
kernel of #—N on RN is empty or not, and that, the proof is similar to the case
when R is a plane domain.® We shall give generalizations of this result for
R satisfying the conditions (A) and (C).

First we will prove

Lemma 3.1. For any continuum E on a plane there exists a totally-discon-
nected closed subset of positive capacity.

Proof. If E contains a segment, let the segment be PQ. Otherwise take
two points P and @ on E. We may suppose that PQ =01 on the x-axis. The
set of all the irrational points on 01 is of positive capacity, and hence has a
closed subset E, of positive capacity. If 01 CE, E, is the required set. Other-
wise draw orthogonal lines to the x-axis at every point of £, and let £’ be the
intersection of these lines with E. Then E’ is closed and totally-disconnected,
since both sets are closed, £, is totally-disconnected and E contains no segment.
Further the capacity of E’ is positive, because the capacity of a set is greater
than that of its projection on a line. Thus we have a required set.

Using this lemma we can show

Tueorem 3.3. If R satisfies (A) and if the transfinite kernel of R~R' is
non-empty, the linear measure of the image on I' of all the A.B.P.s of R is 2r.

Proof. On account of Lemma 3.1 there exists a closed totally-disconnected
true subset E, having a non-empty transfinite kernel, of #—%’. By Lemma 1.3
Nt — E has a positive boundary and hence there exists the Green function G(P)
on it — F with a pole at a point @, of i — %' — E. Let H(P) be the conjugate

" Cf. O. Teichmiiller [1].
f R. Nevanlinna [3]. Cf. also M. Tsuji [4].
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function of G(P) on R —~E and put exp(—G(P)—~iH(P))=W(P). Compose
the mappings U - R >R - W-plane and denote the corresponding function by
W = g(2), taking an arbitrary branch of W(FP). Then g(2) is a bounded regular
function in U and hence there exist radial limits a.e.®” on I" by Fatou’s theorem.

We shall prove that if g(z) tends to a limit W, on the W-plane along a
radius terminating at a point on I', the image C on R of the radius terminates
at a point on |, i.e. the image on R determines an A.B.P.

To the contrary suppose that C oscillated on Ji. Then there would be a
point P, of R — F—{@) and its neighborhood N in R — E —~{@} such that C
would accumulate on F, and intersect the boundary of IV infinitely often, since
E is totally-disconnected. Let a local parameter circle corresponding to N be
4:|t]| <1, where t =0 corresponds to F,. The image of C in it consists of an
enumerably infinite number of arcs {/,} passing nearer to {=0 as n—> . If
the mappings ¢ > R » W-plane are composed, if the branch on /, corresponding
to the function g(z) is continued analytically everywhere in 4 and if the branch
obtained is denoted by W,(¢), then W,(¢) would tend to W, uniformly on I/, as
n-> o, Since | W, (2)]| <1, {W4(#)} would form a normal family in 4 and hence
we could extract a subsequence { Wy, (¢)} tending to a regular function in 4 as
i- o, Because Wi (t) - Wy uniformly on [l.;,, which would come near ¢t =0
but would be a cross-cut of.4, the limiting function would be equal to the con-
stant W,. However, | Wni(#) | = exp(—G(P)) independently of 7 and so this
is not a constant. Thus we have a contradiction and it is proved that C does
not oscillate on &,

We will say that an inner covering surface it over R is of F-type when the
function corresponding to the mappings U - R*—> R -~ R has limits along Stolz’s
paths a.e. on I'. Theorem 3.3 gives a condition so that R is of F-type.

M. Tsuji has given the following interesting extension of Lusin-Priwaloff’s
theorem.? His proof will be simplified a little by using the terms of Dirichlet
problem.

LEMMA 3.2. Let w= F(2) be a meromorphic function in U, E a measurable
set of positive linear measure on I’ and E' a set of (inner) capacity zero on the
w-plane. If the cluster set of F(2), when z tends to points of E along Stolz’s
paths, is contained in E', then F(z) is a constant belonging to E'.

Proof. Since E’ is of inner capacity zero, it does not contain any continuum
and hence F(z) has a limit: F(el®)=E’ along Stolz’s paths at every point

61) This is an abbreviation of “almost everywhere.”
$2) N. Lusin and J. Priwaloff [1]. M. Tsuji [3].
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e’ of E.

In a usual way we get a domain D, whose boundary is a rectifiable curve
C consisting of a closed subset FE;, with a positive linear measure, of £ and
segments in U, such that the number of the poles on D--C of F(z) is finite
and E|={F(e®); ¢EE,} is a bounded closed set in the w-plane. Further ex-
clude the poles by cross-cuts from D+ C such that the remaining domain D,
is bounded by a rectifiable Jordan curve C, and E| lies on C;. Then the harmo-
nic measure on D, of E, is positive on account of F. and M. Riesz’s theorem.”™

Now let »(w) be the potential due to G. C. Evans®™ in the w-plane. It is
induced by a mass distributed on E) and takes 4+ on E|. We shall denote
the composed function »(F(z)) by V(z). When V(z)=* + «, this is super-
harmonic in D, and tends to + c when z- E; from the inside of D,. Further
there exists a number a« > — « such that V(z) = « in D,. If a boundary function
¢ of D, is given by limV on C,, V(z) belongs to the upper class B2 irre-
spective of whether V(2) = 4+ or not, and hence there holds H2'(z) £V (2) in
D,. Since the harmonic measure of E; with respect to D, is positive and ¢ = + =
on E\, HD'(z) = + and hence V(z2)= +c. This means that w=F(2) is a con-
stant belonging to £’ and the theorem is proved.

From this lemma we get easily

THEOREM 3.4. Suppose that R satisfies (A) and (C) and let € be a subset
of Ty. If the transfinite kernel of any closed subset of the projection on R of €

is empty, the linear inner measure of the image E on I" of € is zero.

Proof. There exists always a non-constant one-valued meromorphic function
w=¥(P) on f. Compose the mappings U - R - N - w-plane and let w=F(2)
be the corresponding function in U. According to Theorem 3.2 F(z) has a limit
along Stolz’s paths at every point of £ and the set {lilrcn F(z)} is of inner capacity
zero on the w-plane. On account of Lemma 3.2 the measure of any measurable
subset of £ is zero, whence the inner measure of E is zero.

Remark. 1f € =3Iy then F is measurable, because it is the continuous image
of the complete metric space Ty~ and hence an analytic set.

This and Theorem 3.3 can be regarded as generalizations of Nevanlinna’s
result.

) F. and M. Riesz [1]. See Chap. V, §5 of our present paper.
64) G, C. Evans [1].
0 We suppose here that the upper class includes non-continuous superharmonic functions.
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3. Mapping of an abstract Riemann surface

Suppose that the universal covering surface of an abstract Riemann surface
N is mapped conformally onto U tlz|<1. Then U is divided as usual into
non-overlapping fundamental domains in the following manner :

Let {as} be a class of points corresponding tc a point P,&R and U, be the
set of points {2z} in U such that

olan, 2) £ 0(ar, 2) for all ar (kxn),

Ry~ 29
1*2123
by at most an enumerably infinite number of circular arcs perpendicular to I'":
2] =1% and possibly by a part of I', and is circular convex. The boundary
of Uy in U is divided into pairs of equivalent sides and by excluding one side of
every pair a fundamental domain U, is obtained. ‘This will be called a normal
polygon with centre a, and denoted by N.P. All the {U,} cover U without any gap.

. U, is bounded

where o(z1, 2,) represents the non-euclidean distance

We shall investigate in detail the boundary correspondence in the case when
R is a non-simply-connected open abstract Riemann surface, whose universal
covering surface is of hyperbolic type, in the sequel. In this case every N.P.
is non-compact in U.

4. Regular points

The cluster set S{ of f(z), which is the mapping function of U onto %,
at a point z, on I will be defined as the set of all the points {P} of R for each
of which there exists a sequence {2z} tending to 2, in U such that f(z;) » P as
k> o, A point z,&I will be called regular or singular according as Sé‘f,’ =¢
or %¢." Since fixed points of non-trivial linear substitutions of the Fuchsian
group @, with respect to which f(z) is automorphic, are singular, at least one
singular point always appears, but regular points do not necessarily as in the
case when f(z) is a modular function.

The intersection of a circular domain with centre 2, with U will be called
a vicinity of z, in U.

We shall investigate the regular points in this section. First we will prove

THEOREM 3.5. Let z, be a regular point on 1", Then we can take a vicinily
of zy in U such that f(2) is univaleni there.

%) Cf. H. Weyl [1], pp. 154-156, L. Bieberbach [1], 1 Aufl, pp. 45-53.
67) We will call these arcs the sides. They are non-euclidean (N, E.) segments, or half-
lines, or lines.

6%) ¢ denotes empty set.
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Proof. If there were a infinite number of sides in any vicinity of 2z, 2
would be a singular point.* Hence if a vicinity V of z, is taken sufficiently
small, either there is no side of N.P. in V or V is divided into a finite number
of wedge-shaped parts of N, P.s with 2z, as a common vertex. In the former case
f(z) is univalent in V. In the latter case suppose that f(z) were not univalent
in any vicinity of z,. Then there would be two disjoint infinite sequences {zt}
and {z,} tending to z, such that f(zz)=/(z}). We could find infinite subsequences
{2k@} and {2z};} in some two of the wedge-shaped parts of N.P.s: N and NV
respectively. The linear substitution which transforms N to N’ would leave 2,
fixed. This is a contradiction, because fixed points are singular. Thus f(z) is
univalent in a vicinity of z.

The following lemma will be used often:

Lemma 3.3. Let v be an inscribed circle passing through a,& U and touching
I' at z,. According as a point a,* a, in U lies inside, or upon, or outside r, the
N.E. line equidistant from a, and a, intersects the N.E. half line aﬁ(., or passes
through z,, or is disjoint to @oZo respectively.

Proof. We may suppose without loss of generality that @, =0 and z,=1.
Put a;=7¢" and letz=pe’* (0<p<1) be the point equidistant from @ and 0.

Then it follows from p =; la 0 ;zz ‘that
—&o 1

73(1—p*) —2rp(1—p*) cos (0 —¢) =0.
Since p*=x1 and %0, 7(14p*) —2pcos (—¢) =0.
This equation expresses the N.E. line equidistant from 0 and a;, and accord-
ing as cos§—r>, =, <0 it intersects the radius 01 at only one inner point,
at 1, at no point respectively. These correspond to the cases: & lies inside,
upon, outside r respectively.
Using this lemma we can show

THEOREM 3.6. Let z, be a regular point on I'. If centres {an) are suitably
chosen, 2, is the boundary point of only one N.P.

Proof. Taking the proof of Theorem 3.5 into account, we see that it is
sufficient to prove that none of the sides of the N.P., having z, as its boundary
point, ends at z,, if centres are suitahly chosen. According to Theorem 3.5
there exists a vicinity V of z, in which f(2) is univalent. Let @; be a point in
V and 7 be the inscribed circle, which passes through a, and touches I' at z,.
In view of Lemma 3.3 the circular arcs equidistant from @, and its equivalents

69 Cf. L. Bieberbach [1], 1 Aufl,, pp. 57-58.
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{an} do not intersect the arc anz,. Therefore a2 belongs to the N.P. with
centre a,, and the sides of this N.P. do not end at z,. Thus the proof is completed.

By Theorem 3.5 all the regular points on I form an open set. We shall
call each component a regular arc.

5. Ideal boundary ¢omponents™’
Let {R»} be a sequence of non-compact subsurfaces of R such that N, DN,
D...,NRu=9¢ and the boundary, relative to N, of N, is a simple closed
n

curve on R. Two such sequences {R.} and (N} are called equivalent if for
given m there exists n such that R» DN, and R, DR  To equivalent sequences
an ideal boundary component is made to correspond. We shall denote the set
of all the ideal boundary components by §x. A topology is introduced on i + Gy
by neighborhoods as follows:™

Original neighborhoods are taken on R. For a domain i, of a sequence
determining Pg& Gy, N» is defined by the set consisting of R, and all the ideal
boundary components {Qg} such that a domain of a determining sequence of
Qg is contained in Nu. (N} are taken as neighborhoods of Pg.

An ideal boundary component is said to belong to the first class if a domain
of its determining sequence is of planar character. Otherwise it belongs to the
second class. If R, is a surface of planar character of a determining sequence
of Pge@x of the first class, it is mapped by Koebe’s theorem™ conformally
onto a plane domain D. If Pg corresponds to an isolated boundary point of D,
we will call Pg parabolic, and any non-parabolic ideal boundary component,
regardless of its class, hyperbolic. These definitions do not depend upon the
choice of R, and the way of its mapping.

6. Parabolic fixed points

Similarly as in the case when i is a plane domain, we can show that the
cluster set S{¥’ coincides with §t at every singular point z,. Clearly fixed points
and their limiting points are singular, and conversely the singular points consist
only of them. We shall investigate the parabolic fixed points in this section.

Let 2, be a parabolic fixed point on I and &, be the subgroup of @ con-
sisting of all the parabolic substitutions having z, as their common fixed point.

) Cf. B.v. Kerékjartdo [1], Abschn. V, §1, S. Stoilow [11, pp. 85-92. They have called
them Randstiicke and éléments-frontiéres respectively, but here the terminology above
is used to avoid the confusion with boundary elements, which will be defined in Chap. V.

) As is shown in S. Stoilow [1], one induces the other of these inequalities.
) It can be shown that %+ @ is a compactum and g is totally-disconnected.
) P. Koebe [1].
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Since @&, is properly discontinuous in U, it is a cyclic group generated by a
substitution 7,; that is, @ ={7T7} (n=0, *1, =2, ...).
First we give

THEOREM 3.7. Let 2z, be a parabolic fixed point and divide U into N.P.s in
an arbitrary way. If an inscribed circle touching I at z, is drawn sufficiently
small, its inside is divided into a finite number of wedge-shaped parts of N.P.s.

Proof/® Let v be an inscribed circle touching I at 2,. By the diameter
of r and its equivalents with respect to {77}, the inside of r is divided into
wedges {(Wx} (=0, =1, £2, . ..).

Any N.P. lies between the two N.E. lines, which are equidistant from its
centre @ and Ty(a,) or T5'(a,) and terminate at 2. Hence if an infinite sequence
of N.P.s {NV;} has common points with W,, it tends to z, within W, + W+ W_,.
Therefore an infinite subsequence {Ni} exists such that their centres {aw)} lie
in W, and every Ngi, has z, as its sole boundary point on I. The substitution
which transforms arg, to ar. leaves z, invariant and so is parabolic. This con-
tradicts the fact that T3 is the generating one. Consequently only a finite number
of N.P.s has common points with W,. Hence if an inscribed circle is drawn
sufficiently small, its inside is divided into a finite number of wedge-shaped
parts of N.P.s.

Now we can prove the following theorem which is well-known when 0 is

a plane domain :™

TureoreM 3.8. The classes of the equivalent parabolic fixed poinis on I and
the parabolic ideal boundary components of R correspond to each other in a onc-
to-one manner.

Proof. Similarly as in the plane it can be shown that to a parabolic ideal
boundary component there correspond equivalent parabolic fixed points on I

The converse needs somewhat careful considerations. Divide U into N.P.s
in an arbitrary way. If an inscribed circle touching I at a parabolic fixed point
zy is drawn sufficiently small, a wedge W, defined by 7, is divided into a finite
number of smaller wedge-shaped parts {W*} (k=1, ..., p) of N.P.s by Theo-
rem 3.7. Suppose that, however small an inscribed circle y may be taken, f(z)
were not univalent in W, inside v. Then there would exist a substitution which
transforms W' to W' (%) and leaves z, fixed. This contradicts the gener-
ating property of Ty,. Hence f(z) is univalent in W, inside a small 7.

™ We make use of the ideas in L. Bieberbach [11, 1 Aufl, pp. 59-60.
™ Cf. L. Bieberbach [1], 1 Aufl.. pp. 20-31 and 60-61, G. Julia [1], pp. 41-34, for instance.
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In the second place map U conformally onto the left half of the W-plane
by W(z) such that z, corresponds to W=w. Then to T, there corresponds a
translation parallel to the imaginary axis and with the breadth 2z1. Consider
the function Z= exp(W/1) and compose the mappings Z->W-z-%R. The corre-
sponding function P=¢(Z) is one-valued univalent in a sufficiently small D: 0
< |Z] <7 (<1), Consequently D is conformally equivalent to a subsurface of
planar character of R and hence a parabolic ideal boundary component of R
corresponds to Z=0. Thus the proof is completed.

Moreover we can see that the generating T, corresponds to one rotation
about the corresponding parabolic ideal boundary component.

Further, corresponding to Theorem 3.6 there holds

Tueorem 3.9. Let 2y be a parabolic fixed point on I'. Then a division of
U into N.P.s and an inscribed circle v touching I" at z, can be chosen such that
inside of v is divided into wedge-shaped parts of N.P.s and these parts are
equivalent with 7espect to the generating parabolic substitution T,.

Proof. As shown in the preceding proof, f(z) is univalent in a wedge W,
defined by 7, inside a small circle touching I at z,. Take a point @, in W,
and divide U into N.P.s having @, and its equivalents as centres. The N.P.
with the centre a, will be denoted by N,, and the circle touching I at 2z, and
passing through a, by r,. Since f(z) is univalent in W,, there is no equivalent
of a, inside 7. Hence by Lemma 3.3 a';EO is contained in N, and by Theorem
3.7 there exitst two sides of N, which terminate at z,. According to Lemma
3.3 again these sides are equidistant from a, and its two nearest equivalents on
7o : To(a) and T;'(ar). Hence the two sides are equivalent to each other with
respect to 7y,. Thus an inscribed circle sufficiently small is the required one.

Theorem 3.7 teaches us that only a finite number of the curves on R, which
are the images of the sides of N.P.s, terminates at the parabolic ideal boundary
component corresponding to z,, and Theorem 3.9 that if a point A= R is taken
sufficiently near the component, and if the images of P, in U are taken as cen-
tres, a sole image of the sides terminates at the component.

The parabolic fixed points are dense in itself on I', if it has at least one
parabolic ideal boundary component, excepting the case when R is doubly-
connected.

7. Hyperbolic fixed points

We shall call a regular arc, whose end points are fixed points, completely
regular. Except in the case when % is a doubly-connected surface with a para-
bolic and a hyperbolic ideal boundary components, two end points of every com-
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pletely regular arc are fixed points of a hyperbolic substitution.
Corresponding to Theorem 3.8, we can show

TuEOREM 3.10. The classes of the equivalent completely regular arcs and the

isolated hyperbolic ideal boundary components of R correspond to each other in
a one-to-one manner.

Except in the cases when 0t is of genus zero and its ideal boundary com-
ponents consist of three parabolic, or of one parabolic plus one hyperbolic ideal
boundary components, there exists always a curve on R, which is homotopic to
neither zero nor a curve surrounding a parabolic ideal boundary component.
Therefore the Fuchsian group & contains at least one hyperbolic substitution.
Further, hyperbolic fixed points are dense in itself on I'.

8. Non-fixed singular points

All the singular points on I" form a closed set S and are dense in itself on
I' except in the case when R is a doubly-connected surface. Hence S has a
power of continuum. Since fixed points are enumerable, the power of non-fixed
singular points is of continuum.

Every parabolic fixed point is a boundary point of some N.P.s but none of
hyperbolic fixed points is so. Similarly as in a plane™ we have

THeOREM 3.11. The following propositions are equivalent to each other:

1) the connectivity of R is finite;

2) there appears no non-fixed singular point on the boundary of every N.P.;

3) the boundary of an N.P. consists of only a finite number of sides.

In the proof of this theorem use is made of Theorems 3.7, 3.8 and 3.10 and
the fact that if the Fuchsian group ® is generated by a finite number of substi-
tutions the connectivity of R is finite.

CHAPTER IV. DIRICHLET PROBLEMS

1. Problem on an open compact set in Jt

In Chap. I we treated Dirichlet problem in the case when ® is an open
compact true subset in . We shall continue it in this section, assuming that
the transfinite kernel of ;-9 is non-empty on R.

If we can show that any continuous boundary function ¢ is resolutive, the
similar treatments as by M. Brelot in euclidean spaces become possible. Actu-
ally we shall proceed on this way.

First we will prove

" Cf. L. Bieberbach [1], 1 Aufl,, pp. 63-64.
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Lemma 4.1, There exists in D a positive harmonic function Uy(P) such that
Uy(P)~>+ oo when P tends to every irregular point on the boundary C of D.

Proof. Since C is compact in R, it is covered by a finite number of simply-
connected domains {NVg} (k=1, ..., n) bounded by analytic curves on . We
may, and shall, suppose that the transfinite kernel of the part of C on each N
is non-empty on R. The mapping function ¢=f;(P) of Ny onto 4:|t]| <1, is
analytic univalent also in a domain NN/ D N¢ by the principle of reflexion. We
shall provide a positive function on the #-plane such that it is harmonic outside
the image C; on 4% of C, even at t=o, and tends to + as ¢ tends to the
image E; on 42 of the irregular points E on C.

Since E; is of capacity zero and an F, set,”” there exists a distribution of
a unit mass on E; such that the potential #,(¢), induced by it, is +o on E;.”
Further, since C, is of positive capacity, there exists the equilibrium potential
u-(t) induced by a unit mass on C.."¥ Then u,(?) —u.(¢) is bounded below near
C,, tends to + as { tends to E;, and is harmonic outside C;, even at f=co,
whence

S =) 4o

It]=1+e OV ’
where ¢>0 is taken sufficiently small so that | ¢ | £1+¢ is contained in f&(NY)
={fx(P); PEN;}. By adding a constant the required positive function in the
t-plane is obtained.

Thus Theorem 2.1 or 2.2 can be applied according as the boundary of
is positive or null, and we obtain a positive function, which is harmonic on %
outside N¢ N C and tends to + oo as P tends to Ny E. The sum of such functions
for all {N:} gives the function required in the theorem.

Now let ¢ be a continuous function on C. By (1.1) and Lemma 4.1
I??,D(P)—er(P) belongs to 11? for any ¢>0. Hence ﬁ?(P)-—eUD(P)éE?(P).

e being arbitrarily small, there follows H’?P(P)gg?(})), whence the equality.
Since HEP(P) is bounded clearly, ¢ is resolutive. Further it can be shown that

Wiener’s solution exists and coincides with H:;D(P).T‘”
Since H?(P) is a linear functional of continuous ¢, it is expressible by
S ¢du’, where p” is a measure defined on the Borel class on C and equal to the
C

harmonic measure. For any ¢ define lower and upper integrals by

) Cf. M. Brelot [1].
") Cf. O. Frostman [1].
) Cf. M. Brelot [2].

https://doi.org/10.1017/50027763000012253 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012253

116 MAKOTO OHTSUKA

gcgadﬂ”:sup{gcgbdﬂ" ; ¢ =¢ and ¢ is upper bounded ,u"-measurable}
and
Sc(ﬁd/jp:inf{ chbd,u"; ¢=¢ and ¢ is lower bounded ,u"-measurable}
respectively, where + o are granted to ¢. Then after M. Brelot?” we can show that
‘:D = P ——‘D 2‘— P
HD(P) _chcdu and HP(P)= | pdu”.

If the class of uP-measurable sets are defined as usual, it follows from these
relations that in order that ¢ is resolutive it is necessary and sufficient that
¢ is uP-integrable in the narrow sense.

2. Problem on R as a covering surface

Let i be an inner covering surface® with relative boundary®® over another
Riemann surface. Then there exists at least one accessible boundary point of
R. Further suppose that i has a positive boundary. We shall consider Dirichlet
problem on the complete metric space R + Ty hereafter in this chapter, where
Tq represents the set of all the accessible boundary points of RS

Similarly as in euclidean spaces lower and upper classes llffand %?, and hypo
and hyper functions H%(P) and E!?j* (P) are defined for any real function ¢ on
%y If there holds #(P)=<0 on R whenever «#(P) is upper bounded continuous

subharmonic on % such that Tim «(P) =0, we will call it a surface of D-type.
P>reEXR

On R of D-type there holds H% (P) = H}(P).

Since at present we are not able to show the resolutivity of continuous ¢
generally, we shall consider the special case when N is of finite connectivity
and fulfills the condition (C)® henceforth in this chapter.

Make 3t into R, of planar character by p disjoint simple closed analytic
curves {ri} (=1, ..., p). Since the number 2p+#, where »n is the number
of the ideal boundary components of the first class of ¥, is equal to the con-
nectivity of R, » and p are finite. Hence ), can be mapped onto a domain
outside 2p + 7 circles or points in the ¢-plane. By the identification of each of
P pairs of corresponding circles, we obtain a Riemann surface ¢ to which 0
is conformally equivalent. If each pair is identified for the plane domain bounded
only by above 2p circles, a closed Riemann surface J; is obtained and this
includes ¢ as its true subsurface. The boundary C; of f¢ corresponds to =

80) M. Brelot [2], [5]. In euclidean spaces he expressed H and H by Daniell integrals.
81) Cf. Chap. 111, § 1.
32) This means that % is begrenzt in Weyl’s sense. Cf. H. Weyl [1], p. 47.
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circles or points in the ¢-plane, where at least one circle exists because @ has
a positive boundary.

Further map the universal covering surface R¢ conformally onto U: |z]
< 1. Then to the boundary circles C of R; there correspond completely regular
arcs on I': 'z =1. Taking Theorems 3.1 and 3.2 into account in the mapping
M( - N¢) ~ U, we see that Ty is mapped in a one-to-one continuous manner
onto a set E; on C; and the image on R of any curve terminating at a point
on E;NC but not touching C determines a point of T3.® Hence the function
¢ on Iy is transformed into a function on E;, which will be denoted by the
same letter ¢.

Since the transfinite kernel of R;— ¢ is non-empty on R, Dirichlet problem
is manageable on Ji; by the procedure in the preceding section.

First we will prove

TureoreM 4.1. Let R be a Riemann surface stated above and of D-type, and
¢ a bounded Bovel function on Tx. Then ¢ is resolutive, and if it is extended
to a function @ on C; by an arbitrary way, there holds H} (P (¢))= HFs(¢).

Proof. First we fix a point {, on R;. Since the mapping of the complete
metric space Ty onto E; is one-to-one continuous, the image of a Borel set on
Ty is a Borel set on E;. Therefore the function @ on C;, which is the extension
of ¢ by a constant M > sy‘p @, is pS-measurable, where 4 is the harmonic mea-
sure on ¢ at Z,. On account of Lusin’s theorem, we can find for any integer
7 an open set G,C C¢ such that £$(G,)<1/7n and @ is continuous on C¢—G,
=F,. A function @, defined by ® on F, and by M= i?fgo on G, is upper
semicontinuous. Hence there holds 1§l_n;l HF$(2)= 0a(¢’) on é; by (1.1). Especi-
ally on £;:N\C

lgn;Hg?f(c) £0,(¢) 2 0()=¢(C).
According to Lemma 4.1 there exists on ¢ a positive harmonic function U,(¢)
such that U,(J) - + when ¢ tends to every isolated point of C;. Consequently,
if HPS(Z) —<Un(2) for any >0 is regarded as a function on 9, it belongs to
the lower class % and hence H?},‘*ﬁ(c)—er(C)éﬂ?(P(c)). ¢ being arbitrarily
small, there follows HJ$(¢) =g R(P(£)). Further there holds

0= H® (%)~ HPE(%) _é_SG (0-0,)dpbo= (M — M) p(Gn) <-};(1VI'— M).

8 If these facts are known to us in some way, it is needless to impose the condition
(C) upon 9.
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When 7z > « the last term tends to zero and follows
HP(¢o) = lim HE (&) <HR(P(G)).
If we define @ by extending ¢ by M, we obtain
HR (P(%)) £ HF(%) = HP (%)
in a similar way. Since H%(P)< HR(P), there holds
HR(P(¢)) = HR (P(%)) = HP (%) = HFE(Co).
%, being arbitrary, ¢ is resolutive and on R;
HR(P(C))=HF(C) = H}(C).

In this we see that the harmonic measure of C;— E; on R¢ is zero and hence the
way of extension of ¢ is arbitrary.

We shall use the same letter ¢ to represent the function on C¢, which is
an extension of ¢ defined on E;.

This theorem shows that % of D-type is of F-type® under our conditions.
The converse is given by

THEOREM 4.2. If R is of F-type, then it is of D-type.>

Proof. Let #(P) be an upper bounded continuous subharmonic function on
9N such that lim #(P) =<0 as P~ P'=3y. We shall denote the function #(P(z))
in U by #(z), and the image on I' of Ty by E,. Along any radius terminating
at a point of E, there holds lim %#(z) < 0.

Now fixing any point z, we shall show #(z,)=<0. Without loss of generality
we may suppose zo= 0. By Egoroff’s theorem we can find for any integer » a closed
set F,C E, such that the linear measure m(I' —F,) < 1/7 and M, = sup {#(r¢"®) ;
¢"&F,} tends to a non-positive value as 7 - 1. For a function ¢, defined on
|z | =7 by u(re'®) for ¢°=F, and by M = sup u for other z, there holds

on . M. - M
#0) £ 5| "gr(re o < Momll=Fa) 4 pp o M1,

Since as 7 » 1 lim M, =0 and » may be taken arbitrarily large, #(0) 0. Thus
the proof is completed.
Consequently if Rt does not cover a set having a non-empty kernel on the

8) See Chap. III, § 2.
85) We impose no other condition upon % here.
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basic surface, ! is of D-type by Theorem 3.3. Hereafter in this chapter we
shall suppose that R is of D-type.

If for a fixed Pye=R a set function pxP(B) on the Borel class B on Ty is
defined by H?B(P), where Yz is the characteristic function of B, it is a measure
on B on account of Thaorem 4.1. Hence we can define lower and upper integrals
for any function, and uf-measurability of sets on ZTgp.

The following two lemmas are given to represent 1_‘12*(}’) and Eg‘(P) by
integrals:

Lemma 4.2 HRX(P) is the upper cover of H }(P), where ¢ <¢ and ¢ is
upper bounded and upper semicontinuous on Iy. The similar fact holds for H 3}} P).

LEMmMA 4. 3. If ¢ is an upper bounded Borel function on Iy, then
H}P)=H}P)= | ¢dy

on 9.

Proof. 1t is sufficient to prove this for ¢ <0, because H® , (P) =HX(P)-M
and HR ,(P)=H®(P)~M for any finite constant M. Hence ¢ will be supposed
to be non-positive.

When ¢ is bounded, it can be shown without difficulty that HR(P)= Sggfpd/ﬁ’ ;

For any Borel ¢ = 0 we have by Lemma 4. 2 and Vitali-Carathéodory’s theorem™'

TR PY = § RP) =} P P
IT}(P) = inf HJ(P) = inf qujd,; 50

where ¢ = ¢ and ¢ is bounded lower semicontinuous on Ty, If ¢dp? = -0
¢ TR

there holds H%(P)=H%(P) = — . Hence suppose S Ezmsm’,uf’ > — oo,

Now divide [0, — ) such that 0 =¢; >¢;>¢c.> . . . and denote the set {F;
n< ¢(P) £ ¢ua} dy Gu. Then S‘zmgﬁd/f= gS@ngoduP: SIHR(P), where ¢u=¢ on
€, and =0 on Tz —C,. Let #,(P) be a continuous subharmonic function such

that given ¢>0 and a fixed point Py, HR(P:) < un(Fs) + 5 and lim uu(P)

P—»P'g%gi
<¢u(P"). Then 3u,(P) is subharmonic on % and lim Dun(P) = lim us(P)
n P>PIEE, n Po>PIES,

¢y (P)=¢(P’). This shows that Slu,(P)&UR®  Therefore EH?;*H(P(,)

8) Cf. S, Saks [1], pp. 75-76.
89) 1f S u.(P) is not continuous, it is necessary, and possible, to replace it by the greater
n

continuous one which belongs to ug‘ Cf. M. Brelot [2]
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<D un(P)+ e HN(P)+:. = being arbitrarily small, SH R(P)=HX(F)-
Since this holds for any P,&}, we have EHZL(P) < H}(P). Therefore holds

ANP)= 5_m<;d,u”= SHN(P)<H}(P)= ANP).
Hence there follows

H}P)=HXP)=_ gan.

Tr
Taking Lemmas 4.2 and 4.3 into account we have at once

TueoreM 4.3. There hold jor any ¢
H¥P) =, edw and AFP)={, edur.

Corollary. In order that ¢ is resolutive it is necessary and sufficient that
¢ is pP-integrable in the narrow sense.

According to Theorem 4.1 there holds HR(P({))=H(¢) for any bounded
Borel function ¢ on ¥y. Any upper bounded Borel function ¢ can be approxi-
mated by bounded Borel functions {¢.} such that ¢,l¢. Since HR(P(Z))
=H,§}§(C) and we can express them by integrals, the limits may be taken and
we have H ;T(P( :))=H§*§ (¢). Borel sets corresponding to each other on Ty and
C;, we get further by Lemma 4.2

THEOREM 4.4. There hold for any ¢
HRP)=HP() and HR(P(2)=HR(Q).

Let 9%’ be a covering surface of finite connectivity over )t which has been
considered hitherto. Then the set Ty of all the accessible boundary points of
N’ are defined relatively to the basic surface of N, and N’+ 3Ty may be con-
sidered as a kind of covering surface over %+3g. Further we assume that R’
is of D-type t00.”” Under these conditions we can prove in a similar way as
M. Brelot®

THEOREM 4.5. Let ¢(P) be a function Yy, and define a function $(P’) on
I by Hg*(P) or H?Z*(P) when P' lies over an inner point P of R, and by ¢(P)
when P’ lies over a point P of Tx. Then there holds

HY (P)=HRX(P) or ﬁ?‘(P’):Hgi(p)

39) We will propose a question whether R’ over R of D-fype is always of D-type too or
not necessarily so.

9) M. Brelot [5].
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respectively.

Up to this place in this section we have investigated Dirichlet problem on
R of finite connectivity. But when N is a compact domain ® in a Riemann
surface and the transfinite kernel of its complement is non-empty, Dirichlet
problem on ® + T can be solved in a similar way as by M. Brelot in euclidean
spaces,’” even if the connectivity of T is infinite.

On the other hand, R. Nevanlinna®™’ treated Dirichlet problem on ® as follows :

Map ®“ onto U: ;z| <1 conformally. Then by Theorem 3.3 T is mapped
to a set £, with measure 2= on I': {z| =1, and a function ¢ on g is trans-
formed into a function ¢ on E;, where the function may be supposed to be
defined on 7. If the image on I of a set £C I is linearly measurable on 7,
E is called harmonically measurable, and if ¢ is integrable on I" the Poisson
integral®® with the boundary function ¢ on U is transformed into a one-valued
harmonic function on @ and this is called the solution.

We can prove a theorem similar to Theorem 4.5: There hold B?" (P)
=HDY(P) and ﬁ?“(P'):ﬁ?(P), where ¢ is the function on Tp= defined by

means of ¢. From this and Theorem 4.4 we have
HY(P(2))=H(2) and HZP(P(z))=H(2).

In these relations we see that Nevanlinna's method is equivalent to the method
by Brelot and us.

Though our method was applied only for a compact domain in a Riemann
surface or an inner covering surface of finite connectivity, Nevanlinna’s method
is available for any surface of F-type irrespective of its connectivity.”” This
gap is not yet filled at present.

3. Applications

Applications of Theorem 4.5 will be discussed in thie section.

Application 1. (Extension of Lowner’s lemma™). Let w=/f(z) be a bounded
vegular function in U : 2] <1 and suppose f(0)=0, {f(z)]<1. Denote by
f(e'®) the limiting value of f(z) at z=¢" along Stolz’s paths, which exists a.e.

9) R. Nevanlinna [3]. He treated the case when y is defined on the ordinary boundary
Cof ® U »is regarded as a boundary function on Tp, the hypao and hyper functions
obtained on ® as on R in this section coincide with those discussed in §1 of this
chapter,

") For any integrable o the Poisson integral equals Hg.

9) We can prove that any Borel set on ¥ is harmonically measurable.

9 K. Lowner [1]. Y. Kawakami [1]. S. Kametani and T. Ugaheri [1]. M. Tsuji [2].
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on I': |z]| =1 by Fatou’s theorem. Taking a set X on I" where | f(€®) | =1, the
set { f(¢"); e®= X} on the w-plane will be denoted by X.

Now we shall apply Theorem 4.5, by considering |w |<1 as R, the Riemann
surface of the inverse function of f(z) as R’ and the characteristic function of
Xy as the boundary function ¢ on Ty={|w| =1}. Then by Theorem 4.5

m(Xw) =HR(0)=H¥ ([0])=H F ([0]),”
where ¢, is a function on Ty defined by 1 at points which correspond to points on
X and by 0 at other points and [0] is the point on R’ corresponding to z=0.
By Theorem 4.4

HY ([0]) = HE,(0) = m(X)
and hence we have m(Xuw)=m(X).
Similarly there holds m(Xw)=m(X).

If X is an analytic set on I, Xw is so too and hence linearly measurable.
Therefore we can write the above inequalities in m(Xw)=m(X). However, even
if X is measurable on I, X, is not necessarily measurable on Ty. N. Lusin-J.
Priwaloff and P. J. Myrberg®’ have shown that there exist cases in which m(X)
=0 but m(Xw)>0. If a non-measurable subset X, C X, is chosen, the set
{2; f(R)EXw)N X=X’ is a null set on I. Thus X’ is measurable but X is
not so. Conversely let X,, be a measurable set, and put {z; f(z) & Xw) =X.
Since by Theorems 4.4 and 4.5 there holds H?(w) =H 2" (Py=H?}(z2), ¢ is meas-
urable. Thus X ={z; ¢(2)=1, [f(2)| =1} is measurable.

Next we shall investigate the sign =. Taking account of Theorem 4.3 there
holds

—_ R — R 7) = 0) R 5 0] 0]
m(Xa) = H0) = BY (001" = [ g 0+ § R R= o 0l

é&[zm] ¢ldl‘¥{; = m(X) ’

where [Tx] and [R] mean the subsets of Sy whose projections lie on T and
R respectively. If 7(Xy)>0, then HY(0) and hence HX(w)>0. If 2B/([RD
=0, then the harmonic measure of the points on I, whose image by f(z) lies

%) m and m denote the Lebesgue linear inner and outer measure respectively. When m=n,
it is denoted by m.

%) N. Lusin and J. Priwaloff [1]. P. J. Myrberg [2].

%) This equality holds, because _I_I;R is harmonic and hence ufof-measurable.
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in R, is zero by Theorem 4.4. This means that f(z) belongs to class (U),®
and conversely if f(z) belongs to class (U) then ugﬂ?([iﬁ])=0. Now it has
become clear that if f(2) & class (U) and m(Xyw) >0, then m(Xyw)>m(X). The
same is true for m. Moreover we can show that if f(z)& class (U) and
X ={z; f(z)€ Xw}, then m(Xw)=m(X) and m(Xy) =m(X).

These results include all the known results as the extension of Léwner’s
lemma.

Application 2. Let f(z) be the same function as in the preceding applica-
tion. If a harmonic function #(w) can be expressed by a Poisson integral in
R :|w|<1, the composed function #(f(z)) is also so in U  We shall prove
this theorem using Theorem 4.5.

Let ¢ be the boundary value of the Poisson integral of #(w). Using the
notation ¢ in Theorem 4.5, it follows by Theorems 4.4 and 4.5 that

u(w) = HY (w) = HY (P') = Hy(2).

Hence #(f(2))=H flf(z). This shows that #(f{z)) can be expressed by the Pois-
son integral with the boundary function ¢.

4. Regular points
We shall call Po&3y a regular point, if lim H ;,‘ﬂ (P)=¢ (L) for any bounded
P>y

function ¢ on Ty continuous at P;. Otherwise the point will be called #rregular.
At a regular point P, (1.1) and (1.1’) hold good. Further, if ;Trgx u(P)=A<C+o
for a subharmonic function #(P) and if the inner ha,rmonic_)noleasure of a set
ECZg is zero, then P, is an accumulating point of T —F and there helds

lim ( fim  #(P))=2'"

Py:P'->Pg P-—)P’Ezfﬁ—ﬂ‘
Therefore at regular points a principal theorem of cluster sets for analytic
functions™” is valid.

At irregular points, however, it holds not necessarily, differing from the
case in euclidean spaces. We shall show an example for it.

Let R be the part, over jw| <1, of the Riemann surface of the function
logw, and map R onto U: |z <1. Then w=0 corresponds to a point z, on 7:
|z]=1. When R represents the part of # which corresponds to a semi-circular
disc of U divided by the diameter through z,, the harmonic measure on R of

% Cf. W. Seidel [2] and O. Frostman [1].
9% Cf. M. Ohtsuka [1].

100 Cf. M. Brelot [3], [5]. He proved these results in euclidean spaces.
1 See Lemma 5.1.
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the part of its boundary over |w| =1 will be denoted by «(Z). This function
tends to 0 as P tends to the boundary point P, over w=0 along the boundary
of R, but to positive values as P tends to P, on paths, whose images in U make
angles between 0 and —g with I. Consequently if exp (#(P)+iv(P)), where
v(P) is the conjugate function of «#(P), is considered on N, the theorem cor-
responding to Lemma 5.1 does not hold for it at P,.

There exists the Green function on %, and it tends to 0 even at the irregu-
lar point P,, differing from the case in euclidean spaces.

Next subject tasked to us is to estimate the measure of irregular points on
Zg. At present, however, we have no knowledge about it.

CuaprTER V. CONFORMAL MAPPING OF A RIEMANN SURFACE
WITH A RECTIFIABLE BOUNDARY

1. A lemma from the theory of cluster sets

In the usual theory of cluster sets we investigate cluster sets of functions
on a plane domain into another plane. If a Riemann surface R is an inner
covering surface over a basic surface, and if f(z) is an analytic function on
)t into another Riemann surface, then cluster sets can be defined for f(z) at
any point of . However, a case where a fundamental theorem (below Lemma
3.1) does not hold was shown in the end of Chap. IV. Therefore we shall con-
sider functions on plane domains into Riemann surfaces. For these functions
usual methods are available to some extent, and certain results are obtained. But
merely a fact, which will be used later in this chapter, will be stated in the
following.

Let D be a plane domain, C its boundary, z, a point on C, R a Riemann
surface, and f(z) an analytic function on D into . We denote the part of D
and Cin |z—2z,! <7 by D, and C; respectively, and the set of values taken by
f(z) in D, by ®,. Then S is defined by Qo(@,»)“,‘“’ S¥) by Qo(zo_yerrsf”)“.

Using these notations we have

LeMmma 5.1.  (Extension of Iversew’s theorem'™). Let z, be a non-isolated
boundary point of D. Then there holds (S:2)°C (S5))8, where S denotes the
boundary of S taken relatively to %t.

Proof. Suppose that there is a point &R such that it belongs to (S{5’)?
but not to (S{;)%. Then we can select a small number 7 >0 and a neighborhood

105) See 34);
10%) Closure is taken relatively to 9. S;’S’ may be empty, different from the usual case.
M F, Iversen [1]. K. Kunugui [1]. M. Brelot [3].
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N of P, such that N"ﬂ(z‘)*\;}ech‘zD))“ =¢. Let |t| <1 be alocal parameter circle
corresponding to &V, in which ¢ =0 is the image of P, and 4 the inverse image
of N by f(z) in D. Then z, is a non-isolated boundary point of 4, and for the
composed function #(f(z)) on 4 into the t-plane, the cluster set S{” lies on
[t] =1. On the other hand S{3’ has ¢ = 0 as its boundary point. This contradicts

the following theorem due to M. Brelot: !>

If D is a bounded open set in the z-plane, if z, is a non-isolated boundary
point of D, and if f(z) is regular bounded in D, then (S3)°C (SE™)%.

2. Measure-theoretic lemmas
In the first place a theorem due to H. Federer™® will be cited as

LeEMMA 5.2, If P=f(p) is a function on a metric space 2 into another space
o, if A is an outer measure on o, if f(B) is A-measurable for every Borel set
B and if Q;CB (Borel class on 2) is a sequence of finite partitions of a set
BeE® such that sup{d(S); SE@;}"" >0 as j— o, then the function ngz(P),
which is defined on o by the number of p& B such as f(p)= P, is A-measurable,
and for the set function A(B) defined on B by sup (’_E_j;A(f(B;)); iZ:;B; = B} there
holds

A(B) = lim EA(f(S))=SanB(P)dA(P).

j»w 5@

From these equalities we know that A(B) is completely additive on B. The
A-measurability of sets in 2 is defined as usual and 4 becomes a measure on the
class of i-measurable sets.

We shall say that a not necessarily additive interval function U(I) is abso-
lutely continuous on I if for a given ¢ > 0 there exists » >0 such that :Zl‘l UL <e
whenever the sum of the lengths of non-overlapping intervals {f;} /=1, . . ., n)

in 7 is less than 7.
We will give two lemmas concerning the length of a curve.

LemmMma 5.3. If f(t) is a continuous function on I,: 0=t <1 into a metric
space o, if p is the distance on o, if L is the length defined in the usual sense,
and if L(L)< + o, then

 p(f(E + ), 1))
lim 4t

193 M. Brelot [3].
1%) H, Federer [1].

107 §(S) denotes the diameter of S.
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exists a.e. and, denoting it by H(l), we have H(t)=L'(t) a.e. on I, and
SI H(t)dt < L(L)
1
for any interval 1,C L, equality holding if and only if the interval function
UI)=p(f(ts), f(Ls)), wkere 1=1[t,, t;], is absolutely continuous on I,.'*®

Proof. The upper Burkill integral of the interval function U(J) gives the
usual length L(Z) of the curve {f(¢); t& I}, and we can prove the existence of

o(fE+ 44:), f(2)) =H() a.e. on I

lim
At->0
and the equality
H(t)=L'(t) a.e. on I
as properties of the Burkill integral.!®®
It is easily shown that the absolute continuities of L(7/) and of U(J) are

equivalent, and well-known that there holds the inequality
S, L'(Hydt <L)  for any LCh,
1

equality holding if and only if the interval function L(J) is absolutely con-
tinuous on 7" From these facts the proof will be readily completed.

LemMma 5.4. If f(t) is a continuous function on I, : 0=t =1 into a metric
space o, if L(I) is the length defined in Lemma 5.3, if A is the outer length™V
on o, and if A(B) is the measure defined on B in Lemma 5.2,"% then there holds

L(Io) = A(L).
Proof. There holds for any interval [#;, t.] in I

p(f(), f(E)) € A{S(@}); Li<t<it})= L([L, 1)1
Hence if L(%) and A([,) are finite, then given ¢ >0 we have for a sufficiently
small subdivision of L, : 0=t <t; < ... <tp=1,

L() = e 330(f (ti-1), £t)) & BACSW); tiea <E<1:}) 2 A(D)

and

) ~c< iZZ‘iA((f(t); tio <t <ti)) < g;L([t;-,, t)=L(L),

105) Then we shall say that f(#) is absolutely continuous on Ii.

19) Cf. S, Saks [1], pp. 165-169, T. Radé [2], Part 111, §1.

10 Cf. S. Saks [1], p. 119.

1 C, Carathéodory [2]. Cf. S. Saks [1], p. 54.

12) It is to be remarked here that f(B) is an analytic set and hence ,-measurable.
113) Cf, S. Saks [1], pp. 123-124.

1) Since A =0 for a single point, 4-measures are equal for open, half open and closed
intervals.
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where use is made of Lemma 5.2. Thus L(/;)=A(%4). By similar inequalities
we can show that the infinity of one induces the infinity of the other.

3. Rectifiability of boundary of a Riemann surface

In this chapter let & be a simply-connected Riemann surface of hyperbolic
type as an inner covering surface over a metric Riemann surface ¢. Let the
distance on ¢ be o(P,, P.) and assume that at every point P& ¢ there exists a
neighborhood N and a local parameter w such that

(5.1) 0<m< L P = K0P, W(P)) <M< + 01

[w(P) — w(Ps)

for P,* P.=N, where m and M may depend upon P and w. If w is another
local parameter of N, a similar inequality holds in such neighborhood N of P
as NCC N also for x(w(BP), w(P,)), which is defined similarly as in (5.1), be-
cause w’'(w)*0 on N’ and hence

|w(P) —w(P)|

0<m <1 Py =w(Py)|

<M <+ o

for P,x P,eN'.

Let us consider the accessible boundary points of 8. A curve on R, which
terminates at two different accessible boundary points, is called a cross-cut and
divides i into two parts. Take an infinite sequence of cross-cuts {g,} on ‘R,
whose end-points are different from each other and whose projections on ¢ tend
to a point as #n—> . Further suppose that ¢,_; and ¢, lie in different parts,
into which R is divided by ., and denote the part which contains guy; by Ra.
We designate such a sequence {R,} a fundamental one. Two fundamental se-
quences {R,)} and {Ru} are called equivalent when for any assigned integer m
there exists an integer # such that R, DR, and RmDR». To every class of
equivalent fundamental sequences let a boundary element be made to corre:
spond.”® Now we can introduce a topology into the space consisting of R and
the set €y of all the boundary elements quite similarly as in Chap. III, §5.
The intersection of the closures of the projections on ¢ of {R.}, which deter-
mine a boundary element Pg, will be called the projection of Pg, and Pg will
be said to lie over P when P belongs to the projection of FPg.

If R+ €y is a compact space,”” and if there holds

115 This assumption expresses that the distance p is comparable locally with the euclidean
distance.

118) C. Carathéodory defined this for a plane domain in [1].

%) 9% 4 Gy is not necessarily compact. Compare this with ), It can be shown that it is
compact when the maximal covering number of R over ¢ is finite,
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(5.2) Son (P)dA(P) < + o011

where n(P) is the number of the boundary elements lying over P and 4 is the
outer length on ¢, then we shall say that the boundary of Rt is rectifiable.

4. Continuity of the mapping function

Hereafter we suppose that the boundary of R is rectifiable. Mapping U:
|z2] <1 onto R conformally and taking the projection R — ¢, we denote the map-
ping function of U into ¢ by f(z). For this function we have

THEOREM 5.1. f(2) can be defined also on |z| <1 so that it is still continu-
ous there.

Proof. The part of ¢ over which the boundary elements lie is equal to
Q(f(D,,))a,“‘” where D, is the ring domain 1 —%< |z2]<1. As that part is
closed and has finite 4-measure by (5.2), f(z) does not take values of an open
set on ¢ in U sufficiently near I. Then it is easy to show the one-to-one cor-
respondence between €y and I' by making use of Lindeléf’s and Koebe’s theo-

rems.”® Thus n(P) is equal to such a number of z&7 as P=SY’.

Let F be a closed arc on I, and take a sequence of cross-cuts in U which
cut off open arcs {G,} from I and {U,} from U such that G, | F and Uj | F.
Then f(Ux)% ! Sr as n- «, where Sy =Z’LgFS‘zU’. Therefore Sr is a continuum or
a point on ¢. When £ is a half open arc, Sz is the union of an enumerably
infinite number of closed sets and hence A-measurable.

Let 2, be any point on I, take a sequence of open arcs {G,} such that

Gnlz, put Gu—Gpyy=EP + E', where EYY and Ey' are half open arcs lying
on each side of z,, and put f]E,L" =4 (=1, 2). Since by (5.2)
k=n

S (A(SEP)+A(SEE)) < + o0,
k=1

A(SA;”)ég‘A(SE,(‘”) tends to zero as #—> . Then we can assert that the di-
ameter of S,!» tends to zero as n—> . For if the diameter did not tend to
zero, there would be two points of Sy for all #, which have positive distance
po to each other. Then A-measure of Sy would be not less than p, >0 for all

n and this is a contradiction. Now Si)*’' "' = M (Sa")¢ turned out to be a single
n

118) For the definition of lower integral see Chap. IV, §1.

19) (f(Dn))e means the closure of the set { f(z); z & Da)}.

120) Is it possible to show the one-to-one correspondence without using the condition (5.2)?
121) I'y and I: are two sides of zy on I.
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point. The same is true of S{*. As it is seen previously that S®' is not
identical with ¢, there holds

St = St = Sf) = one point

by Lemma 5.1. By the arbitrariness of z,, f(z) can be defined so as to be con-
tinuous everywhere on |z|=1.

5. Correspondence of null sets

We shall denote the set {z&I"; f(z)&E’) for a set E’ on ¢ by f~*(E’) and
say that f-'(E’) on I corresponds to E’.

When a function is bounded regular in U and continuous on U+ I' and the
image of I is rectifiable, it was shown by F. and M. Riesz*® that the image of
a null set on I has a linear measure zero and vice versa. Also in the present
case we can prove

THEOREM 5.2. Under the same condition as in §4 the null sets on I and
the null sets on o correspond to each other.

Proof. First we assume that f(z) is absolutely continuous on I. Since
/I(Io)=S n(P)dA(P)< + o (I,=[0, 2r]) by Lemmma 5.2 and (5.2), it follows by
Lemma; 5.3 and 5.4 that there exists H(0)=}‘i)£ré o(f(e!9+47)  f(ei®)) /46 a.e. on
I" and holds

(5.3) () =L(I)=SI H(6)db,

AN
where I=[0,, 6,] and L(J) is the length of the image on ¢ of ¢'%¢i2. From
(5.3) follews A(G) =SG H(6)d6 for any open set GCI. Further holds for any
Borel set B
—1 . 123) — 3 ° -—
A(B)=inf{A(G); BC G} —mf{SG, BCG) -SB‘

Taking account of Lemma 5.2 np(P) is 4A-measurable and
(5:4) { mopyaapy = HO)a0.

Now let £ be a null set on I. Then there exists a Gs null set £, DFE and
(5.4) holds for £,. Hence S nedd =0. Since f(E,) is equal to {P; ng(P)=1},
A(f(E))) =0 whence also A(of(E))= 0. Thus a null set on ¢ corresponds to a
null set on I

Next suppose that H(#) vanishes only on a null set on I. If E’ is a null

122 Qag %),
12% Cf. A. P. Morse and J. P. Randolph [1].
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set on o, there exists a Gs null set E;DE’ " and f~'(E)) is a Gs set on I.
Therefore (5.4) holds for f-'(E;). Since S ny-1 ey dA =SF, ndA =0, there fol-
(o] 1

lows )H(ﬁ)dﬂ:O. Hence m(f-"(E}))=m(f~(E£’))=0. Thus a null set

Sf—’(r:j
on I’ corresponds to a null set on ¢.

In the following we shall show that f(z) is absolutely continuous on I" and
H(0) vanishes only on a null set on I.

As we have seen in the proof of Theorem 5.1, near I" f(z) does not take
values of an open set on ¢. Hence we can map the universal covering surface
of ¢ on the w-plane such that, taking a branch, the meromorphic function w(z),
which corresponds to the mappings U - ¢ » w-plane, is bounded near I. It is
resolved in U in the form:

(5.5) w(z)=(k1i111-z——:z—i—k§)g(z)= h(2)g(z),

where {a:} are poles of w(z) in U and g(z) is regular in U and continuous
on I,

We shall evaluate the usual length Lg(%) of the curve {g(¢'®); 6 L) on
the w-plane. w may be taken as a local parameter for every N in §3. Since
the w-image of I is closed in the w-plane, it is covered by a finite number of
the w-images of such N’ as N’2CN. Let the selected N’ be {N;} (:=1,2, ...,
7). Since (5.1) holds in every NV; for the selected branches, there exist m and
M such that
(5.6) O<m<e(w(P), w(P:)) <M< + oo,
where P, and P. (P, P.) belong to some one N; and w(P,) and w(FP;) are the
images by a certain branch selected for ;. Since f(e®) is continuous on I,
we can take a subdivision of I' such that the image of every piece lies in a
certain N;. For such a subdivision we have by (5.5)

oy w(et) _w(e) &
¥=1 h(e®=1y  R(ef) =

S lgeitne) - g(e)| = S efts-1) h(ei®s)

~ 0 (e%) B (ei%1) | = 3| w(ef%1) = w(e™)| + 33 w(es) || B(e®1) = h(e9)].
From (5.6)
r, p(f(ei%-1), f(e%)) _

E1k(w(e-1), w(e%)) ~

(such terms as w(e®*-1) = w(e'®*) are excluded),

the first sum =

o DO (%), F(e™)) & - L)< + o0

the second sum = M, | h(e®-1) — h(&'%)| = MLx(1,),

(4
k=1
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where Li(l,) is the length of the curve {h(e®); 6 L), and is finite, since h(z)
is regular also on I. Therefore Lg(f) = supé |g(ef®%-1) — g(e'®) | is finite.

This once established, it is possible by the usual method'® to show that
g'(2) is of bounded type in U, that g(e’®) is absolutely continuous and that
2'(e"®) exists a.e. on i. Therefore w'(z) =g'(2) h(2)+ g(2) #'(2) is of bounded
type and w'(e’) exists a.e. on /. Furthermore since for such # and ¢’
0=0<0<2r) as f(e@’) lies in a certain N; and f(e'®) = f(e’®) there holds

p(f(€?), f(e)) = k(w(e™), w(e))|w(e®) - w(e)]|

£ M|w(e) - w(e®)| = M| g(e®) — g(e”)| + MM, | h(€®) — h(e')]
and g(¢°) and /(e®) are absolutely continuous, f(e®) is also absolutely con-
tinuous on I.
Since on account of Lemma 5.3 H(f) exists a.e. on I, also
lim  (w(e/*+29), w(e®)) = H(D)/ | w'(e®)]

exists a.e. on I. If we denote this by x,(8), there holds
(5.7) H(0) = kw(0)|w (e).
Since w'(z) is of bounded type'* and kw(8)=m >0 by (5.6), H(6) vanishes
only on a null set. Thus the proof is completed.

This theorem may be regarded as a generalization of F. and M. Riesz’s
theorem and be stated in the following form in connexion with Chap. IV:

THEOREM 5.3. On a Riemann surface with a rectifiable boundary Dirichlet
problem is manageable by the procedure in Chap. IV, §2, and a set on the
boundarv has harmonic measure zevo if and only if its projection on ¢ has zero
A-measure.

This is applicable, for instance, to the following theorem due to P. J.
Myrberg: ¢!

Let {a,} be a sequence of points in w|{ <1 and radial slits be drawn from
every a, to v:lw|=1. If the total length of the slits is finite, the harmonic
measure of v with respect to the slit domain is positive.

It is known that if the total length is infinite there appear cases in which
the assertion of this theorem is not true.”™ Hence the condition (5.2) is neces-
sarily to be imposed.

Let D be a plane domain outside a set C of positive capacity, but of outer

124) Cf. F. Riesz [1], M. Tsuji [1].

125) See the extension of F. and M. Riesz’s theorem in p. 197 of R. Nevanlinna [2].
126) P, J. Myrberg [2].

127) Ibid. and N. Lusin and J. Priwaloff [1].
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length (linear measure) zero. When the universal covering surface of D is
mapped conformally onto U, C corresponds to a set of linear measure 27 on I.
From this example we know that the compactness of i + €y is necessary for
the validity of Theorem 5.3, even if Dirichlet problem is manageable on the
Riemann surface by the procedure in Chap. 1V, §2.

6. Equalities for the length

We obtained some equalities for the lengths of sets on I in §5. Now we
shall complete them in this section.

Let £ be any linearly measurable set on I. Then there exist an F, set E,
and a G; set E; such that E,CECE. and mE,=mE=mE,. From (5.4) we
know that Sonx,dA =San1dA and this shows the .f-measurability of the func-
tion ng(P), because 7ng(P)= ng(P)< nr(P) and both ng(P) and nz(P) are
A-measurable. Further there holds

(5.8) Sam:(P)dA(P) =SEH(0) ds.

It can be proved similarly that for any .f-measurable set E’ f~!(E’) is linearly
measurable on I.
From (5.7) and (5.8) there follows

{ an(PYdA(P) = | xu(@)|w (e)|d0

for any linearly measurable set £ECI. We can show this equality also in the
case when ¢ is mapped on the w-plane so that the function w(z) on U is not
bounded near 7, i.e., w(z) = c at some points on 7.

Finally let W=¥(P) be a non-constant one-valued meromorphic function
on ¢ and denote the function ¥ (f(z)) by W(z). Then also in this case W’'(e'®)
and x.,v(a)=Eer§1"x(W(e‘(°*A°’), W(e®)) exist a.e. on I' and there holds for any

linearly measurable set E

§, ne(PYda(PY = rnt®)] W' ()] do.

Examples. The variables w and W in examples are supposed to have the
same meaning as above.

1) Let ¢ be a simply-connected Riemann surface of elliptic or parabolic type
and define the distance o(P,, P.) by |w(P15— w(P) |/~ T+ Tw(P) ) (T + [w(P)F).
Then kw(0)=1/(1+ |w(e)]?).

2) Let ¢ be a closed surface of the genus 1 and define the distance p(P,,
P,) by min|w(P,)—w(FP)|, where w(P;) and w(P:) represent the points cor-
responding to P, and P respectively on the w-plane. Then &, (0)=1.
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3) Let s be a Riemann surface different from those stated in 1) and 2), and
define the distance p(P;, P;) by min|w(P) —w(P:)|/|1 — w(P) w(P:)|, where w(P,)
and w(P:) represent the points corresponding to P, and P.. Then xu(6)=1/(1
—|w(e’®){?). If the distance is given by log ((1-+ (P, P2)) /(1= o(P:, P:))),
the value of » doubles.

4) Let ¢ be a covering surface over the Riemann sphere and define the
distance p(#;, P,) as in Teichmiiller’s metric.”®™ Then locally o(P;, P:) = | W(P,)
—W(P)|/~¥1+ [W(P))(A+[W(P:)[*) except over W= or at the branch
points of o and ky (6) =1/(1+ | W(e™)?).

5) Let ¢ be a Riemann surface regarded as a Finsler space, ds*= F(x, v,

dx, dy) the infinitesimal distance represented in a local parameter circle, and
C={P(l); 0=t=1} a continuous curve on ¢, whose image in any parameter
circle is absolutely continuous and rectifiable in the usual sense. Then the in-

.
tegral arc length S of C will be defined by S~/ F (x, ¥, dx dy )dt as a Lebes-
C 0 dt dt
gue integral, and a metric on ¢ will be introduced by distance p(F;, F;)
=inf S , where C is a curve possessing the properties stated above and joins
C
P, with .. We shall call this the geodesic distance. It is known that this met-
ric gives the topology equivalent to the original one of ¢, that it satisfies the

inequality (5.1), and that the L-length defined by this metric is equal to S for

any C mentioned above.?® Further there holds dS /dl = \/ F ( x, ¥, Z: Zf ) a.e.
on [0, 1].
Applying these results we have from (5.3) and (5.7) a.e. on I”

JF(x 5, B DY ) o)),

where w =x+34y. The same is true of the variable W. In examples 1) to 4)
every ¢ can be regarded as a Riemann space with the infinitesimal distance of
the form: ds=aA(w)|dw| or A(W)|dW . Then kw(0)=2A(w(e®)) or &y (8)
= A(W(e"")) a.e. on I. The geodesic distance is equal to an arc length along
a great circle on a Riemann sphere in 1), to o(#, P,) in 2) and 4), and to
log ((1+ o(Py, P2))/(1 = p(Py, Pr)) in 3).

128) Cf Chap 111, §1.
120) Cf. M. Morse [1], pp. 67-68, S. B. Myers [1].
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