
From Interacting Binaries to Exoplanets: Essential Modeling Tools
Proceedings IAU Symposium No. 282, 2011
Mercedes T. Richards & Ivan Hubeny, eds.

c© International Astronomical Union 2012
doi:10.1017/S1743921311027967

Non-Conservative Evolution of Binary Stars

Christopher A. Tout
Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, England

email: cat@ast.cam.ac.uk

Abstract. Various processes can lead to non-conservative evolution in binary stars. Under
conservative mass transfer, both the total mass and the orbital angular momentum of the system
are conserved. Thus, the transfer of angular momentum between the orbit and the spins of the
stars can represent one such effect. Stars generally lose mass and angular momentum in a stellar
wind so, even with no interaction, evolution is non-conservative. Indeed, a strong wind can
actually drive mass transfer. During Roche lobe overflow itself, mass transfer becomes non-
conservative when the companion cannot accrete all the material transferred by the donor. In
some cases, material is simply temporarily stored in an accretion disc. In others, the companion
may swell up and initiate common envelope evolution. Often the transferred material carries
enough angular momentum to spin the companion up to break-up, at which point it could not
accrete more. We investigate how this is alleviated by non-conservative evolution.

Keywords. binaries: close, stars: mass loss, planetary systems

In 1848, Édouard Roche formulated what came to be known as the Roche limit and
began the theory of the Roche potentials. In the twentieth century, these became used
to study the shapes of interacting binary stars and, with the explanation of the Algol
paradox, that in a coeval binary the fainter component could be larger, redder and less
massive than its companion (Hoyle 1955; and Crawford 1955), the concept of mass trans-
fer by Roche lobe overflow became established. To understand how a mass-transferring
close binary star evolves, we must know whether mass, and indeed angular momentum,
are lost from the system in significant quantities during the mass transfer.

1. Conservative Evolution
Let us first define conservative mass transfer to be without mass loss or angular momen-

tum loss from the system. That is, both the total mass and the total angular momentum
are conserved. We shall restrict the definition further by assuming the stars behave as
point masses, material flows between them uniformly over an orbital period, and no angu-
lar momentum can be stored in either the stars or circumstellar matter. For illustration,
we shall consider circular orbits. Fig. 1 shows this simple set up in which the two stars
with masses M1 and M2 orbit their centre of mass in circular orbits of radii a1 and a2
at angular velocity Ω. The total mass of the system M = M1 + M2 and the separation
of the stars a = a1 + a2 , so that a1 = aM2/M . The total orbital angular momentum is
then

J =
M1M2

M
a2Ω (1.1)

and the orbit obeys the generalised form of Kepler’s third law
(

2π

P

)2

= Ω2 =
GM

a3 , (1.2)

where P is the orbital period and G is Newton’s gravitational constant.
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Figure 1. A simple binary star consisting of two point mass stars in a circular orbit.

For conservative evolution, we then take the rate of change of total mass Ṁ = 0 but
allow mass transfer so that Ṁ2 = −Ṁ1 and J̇ = 0. Taking a logarithm of equation (1.1)
and differentiating, we arrive at

J̇

J
=

Ṁ1

M1
+

Ṁ2

M2
+ 2

ȧ

a
+

Ω̇
Ω

= 0. (1.3)

We do the same with Kepler’s third law and integrate to obtain the familiar results

P (M1M2)3 = const and a(M1M2)2 = const. (1.4)

Thus, for mass transfer from star 1 to star 2 both the period and separation decrease
while M1 > M2 , and subsequently increase.

2. Non-Conservative Evolution
When evolution is non-conservative, both Ṁ < 0 and J̇ < 0. It is hard to envisage

substantial mass loss without that mass carrying off angular momentum; and angular
momentum cannot be lost without mass to transport it, though this mass may be very
small in the case of magnetic braking or gravitational radiation. First, let us consider an
isotropic stellar wind from one of our two point masses, star 1, when there is no mass
transfer. So, star 1 loses mass at a rate −Ṁ = −Ṁ1 . This mass carries away its specific
orbital angular momentum so that

J̇ = Ṁa2
1Ω. (2.1)

We can divide this by J and proceed as before to obtain the, again familiar, results

PM 2 = const and aM = const. (2.2)

So, the period and separation increase. The solar system will grow as the Sun loses mass.

3. Stable Roche Lobe Overflow
Fig. 2 shows a star that only slightly overfills its Roche lobe. Subsonic flow accelerates

to supersonic as it passes through the rocket-like nozzle at the L1 point. The ballistic
stream this creates is then confined to the Roche lobe of its companion. If the stream
hits the companion before encircling it, material may accrete directly. If the companion
is too small so that the stream has too much angular momentum to fall on directly, it
encircles the star, collides with itself and spreads out to form an accretion disc. Viscosity
in the disc allows a small amount of the mass to carry angular momentum outwards while
most of the mass drifts inwards. The disc is truncated by tides within the Roche lobe
of the accreting star and these same tides return angular momentum to the orbit. Thus,
we do not expect material flowing through the L1 point to be lost during the overflow.
Any material that is lost must be driven away by some energy source associated with
the secondary star or the accretion flow on to it.

However there is, at least circumstantial, evidence that binary systems do not evolve
conservatively. All Algol-like systems observed today have mass ratios that are signif-
icantly inverted, in that the mass of the star that evolved first, and so was originally
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Figure 2. The region of the inner Lagrangian point L1 for a star that only just overfills its
Roche lobe. The equipotential surfaces at the L1 point form a rocket-like nozzle through which
material flows. On the left flow remains subsonic, so that the star can be treated as if in
hydrostatic equilibrium, while on the right flow is supersonic and so ballistic.

the more massive, is now somewhat less than that of its accreting companion. Morton
(1960) deduced that this meant that all Algols should have gone through a rapid mass
transfer phase that was very short-lived compared to the state in which we observe them
now. This can be explained if the initially more massive star first filled its Roche lobe
in the Hertzsprung gap, as a subgiant, when loss of mass would lead the star to expand
and transfer mass on a thermal timescale. Even then, the process of overflow ought to
be conservative except that the secondary star cannot itself accrete the material fast
enough. Indeed, Paczyński & Zió�lkowski (1967) found that the resulting Algol systems
are more realistic if half the mass transferred is actually lost from the system.

The need for angular momentum loss from binary stars is confirmed by the cataclysmic
variables. Most of these consist of a low-mass red dwarf transferring mass to a somewhat
more massive white dwarf. The red dwarf evolves far too slowly to be driving the mass
transfer by its own nuclear evolution, and simple mass loss alone would widen rather
than shrink the orbit. Indeed, the white dwarf in these systems must have evolved as the
core of a red giant whose entire envelope has been lost from the system.

4. The Spins of the Stars
Before considering true non-conservative evolution, let us first consider relaxing the

assumption that the stars are point masses. As a star grows to fill its Roche lobe, tides
tend to lock its spin with the orbit, and angular momentum flows between the star and
the orbit. Typically, a giant star has spun down as it expanded and so requires more
angular momentum to spin it up. From Kepler’s third law and our expression for orbital
angular momentum (equation 1.1), transfer of angular momentum from the orbit to
the star shrinks the orbit and so increases its angular velocity. Conversely, a hot main-
sequence star may need to spin down to reach corotation with its orbit, and transfer of
angular momentum from the star to the orbit expands the orbit and reduces its angular
velocity. Thus, either both the star and orbit spin up or both spin down.

To estimate the angular momentum that can be stored in a star, we consider star 1
of radius R1 to be extended and to have a radius of gyration k1 R1 , and so moment of
inertia Istar = M1k

2
1R2

1 and angular momentum Jspin,1 such that

Jspin,1

Jorb
=

M1(k1R1)2M

(M1M2a2)
. (4.1)
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Figure 3. The total angular momentum of a binary system with angular velocity Ωorb one
expanded star spinning at Ωspin . The solid curve is the tidal equilibrium. Horizontal lines are
the direction of evolution when not in equilibrium. Though most detached and semi-detached
binaries lie in regions where they can evolve to stable equilibrium, some contact systems and
many close orbiting planetary systems are ultimately unstable.

For two 1M� main-sequence stars, with k2
1 ≈ 0.1, and a separation of 10R�

Jspin,1

Jorb
≈ 0.1 ×

(
1
10

)2

× 2 = 2 × 10−3 (4.2)

and this we might neglect. However, for a 5M� giant with k2
1 ≈ 0.2 for its envelope, a

core of Mc = 0.6M�, envelope radius of R = 300R�, almost filling its Roche lobe when
a = 500R� and a companion of 0.5M�,

Jspin,1

Jorb
≈ 0.2 ×

(
300
800

)2

× 4.4 × 5.5
5.0 × 0.5

≈ 0.27 (4.3)

which becomes significant. Thus, the orbit of a system can be very much reduced by the
time that a giant fills its Roche lobe. Indeed for large mass ratios, spinning up the star
can take more angular momentum than is available in the orbit. Close binary systems
with extreme mass ratios are most prone, and planets that can spin up their host star
are very vulnerable. The total angular momentum of a system with one expanded star is

Jtot = IstarΩspin +
M1M2

M
a2Ωorb . (4.4)

Fig. 3 shows how this varies with the angular velocity of the star’s Ωspin . The left branch
of the equilibrium, with 3Istar < Iorb = M1M2a

2/M , is stable but the right, with 3Istar >
Iorb , is unstable. Our typical giant spinning more slowly than its orbit lies to the left
of the stable branch. As tides spin it up, it moves to the right. However, as it evolves,
tidally locked Istar increases so that Jtot effectively falls, and it descends the stable track.
Our example system (equation 4.3) is dangerously close to the minimum Jcrit beyond
which there is no stable equilibrium. Most contact binaries eventually suffer this fate. A
hot star spinning faster than its orbit typically lies between the two equilibria and tidally
evolves towards the stable branch to the left. After the discovery of 51 Peg B, Rasio et al.
(1996) soon pointed out that, if the planet were able to raise tides on the star sufficient
to spin it up, the planet would fall into the star because Jtot < Jcrit . The fact that it
doesn’t, tells us about the strength of the tides it can raise on the star.
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5. Consequential Angular Momentum Loss
Most often, non-conservative mass transfer is taken to mean mass and angular mo-

mentum loss associated with the process of Roche lobe overflow itself. This needn’t be
due to part of the stream leaving the system at the L1 point. Indeed, it is more likely
associated with the accretion process on to the companion. When accretion is via a disc
there must be some consequential angular momentum loss. Consider star 2 of radius
R2 , mass M2 and spin Ω, accreting from the inner edge of a Keplerian disc. Its angular
momentum J2 = I2Ω ≈ k2

2M2R
2
2Ω while material accretes at the star’s break-up spin

of Ωmax =
√

GM2/R3
2 so that δJ2 = δMR2

2Ωmax. Then, the maximum mass that can
be accreted conservatively is about δM2 ≈ k2M2 because stars accreting from a disc are
easily spun up. However, white dwarfs in cataclysmic variables spin slowly and primary
stars in Algol systems wide enough for an accretion disc spin at most at about four
tenths of break-up. Tides are not sufficiently strong in the hot Algol primaries to prevent
rapid spin up and so some extra angular momentum loss is necessary. Dervişoğlu, Tout
& İbanoğlu (2010) argued that this is most likely by the excitation of a magnetic dynamo
generated precisely because the star has been spun up by accretion.

Once strong large scale magnetic fields have been generated, angular momentum loss
by magnetic braking (Schatzman 1962) is inevitable. Suppose mass in a stellar wind is
forced to effectively corotate to some Alfvén radius RA (Mestel 1968). Then

J̇ = Ṁa2
1Ω + KJ, (5.1)

with

K =
2
3

(
RA

R

)2 (
R

a

)2
M

M1M2
Ṁ. (5.2)

Note that RA/R � 1 always, and even this minimum is important for extreme mass
ratios when R1 > a1 .

Similarly, rapidly spinning magnetised accretors can eject the transferred mass by a
propeller effect. When the magnetic field of an accreting star is so high that the magnetic
energy density in the stream is similar to its kinetic energy, the transferred material is
forced to flow along the field lines. This is the case in the polars, and intermediate polars,
cataclysmic variables with a highly magnetic white dwarf that accretes at the magnetic
poles. In the polars, the spin of the white dwarf is locked to the orbit, but in cases where
the white dwarf has been spun up beyond this, perhaps by an episode of disc accretion,
material can be accelerated by the magnetic field and flung out of the system. A probable
example is the cataclysmic variable AE Aquarii (Eracleous & Horne 1996) and similar
effects are expected for accreting magnetic neutron stars.

6. Common Envelope Evolution
Perhaps the most extreme case of non-conservative evolution is that of a common

envelope phase. Paczyński (1976) described how such a process is necessary to account for
the very short orbital periods of cataclysmic variables and their immediate progenitors.
The white dwarf must originally have been the core of a giant of some many tens to
hundreds of solar radii. Thus, a substantial amount of both angular momentum and
energy must have been lost from the orbit along with the giant’s massive envelope. Fig. 4
illustrates the process which remains one of the most important, but least understood,
in binary star evolution. The onset of common envelope evolution follows a giant filling
its Roche lobe and transferring mass to a less massive companion. The giant responds to
mass loss by expanding its convective envelope, while the orbit responds by shrinking.
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Figure 4. Common-envelope evolution. After dynamical mass transfer from a giant, a common
envelope enshrouds the relatively dense companion and the core of the original giant. These
two spiral together as their orbital energy is transferred to the envelope until either the entire
envelope is lost or they coalesce. In the former case a close white-dwarf and main-sequence binary
is left, initially as the core of a planetary nebula. Magnetic braking or gravitational radiation
may shrink the orbit and create a cataclysmic variable. Coalescence results in a rapidly rotating
giant which will very quickly spin down by magnetic braking.

This positive feedback means that the giant overfills its Roche lobe yet more, and the
rate of mass transfer rises towards a dynamical limit. The companion certainly cannot
accrete at such a rate and the material forms a common envelope.

Some wide Algol-like systems ought not to have avoided this catastrophe. Tout &
Eggleton (1988) argued that mass loss before Roche lobe overflow can be sufficiently
enhanced by a companion that the mass ratio can invert well before the onset of mass
transfer so that the Roche lobe grows faster than the star and mass transfer can proceed
on a stable nuclear timescale. They proposed that

Ṁ → Ṁ

{
1 + Bmin

[
R

RL
,
1
2

]}6

(6.1)

and from RS CVn systems with inverted mass ratios B ≈ 104. Tout & Hall (1991)
went on to say that, because red giants expand on losing mass, a strong stellar wind
can actually drive mass transfer. To see this, we may approximate the radius of a giant
by R1 = f(L1)M−n

1 , where f(L1) is some function of the star’s luminosity L1 , which
varies only as its core grows on a nuclear timescale. Typically, n ≈ 0.27. Thus, when the
timescale for mass transfer is fast compared to nuclear evolution

Ṙ1

R1
= −n

Ṁ1

M1
. (6.2)

Combining this with Paczyński’s formula for the Roche lobe radius,

RL

a
=

2
34/3

(
M1

M

) 1
3

, 0 < M1/M2 < 0.8, (6.3)
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we find that when R1 = RL then Ṙ1 > ṘL when

q =
M1

M2
<

1 + 3n

3(1 − n)
, (6.4)

so that mass loss actually drives the giant to overflow its Roche lobe and mass transfer
begins. When such mass transfer is stable, R1 ≈ RL and then

Ṁ2 =
1 + 3n − 3(1 − n)q
(1 + q)(5 − 3n − 6q)

Ṁ. (6.5)

If 6q > 5 − 3n, mass transfer is dynamically unstable. At lower q, Ṁ2 ≈ −0.5Ṁ and
about half as much mass as is lost in the wind is transferred to the companion as well.

7. Stellar Evolution Codes
At least two versions of the Cambridge STARS code (Eggleton 1971) can be used to

evolve both components of a binary star simultaneously, taking care of mass and angular
momentum transport by various physical mechanisms. These are the TWIN code (Nelson
& Eggleton 2001) and the BS code (Stancliffe & Eldridge 2009). Versions of both are
available from http://www.ast.cam.ac.uk/ stars/index.html for those who wish to
experiment with them. Users are, however, warned that neither version has been written
with the casual user in mind, and it would be beneficial to seek out an existing user
before engaging in a project. Those listed on the web pages are often very happy to
assist.

8. Conclusions
All binary star evolution is non-conservative to some extent. There is both direct and

indirect evidence for both mass and angular momentum loss. However, there is very
little agreement on the physics and its implementation. Common envelope evolution is
the most extreme, but perhaps least understood, non-conservative process.

We have only picked out a few of the drivers of non-conservative evolution. There are
many others. Nova eruptions on the surface of white dwarfs in cataclysmic variables occur
because hydrogen ignites degenerately when a shell of 10−4 M� or so has accumulated.
The violence of the thermonuclear runaway throws off most of this accreted material,
presumably along with the specific angular momentum of the white dwarf’s orbit. Su-
pernovae explosions can expel more than half the mass in a binary system, perhaps with
a violent kick. This surely unbinds most systems, but the existence of X-ray binaries and
binary millisecond pulsars shows that neutron stars can often be retained. Most accretion
discs are associated with mass loss in jets or outflows, with typically one tenth of the
accreted mass being lost. Gravitational radiation is probably the best understood mech-
anism for angular momentum loss, with negligible mass loss. General relativity describes
precisely how fast it should operate and this is backed up by observations of many close
binary systems.

We have only briefly touched on the uncertainties of stellar mass loss rates. Even for
single stars it is mass loss that determines the end points of stellar evolution. But when
does a star lose most of its mass? Is it a relatively gradual process that slowly increases
over its evolution or is it all lost at the end in an asymptotic giant’s superwind (Vassiliadis
& Wood 1993). In a binary, it matters how fast the material leaves the star because, if it is
slow enough, a significant fraction of the stellar wind can be accreted by a companion as
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it orbits through the expanding gas. This is just yet another uncertainty in the evolution
of binary stars still to be fully understood.

CAT is very grateful to Churchill College Cambridge for his Fellowship and to the
STFC for funding his attendance at this symposium.
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Discussion

O. De Marco: Common envelope simulations/theory indicate that envelope mass does
not accrete on to the secondary star. However, X-ray observations of post common en-
velope binaries (Montez et al. 2010) are consistent with a spun up secondary (which has
an X-ray bright corona generated by the spin). What is your opinion about accretion on
to the secondary?

C. Tout: The length of the dynamical phase is so short that there is no time to accrete.
So, it would follow that there is no accretion. However, I think that if the CE interaction
evolved over a longer time, there could be time for accretion. The observations you
mention may argue for such a longer phase.

P. Harmanec: Is there evidence for much mass loss from Algol systems?

C. Tout: There is no quantitative measure of mass loss from Algol systems, all of which
are observed now in a slow phase of mass transfer. I expect mass loss from the system at a
rate similar to the mass transfer rate could easily escape unnoticed. Some evidence might
be forthcoming from orbital period variations but the only star to show a measurable long
term change is U Cep, the mass ratio of which places it so close to dynamical instability
that only a very small systemic mass loss can drive substantial mass transfer and so it is
hard to distinguish between nuclear evolution and wind-driven mass transfer.

G. Peters: The amount of mass lost in an Algol system is unknown but we can identify
a number of sites of mass loss that include, (1) a splash region caused by the gas stream
impact in direct-impact systems, (2) the commonplace mass loss near phase 0.5 and (3)
bipolar flows. Furthermore, Walter van Rensbergen has shown that hot accretion spots
can drive mass out of the system. Given the uncertainties in the area over which the
mass loss occurs and the outflow velocities (we usually derive a projected velocity), the
extent of the total mass loss remains an open question.
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