FINITE GROUPS IN WHICH SYLOW 2-SUBGROUPS
ARE ABELIAN AND CENTRALIZERS OF
INVOLUTIONS ARE SOLVABLE

DANIEL GORENSTEIN

Introduction. The purpose of this paper is to establish the following
theorem:

TuEOREM 1. Let & be a finite group with abelian Sylow 2-subgroups in which
the centralizer of every involution is solvable. Then either & 1is solvable or else
®&/0(0O) 1s isomorphic to a subgroup of PTL(2, q) containing PSL(2, q), where
either ¢ = 3 0or 5 (mod 8), ¢ > 5,0rq = 2", n > 2.

As an immediate corollary, we obtain

THEOREM 2. If ®© is a simple group with abelian Sylow 2-subgroups in which
the centralizer of every involution is solvable, then ® 1is isomorphic to PSL(2, q),
where either ¢ = 3 or 5 (mod 8) and ¢ > 5 o0r ¢ = 2" and n > 2.

The proof of Theorem 1 is carried out by induction on the order of .
Combined with a number of known results, Theorem 1 is easily derived as a
consequence of the following theorem:

THEOREM 3. There exists no finite simple group & which satisfies the following
conditions:

(@) A Sylow 2-subgroup & of & is abelian.

(b) The centralizer of every involution of & s solvable.

(c) & is not generated by two elements.

(d) If & is elementary of order 8, then [N (&)/C(S)| = 7.

(e) There exists a distinct conjugate ©; of © such that ©; N S = 1.

(f) A proper subgroup  of © is either solvable or else /0 (D) is isomorphic
to a subgroup of PTL(2, q) containing PSL(2, q), where ¢ = 3 or 5 (mod 8),
g>dorqg=2"n>2.

(g) The normalizer of some non-identity solvable subgroup of & is non-solvable.

Thus the bulk of the paper is devoted to the proof of Theorem 3. Conditions
(@), (b), and (e) of the theorem imply directly that & normalizes, but does not
centralize, a p-subgroup of & for some odd prime p. The set ¢ of all such odd
primes p, which is therefore non-empty, plays a central role in the paper; and
Theorem 3 is established by showing, on the other hand, that ¢ must be
empty. This result is ultimately obtained by applying the main results of
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“On the Maximal Subgroups of Finite Simple Groups” (5), which give suffi-
cient conditions for a simple group ® to satisfy the uniqueness condition for
some prime p (for the definition, see Section 1 below).

The application of these results follows rather closely the arguments of Sec-
tions 8 and 9 of ““The Characterization of Finite Groups with Dihedral Sylow
2-Subgroups”’ (6). However, it turns out that we actually require a slight
extension of the results of (5), which is implicitly contained in that paper.
This generalization involves a slight weakening of the concept of p-constraint
which was introduced in (5), and is described in detail in Section 1.

We remark also that the prime 3 plays a somewhat exceptional role, owing
to the fact that in certain situations we cannot verify for the prime 3 all the
conditions which must be met in order to be able to apply the main results
of (5). These exceptions occur only when & involves subgroups $ such that
$/0(9) is isomorphic to either PTL(2, 8) or to a subgroup of PTL(2, 3%
containing PSL(2, 3%) with ¢ > 1.

Finally we shall follow as closely as possible the notation of (4; 5; 6; 12);
and it will be assumed that the reader is familiar with the more standard parts
of this notation.

1. Weak p-constraint. The principal results of (5) will be of fundamental
importance to us in the paper. These results consist in giving a set of conditions
on a simple group & in order that O satisfy the uniqueness condition for a
particular prime p, as this term is defined in (6, Section 8). If P is an S,-
subgroup of a group & such that .¥% 45(P) is non-empty, we say that &
satisfies the uniqueness condition for the prime p provided & possesses a
unique subgroup I which is maximal subject to containing an element of

A(B),2=1,2,3,or4 and p € 7,(M). Here
(P = {$0|$0 C Pand A S Po for some A in FCA5(B)},

and

A (B) = {Bo|Bo S B, Bo contains a subgroup B, of type (p, p) such that
for each P in $s#, Cp(P) € 71 ()},

for ¢ = 2, 3, 4. Theorems C, D, and E of (5) give sufficient conditions for a
simple group © to satisfy the uniqueness condition for a particular prime p,
while Theorems A and B give results which are needed in the applications to
verify the hypotheses of Theorem C.

However, the conditions of Theorems C, D, and E of (5) are not entirely
sufficient for the applications to the present paper. As a consequence we
require a slightly weaker set of conditions which are sufficient to imply the
same conclusions. This extension will consist in replacing the condition of
p-constraint throughout (5) by a somewhat weaker condition. As we shall see,
the arguments in (5) all remain valid, with possible minor modifications in
some of their statements, when this weaker condition is used in place of
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the original definition of p-constraint. We wish to emphasize that the results
of this section are in themselves completely independent of the balance of the
paper.

By definition, a group © is said to be p-constrained if for any p-subgroup
B = 1 of @, C(P*) is solvable, where P* is an .S,-subgroup of O, ,(C(B)%P).
It will be convenient to say that ® is p-constrained with respect to P if this
condition holds for a particular non-trivial p-subgroup P of ®. In this termin-
ology, & is p-constrained provided ® is p-constrained with respect to each
non-trivial p-subgroup of &. We note that in (5) the use of the concept of
p-constraint was limited exclusively to primes p for which % A5(p) was
non-empty. Our generalization consists in showing that it is unnecessary to
demand that & be p-constrained with respect to every non-trivial p-subgroup,
but only with respect to certain ones. To this end, we now make the following
definition:

DEFINITION. 4 group & will be called weakly p-constrained for any prime p
for which SCN:(p) is non-empty provided that & is p-constrained with respect
to any non-trivial p-subgroup B of & such that N(B) contains an element of
A 1(B) for some S,-subgroup T of .

Remark. Since any subgroup of F of type (p, p, p) lies in 7:(T) by (4,
Lemma 24.2), it follows that for & to be weakly p-constrained, it is necessary
that © be p-constrained with respect to each non-trivial p-subgroup P of &
whose normalizer contains a subgroup of type (p, p, p). This should serve to
point up the very close relation between the concepts of p-constraint and weak
p-constraint. Furthermore, it shows that in any argument of (5) in which
each of the “critical” groups occurring therein possesses a subgroup of type
(p, p, p) (or more generally an element of .7:(F)), the given conclusion will
hold and the given argument will remain valid if the term ‘‘p-constraint”
is replaced throughout by “weak p-constraint.”” This observation is essentially
all that is needed to establish the generalization which we seek.

Corresponding to this generalization of the concept of p-constraint, we alter
the definition of “‘weakly p-tame’ as given in (5, Definition 7) by replacing
the assumption that & be p-constrained by the condition that & be weakly
p-constrained. Furthermore, we use this new definition of weakly p-tame to
redefine the concepts of p-tame, strongly p-tame, and r-tame, as given in
(5, Definitions 8, 9, and 10). We shall now examine briefly the various state-
ments and proofs of (5) in order to demonstrate that the principal results of
that paper remain valid when these new definitions are used in place of the
original ones.

First of all, in (5, Lemma 3.3) the subgroup $ of the simple group ®& con-
tains a p-subgroup P of index at most p in an S,-subgroup B of ®. Hence if
FEN: (P) is non-empty, then P € o7 (T). Thus this lemma remains valid
with weak p-constraint replacing p-constraint in the hypothesis. Similarly, the
very important Lemma 3.4 of (5) remains valid provided we add to the
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hypothesis the assertion that the p-subgroup PB; of the lemma contain an
element of o7, (B) for some S,-subgroup F or ©.

It should, of course, be understood that it is the modified statements of
these lemmas which are to be applied in the balance of (5) in carrying out
the desired generalization.

Next consider the various results in (5, sections 4 and 5). A reading of these
two sections will reveal that in any argument in which the concept of p-con-
straint is invoked, the corresponding p-subgroup has a normalizer which
contains an element U of % A4 (p). It follows at once from this fact that all
the results of these sections continue to hold with our new definitions of
weakly p-tame and of p-tame. Now consider (5, Theorem 2), which gives a
sufficient condition for a simple group ® to satisfy Ej,. If A € 9/ (p), then
C (%) contains an element of .#%. A% () for some S,-subgroup F of ®, and
hence ¥ € .o7(F). Similarly if B € #(q), then B € .7/2(Q) for some S,-sub-
group L of ®. Furthermore, it follows likewise from the definition of .Z (p)
that any element of .Z (p) lies in .o7i(F) for some S,-subgroup T of @. But
now to see that (5, Theorem 2) remains valid, we have only to observe that
whenever we invoked p-constraint or g-constraint in the course of its proof,
the normalizer of the corresponding p- or ¢-subgroup contained either an
element of 7/ (p), of F (p), or a subgroup of type (p, p, ), or correspondingly
a subgroup of % (¢) or a subgroup of type (g, ¢, ¢).

To show that (5, Theorem 3) also remains valid, it is necessary only to
observe that N(Q;) contains an element of .o7,(Q), Q an S,-subgroup of &
containing an S,-subgroup Q* of N(Q,); for from this it will follow that each
of the critical subgroups involved in the proof of Theorem 3 contains an
element of .o7,(Q). Here L); is a maximal element of N(B; q), B an S,-sub-
group of ®, and P does not centralize Q. But by (5, Lemma 5.3) (which as
we have shown above continues to hold), it follows that £, is non-cyclic;
and this implies at once that N () contains an element of .o/, (Q).

Finally Theorem A and the other results of Section 8 of (5) continue to
hold, for the subgroups of & involved in the various arguments of this section
always contain Sylow subgroups for the appropriate primes. Likewise in the
proofs of Theorems B, C, and D and the various lemmas of Section 10 of
(5), one sees that the critical subgroups again always contain either an S,-
subgroup P of & or an element A of FEA5(B); so these theorems also
continue to hold. Finally in the proof of Theorem E and the other lemmas of
Section 11 of (5), the arguments involve subgroups of & which in each case
contain an element of oZ:(PB), so that these results remain valid, too.

Summarizing, then, we have the following theorem.

THEOREM 4. Theorems A—E of (5) continue to hold if in the definition of
weakly p-tame, the assumption of p-constraint is replaced by that of weak p-con-
straint, and if corresponding modifications are made in the definitions of p-tame,
strongly p-tame, and t-tame.
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Finally similar remarks apply to Lemmas 8.1-8.4 of (6), which continue to
hold when the above changes are made. In applying any of the generalized
results of (5) or Section 8 of (6) in the present paper, we shall, for simplicity,
continue to refer to the corresponding statements of (5) or (6), even though
it is the appropriate modification of such statements that is intended in
each case.

2. Ag-groups and A;-groups. In proving Theorem 3 it will be essential
for us to establish first a number of properties of solvable groups with abelian
Se-subgroups and also of non-solvable groups § in which /0 (9) is isomorphic
to a subgroup of PI'L(2, q) containing PSL(2, ¢), where either ¢ = 3 or 5
(mod 8) or ¢ = 2", n > 2. It will therefore be convenient to adopt the following
terminology:

Definition. We call O an Ao-group if O is a solvabdle group with an abelian
So-subgroup. We call O an A1-group provided:
(1) 9 s non-solvable.
(1) An Sy-subgroup of O 1s abelian.
(iii) £/0(D) is isomorphic to a subgroup of PTL(2, q) containing PSL(2, q).
(iv) Cg(T) s solvable for any involution T in 9.

Since an S;-subgroup of § is abelian, either ¢ = 3 or 5 (mod 8) or ¢ = 2",
Furthermore, ¢ > 3 since 9 is non-solvable by assumption. As in (6, Section 3),
we call ¢ the characteristic of the A-group . We note that since PSL(2, 4)
and PSL(2, 5) are isomorphic, an A;-group of characteristic 4 is also of
characteristic 5, and conversely. In all other cases the characteristic is unique.
If © is an A,-group of odd characteristic, then an S,-subgroup of § is a four-
group and consequently § is a non-solvable D-group in the sense of (6, Section
3). In particular, many of the results of Sections 3, 4, and 8 of (6) hold in
this case. In the present section we shall extend these results to the class of
Ao- and A4;-groups.

By analogy with Lemmas 3.1 and 3.3 of (6), we first list in two successive
lemmas the properties of PSL(2,2") and PIL(2, 2") which we shall need.
Proofs of the various statements are either given explicitly in Dickson (2)
or Dieudonné (3) or else can be derived directly from their results and the
proofs of Lemmas 3.1 and 3.3 of (6).

LemMmA 2.1. Set © = PSL(2, q), where q = 2", n > 1. Then the following
hold:

@) 19| = q(g® = 1).

(i) O s simpleif ¢ > 2. If ¢ = 2, © is isomorphic to the symmetric group S.
If q = 4, then O is isomorphic to PSL(2, 5).

(iii) An Sy-subgroup & of O is elementary of order q. S is disjoint from its
conjugates. If T is any non-trivial subgroup of &, then Cp(T) = &. Ng(S) is a
Frobenius group of order (¢ — 1)q, and contains a cyclic group of order ¢ — 1
which acts transitively on the involutions of &.
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(iv) If T is any 2-subgroup of O of order at least 4, then Ne(Z; 2') s trivial.
(v) © contains cyclic Hall subgroups Ry and Rs of orders ¢ — 1 and g + 1
respectively. Ng(R,) is a dihedral group of order 2|R,|, 7 = 1,2. If X € R¥, then
Ce(X) = Ry, 2 =1, 2. R, is disjoint from its conjugates, 1 = 1, 2.
(vi) If ¢ = 2" > 4, then the only non-solvable subgroups of O are isomorphic
to PSL(2, 2™) with m|n.

(vii) If X is an element of O of prime power order p' > 1, p 0dd, there exists
a conjugate X' of X in O such that (X, X') is not a p-group.

(viii) T'here are no non-trivial central extensions of © by a group of odd order
when q > 4. If § is a non-solvable group such that 8/ 0 (RK) is isomorphic to O,
and Ce(O(R)) € O(R), then & contains a normal subgroup  isomorphic to O,
and & = & X O(R).

LEmMA 2.2. Let § = PSL(2, q) and $* = PTL(2,¢9), ¢ = 2%, n > 1. Then
the following hold:

(1) O* = OF, where < O*, § is cyclic of order n, and YN\ F =1. §
normalizes subgroups of O of orders ¢ — 1, q, and g + 1 respectively.

(i) If Fo S T and |Fo| = &, then Cg(Fo) is isomorphic to PSL(2, 2™),
where m = n/k. An Sy-subgroup of HFo is abelian if and only if |Fo| 1s odd.

(iii) If & is an Ss-subgroup of O normalized by § and if T is a subgroup of
@ of order at least 4, then the subgroups Cg(T)S with S in & are the only maximal
elements of Nex(T; 2).

(iv) The S,-subgroups of * are cyclic or metacyclic for any odd prime p.

V) If © 1is isomorphic to a normal subgroup L of a group K in which
Ce(®) = 1, then R is isomorphic to a subgroup of O* containing .

(vi) If X is an element of ©* of prime power order p* > 1, p odd, then there
exists a conjugate X' of X in O* such that (X, X') is not a p-group.

(vii) Let §o be a subgroup of § of order p* > 1, p an odd prime, and let N
be a cyclic subgroup of O of order ¢ — 1 or q + 1 normalized by Fo. Then either
o does not centralize O, (R) or p* = 3, ¢ = 8, and |R| = 9.

(viil) Let Fo be a subgroup of § of odd prime order p, let R be a cyclic subgroup
of © of order ¢ — 1 or ¢ + 1 normalized by o, and let RNo be a subgroup of N not
contained in Cg(Fo). Then if n > p, or equivalently if Cg(Fo) is non-solvable,
we have (Cg(Fo), RNo) = D.

Our next lemma is a consequence of a theorem of Huppert (10).

LeMmmaA 2.3. Let © be an Ao-group, let S be an Ss-subgroup of O, and assume
that the following conditions hold: (a) O(9) =1, (b) & is elementary, and (c)
O has one class of involutions. Then:

(1) © is isomorphic to a subgroup of the one-dimensional affine group of
semi-linear transformations over GF (q), where ¢ = |&|.
(i) S <39 and O possesses a cyclic subgroup which acts regularly on & by
conjugation and which has order at least (|| — 1)/d, where d = (|&| — 1, m(&)).
(iii) For any involution T in &, |Ce(D)| = |S|w, where w|m (S).
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Proof. By assumption, § is solvable and & is abelian. Since O(9) = 1, it
follows from (9, Lemma 1.2.3) that @ <1 $ and that Cg(S) = ©. Further-
more, since $ has one class of involutions and & is elementary, § can be
represented as a doubly transitive permutation group on |&| letters. Since
Cs(®) = &, this representation is faithful. But now we can apply a result of
Huppert (10) concerning doubly transitive solvable groups to conclude that
9 is isomorphic to a subgroup of the one-dimensional affine group $* of semi-
linear transformations over GF(q), ¢ = |&|. Without loss we may identify
9 with its image in §*.

Now $* consists of all transformations x’ = ax* 4+ b, where a, b € GF(g),
a # 0, and « is an element of the Galois group of GF (g) over GF (2). Hence
|9* = g(¢ — 1)m, where ¢ = 2™ Furthermore, the set of all transformations
x' = ax* forms a subgroup ¥* of $* of order (¢ — 1)m; and %* = J*IM*,
where 9t* is a cyclic normal subgroup of ¥* of order ¢ — 1 consisting of the
transformations of the form x' = ax, and IM* is cyclic of order m consisting
of the transformations of the form &’ = x=. Also & consists of the transforma-
tions of the form &’ = x -+ b and @* is a Frobenius group of order g(g — 1).
Since M* fixes the involution ¥’ = x + 1 and since all involutions of $*
are conjugate, we conclude that |[Cg*(7)| = |&|m for any involution 7 in .
Thus |Cg(T)| = |S|w, where w divides m = m (&), and (iii) holds.

Finally § = &X%, where ¥ C X*. Since  is doubly transitive, |¥| is a multiple
of ¢ —1, and hence |[X N\ R*| > g — 1/d, where d = (¢ — 1, m). Since
XN R* is cyclic and acts regularly on &, (ii) also holds and the lemma is
proved.

LEmMMA 2.4. Let O be an Ao-group, let © be an Se-subgroup of O, and let T

be a non-trivial 2-subgroup of S. Then:
i) © = 0(9)R, where & = Ng(S).  has 2-length 1.

(if) Cg(X) acts transitively on the maximal elements of We (T ; p) for any odd
prime p.

(ii) If P is a maximal element of Ug(Z; p), then B = (PN O(H))Cqy(T)
and [P, T] S O(D). Also P is permutable with an Ss-subgroup of O containing T.

(iv) Let P be a maximal element of N (S; p). Then B € O(D). If S C [, O,
then either & centralizes P or S/Ce(P) 1s non-cyclic and S EN3(B) is non-

empty.

(v) If & = Ng(©), then Cs(T) S 0(H)Ca(T).

(vi) If © has one class of involutions, then & is homocyclic of type (2¢, . . ., 29)
on m(S) generators. In this case, if B is a maximal element of s (T; p), an
Se-subgroup of Ng(P) is homocyclic of type (2%42%...,2% on kb < m(S)
generators.

Proof. Since & is abelian, (9, Lemma 1.2.3) implies that § has 2-length 1.
But then = O(9)Ng(S) by Sylow’s theorem, yielding (i).
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Next let P be a maximal element of Ug(<; p). Then by (i), T C Oy (D),
and consequently yZP C PN Oy 2(H) € BN O(H). This in turn implies
that B = (PN O(H))Cg(T). In particular, P C ¢ = O(H)Cs(T). Since an
Sp-subgroup of Cg(Z) normalizes some T-invariant .S,-subgroup of O($H),
maximality of P implies that P is an .S,-subgroup of £. Since £ contains an
Ss-subgroup of 9, the final assertion of (iii) now follows from D, , in L.

To prove (ii), let PB; be a second maximal element of Ug(T; p). Then also
P; € ¢, and the images P and PB; of P and P, respectively in & = /0 (H)
are each S,-subgroups of £. Since ¢ = 0(9)Cg (), it follows that PX¥ < O(H)P
for some X in Cg(Z). But then P and P¥ are each T-invariant S,-subgroups of
O ()P and consequently are conjugate by an element in Cg(Z), thus proving
(i1).

Now let P denote a maximal element of Ug(S; p). Since S & Oy 2(H), B
centralizes & (mod Oy () = O(9)), and therefore P Z O(H) by (9, Lemma
1.2.3). Suppose next that & C [9, ] and that P & C(S). Now P is an
S,-subgroup of O(9) and hence H = O(H)N, where M = Ng(PB). This implies
that & C [N, N]. Set € = Cx(P), in which case E<aN. If S/S N € were
cyclic, then an Ss-subgroup of M/€ would be cyclic and consequently 9N/€
would have a normal 2-complement by Burnside's Transfer Theorem. But
then M would possess a normal subgroup of index 2 contrary to © C [, N].
Thus ©/& N € = &/Cg(B) is non-cyclic, as asserted.

To complete the proof of (iv), we show next that % 43(B) is non-empty.
Let © be a subgroup of P chosen in accordance with (4, Lemma 8.2). Then
(D) €2, D<a N, and © does not centralize D. Assume by way of contra-
diction that % 45(P), and hence also . % A5(9D), is empty. Since cl(D) < 2,
this implies that © = D/D (D) is elementary of order p or p2. If Rt = N/D (D)
and € = C5(D), it follows that N/C is isomorphic to a subgroup of GL(2, p).
But & does not centralize © (mod D(D)) and consequently %/€ has even
order. However, it is easy to see that any subgroup of GL (2, ) with abelian
Sg-subgroups possesses a normal 2-complement; cf. (6, Lemma 3.4). Thus
N, and consequently also N, possesses a normal subgroup of index 2, which
is a contradiction. Thus F% 44(D) is non-empty, and (iv) holds.

Set § = $/0(H) and let T be the image of T in H. Then by (6, Lemma
1.4(iv)), C3(Z) is the image of Cg(T) in . But by (i), & = O(H)R, where
& = Ng(®) and consequently & maps on 9. It follows at once that

Cs(T) S 0(9)Ce (D),

proving (v).

Finally to prove (vi), we assume that  has one class of involutions. Since
& is abelian, two elements of & conjugate in § are already conjugate in
f = Ng(&). Thus & has one class of involutions. This implies that no proper
subgroup of Q;(®) is characteristic in &. But then if & is of exponent 2%, we
must have Q1(&) = ©,(&); and we conclude at once that & is homocyclic
of type (2¢,2¢, ...,29).
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Finally let P be a maximal element of Mg (T; p), set H = H/0(H) and let
T, &, B be the respective images of ¥, S, and P in H. Then S <1 H. Since &
is an abelian p’-group, it follows that & = &; X S,, where &; = Cs(P)
and &, =[S, B]. But then &; is homocyclic of type (2% 2% ...,2% on
E < m(S) = m(S) generators. Furthermore, since & N Ng(P) centralizes
P, &, is an Sy-subgroup of Ng(PB). Let §; denote the inverse image of Ng(T)
in . Then an Sysubgroup of §; is isomorphic to S;. But T C $; and
B S O(PH1), whence P is an S,-subgroup of O(H;). By Sylow’s Theorem,
Ng,(P) contains an Se-subgroup of ;. But clearly $: = Ng(O(H)P) and
consequently Ng(P) € H1. Thus Ng(P) = Ng,(P), and we conclude that
an Sy-subgroup of Ng(B) is homocyclic of type (2, 2%, ...,2% on k < m(&)
generators. Thus (vi) hold, and all parts of the lemma are proved.

LEMMA 2.5. Let © be an Ai-group, let S be an Ss-subgroup of O, let I be a
subgroup of S of order at least 4, and assume that |&| > 4. Then the following
conditions hold:

(1) & is elementary.  has characteristic 2™®. Ng (&) contains an element
which acts transitively on the involutions of S; in particular, O has one class of
involutions.

(ii) Any two maximal elements of V(T ; p) are conjugate by an element of
Cs(2), where p is an odd prime.

(i) If B is a maximal element of Ne(T; p), then P = (BN O(H))Cy(T)
and [B, T] C O(D). B is permutadle with an Ss-subgroup of O containing T.
Ng(B) 2s an As-group of characteristic 2"@/* > 4 where k = |B/B M O(D)].

(iv) Every element of () lies in O(9).

(v) If & = Ng(©), then Cs(T) & O(9)Cq(T).

(vi) Assume that O(D) is a p-group contained in the centre of . Then
possesses a normal subgroup D1 which is isomorphic to a subgroup of PTL(2,
2m@) containing PSL(2, 2"®)) and which contains an S,-subgroup of 9.

Proof. In proving (i), we may clearly assume that O($) = 1, in which case
it follows from the definition of an 4 {-group that 9 is isomorphic to a subgroup
of PTL(2, g) containing PSL(2, g), where ¢ = " and either p = 20or g = 3 or
5 (mod 8). Hence by (6, Lemma 3.3(1)) and Lemma 2.2 (i) and (ii), we have
O = {F, where is isomorphic to PSL(2, ") or PGL (2, p"),8<1 9,2 N F =1,
and § is cyclic of order dividing #. Suppose first that ¢ = p* is odd. In this
case an Ss-subgroup of PGL(2, ¢) is dihedral of order at least 8. Since the
Se-subgroup @ of § is abelian, & must therefore be isomorphic to PSL(2, q).
Since ¢ =3 or 5 (mod8) and |[¢ = 3q(¢g — 1)(¢ + 1), it follows that
|© M ¢ = 4. But |&| > 4 by assumption, and hence § necessarily has even
order. Since |§| divides n, n = 2m for some integer m, and we conclude from
the formula for {2| that |¢] is divisible by 8. This contradiction shows that p
must be equal to 2. In this case, PGL(2, ¢) = PSL(2, ¢). By Lemma 2.2(i),
& normalizes an Sz-subgroup &y of &€; and &, is elementary of order 2". Let
Fo be an Ss-subgroup of § and suppose that Fo % 1. Then by Lemma 2.2(ii),
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|Ceo(Fo)| = 27*%, where k& = |Fo|. But this implies that &, §, is non-abelian,
contrary to the fact that the Si,-subgroups of $ are abelian. Thus §, = 1,
and we conclude that &, is an Sy-subgroup of . Hence & C &, € is elementary
of order 27, n = m (&), and 9 is of characteristic 2™®), Furthermore, Ng(&)
contains a cyclic subgroup of order ¢ — 1 which acts transitively on the elements
of & by Lemma 2.1(iii), and consequently all parts of (i) are established.

In proving the remaining parts of the lemma, we drop the assumption
0(H) =1, and set H = H/0(H). Let T and S be the images of T and S
in §. By (i), § = ¥y, where & is isomorphic to PSL(2, q), where ¢ = 27(©®),
<1 9, §is cyclic of odd order, and 8 N\ § = 1. Furthermore, we can assume
that § is chosen so as to normalize &. Finally we denote by 9t the inverse
image of &F in §. Since O(S ) centralizes S, it follows at once from Lemma
2.2(ii) that O(SgF) =1, and consequently O(H) = O(IM). Furthermore,
by Lemma 2.2(iii), every element of Ug(Z; 2’) lies in SF.

Now let P be a maximal element of Mg(Z; ) and let P be its image in P.
Then P C Cg(T) € &S§ and hence P < M. Thus I contains every maximal
element of Mg (T; p). Since M is solvable, (ii) follows at once from Lemma
2.4(ii) applied to IM; and since O(IM) = O(P), the first assertion of (iii)
follows in the same way from Lemma 2.4 (iii). Furthermore, since f C S,
Cg () is isomorphic to PSL(2, 2”), where m = m(S)/kand & = |B| by Lemma
2.2(ii). But P centralizes T, T C ¢, and |Z| > 4 by hypothesis. Hence m > 2,
and consequently Cg(%P) is non-solvable and so is an 4 ;-group of characteristic
2™ Now let §; be the inverse image of Cg(P) in $. Then 9, is an 4;-group of
characteristic 2™ and P € O(1). Since T C H; and P is a maximal element
of Us(Z; p), B is an S,-subgroup of O(H1); and it follows at once from Sylow’s
theorem that Ng,(PB) is an A;-group of characteristic 2™. But clearly
Cs(PB) = Ng(B), and consequently Ng(P) maps into Cgz(P). Thus
Ng(B) C 91, and we conclude that Ng(B) = Ng, (PB) is an 4;-group of charac-
teristic 2”. Since m = m(S)/k > 2 and & = |B| = |B/B N O(H)|, the final
assertion of (iii) is proved.

By Lemma 2.2(iii), M5 (S) is trivial, and hence every element of Ug(S; p)
lies in O(9). Thus (iv) also holds.

Since Cg(T) maps into Cg(T) and Cg(T) C SF, we have Cg(T) C M.
Since & C M, Lemma 2.4(v) implies that Cg(T) C O(H)Cq,(T), where
£ = Np(©), and (v) also holds.

Finally we establish (vi), which is the analogue of (6, Lemma 3.10) for
Aq-groups of characteristic 2%. Let & = $/0(9) = {F, where &, § have the
usual meaning, and let € and § denote respectively the inverse images of &
and §. Then O($) = O(®) and by our hypothesis, O(%) € Z(®). Since
/0(®) = is isomorphic to PSL(2, 27®), it follows from Lemma 2.1 (viii)
that € = $o X O(P), where 9, is isomorphic to ¥. Next let P be an S,-
subgroup of §. Since O(H) C Z(F) and F/0(H) = §F is cyclic, §F is abelian
and consequently P<aF. Thus H: = HeP<I O and H; contains an S,-
subgroup of $. Finally since O(9) is a p -group, PN O(H) =1, and H; is
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isomorphic to a subgroup of PI'L(2,2™®) containing PSL(2, 2"®)). This
completes the proof of the lemma.

LEMMA 2.6. Let © be an A1-group of characteristic g and let © be an Sq-subgroup
of ©. Then the following conditions hold:
1) If O contains an A-subgroup of characteristic g1 > 5, then q1 divides q.
(i) If ¢ > 5, and q is odd, then © = (Ce(T)|T € &t).
(ii1) O has no normal subgroups of index 2.
(iv) © € [Ns(®),Ns(©)].
(v) If P is a normal p-subgroup of O such that Cs(P) L O(D), then Cgy(P)
is an Ai-group and contains an Se-subgroup of O.
(vi) Suppose q is odd and let P be a maximal element of Vg (S; p). If either
g =p"or © < [Ns(P), Ne(P)], then B = (P N 0(9))Cs(S).
(vil) Suppose ¢ = p" is odd and q > 5. Then there exists a prime r # p such
that © does not centralize a maximal element of Ns(S; 7).

Proof. In proving (i), we can clearly assume that O(9) = 1. Then $ = L,
where € <1 9, & is isomorphic to PSL(2,¢), ¢ =3 or 5 (mod 8) or ¢ = 27,
& is cyclic of odd order and & N\ § = 1. Hence if $; is an A4;-subgroup of
of characteristic g;, § M ¢ = & is an 4,-group of the same characteristic q.
Since q; > 5, clearly ¢ > 5. If ¢ is odd, then ¢ = p" and ¢q; = p™ with m|n
by (6, Lemma 3.1(viii)). On the other hand, if ¢ = 2, then ¢; = 2™ with m|n
by Lemma 2.2(vi). This proves (i).

Since O(9) = (Cow (1)|T" € St), (ii) will follow if we can show that
S = (Cg(D|T € St), where H = H/0(P) and S is the image of S in &.
Since O(9) = 1, it suffices to prove (ii) under the additional assumption that
0(9) = 1. Thus = LF as above, where now ¢ =3 or 5 (mod 8). By
(6, Lemma 3.3(i)), we may assume that & centralizes §. Hence we need only
show that € = (Ce(7)|T" € &f). Since ¢ > 5, our conditions imply that, in
fact, ¢ > 11. The desired conclusion now follows from (6, Lemma 3.1(ix)).
This proves (ii).

Let $; be a normal subgroup of § of index 2. Since § is non-solvable, so
also is 91, and hence 9, is an A4;-group. Therefore |& N $;| > 4 and so
|&| > 4. But by Lemma 2.5(i), & is elementary and $ has one class of involu-
tions. This implies that §; contains all involutions of & and hence that
& C 91, contrary to the fact that | : §1| = 2 and & is an Sy-subgroup of 9.
Thus (iii) holds.

If |©] > 4, then by Lemma 2.5(i), Ng (&) possesses an element which acts
transitively on the involutions of & and also & is elementary. It follows at
once from this that & C [Ng(&), Ng(&)]. On the other hand, if |S| = 4,
then Ng (&) contains a 3-element which cyclically permutes the three involu-
tions of &; otherwise Ng(&) = Cg(&) and § would have a normal 2-comple-
ment. Thus (iv) holds in this case as well.

Now let P be a normal p-subgroup of $ such that € = Cg(PB) £ O(9).
Set § = H/0(H) and let H = &y, where ¥ is isomorphic to PSL(2, q),
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<19, § is cyclic, and €N\ § = 1. Furthermore, |§| is odd since § has no
normal subgroups of index 2. Now € <1 § and consequently the image € of
€ in $ is normal in § and € # 1. Since ¥ is simple and Cg(¥) = 1, it follows
that & C §. Since also € contains an Sy-subgroup of 9, we conclude that €
is an 4 ,-group and that € contains an Se-subgroup of 9, proving (v).

Assume next that ¢ is odd and let P be a maximal element of U (S; p) for
some prime p. Once again set § = $/0(9) and let B, S be the images of P
and @ in . Then = ¥F, where Land § are as in the preceding paragraph.
We may also assume, in view of (6, Lemma 3.3(i)), that § centralizes .
Suppose first that ¢ = p*. Then Ug(S) is trivial by (6, Lemma 3.1(vii)),
and consequently § is the unique maximal element of MUg(&) by (6, Lemma
3.3(ii)). Hence P S § C Cz(©). We conclude at once from this that
B = (PN O)Cs(S). Thus (vi) holds in this case.

Assume next that @ C [Ng(P), Ng(B)], whence & C [Nz (B), Ns(B)]. We
shall argue that P N & = 1, so assume the contrary. Since N ¢ € U (S; p),
(6, Lemma 3.1(vii) ) implies that ¢  p". Hence B M &is cyclic by (6, Lemma
3.1(v)). Since PN E<aNg(P) and & C [Ns(P), Ng(PB)], it follows that
& centralizes P N L But & = Cg(S) by (6, Lemma 3.1(iv)), yielding a con-
tradiction. Thus PN = 1. Since S C &, vSP € €N P = 1, and therefore
& centralizes B. This proves (vi).

Finally to prove (vii), assume ¢ = p"is odd and ¢ > 5. If

O =9/0(9) =¥

and if & denotes as above the image of & in &, it will clearly suffice to show
that & does not centralize a maximal element of Ug(S;r) for some prime
r # p. But since Q is isomorphic to PSL(2, g), it follows from (6, Lemma 3.1
(iii) ) that |Cg(7T)| = ¢ — 6, where 6 = &1 and & = ¢ (mod 4), for any 7' in &*.
Furthermore, since |S| = 4, (¢ — §)/4 is necessarily odd, and since ¢ = p" > 5
by assumption, it follows that |Cg(7T)| is divisible by an odd prime 7 5= p.
But by (6, Lemma 3.1(iii)), Cg(T) is a dihedral group, and we conclude that
& does not centralize an S,-subgroup of Cg(7"). This proves (vii),and completes
the proof of the lemma.

The next lemma gives a slight extension of Lemma 2.4 (iv).

Lemma 2.7. Let © be an A i-group, © = 0 or 1, and let © be an Se-subgroup of
9. If © is an Ao-group, assume in addition that S C (D, O). Then if P is a
normal p-subgroup of O, p odd, either S centralizes B or SCN3(P) is non-empty.

Proof. Let D be a subgroup of P chosen in accordance with (4, Lemma 8.2).
If Y6N3(D) is empty, it follows as in the proof of Lemma 2.4(iv) that
9 = §/Cg(D) is isomorphic to a subgroup of GL(2, p) and that § possesses
a normal 2-complement. Hence either & C Cg(®) or 9, and consequently
also §, has a normal subgroup of index 2. However, by Lemma 2.6(iii), the
latter case is not possible if § is an 4;-group; and it is also excluded by our
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hypothesis if § is an 4 ¢-group. Thus © C Cg (D), and therefore & centralizes
B by (4, Lemma 8.2). The lemma follows immediately.

LeEmMA 2.8. Let © be an A1-group of characteristic v*, let T be a 2-subgroup of O
of order at least 4, and let B be a maximal element of (T ; p) for some prime p.
Assume, in addition, that B = (BN O(H))Cq(T); and set b = |B/PB M O(DH)].
Then k divides n and we have the following two cases:

(i) ® > 3. Then Ng(B) s an Ai-group of characteristic r'*.

(i) r* =3. Then r = 3 and n = k, and P possesses a maximal subgroup
PB* containing P M O(D) such that Ng(B*) is an Ai-group of characteristic 3?.
Furthermore, if p > 5, then B is an S,-subgroup of 9.

Proof. If r = 2, (i) follows from the final assertion of Lemma 2.5(iii). Hence
we may assume that 7 is an odd prime. Set & = $/0(9), and let B, T be
the images of B and T in H. Then by (6, Lemma 3.3(i)), and Lemma 2.6(iii),
9 = &, where ¥ is isomorphic to PSL(2, ), 8 <1 §, § is cyclic of odd order,
and @ N\ § = 1. Furthermore, we may assume that § is chosen so as to cen-
tralize T. Now our hypothesis implies that B centralizes &, and hence P C §
by (6, Lemma 3.3 (i) ). Since P is a maximal element of Us (T ; p), B isa maximal
element of Mg (Z; p), and therefore P is, in fact, an S,-subgroup of §. Applying
(6, Lemma 3.3(i)) once again, it follows that & = Cg($P) is isomorphic to
PSL(2, r*/*), where & = |B|. If #*/* > 3, then ¥, is an A,-group. In this case,
we set 9; equal to the inverse image of Ng(P) = &, F in . Then §, is also
an Ai-group of characteristic »* and P C O(9,). Furthermore, P is an
S,-subgroup of O(9,), and so Ng, () is an 4 ,-group of the same characteristic
7"* by Sylow’s Theorem. Since Ng(¥P) is the image of $; in O, we see that
Ng(P) € 91, whence Ng(P) = Ng,(B) is an 4;-group of characteristic 7/*.
Since £ = |P| = |B/B N O(H)|, we conclude that (i) holds.

Suppose finally that »*/* = 3, in which case » = 3 and n = k. Since § is an
Ai-group, it is non-solvable, and consequently & is not isomorphic to PSL (2, 3).
Thus # > 1, and so n = k = p* = |B|, where s > 1. In particular, B = .
Let P* be the unique maximal subgroup of P and set & = Cg(P$*). Then
by (6, Lemma 3.3(i)), ¥ is isomorphic to PSL(2, 3?), and B normalizes, but
does not centralize, ¥*. Setting $* = Ng(PB*), it follows that H* = &P and
that P* is an S,-subgroup of O(H*). Now let £*, P* denote respectively the
inverse images of H* in § and $* in P. Then $* is an 4 ;-group of characteristic
37, P* is an S,-subgroup of O(H*), [P : B*| = p, and PN O(H) T P*. It
follows now as in the preceding case that Ng(P*) = Ng+(B*) is an 4 ,-group
of characteristic 3?, thus completing the proof of the first assertion of (ii).
Furthermore, in this case, 9 is of characteristic 3", where n = p*® and hence
¥ is isomorphic to PSL(2, 3%), whence |¥| = 4 37 (3" — 1). But then if p > 5,
|¥| is prime to p, and we conclude at once that P is an S,-subgroup of §.
The lemma is proved.

In order to be able to apply the main results of (5) later in the paper (in-
cluding the modifications made in the preceding section), we need some
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results concerning p-stability, p-restriction, and p-reduction for the class of
Ao and A;-groups. If § is an A,-group of odd characteristic, then $ is a
D-group, and hence the conditions under which 9 is p-stable, p-restricted,
and p-reductive are given in (6, Propositions 6, 7, and 8). We shall now derive
analogous results when & is an A4¢-group or an 4;-group of characteristic 27,
n > 3. We note that the definitions of p-restriction and p-reduction are made
only for groups $ in which O, () = 1. The precise definitions of each of
these concepts is given in (5, Section 2) and is repeated in (6, Section 4).

Furthermore, the related concept of p-restriction with respect to a subgroup
B of 0,(9) is defined in (6, Section 4).

ProposITION 1. Let O be an As-group or an Ai-group of characteristic 2%,
n > 3, and let p be an odd prime in w,(D). Then

(1) O s p-stable.

(i) If O, (D) = 1, then either © is p-restricted and p-reductive or p = 3 and
O/0(D) is isomorphic to PTL(2, 8).

Proof. The proofs of these results follow those of (6, Propositions 6, 7, and
8) very closely. Hence we shall limit ourselves to giving an outline of the
arguments. We first discuss p-stability. In view of the proof of (6, Proposition
6), it will suffice to establish the following assertion: Let $ be an A4 -group or
an Ai-group of characteristic 2%, n > 3, in which 0,($) = 1, and assume that
9 is a linear group of transformations of a vector space 8 over GF(p), p odd;
then 9 is a p-stable linear group—that is, every non-identity p-element of
acts on B with non-quadratic minimal polynomial.

Since the Sy-subgroups of § are abelian, the desired conclusion follows
directly from (9, Theorem B) if § is an 4 (-group. Hence we may assume that
9 is an A;-group. In this case the argument parallels that of (6, Lemma 4.2).
If € = Cg(0, (9)) C 0O(9), then the assertion follows again from (9, Theorem
B). On the other hand, if ¢ € O(9), we find that ¢ is an 4-group of the same
characteristic as § and that O(9) C Z(2). Now application of Lemma 2.5 (vi)
yields the existence of a normal subgroup £; of ¥ which is isomorphic to a
subgroup of PTL(2, 2") containing PSL (2, 2) and which contains an .S,-sub-
group of £. Hence it suffices to prove the desired assertion for &;. But now if
X is any p-element of &, it follows from Lemma 2.2(vi) that there exists a
conjugate X’ of X in £; such that §, = (X, X’) is not a p-group. Since the
Sa-subgroups of §¢ are abelian, the last paragraph of the argument of (6,
Lemma 4.2) applies without change to yield that X has a non-quadratic
minimal polynomial on 8. Thus & is p-stable in all cases.

We next treat p-restriction. Let 8 be a non-identity subgroup of Z(0,(9))
such that 3<1 9 and 0,(9/Cs(8)) = 1. Then by definition, $ will be p-
restricted, provided $ is p-restricted with respect to 3 for each such subgroup
R. As at the beginning of the proof of (6, Proposition 7) this will be the case
if & = $/Cs(R) is a p-restricted linear group acting on ¥ = Q,(3)—that is,
for every S,-subgroup or abelian p-subgroup P # 1 of O, P contains a normal
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subgroup P; such that B/P; is cyclic and such that a generator of /P, has
minimal polynomial of degree greater than 2 on Cg(%P;). We note that § is
an Ao or an A4;-group according as 9 is an Ay or an A;-group, and in the
latter case that © is of the same characteristic as § and that $/0(9) is
isomorphic to PTL(2, 8) if and only if the same is true of £/0(9). Further-
more, we have 0,(9) = 1. In carrying out the proof, we drop the superscripts
for simplicity of notation.

Let then P 5 1 be either an S,-subgroup of § or an abelian p-subgroup of
9. Consider first the case that 0, () # 1 and that P £ Cs(0, (H)). Then
arguing as in the corresponding case of (6, Proposition 7), we find in all cases
that 9 is a p-restricted linear group. We note that since the Si-subgroups of
9 are abelian (6, Lemma 4.4) (which is used in the argument) applies without
exception. As in (6), we are thus reduced to the case that P C ¢ = Cg(0, (H))
Z 0(9).

We now apply Lemma 2.5(vi) as in the case of p-stability; we conclude that
B C y, where £, <3 and &, is isomorphic to a subgroup of PTL(2, 2") con-
taining PSL (2, 2"). Since &, is a p-stable linear group acting on £, the desired
conclusion follows with P; = 1 if P is cyclic; hence we may also assume that
B is non-cyclic. Now by Lemma 2.2(i), ¥ = L, where ¥, is isomorphic to
PSL(2, 2"), Qo2 4, § is cyclic, and £, N F = 1. We may assume that § is
chosen so that P = (B M L) (B M ). Since the S,-subgroups of ¢, are cyclic,
we have PN =1 and PN F = 1. Furthermore, PN F normalizes
R = Cg, (B N ). Now R is cyclic of order 2* + 1 by Lemma 2.1(v). Suppose
that either p £ 3 or 2" 8. Then P N F does not centralize O, (N) by
Lemma 2.2(vii). But then the final paragraph of the proof of (6, Proposition
7) applies without change to show that § is a p-restricted linear group in any
of these cases. We conclude that if § is not a p-restricted linear group, then

= 3, 2" = 8, and P is non-cyclic, in which case §/0(D) is isomorphic to
PTL(2, 8). Thus (ii) holds with regard to p-restriction.

Finally we consider the concept of p-reduction. Let P be an S,-subgroup of
9, let L be a subgroup of P such that VB is generated by elementary subgroups
B, 1 =1,2, ...,s, with the additional property that & = V(cclg(B); B).
Let Py be a normal subgroup of P contained in 0,(H) and set & = Cg (Vo).
Suppose that O = WNg(8). For § to be p-reductive, we must show under
these circumstances that there exists a subgroup & of 9 satisfying certain
prescribed conditions which are stated just before (6, Proposition 8). Set
P* = PNS(H), 1 = Ng(PB*), and Ho = S(H)P. Arguing as at the begin-
ning of the proof of (6, Proposition 8), it follows that ©; # ( N $;)Ng, (L)
for at least one value of ¢ = 0 or 1 and that O, ($;) = 1 for both 7 = 0, 1.
Hence it suffices to prove the existence of the required subgroup & under the
additional assumption that = £;, 7 = 0 or 1.

If & = 9o, then H is an A ¢-group. Since we have already shown that every
Ao-group is p-stable, the argument of the corresponding case of (6, Proposition
8) applies without change to yield the existence of . Hence we may assume
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that © = $; and that § is not solvable. Then P* is an S,-subgroup of
0(9) =S(9). Setting O = H/0(H), we have H = MF, where M is isomor-
phic to PSL(2, 2%), § is cyclic of odd order, and M N § = 1. Furthermore,
we can assume without loss that = (BN M) (B N §), where P is the image
of Bin . If L denotes the image of Lin H, then as in the proof of (6, Proposition
8), we may assume that ¢ & & Furthermore, since § is p-stable, we may
also assume, as in the same proof, that |B,/B; N P*| > p2 for some
1=1,2,...,s

Finally let B; be the image of 8, in $ and set 8o = B, N §. Then by
Lemma 2.1(v), we have |8, = 9% |8y =, and PN M = 1. Now B,
normalizes a subgroup it = Cq (P N M), and by Lemma 2.1(v), N is cyclic
of order 2" + 5, where § = =£1. Furthermore, 0ty = Cq (Do) is isomorphic to
PSL (2, 2™), where mp = n. Since p divides 2" 4 §, it follows that p divides
(2" 4+ 6)/ (2™ + 6). Since |N| = 2" + 6 and |F N Mo| = 2" + 6 and since B
is an S,-subgroup of %, this implies that P N M & M,. Hence if m > 1, or
equivalently if 3¢, is non-solvable, then it follows from Lemma 2.2 (viii) that

= (Mo, PN IM). In this case the final two paragraphs of the proof of
(6, Proposition 8) apply without change to yield the existence of the required
subgroup &.

There remains then the case m = 1 and M, is isomorphic to PSL(2, 2).
Now B, centralizes Q; (B M M), and consequently B M My = 1. But |[Mo| = 6,
whence p = 3, 2* = 8, and $/0(9) is isomorphic to PTL(2, 8). Thus (ii)
holds and the proposition is proved.

Finally we prove the following elementary lemma.

LEMMA 2.9. Let P be a p-group, p odd, acted on by a four-group I, and let
N be a T-invariant normal subgroup of P such that P = RCsy (). If T centralizes
Z.(P), then T centralizes Z(N).

Proof. Let Ty, T, Ts be the involutions of T and let

Z(R) = Bo X 3/ X 32" X 3y

be the T-decomposition of Z(RN). Since Z(N) <0 P, Po = Cp(T) normalizes
each 3/. Since P = NP, it follows that Cg+ (Po) & Z(P). But T centralizes
Z(P) by assumption, and consequently Cg(Bo) = 1. This forces 3, =1,
i =1,2, 3, whence Z(R) = 3¢ and T centralizes Z(R).

3. Summary of known results and first reductions of the theorem.
The following five known theorems cover particular cases of Theorem 1:

THEOREM A (Gorenstein and Walter, 6). If © is a simple group with an
abelian Sy-subgroup of type (2, 2), then ® is isomorphic to PSL(2, q), ¢ > 5 and
g = 3,5 (mod 8).

TueoreM B (Brauer, 1). If ® is a simple group with an abelian Se-subgroup
of type (2", 2"), then n = 1.
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TueoreM C (Brauer, to appear). If & is a simple group with an abelian
So-subgroup S of type (2, 2, 2), and if C(T) is solvable for every involution 1" in
O, then IN(©)/C(&)| = 17.

THEOREM D (Suzuki, 11). If ® is a simple group with an abelian Ss-subgroup
© and if © is disjoint from its conjugates, then & is isomorphic to PSL(2, 2"),
n > 2.

TueoreMm E (Thompson, 12). If & is a simple group with abelian So-subgroups
and if the normalizer of every mon-identity solvable subgroup of & s solvable,
then © is isomorphic to PSL(2, q), q¢ > 4, where either ¢ = 2" or ¢ =3, 5
(mod 8).

With the aid of these results, we can obtain the following reduction in the
proof of Theorem 1:

ProrosITION 2. Let & be a group of least order satisfying the hypotheses, but

not the conclusion of Theorem 1. Then we have:

(1) © is simple.

(i) If & 1s an Ss-subgroup of O, then m(©) > 3. Furthermore, if S 1is
elementary of order 8, then |N(&)/C(&)| = 7.

(iii) Every proper subgroup of ® is an A ~group, 1 = 0 or 1.

(iv) There exists a distinct conjugate S, of & such that ©;, M S #= 1.

(v) The normalizer of some non-identity solvable subgroup of & is non-
solvable.

Proof. Let © be a proper subgroup of ¢&. Then an Ss-subgroup of $ is
abelian, and the minimality of & implies that either $ is solvable or else
$/0(9) is isomorphic to a subgroup of PTL (2, ¢) containing PSL (2, g), where
either ¢ = 3 or 5 (mod 8), ¢ > 5, or ¢ = 2", n > 2. Furthermore, Cg(7) is
solvable for any involution 7" in 9. It follows therefore from the definition
that $ is either an Ao~ or an 4 ;-group. Thus (iii) holds.

We show next that ¢ is simple. It is immediate that our hypotheses carry
over to §/0(®). Hence, if O(@®) # 1, then our minimal choice of & implies
that the conclusion of Theorem 1 holds for &/0(®), and hence also holds for
©®, a contradiction. Thus O(®) = 1. Suppose next that 0:(®) ¢ 1. Then
€ = C(0:(®)) is solvable since € € G(T) for any involution T of O,(®).
Furthermore, since an Ss-subgroup of ® is abelian, © C €. Thus €<a @, € is
solvable, and |®/€| is odd. But then &/€ is solvable, and hence @ is solvable,
which is not the case. Therefore Q4(®) = 1, and we conclude that S(®) = 1.

Suppose now that @ is not simple and let  be a minimal normal subgroup
of ®. Since S(9) char § <1 ®, we have S($) C S(®) = 1. Thus by the first
paragraph of the proof,  is an A;-group. Minimality of $ forces $ to be
isomorphic to PSL(2,¢), ¢=3, 5 (mod 8), ¢ > 5, or ¢ = 2%, n > 2. Our
hypothesis implies that |[C(9)| is odd. Since C(9) <1 @, it follows that
C(9) € S(®) = 1. But now we can apply Lemma 2.2(v), to conclude that
® is an A4,-group. This contradiction shows that ¢ must be simple. Thus
(i) holds.
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Next suppose m(S) < 2. First of all, © must be abelian of type (2¢,29);
for if this were not the case, then & C Z(N(&)), and Burnside’'s Transfer
Theorem would imply that & possesses a normal 2-complement, contrary to
the simplicity of &. But then ¢ = 1 by Theorem B and so & satisfies the
conclusion of Theorem 1 by Theorem A4, a contradiction. Thus m (&) > 3.
Furthermore, if & is elementary and m (&) = 3, then [N(&)/C(&)| = 7 by
Theorem C. Finally, conditions (iv) and (v) follow from Theorems D and E
respectively.

Thus a minimal counter-example to Theorem 1 satisfies the hypotheses of
Theorem 3, and hence Theorem 1 will follow once Theorem 3 is established.
Thus the balance of the paper is devoted to the proof of Theorem 3.

We now introduce a distinguished subset o of #(®), which will play a
fundamental role throughout the paper.

Definition. Let © be an Ss-subgroup of . Denote by ¢ the set of those odd
primes p in 7(®) such that & does not centralize some maximal element of

NS; p).

Clearly o is determined independently of the choice of ©. Furthermore, for
any odd prime p not in ¢, © centralizes every element of U(&; p).
We now prove

PROPOSITION 3. ¢ is non-empty.

Proof. Suppose that ¢ is empty. We shall show that any two distinct .Se-sub-
groups © and &; of & have a trivial intersection, contrary to Proposition
2(iv). Assume then, by way of contradiction, that &€ N &; £ 1. Then
€ = C(& N &) contains both & and &; and € is solvable. By Lemma
2.4(1), € = O(C)Ng(®). But since ¢ is empty, & centralizes every subgroup
of odd order which it normalizes, and hence O(€) C C(&). Thus € = Ng(S)
and © <1 €, whence © = &;, a contradiction. Therefore © N\ &; =1, as
asserted.

Remark. Proposition 2, parts (iv), (v), and the second assertion of (ii) (and
hence Theorems D, E, and C respectively) are each used only once in the proof
of Theorem 3 — the first in the preceding proposition, the second in Section 5
at the end of Proposition 5, and the third in Section 7 in Proposition 8.
Furthermore, Theorems A and B are not used again in the paper.

4. A transitivity theorem and some consequences. The following
proposition is basic for all our work:

PROPOSITION 4. Let T be a 2-subgroup of ©.

1) If m(ZT) =2 and N(T) D C(E), then N(X) acts transitively on the
maximal elements of I(Z; p) for all odd p.

(1) If m(T) > 3, then C(Z) acts transitively on the maximal elements of
U(E; p) for all odd p.
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Proof. The proof of (i) is essentially identical with that of (6, Lemma 6.1).
Let Ty, T, T’ be the involutions of T, let B be a maximal element of Un (T ; p),
where = C(7,), and let P; be a maximal element of U(Z; p) containing P.
Suppose that (i) is false, and choose P, to be a maximal element of U(Z; p)
which is not conjugate to P; under the action of N(£) in such a way that
D = P, N\ P, has maximal order. Then clearly P, # 1, ¢ =1,2. Since
N@) D CE), IN(Z)/C(T)| =3 and N(T) contains a 3-element R which
cyclically permutes the involutions 7, T, T3. Since G, (7;) # 1 for some
i=1,2,3 Bo=PL" NN =1 for some j =0, 1, 2. Now N is solvable and
Bo € Nn(T; p). Hence Bo? C B C Py, where E € Cqn(T) by Lemma 2.4(ii).
Setting ¥V = RE, we conclude that $.¥ M P; # 1 and that V € N(T). But
then PB.¥ is not conjugate to P, by an element of N(T), and it follows from our
maximal choice of ® that D = 1.

Nowset $ = N(D) and B/ = P, N H. Clearly D C P, 7 = 1, 2, and hence
D C B/,1 =1, 2. Let Bs* be a maximal element of Us(T; p) containing PB,'.
If § is an Ao-group or an A;-group of characteristic 2", then by Lemmas
2.4(i1) and 2.5(i), B* C Ps*, where X € Cg(T) C Ng(T). On the other
hand, if § is an A;-group of odd characteristic, then $ is a D-group and it
follows from (6, Lemma 3.6(1)) that P.* C P3* for some X in Ng(T). In
either case, this leads to a contradiction as in the proof of (6, Lemma 6.1).

To prove (ii), let B; and P, be maximal elements of (T ; p) which are not
conjugate by an element of C(T) and chosen so that © = B; N P has
maximal order. If D s 1, we proceed as above, setting O = N(D),
B =P, N, 7 =1, 2, and denoting by PBs* a maximal element of Us(T; p)
containing By, Since m (L) > 3, O is either an A-group or an A;-group of
characteristic 2%, whence P'* & PB5* for some X in Cg(T) by Lemmas 2.4 (ii)
and 2.5(ii), which again leads to a contradiction as in the proof of (6, Lemma
6.1). Thus if P; and P, are any two maximal elements of Y (T ; p) which are
not conjugate by an element of G(Z), then we must have T; N P, = 1.

On the other hand, since m(Z) > 3, there exists an involution 7" in T such
that Gg, (T) # 1,7 = 1 and 2. Set € = CG(7), let B;* be a maximal element
of Ns(T; p) containing Cg, (T), and let Q; be a maximal element of U(T; p)
containing P.*. Since € is solvable, P*# = B,* for some E in C(T) by
Lemma 2.4(ii). Since Q2N Q; 2 PB* and L € C(I), it follows that
Q1 = Q5" for some F in G(T). Since Q; N P, 2 Cgp, () ## 1, we have also
Q,; = P74, where F; € C(2), ¢ =1, 2. Thus B, = PBs? where Z = Fy FI'~L
€ G(2), a contradiction. This completes the proof of the proposition.

As a corollary we have

LeEmMA 4.1, Let © be an Se-subgroup of & and let B be a maximal element of
U(S; p). Then:
(i) N(©) = IN(&) "N(P)IC(S).
(i) © S [N(B), N(B)I.
(iii) If p € o, then ©/Cx(P) is non-cyclic.
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Proof. Let X € N(&). Then PBX is a maximal element of U(&; p). Since
m (&) > 3, the preceding proposition implies that PX = PY for some ¥ in
C(®). Thus XY' = Z € N(&) N N(DB), whence

X € [N(®) "N(P)IG(®),

and (i) follows.

Set § = Nnop) (©). If © € [, &], then N(B) possesses a normal subgroup
of index 2 by Griin's Theorem (7, p. 215, Theorem 14.4.5). But then N(&)
possesses a normal subgroup of index 2 by (i), and another application of
Griin’s Theorem yields that & possesses a normal subgroup of index 2, a
contradiction. Thus & C [, 8] € [N($), N(B)] and (ii) holds.

Finally if p € ¢, © does not centralize some maximal element ) of A (&; p).
Since L and P are conjugate by an element of CG(€), @ does not centralize P.
If N(B) is an Ao-group, (iii) follows now from Lemma 2.4(iv). On the other
hand, if N(B) is an 4;-group, Cg(B) = 1 by Lemma 2.5(i), and again (iii)
follows.

LemMmA 4.2, Let @ be an Sy-subgroup of & and let B be a maximal element of
N(&; p), where p € . Then Cq(X) contains a subgroup of type (p, p, p) for
any element X of B of order p. In particular, S ECN3(P) is non-empty.

Proof. Let € be a characteristic subgroup of P chosen in accordance with
(4, Lemma 8.2), and set © = Q,(€). Then D is of exponent p and of class at
most 2. Since & does not centralize P, & does not centralize € and hence does
not centralize D. But by Lemma 4.1(ii) & C [N(B), N(B)], and consequently
SLCN(D) is non-empty by Lemma 2.7. In particular, ¢ A3(B) is non-
empty.

Now let X be an element of P of order p. If X € Z(D), D C Cg(X), so
Cg(X) contains a subgroup of type (p,p,p). lf X € D — Z(D), and
|Z(D)| > p?, (Z(D), X) € Cg(X) and again Cy(X) contains a subgroup of
type (p, 9, p). f X € D — Z(D), and |Z(D)| = p, then D is extra special,
and Cg(X) contains a subgroup of type (p, p, p). We may therefore assume
that X € B — D. If Cp(X) contains a subgroup of type (p, p), then Cg(X)
contains a subgroup of type (p, p, p). Finally consider that |Ce(X)| = 2,
in which case |Cgp«(X)| = p?, where D* = (D, X). Thus D* is of maximal
class. Hence if we set Do = D and D1 = [Dy, B, we have D, : D] = 2,
1=0,1,...,7 — 1, where |D| = p" But then each D, <aN = N(P) and
consequently [M/Dii1, N/Diy1] centralizes D;/Diyq. Since & C [N, N, it
follows that & stabilizes the chain ® = Do D D1 D ... D D, =1, whence &
centralizes 9, a contradiction. The lemma follows.

LEMMA 4.3. Let © be an So-subgroup of & and let B be a maximal element of
N(S; p) for some prime p in o. Then S possesses a four-subgroup T such that
Cy (1) contains a subgroup of type (p, p, p) for each involution T in I.

Proof. Let D be as in the preceding lemma, so that D is of exponent p,
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class at most 2, and .Y A/3(D) is non-empty. We first show that €; = Q,(S)
possesses a subgroup &, such that m(&:/&) < 3 and Cg(S) contains a
subgroup of type (p, p, p). Suppose first that 3 = Z (D) has order at least p°.
Let &, be a subgroup of &, of maximal order such that 3y = C3(&,) has order
at least p3, and let Ty be a complement to & in &;. Since & is abelian, &,
normalizes 8o. If m(To) > 4, then |Cz,(7)| > p* for some 7" in T, and
(S, T) centralizes a subgroup of 3 of order at least p?, contrary to our maximal
choice of &,. Thus m(Zy) = m(S,/&y) < 3 and the desired assertion holds
in this case.

Hence we may suppose that |3] < p2 Since @ C [N(B), N(B)] by Lemma
4.1(ii), it follows from Lemma 2.7 that & centralizes 3. Now set © = D/3.
Since & does not centralize ©, S does not centralize D; hence applying Lemma
2.7 once again, we conclude that |D| > p% Arguing now as in the preceding
paragraph, it follows that if &, is a maximal subgroup of &; such that Cg(S,)
= Dy has order at least p?, then m (S,/S,) < 3. Setting Dy equal to the inverse
image of D¢ in D, we see that S, stabilizes the chain 1 C 8 C Dy, and hence
&, centralizes 9. Since D, contains a subgroup of type (p, p, p), the desired
assertion follows in this case as well.

If m(S,) > 2, we can choose T to be any four-subgroup of &, and T will
have the required properties. We can therefore assume that m(&,) < 1 and
hence that m (&) = m(S;) < 4. Suppose first that m(S) = 3. Since

S S [N(P), N(P)]

and & is abelian, N(B) contains a 7-element ¥ which acts transitively on the
elements of &,7. Suppose first that &; does not centralize 8. Then some
irreducible constituent LB of the representation of (&;, ) on 3 does not have
@, in its kernel. But then Clifford’s theorem implies that |B] = p™ & > 1.
Let T be any four subgroup of &, let T, T's, T3 be the involutions of ¥, and
let B = B; Ve Vi be the T-decomposition of V. Since |B| > p7, it follows that
|B,| > p* for some 7 = 1,2,3. Thus Cg(7";) contains a subgroup of type
(p, p, p) for some 2 = 1, 2, 3. But as ¥ acts transitively on the involutions of
&, C3(T;) contains a subgroup of type (p, p, p) for each 7 = 1, 2, 3. Hence
the lemma holds in this case. On the other hand, if &, centralizes 3, the lemma
follows by essentially the same argument applied to ® = D/3.

We may therefore assume that m (&) = 4. Consider first the case that
IN(®)/C(®)]| is divisible by 5, in which case N(P) possesses a 5-element X
which normalizes, but does not centralize, ©,. As above, suppose first that
&, does not centralize 3. Then by Clifford’s Theorem an irreducible constituent
W of the representation of (&;, X) on 3 not containing S; in its kernel has
order p%, kB > 1. Let B, be a subgroup of W on which &, is represented
irreducibly, and let ®; be the kernel of this representation. Then |8, = p
and |®:| = 8. Furthermore, W* = W; W,* W,** has order p* and

X =0 N/YFN /T
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has order 2. Hence if ®* = (T), T centralizes ®*. But then T, = I\¥
centralizes B*X, and consequently & = (T}, T;) centralizes T* N {W*X,
which has order p% Thus |Cg(T)| > p>

We shall show that £ satisfies the requirements of the lemma. Set 7' = 1"y T's.
If |Cx ()| > p° then Cg(T) contains a subgroup of type (p, p, ) and hence
so does Gy (7",) for all 7. Hence consider that |Cg(Z)| = p? and let

W= Wo X W' X W' X Wy

be the T-decomposition of W. Here Wy = Cx(T) and W, is the subset of
Cg(T;) inverted by T, j # i. Now || = || since 7> = T:%. But then
|| = p2|Wy'|2|Wy/|. Since |B| = p* and 5* is odd, it follows that W' > 1.
Hence |Cgx(T3)| = |Wo Ws'| > p. Since 7 and T, centralize W*, and
|W*| = p?, we conclude that |Cw(7;)| > p3 for all = = 1,2, 3. Thus Cg(7T,)
contains a subgroup of type (p, p, p) for each ¢ = 1, 2, 3, as required. There-
fore the lemma holds if &, does not centralize 8. On the other hand, if &;
centralizes 3, we apply the same argument to ® = ©/3, and the lemma
follows in this case as well.

It thus remains to treat the case m(&) = 4 and N(&)/C(S) is a 3-group.
As above, we assume first that &; does not centralize 3. Let 3% be an S;-
subgroup of Ny (&). Since N(&)/C(©) is a 3-group, Lemma 4.1 (i) and (ii)
implies that © C [©R, ©R]; and hence that S; C [&,R, S, R]. If U denotes
an irreducible constituent of the representation of &;% on 3, not containing
@ in its kernel, it follows once again from Clifford’s Theorem that [lI| = p*,
k > 1. Choose R in & with R not in G(S;). Then R normalizes, but does not
centralize, some four-subgroup <, of &,. If T}, Ty, T3 are the involutions of
T, this implies that [Ui] = [Us| = |Us], where U; = Cy(T"), 7 =1, 2, 3. But
U = U; U, Us. Hence if & > 1, it follows that |U,] > %, ¢ = 1, 2, 3; whence
Cg (T';) contains a subgroup of type (p, p, p) for all 7, and T can be taken as
the required subgroup 7.

Consider next the case & = 1. Let & be the kernel of the representation of
&; R on U. Since m(S;) = 4 and m(U) = 3, &; cannot be faithfully repre-
sented on 11, and consequently &; N & #= 1. If [&;, N &] = 2, then &; {/R
is elementary of order 8. Since R is a 3-group, this implies that &; N/
possesses a normal subgroup of index 2. But then &; )t has a normal subgroup
of index 2, contrary to &; C [&:R, ©;R]. Thus [S;:N\ & > 4 and S, possesses
a four-subgroup ¥ which acts trivially on U. Since U is elementary of type
(p, p, p), we conclude that < satisfies the required conditions.

Finally if &; centralizes 3, the lemma follows once again by the same
argument applied to ©. This completes the proof.

LEMMA 4.4. Let © be an So-subgroup of & and T a four-subgroup of ©. Let

Q be a maximal element of N(S:p) and B a maximal element of N(T: p)
contaiming Q, where p € o. Then:
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(i) < contains a T-invariant S,-subgroup of O(C(T)) for each involution
TinZ.
(ii) P = QCx(T).

Proof. Let Ti, Ts, T be the involutions of T. Let N; be an S-invariant
S,-subgroup of O(C(7")), and let Q; be a maximal element of U(S; p) con-
taining N;, 7 = 1, 2, 3. By Proposition 4(ii), we have Q = Q¢ for some
X, in C(&), 7 =1, 2,3, and consequently R;X: C Q for each 7. But since
C(®) C C(TI), NXiis a T-invariant S,-subgroup of O(C(T))), 1 =1,2,3,
and (i) holds.

Now let P = BoPy' Bo' B’ and Q = Qo Q' Q' Q3 be the T-decom-
positions of P and LQ, respectively. Since Q C P, Q/ S B/, 7 =1,2,3.
But each B,/ € yPB<. Since G(T",) is solvable, it follows therefore from Lemma
2.4(iii) that B,/ € O(C(T,)) for each 7. Hence P/¥Yi C RN, for some YV, in
C(2). Setting Z, =Y, X, we have Z, € C(T) and P/%: C Q, whence
P/Z%:C Q/. Thus |Q/| > |B/], and consequently Q) =P/, i =1,2,3.
Hence P = P Q = Cg(T)Q, and (ii) also holds.

The next two lemmas are needed to study the problem of p-constraint for
the primes in o; compare Section 6 below.

LemMmA 4.5. Let T be a 2-subgroup of ®, and let P be a maximal element of
N(Z: p), where p € o. Assume that the following conditions hold:

(a) B L CD).

(b) For some non-trivial T-invariant subgroup T of B, C(D) 1is an Ai-group
of which T is an Se-subgroup.

Then if D* is a T-tnvariant S,-subgroup of O, ,(C(D)), T does not centralize T*.

Proof. Our conditions imply that T is elementary of order at least 4 and that
N(E&) D C(®X). Let & be an Ssy-subgroup of ® containing . Obviously every
maximal element of M (&; p) is contained in some maximal element of L (Z; p).
Since any two maximal elements of (T ; p) are conjugate by an element of
N(£) by Proposition 4, P contains a maximal element Q of UN(S&¥; p) for
some element X in N(Z). Since £ € &%, we can assume without loss that
is a maximal element of A (S; p).

By hypothesis, B € C(T); hence P £ C(T*) for some four-subgroup IT*
of &. Let Ty, T's, T3 be the involutions of T* and let

P o= Pr P2 Py = Po Bs" B2 P’

be the T*-decompositions of B. Then P,/ £ 1 forsome? = 1, 2, 3, say, 7 = 1.
Thus Po C P and N(Bo) N By == 1. But N(Po) N Py centralizes Py by
(6, Lemma 1.1), whence Cg, (By) # 1. But D centralizes T* and hence
D C By Thus Cg, (D) = D) # 1. Furthermore, since T is abelian, Py,
and hence also ®¢, is Z-invariant. Setting € = C(D), we conclude that
D € Us(T; p) and that D, € C(IT).

Suppose first that m(Z) > 3, in which case € has characteristic 2”®. But
then ©,/ CvD,/ T C O(€) by Lemma 2.5(1ii). Now 2, normalizes some
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T-invariant S,-subgroup F* of 0, ,(C). If F* C C(T), then D," would cen-
tralize §* by (6, Lemma 1.1), whence ©,’ C §* by (9, Lemma 1.2.3), con-
trary to the fact that ©,’ does not centralize . Thus §* € C(T). But F*
and ©* being Z-invariant S,-subgroups of O, , (€), are conjugate by an
element of C(T). Hence D* & C(X), proving the lemma in this case.

Consider then that m () = 2, in which case £ = * and € is of characteristic
g > 5, ¢ odd. It will suffice to prove that B,/ = 1,7 = 1, 2, and 3, for then it
will follow as above that ©;/ = Cg,. (D) # 1forallz = 1,2, 3,and (6, Lemma
3.6(vi)) will imply that ©,/ € O(€) for at least two values of 7. But then the
argument of the preceding paragraph will apply without change to give the
desired conclusion.

Now B,/ € O(C(T,)) by Lemma 2.4(iii), and P, # 1 by assumption.
This implies that ¥ does not centralize any Z-invariant S,-subgroup of
O(C(T4)). But € contains an element which cyclically permutes the involutions
T4, T, T3, and hence T does not centralize any T-invariant .S,-subgroup of
O(C(T,)) for each 7 = 1, 2, 3. On the other hand, by Lemma 4.4 (i) Q contains
an S,-subgroup of O(C(T";)) for each 7« = 1, 2, 3. Thus if

Q = Q1Q2Q3 = @0Q1/Q2/Q3I

denotes the T-decompositions of Q, we conclude that Q; D Qoand Q) # 1
foreach? =1, 2, 3. Since Q C B, Q,/ € P,/ and therefore P,/ # 1,7 =1, 2, 3,
as required.

LEMmA 4.6. Let T be a four-subgroup of ©, let © be an Sy-subgroup of ©
containing T, let Q be a maximal element of VN(S; p), where p € o, and let P
be a maximal element of (T ; p) containing Q. Assume that the following
conditions hold:

(a) P < C@).

(b) For some non-trivial subgroup © of B, C(D) is an Ai-group of which T
is an Se-subgroup.

(c) CG(Q) s solvable.

Then one of the following two statements holds:

(1) Q contains an S-invariant subgroup RN with S CN 3(R) non-empty
such that G(R¥) 1s an A-group of characteristic 34, t > p, for some maximal
subgroup N* of N.

@) D] = p, N =N(D) is an Ai-group of characteristic 3%, D is an S,-
subgroup of O(N), and a maximal element of Un (T ; p) has order p2.

Proof. Let  be any A -subgroup of & containing ¥ and let X be a maximal
element of Ng(T; X). Since N(T) DO CG(T) by Condition (b), we have ¥¥ C B
for some Y in N(Z) by Proposition 4(i), and consequently < centralizes X.
But then we can apply Lemma 2.8 to conclude that either Cg (%) is an 4i-group
or that § has characteristic 3”", » > 1, and X possesses a maximal subgroup
%* containing X M O () such that Cg(X*) is an 4;-group of characteristic 37.
This result will be used repeatedly in the proof.
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Suppose first that ¢ possesses an A;-subgroup & containing ¥ and also
containing a maximal element of (< ; p). Then by Proposition 4 (i), we can
assume without loss that € ®. Now by the preceding assertion, either
Cg () is an 4 -group or else § has characteristic 37" and P possesses a maximal
subgroup PB* such that Cg(P*) is an A4;-group of characteristic 3*. However,
in the first case, C(Q) is an 4;-group since O C P, in contradiction to (c).
The same contradiction occurs in the second case if Q C P*. Hence B* M Q
is a maximal subgroup of Q. We shall show that (i) holds with Q = 3 and
PrNQ = P*.

First of all, . 7% 43(L) is non-empty by Lemma 4.2. Furthermore, since
Cge(PB*) C C(RN*) and Cgp(P*) is of characteristic 37, Lemma 2.6(i) implies
that C(N*) is an A -group of characteristic 3 for some ¢ > p. Thus (i) holds.

We may therefore assume that no A4 ;-subgroup of & containing & contains
a maximal element of (< ; p). Suppose next that P possesses a subgroup D,
with |®4] > p such that C(D;) is an A4;-group. Since Q C B, certainly P
is non-cyclic. Hence there exists an element B in 9/ (P). Since [Di > p,
Do = Cp,(B) # 1. Since C(D;) C C(Dy) = €, it follows that € is an 4;-
subgroup of & containing ¥ and B. Let ¥ be a maximal element of Us(ZT; p)
containing B. Then Cg(X*) is an A4 ;-group for some subgroup X* of index at
most p in X. But then B* = B M ¥* # 1, and consequently & = G(B*) is an
A -subgroup of O containing . Furthermore, P M & has index 1 or p in B, and
P C Rif B* C Z(P). Hence under our present assumptions [B : BN K| = p,
BN K is a maximal element of UNeg(T; p), and B* £ Z(P). In particular,
Z(P) is cyclic. Furthermore, Cp(P M &) is not an A;-group; otherwise
N(® N &) would be an 4 ,-group containing T and PB, contrary to our present
assumption. Thus by the first assertion of the proof, { has characteristic 37",
n > 1, and P M K contains a maximal subgroup P* such that Cg(P*) is an
Ai-group of characteristic 32.

Let Bo = [P N K, PN &]. Then Bo € P* and hence Cgp(Bo) is an A -group.
But Po char N & <1 B. Hence if Bo = 1, N(Bo) is an A;-subgroup of &
containing ¥ and P, contrary to assumption. Thus $o =1 and PN K is
abelian. Since PB; = C1(P N K) € B* and since P; char PN &, we reach the
same contradiction if P; £ 1. Hence Bo = 1 and it follows that PN K is
elementary. Now Z(PB) € P N & since Z(P) € C(B*) = K. Since Z(P) is
cyclic, it follows that |Z(B)| = p. If Z(P) < B*, then N(Z(P)) is an A4,-
subgroup of & containing ¥ and P, once again yielding a contradiction. Thus
Z(P) N P* = 1 and we conclude that PN\ & = Z(P) X B*. Since [Z(P)| = p
and P M & is an elementary normal abelian subgroup of P of index p, P is of
maximal class and cl(B) = a, where p* = |[B N R]. Since FCAN3(B) is
non-empty, we also have ¢ > 3.

Now QC B. If QPN K, then we put Q = RN and P* N Q = R*.
Then € A5(R) is non-empty, |R : R*| = p, and by Lemma 2.6(i), C(R*)
is an A;-subgroup of ® of characteristic 3¢, ¢ > p, since Cg(PB*) C C(RN*).
Thus (i) holds in this case. Assume finally that Q & P M K. In this case we
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set R = QNP K. Then [Q :R| = pand hence R Q. If V € Q — R,
then V€ B — (BN KR), and [Ce(Y)| = p?, whence |[Cq(Y)| = p%. Thus
also Q0 is of maximal class. Since .7%.43(Q) is non-empty, it follows that
cl(Q) = b > 3, where |R| = p° In particular, Y% A3(R) is non-empty.
Furthermore, % = Cq(Z2(Q)) char Q and hence R is S-invariant. Finally
PB* M RN contains a maximal subgroup R* of R. As above, C(R*) is an 4;-
subgroup of & of characteristic 3, ¢ > p. Thus all parts of (i) hold in this case
as well.

It remains therefore to consider the case that for any non-trivial subgroup
Dy of B such that CG(Dy) is an 4 ;-group, we have |D;| = p. Now let D be a
non-trivial subgroup of P satisfying (b). We shall show that the conditions of
(ii) hold. First of all, our assumptions force |D| = p. Set N = N(D), and let
X be a maximal element of Un (T ; p) containing P M N. Since P is non-cyclic,
|B N N| > p* and hence |¥| > p2 Our conditions force C(¥) to be solvable.
Hence by the first statement of the proof, M is an A;-group of characteristic
37" n > 1, and X possesses a maximal subgroup ¥* containing ¥ M O(N) such
that Cq(X*) is an A;-group of characteristic 3. Now our assumptions force
|¥*| = p, whence |¥| = p2. Furthermore, since D C XN OM) C ¥*, it
follows that © = %X* is an .S,-subgroup of O(N) and also that Cy (D) is an
A-group of characteristic 3. But Cu(®) a9 N, and consequently N is an
Ai-group of characteristic 3?. Thus all parts of (ii) are established. This
completes the proof of the lemma.

5. The uniqueness condition. Using the results of the preceding section,
we shall now investigate the consequences of the assumption that the unique-
ness condition holds for some prime p in ¢. The essential lines of the proof
are based upon arguments of J. G. Thompson which were communicated to
the author and which are used in (12). Our main result is the following:

PROPOSITION 5. A ssume that & satisfies the uniqueness condition for some prime p
in o. Let © be an Sr-subgroup of ®, let P be a maximal element of U(S; p),
let | be an S,-subgroup of & containing B, and let M be the unique subgroup of ©
containing B which is maximal subject to the conditions that I contain an element
of .o7«(B) and that p € =, (M). Then the following hold:

(1) © C M and S centralizes O, (M).

(i1) The characteristic of every A -subgroup of © is a power of 2.

Remark. In Sections 6 and 7, we shall argue that if ¢ is non-empty, then, in
fact, O satisfies the uniqueness condition for some prime p in ¢ for which the
corresponding subgroup It of ® violates the conclusion of Proposition 5. This
will force ¢ to be empty, in contradiction to Proposition 3, and will thus
establish Theorem 3.

We carry out the proof of Proposition 5 in a sequence of lemmas, which are
of some independent interest.
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LeEMMA 5.1. The following conditions hold:

(i) @ C M.

(1) G(T) € M for each involution T in &.

(iii) N(Z) C M for every non-trivial subgroup T of ©.
(iv) S OM).

Proof. By Lemma 4.3, © possesses a four-subgroup £ such that Cg(7)
contains a subgroup of type (p, p, p) for each Tin T7. But then Cy(7) € .oZ5(P).
Since CG(7") is solvable, it follows that G(I") € I for each 7" in T*. Since
C(®) CC®), C(®) CM; and, in particular, (i) holds. Furthermore,
N(P) S M since P € ./5(F). Since

N(®) = [N(&) "N(P)IC(S)

by Lemma 4.1(i), it also follows that N(&) C .

Now let Ty be an arbitrary subgroup of & and set & = N(Zy), ¢ = C(T,).
Then ¢ is solvable and @ C & Hence |§/%| is odd, whence /¢, and conse-
quently &, is solvable. Thus = O(®)Ng(©) by Lemma 2.4(i). But

0(8) = (Cow) (DT € TH),

and hence O(®) C M. Since Ng(&) C N(&) C M, it follows that & < M.
Thus (iii) holds. Since (ii) is the special case of (iii) corresponding to T, = (7,
(i) also holds.

Finally (iv) follows from Lemmas 2.4(iv) and 2.5(iv).

The second statement of the proposition is an immediate consequence of
this lemma. For let  be an 4 ;-subgroup of & which is not of characteristic 2"
for any n. Then 9 is of odd characteristic ¢ > 5. By replacing § by a conjugate,
if necessary, we may assume that £ = @ M O is an Ss-subgroup of H. But
then = (Cs(1)|7 € TF) by Lemma 2.6(ii) and consequently $ C M by
Lemma 5.1(ii). Since O is an 4,-group, also M is an 4,-group. But © C M
and m (&) > 3, whence I has characteristic 2™® by Lemma 2.5(i). However,
this is impossible by Lemma 2.6 (i), since § C M and $ has odd characteristic
g > 5.

To prove the first statement of the proposition, we need several additional
lemmas.

LemMA 5.2. N(@) has only one class of involutions.

Proof. We first argue that & has only one class of involutions. Let 7" be a
fixed involution in & and suppose & possesses a conjugate class T8 of involutions
with 7" ¢ 8. Choose T'¢in . Since 7" and T are not conjugate in &, (T, T')
contains an involution 7"; which commutes with both 7"and 7%. But C(T") € I
by Lemma 5.1(ii), and hence 7y € M. Thus 7y = T»™ for some involution 7'
in € and some M in M. Since C(T2) S M, we have CG(T1) < M and hence
To € M. Thus W C M. But then (W) is a normal subgroup of & contained in
M, contrary to the simplicity of &. Thus all involutions of & are conjugate.
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Since © is abelian, two involutions of & which are conjugate in & are
already conjugate in N (&). Hence N (&) possesses only one class of involutions.

In the following lemmas, 7" will denote a fixed involution of & and we set

O = C(1)0,(M). Since C(T) C M, 9 is a subgroup of M.

LemMA 5.3. Assume Q1(©) does not centralize PB. Then if X is an element of
order p in O, G (X) contains a subgroup of type (p, p, p).

Proof. By Lemma 5.1(iv), B C O(M). Since P is a maximal element of
N (S; p), this implies that P is an S,-subgroup of O (IM). But then MW = O (PM)N
by Sylow’s Theorem, where 9t = N (). It follows at once that & = Cx(7)B
contains an S,-subgroup of . Hence if P* is an S,-subgroup of &, it will
suffice to show that Cg«(X) contains a subgroup of type (p, p, p) for every
element X of order p in B*. If X € P, this is a consequence of Lemma 4.2.
We may therefore assume that X € P* — P and, in particular, that P is not
an .S,-subgroup of &.

Let € be a characteristic subgroup of P chosen in accordance with (4, Lemma
8.2), and set D = 2;(C), so that D is of class at most 2 and of exponent p.
The lemma follows if [Cp(X)| > p; therefore we may assume that |€p(X)| = p.
Thus ©* = (D, X) is of maximal class. To derive a contradiction from this
assumption, it will suffice to show that © = D/D(D) has order at least
p?+1. For assume this to be the case. Since every homomorphic image of a
p-group of maximal class is easily seen to be of maximal class, ©* = ©*/D (D)
is necessarily of maximal class. Since D is a maximal subgroup of ©* of order
at least p**+1, cl(D*) > p + 1. On the other hand, since D is elementary, we
clearly have cl(D*) < p, thus yielding a contradiction.

Now since Y€ A3(B) is non-empty, N(B) S M, and consequently
N = N(B). But then N(&) = Np(8)C(&) by Lemma 4.1(i), and it follows
from the preceding lemma that € = Ny () has only one class of involutions,
whence & = ¢/0(2) has only one class of involutions. Furthermore,
Cn(T) C OM)Ce(7) by Lemma 2.4(v). Since & = Cq(7)PB and P is not an
S,-subgroup of &, this implies that P M Ce(7) is not an S,-subgroup of
Ce(7). Let T be the image of 7 in ¢, in which case CQ(T) is the image of
Ce(7) in €. Since P contains an S,-subgroup of O(2) and P N Ce(7) is not an
S,-subgroup of Cg(7), we conclude that p divides |Cg(7T)].

On the other hand, &, being solvable, possesses a 2-complement ¥). Thus
¢ = &Y, where & denotes the image of © in & Set &; = 2,(&) and
¢, = &, 9). Since any element of §) which centralizes &, necessarily centralizes
&, we conclude from (9, Lemma 1.2.3) that O(%;) € O(®). But ¥ = £/0(9),
and consequently O(2,) = O(®) = 1. Furthermore, since all involutions of ¥
are conjugate, &; also has only one class of involutions. It follows therefore
from Lemma 2.3 (iii) that |Cg,(T)| = 2@ w, where w|m(S,). Since p divides
|Cz(T)|, p also divides |Cg, (T)]|, and it follows that p divides m(S;) = m(S).

By Lemma 2.3(ii), we also have that J) possesses a cyclic subgroup % of
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order r > (2"® — 1)/d, where d = (2™® — 1, m(&)), which acts regularly
on &;. Let R be its inverse image in € and set &; = (). Then R/Cx(S,)
is cyclic of order 7. In turn, RS, is represented on © = /D (D). Furthermore,
@, is not represented trivially on 9D, for otherwise &, € C(D), whence
&; € C(€). But then &; C G(P) by (4, Lemma 8.2), contrary to hypothesis.
Hence there exists a subgroup € of © on which RS, is represented irreducibly
and on which &; is represented non-trivially. It follows therefore from Clif-
ford’s Theorem that |§| = p? where a > r. But then a > (2"® — 1)/d.
Since d = (2™® — 1, m(®)), we conclude at once from this inequality that
a > m(&) + 1. But p|m (&), and consequently @ > p + 1 whence

1Dl > G > p+,
and the lemma is proved.

LemMma 5.4. Assume ©,(S) does not centralize B. Then if X is an element of
prime order in O which is strongly realt in ®, we have C*(X) C IN.

Proof. Let X have order ¢. If ¢ =2, X¥ ¢ & for some M in M, and it
follows from Lemma 5.1(ii) that C*(X) = C(X) C M. If ¢ = p, then Cx (X)
contains a subgroup of type (p, p, ) by the preceding lemma. But then
CH (X™) contains an element of .o7; () for some M in M. Since

p € m,(C*(X™M)),

it follows at once that C*(X*) C IN and hence also that C*(X) € IN. We
may therefore assume that ¢ is odd and that ¢ £ p.

Since $ = CG(1)0,(M) and O, (M) <1 9, it follows that ¥ = X € C(T)
for some C in . Furthermore, since X is strongly real in ®, so also is ¥, and
consequently €* = C*(Y) contains an involution not in € = C(Y). Since
T € G, it follows that an Si-subgroup &* of €* containing 7" is non-cyclic.
Now &* € C(T) € M and hence Ng*(&*) € M by Lemma 5.1(iii). Further-
more, since € is a normal subgroup of index 2 in €*, €* is not an A4,-group
by Lemma 2.6 (iii). Thus €* is solvable and consequently €* = O (€*)Ng* (&*)
by Lemma 2.4(i). It therefore suffices to show that O (E*) C M. But

0(C*) = (Cow (IT™)|T* € &*F).

Since @** C & for some M in M, C(IT*) C M for each T* in S*# by Lemma
5.1(ii1), and it follows that O (C*) C M. The lemma is proved.

LEMMA 5.5. Assume (@) does not centralize B. Then each coset of © which
does not lie in I contains at most one tnvolution.

Proof. Let YV be a coset of O in & with ¥V € & — I, and suppose HY
contains two distinct involutions 7y, 7's. Then 7'y Ty = X, € $F and 7} in-
verts X,. Let X be a power of X, having prime order. Then X € $# and T,

tAn element of a group O is called strongly real if it is inverted by some involution of (3.
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inverts X. But then C*(X) C I by the preceding lemma, whence 7; € M
and consequently ¥ € I, a contradiction.

LEMMA 5.6. Q;(S) centralizes O, (IN).

Proof. Assume by way of contradiction that Q,(&) does not centralize
0, (M). Then certainly Q;(S) does not centralize P, and hence we can apply
the preceding lemma. First of all, since N(&) C It and N(&) has only one
class of involutions, it follows that Q,(IM) & C(7). Thus G(7) C &. Further-
more, It and G each have only class of involutions.

Now set ¢ = |CG(T)], ch =|9D|, chm =|M|, and chmg, = |®|. Since
C(T) C 9, we have & > 3. Now the number of involutions in M is Am.
Hence, by the preceding lemma, the number of involutions in ¢ is at most
hm + (mgy — m). On the other hand, the number of involutions in ® is kmg,.
Thus we have

hmgy < hm + mgy — m,

which yields
(h —1)(go— 1) < 0.
Since & > 3, this forces go = 1 and I = ©, a contradiction.

We are now in a position to prove part (i) of the proposition. Suppose, by
way of contradiction, that & does not centralize O, (). Since Q;(&) centralizes
0,(M), & is not elementary. As N(&) possesses only one class of involutions,
it follows that & is homocyclic of type (29, 2¢ ...,2% with @ > 1. Since an
Se-subgroup of an A;-subgroup is elementary, we conclude in particular that
M is solvable.

To obtain a contradiction, we shall now argue that the normalizer of every
non-identity subgroup of © is solvable, contrary to Proposition 2(v). Suppose
this is false, and let § be a non-trivial solvable subgroup of & such that
£ = N(Ro) is non-solvable. If Q, is an S,-subgroup of &, for any ¢ in 7(&,),
then & = R Ng(Qo) by Sylow’s Theorem, and consequently N (£Q,) is non-
solvable. Hence if Q is a ¢-group of maximal order such that = N(Q) is
non-solvable, we have Q # 1. If T is an Ss-subgroup of 9, we can assume
without loss that T C &. Now &, being non-solvable, is an 4;-group, and
hence $ has characteristic 27, # > 2, by part (ii) of the proposition, which
has been established above. Furthermore, Sylow’s Theorem and the maximality
of Q imply that Q is an .S,-subgroup of O (9). It follows therefore from Lemma
2.5(iv), if » > 3, that Q is a maximal element of Ug(T; g). On the other
hand, if » = 2, the same conclusion clearly holds, since then $/0(9) is
isomorphic to the alternating group 4s. Since § = N(Q), it follows that Q
is a maximal element of U(Z;q). But Q C M since Q = (Co(7)| T € TF)
and C(7") € M for each T in T#. We conclude therefore that Q is a maximal
element of Uy (< ; ¢). Now M is solvable and has only one class of involutions.
But then Lemma 2.4 (vi) implies that an Ss-subgroup T* of Ngn (Q) is homo-
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cyclic of type (2% 2% ...,2%. Since T C M, we can assume that T C T
But then £ = ¥, since T is an Sy-subgroup of = N(Q). Since a > 1, we
conclude that T is not elementary, contrary to the fact that < is an Ss-subgroup
of the 4,-group §. This completes the proof of the proposition.

6. The set of tame primes. In the present section we shall determine
for the primes in ¢ the precise conditions under which the modified definitions
of weakly p-tame, p-tame, and 7-tame, as discussed in Section 1, are satisfied.
We first study the concept of weak p-constraint. Our results are contained in
the following lemma:

LeMMA 6.1. If p € o and p > 5, then © is weakly p-constrained. If 3 € o,
then either ® 1is weakly 3-constrained or else & possesses an A-subgroup of
characteristic 3%, t > 3.

Proof. Let p € o, and suppose & is not weakly p-constrained. Then ©&
possesses a p-subgroup © # 1 with the following properties: (a) if € = DC(D)
and if ©* denotes an S,-subgroup of O, ,(€), then C(D*) is non-solvable;
and (b) N(D) contains an element of < () for some S,-subgroup B of ©.
Since D C D*, C(D*) C G, and therefore € is an 4;-group. Let T, &, Q,
and P be respectively an Se-subgroup of €, an Ss-subgroup of ® containing &,
a maximal element of N (S; p), and a maximal element of (T, ) containing
Q. Since N(T) D C(T), we may assume in view of Proposition 4 that © C P.

Suppose first that P € C(). Then a I-invariant S,-subgroup B* of
0, ,(C(D)) does not centralize T by Lemma 4.5. Now DP* is a T-invariant
S,-subgroup of O, ,(€) and hence is conjugate to D* by an element of C(I).
Since DP* € C(T), it follows that D* € C(T). Since € is an A;-group and
T is an Sy-subgroup of €, this implies that Cg(®*) € O(€) and hence that
Cs(D*) is solvable. Since G(D*) C €, we conclude that C(D*) is solvable,
contrary to assumption. Therefore  C C(T).

Now let ©y be a maximal Z-invariant subgroup of P containing D* such
that M = N(Dy) is an A,-group. Let D; be a maximal element of Un(T, p).
Applying Proposition 4 once again, we can assume with no loss of generality
that ©; € PB. Maximality of D implies that Dy is an S,-subgroup of O(N).
Let ©; be an Ss-subgroup of N containing T and suppose first that m (S;) > 3,
in which case 3 has characteristic 2@, Since m () > 2,and D, C P < C(I),
Lemma 2.8 implies that Cy(®;) is an A4;-group. Hence ©; = ©, by the
maximality of ©y. Thus D is a maximal element of Unw@y (T; ), and so isa
maximal element of (T ; p). We conclude that Dy = P and that Cyu(P) is
an A;-group. But then as Q C P, also C(Q) is an 4;-group. But @ € N(Q),
and hence & centralizes Q by Lemma 2.6(v), contrary to the fact that Q is
a maximal element of U(&; p) and p € o. Thus m(S,) =2and T = S, is an
S-subgroup of MN.

To treat this case, observe first of all, that C(Q) is solvable; otherwise
C(Q) would be an 4;-group, and Lemma 2.6(v) would yield the same con-
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tradiction as in the preceding paragraph. Thus the hypotheses of Lemma 4.6
are satisfied. Suppose first that the conditions of Lemma 4.6(i) hold. Then
£ contains an @-invariant subgroup R such that .77 4% (RN) is non-empty
and such that G(N*) is an 4;-group of characteristic 3%, ¢ > p, where %* is a
suitable maximal subgroup of R. We shall show that this case is impossible.
We first argue that m (&) > 4; so assume the contrary. Then m (&) = 3, and
hence both & and N(&) possess only one class of involutions. But then N(Q)
has only one class of involutions by Lemma 4.1 (i). Since  C C(T), Q S C(3),
and consequently £ centralizes some involution of &. Since N(Q) has only
one class of involutions, it follows that ©,(&) centralizes Q and hence central-
izes N*. But then 1 (S) € C(R*). Since m(2;(&)) = 3 and C(N*) is an
Aq-group, Lemma 2.5 (i) implies that G(9%*) has characteristic 2%, contrary to
the fact that C(N*) has characteristic 3. Therefore m (&) > 4, as asserted.

Thus & possesses a four-subgroup T* disjoint from <. Let T *,7 = 1, 2, 3,
be the involutions of $*. To reach a contradiction, it will suffice to show that
N contains a non-cyclic subgroup B which is either centralized or inverted by
one of the involutions 7';*. Indeed, if this is the case, B N RN* = B* = 1,
and N (B*) contains the 2-group (T, T'*) of order 8. Hence N(B¥) is either
solvable or is an A;-group of characteristic 2 by Lemma 2.5(i). But
C(R*) C C(B*) C N(®*), and consequently N (B*) is an 4;-group of charac-
teristic 3* by Lemma 2.6 (i), thus yielding the desired contradiction.

Now let i = 1 R Rz = Ro RN/ RS be the T*-decompositions of N. If
RN, is non-cyclic for any 7, then we can take N; as B since T'* centralizes
RN, Hence we may suppose that R; is cyclic for each 7 =1, 2,3. Since
S EN(N) is non-empty, this implies that Ry = 1 and that N, is cyclic for
each 4. Since Z(RN) is T*-invariant, R,/ NZ(R) # 1 for some i, say ¢ = 1.
Then ©,(N)) € Z(N) and consequently B = (;(N1), 2:(Ny)) is abelian of
type (p, ). Furthermore, since 7'3* inverts N," and Ny’, T'5* inverts B, and
thus B has the required properties. We conclude that the conditions of Lemma
4.6 (ii) must hold.

Now D is a maximal E-invariant p-subgroup of & such that M = N(Dy)
is an A4;-group and P NN = Dy is a maximal element of Nn(T; p). It follows
therefore from Lemma 4.6(ii) that [P N N| = p2% that (PN ON)| = p, and
that N has characteristic 3?. In particular, ® = ©* = Dy, whence t = N(D).
Suppose now that p > 5. Then by Lemma 2.8(ii), 8 M N is an S,-subgroup of
9N. Now by assumption, N contains an element ¥ of .o/4(P) for some S,-sub-
group B of ®. Since an S,-subgroup of N has order p? and since |¥| > p?, it
follows that ¥ is an S,-subgroup of N. In particular, ® C ¥ and Ng(D) = ¥X.
But now it follows at once from the definition of .o7;(), ¢ = 1, 2, 3, 4, that
¥ € .o/1(B), which is clearly impossible since every element of .z () possesses
a subgroup of type (p, p, p). This contradiction shows that & is weakly
p-constrained for all p > 5. Finally if p = 3, our argument shows that either
® is weakly 3-constrained or else N (D) is an A;-group of characteristic 33;
and all parts of the lemma are proved.
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PROPOSITION 6. If p € o and p > 5, then & s p-tame. If 3 € o, then either
® is p-tame or else ® possesses an Ay-subgroup of characteristic 3%, ¢ > 3.

Proof. If & is not weakly p-constrained for some p in ¢, then by the preceding
lemma, p = 3 and ® possesses an A;-subgroup of characteristic 3¢, ¢t > 3. In
this case the final alternative of the proposition holds. Hence we need only
prove the proposition for those primes p in ¢ for which © is weakly p-con-
strained.

We first argue that O is weakly p-tame for each p in o. First of all,
S N5(p) is non-empty by Lemma 4.2. Furthermore, every proper subgroup
of ® is either an A(-group, an A4;-group of characteristic 2", or else is a D-
group. It follows therefore from Proposition 1(i) and from (6, Proposition 6)
that every proper subgroup of ® is p-stable, whence © itself is p-stable.
Suppose next that § is a proper subgroup of & such that p ¢ =,(9) and such
that A C 9 for some element A of .FF A3(p). Clearly this implies that O is
non-solvable and hence that § is an A4;-group. Since ¥ is mapped isomor-
phically into = $/0(9), O contains a subgroup of type (p, p, p). It follows
therefore from Lemma 2.2(iv) that 9, and hence also , is of odd characteris-
tic. Thus § is a non-solvable D-group. But now the proof of (6, Lemma 7.4)
implies that every element of Ug(A) lies in O(H). We conclude from the
definition that ® is weakly p-tame.

To complete the proof of the proposition, we must show, in addition, that
if B is an S,-subgroup of ® and if Q is a non-trivial element of U(F; q) for
any prime ¢, then §F NS(N(Q)) # 1. We shall follow the argument of (6,
Proposition 10). We let A € Y% A4(P) and set B = V(ccls(A); TF). We
assume the desired conclusion is false, and choose L of maximum order in
U(TB; ¢) so that B NS(N(Q)) = 1. Then certainly N = N(Q) is non-solvable
and, in particular, S(M) = O(N). But now the argument in the first part of
the proof of (6, Proposition 10) applies without change to show that Q is,
in fact, a maximal element of (P, ¢). Furthermore, since F NOMN) = 1,
N = N/ON) contains a subgroup of type (p, p, p) and we conclude once
again from Lemma 2.2(iv) that N is a non-solvable D-group. But now the
proof of (6, Proposition 10) applies to yield that :M has characteristic p™ for
some m, that 9 is the unique element of . 7% 43(B), and that ¥ is charac-
teristic in every subgroup of P containing . In particular, ¥ = % and
N = N(Z(B)) = NXD).

To derive a contradiction from these conditions, it will suffice to show that
there exists a subgroup P of B containing 9 with the property that an Ss-sub-
group T of N(B) is non-cyclic. For assume this to be the case. Since ( char P,
N(B) € N(@) and consequently T C N(A) = N;. On the other hand, since
® is weakly p-tame and Q is a maximal element of U(F; ¢), it follows from
(5, Lemma 4.2) that 0, = O, (M) M1 NN). Thus TX =T € ;NN for
some X in O, (91). Since N1 = N(A), X centralizes ¥, and consequently T’
normalizes 9. But then the image I’ of ¥’ normalizes the image ¥ of ¥ in
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N = N/OMN). But N is isomorphic to a subgroup of PTL(2, p™) containing
PSL(2, p™) and U contains a subgroup of type (p, p, p). Since A € Ui (T’; p),
this contradicts (6, Lemma 3.1 (vii)).

Let then & be an Sy-subgroup of & and let P* be a maximal element of
N (S; p). By Lemma 4.1 (iii), ©/Cg(B*) is non-cyclic and hence an S,-subgroup
of N(P*)/C(P*) is non-cyclic. Let P be a p-subgroup of & of maximal order
containing B* such that N ($)/C(P) has a non-cyclic Ss-subgroup. By replacing
P by a suitable conjugate, we can assume without loss that § M N, is an
S,-subgroup of Mo, where Ny = N(B). Let B; be an S,-subgroup of O, ,(No)
and set €; = Cg,(P1) and N; = No, (B1). Since Ny = O, (No)N1 by Sylow’s
Theorem, O, (M) €1 <a N1 and No/O, (No) €, is isomorphic to N1/E;. On the
other hand, €; € G(P), since P C B;. Since O, (No) clearly centralizes P, it
follows that O, (Me)E; € C(PB). But now our conditions imply that an S,-
subgroup of No/0, (No)C; is non-cyclic and consequently that an Ss-subgroup
of M1/€; is non-cyclic. But then certainly an Sy-subgroup of N(B;)/C(B,) is
non-cyclic. Hence 8, = P by our maximal choice of P, and so P is an .S,-sub-
group of O, ,(N(%B)). Furthermore, since $* C B, Lemma 4.2 implies that
P € .o/5(B). Since © is weakly p-tame, we can therefore apply (5, Lemma 3.4)
to conclude that P contains every element of .#Z 45(B). Thus A € P < F.
Since N (B) possesses a non-cyclic Ss-subgroup, P has the required properties.
This completes the proof of the proposition.

In view of the alternatives of Proposition 6, we now define for convenience
a subset ¢* of ¢ as follows. We set ¢* = ¢ if either 3 ¢ o or if 3 € ¢ and &
does not possess an Ai-subgroup of characteristic 3% ¢t > 3, and we set
o* = ¢ — {3} in the contrary case. Thus, by the proposition, ® is p-tame for
each p in o*.

ProrosITION 7. & is o*-tame.

Proof. We have just remarked that ® is p-tame for each p in ¢*. Hence to
show that © is ¢*-tame, we need only prove that p ~ ¢ for any two primes p
and ¢ in o*. Let @ be an Ss-subgroup of &, let P be a maximal element of
N(S; p), and let Q be a maximal element of (&; ¢). For definiteness, assume
that p > ¢. We apply Lemma 4.3 (ii) and conclude that © possesses a four-
subgroup ¥ such that Cg(7") contains a subgroup of type (p, p, p) for each T°
in TF. Let T4, Ts, T be the involutions of ¥, and suppose that for some
1=1,2,3 Q; = Cgq(T,) contains a subgroup of type (g, ¢, ¢). Then C(T%)
contains a subgroup of both type (p, p, p) and (q, ¢, q). Since C(T) is solvable,
it follows at once that p ~ ¢q. We may therefore assume that FEA4:3(Q;) is
empty for each ¢ = 1, 2, 3. In particular, this implies that £ does not centralize
at least one Q;; for otherwise T centralizes Q = (Qi, Qs Q3), whence
Q = Q1 = Q, = Qg3 contrary to the fact that ¥ 44(Q) is non-empty by
Lemma 4.2.
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Assume for definiteness that T does not centralize {1, and set € = G(7).
Now Q; and P; = Cg(7;) are each S-invariant and & C €. It follows
therefore from Lemma 2.4(iv) that B; and Q; each lie in O(€). Let & be an
G-invariant S, ,-subgroup of O(C) containing P;, and set & = {, K,, where
!, and R, are respectively &-invariant .S,- and S,-subgroups of &. Since
S CN5(8,) is non-empty, we may assume that .77 A5(R,) is empty, But
then as p > ¢, it follows from (4, Lemma 8.5) that §, <0 &. Furthermore,
since LQ); is contained in an ©-invariant S,-subgroup of O(®) and since any
two such are conjugate by an element of Co ) (@), we see that T does not
centralize §,. We have thus proved the existence of an ©-invariant {p, ¢}-
subgroup & = &, &, with the following properties: (a) ¢ 13(8&,) is non-
empty, (b) 8, << &, and (¢) S does not centralize {,.

Among all such {p, ¢}-subgroups of &, choose §* = £,*&,* of maximal
order. In virtue of Proposition 4, we may assume without loss that &,* C .
Suppose R,* C P; and set N* = N(K,*). Then PNAN* D {K,* and
PAR* CON*) by Lemma 2.4(iv). Furthermore, by the same lemma,
K5 S OMN*). Arguing therefore as in the preceding paragraph, we conclude
that either p ~ ¢ or that an @-invariant &, ,subgroup { = &,’, satisfies
conditions (a), (b), and (c). But in the latter case, |®'| > |f*], since
R, > [BNOM*)| > [®,* and [R,/] > |R,*], contrary to our maximal choice
of &*. Hence either p ~ g or &,* = P.

So finally consider the possibility £,* = P and set ¢ = N(B). Then, as
above, % C O(M). Hence if O* is a maximal element of n(S; ¢) containing
£,%, S does not centralize Q*. But © C [N, N] by Lemma 4.1(ii) and conse-
quently 7% A4(Q*) is non-empty by Lemma 2.4(iv). Thus p ~ ¢, and the
proposition is proved.

7. Elimination of the tame primes. We are now in a position to apply
the main results of (5) (as modified in Section 1). We begin with an analysis
of the set ¢* M 7. (As in (4, 5, and 6), 73 = 73(®) and w4 = 74(®) denote
the set of primes p such that %%, 14(p) is non-empty and U () is respectively
non-trivial or trivial, B an S,-subgroup of ®.)

LEMMA 7.1. If p € o®* N 7wy and © does not satisfy the uniqueness condition

for p, then ® possesses a subgroup X which satisfies the following conditions:
1) 0,(%) =1, 0,(%) # 1, and X contains a subgroup of type (p, p, p).

(i1) 0,(%) is an S,-subgroup of O(X).

(iii) An S,-subgroup of N(0,(%)) is an S,-subgroup of ¥.

(iv) Either X has characteristic p* withn > 1 or p = 3 and X/0 (¥X) is isomor-
phic to PTL(2, 8).

(V) If T is a four-subgroup of X, then a maximal element of Vx(ZT; p) is a
maximal element of (T ; p).

(vi) If X has characteristic 8, then so does any subgroup ) of ® containing X
such that p € ().
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Proof. Since © does not satisfy the uniqueness condition for p, it follows
from (5, Theorems D and E) that © is not strongly p-tame. But © is p-tame
by Proposition 6 and the definition of ¢*; thus either & is not p-restricted or
not p-reductive. We conclude therefore from the definition of these concepts
that there exists a subgroup § of ® satisfying the following conditions:

@) 0,(9) =1, 0,(9) # 1, and O contains a subgroup of type (p, p, p).

(b) An S,-subgroup of & is an S,-subgroup of N(O,(9)).

(c) 9 is either not p-restricted or not p-reductive.

Now by Proposition 1(ii), a subgroup $ of ® satisfying condition (a) is
p-restricted and p-reductive if either § is an A-group,  is an A,-group of
characteristic 2%, n > 3, or 9 is an A4;-group of characteristic 8 and either
p # 3 or $/0(9H) is not isomorphic to PTL(2,8). Furthermore, by (6,
Propositions 7 and 8), $ will also be p-restricted and p-reductive if § is an
Ay-group of odd characteristic ¢ and ¢ # p* with # > 1. Thus one of the
following holds:

(dy) O is an A;-group of characteristic p* with n > 1.

(ds) p = 3 and H/0(D) is isomorphic to PTL(2, 8).

Furthermore, since @ is p-tame and & does not satisfy the uniqueness
condition for p, it follows that © satisfies Hypotheses E of (5, Section 11).
Hence by (5, Lemma 11.4), if § is an S,-subgroup of ®, then % () contains
an element B which is weakly embedded in ®—that is, an element B such
that v2C(B)B? = 1 for each B in B*.

We first treat the case that § satisfies conditions (a), (b), and (d;). Among
all subgroups § of & satisfying these conditions, choose § so that if T is an
Ss-subgroup of §, then a maximal element of Us(T; p) has maximal order.
Let P be a maximal element of (T ; p) such that P M $ is a maximal element
of Ng(ZT; p). We shall argue that P < 9.

Since © is p-tame and $ contains a subgroup of type (p, p, ), (5, Lemma
3.4) implies that O,($) contains every element of . % 15(F), where § is an
S,-subgroup of ® such that P N § is an S,-subgroup of . Hence if N =
N(O,(9)), we have O, (M) =1 by (5, Corollary 4.3) since p € =, But
H C N, whence N is an A;-group of characteristic p™ with m > » by Lemma
2.6(1). Thus N also satisfies conditions (a), (b), and (di), so that by our
maximal choice of §, we have that P M O is a maximal element of Nx(T; p).
Since 0,(9) C PN &, it also follows that Z(P) € P M O. Furthermore,
Cg(0,(9)) is solvable since & is weakly p-constrained, and consequently
Cs(0,(9)) € 0,(9) by (9, Lemma 1.2.3). In particular, Z(PB) € 0,(9).

We may assume that § is chosen to contain N §. Let B be an element of
9/ (B) which is weakly embedded in . Then 9 is contained in some element
of Y% N5(P) by (4, Lemma 8.9), and hence 8  0,(9) since 0,(H) contains
every element of 7% A4(P). Thus B = V(cclg(B); BN O) # 1. We now
apply (6, Lemma 8.3). The argument of the preceding paragraph shows that
the hypotheses of that Lemma are satisfied with , T, N O, Z(B), and B
respectively in the roles of &, T;, B, 3, and D; we conclude therefore that
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$ = W (W), where ¢ is the largest normal subgroup of § which centralizes
Z(P).

Suppose first that @ Z O($). Then is an 4,-group of the same characteristic
P as 9. Since § € € = G(Z(P)), Lemma 2.6(i) implies once again that €
is an A;-group of characteristic p” with #» > n. For the same reason ; =
N(0,(€)) is an A;-group of characteristic p‘ with ¢ > r. Furthermore,
PCEC Hrand T C ¢ C Hy. Since P contains every element of S N5 (F),
0, (91) = 1 by (5, Corollary 4.3), and it follows that $, satisfies conditions
(a), (b), and (dy). Since £ is an Sy-subgroup of $; and P is a maximal element
of U(T; p) contained in i, the maximality of O implies that P C .

On the other hand, if 8 € O(9), then BL C O(H) and Ng(B) is an 4;-group
of the same characteristic p* as §, and Ng(28) contains T. Reasoning now as
in the preceding paragraph we conclude that ¢ = N(O,(N(®))) satisfies
conditions (a), (b), and (d,). But thenif B & &, wehave BAN(B) D LN P,
whence BN Ho D PN O and Py is greater in our ordering than $. This
contradiction shows that P C O in this case as well.

Finally we set ¥ = N(B N O()). Then T C X and, as above, X contains
every element of 7 A44(F), 0, (¥) = 1,and ¥isan A,-group of characteristic
p° with s > 1. Furthermore, since ¥ is a maximal element of WN(Z;p),
P MNOX) is an S,-subgroup of O(X). But since = O(H)(H N X) by
Sylow’s Theorem, B M O(X) € O(9H), and consequently

PNAOE =PNOD) S 0,(%).

Thus O, (%) is an S,-subgroup of O(¥), and we conclude that ¥ satisfies all the
conditions of the lemma.

Thus in the balance of the proof we may assume that & does not possess a
subgroup satisfying conditions (a), (b), and (d,). Hence every subgroup of &
satisfying conditions (a) and (b) is either p-restricted and p-reductive, or else
satisfies condition (ds;). Consider first the case that & possesses a unique
subgroup M which is maximal subject to containing B and such that p € =, (M).
Set .o7*(B) = {Bo|Bo C Pand AM S Py for some Ain . 7% A5(T) and suitable
M in 9M}. Then clearly .71 (B) C .o7*(B). Since @ does not satisfy the unique-
ness condition for p, it follows therefore from (5, Lemma 11.1) that there
exists a subgroup  of & with § Z M such that Py C O for some element
PBo of o71*(P) and p € 7,(H). Among all such subgroups, choose $ so that
|Bo| is maximal. Then as in the proof of (5, Lemma 11.1), B, is an S,-subgroup
of $. Furthermore, since p € w4 and Py contains an element of %/ A 5(p),
it follows from (5, Corollary 4.3) that O, ($) = 1. Since  C N(0,())
and & M, we have N(0,(D)) € M. We conclude at once from our maximal
choice of $ that P, is an S,-subgroup of N(0,($)). But then by (5, Lemma
3.4), 0,(9) contains every element of .7 44(B) and, in particular, contains
Z(P). Finally By C P since & & M.

Now set & = O(9)Bo and X = N(P), where P = BN O(H). Then
0, () =1 and Z(T) € 0,(K). Since & is p-restricted, we can therefore
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apply (5, Lemma 10.3) to conclude that & = Ng(Bo), where € is the largest
normal subgroup of & which centralizes Z(T) and By = V(ccly(B); Bo).
Now ¢ C C(Z(B)) € M. Furthermore, L N N(By) D Bo and also

P NNDBo) € 2*(F).

But then N(8B;) € IM by our maximal choice of $. Thus & C M, and conse-
quently ¥ Z M. Again by the maximality of §, we obtain that P, is an
S,-subgroup of X. Since P M O(X) C O(P), this implies that

P=PoNOW®) =PNOR

is an S,-subgroup of O (¥). Furthermore, we have O, (¥) = 1and Z(T) < O, (¥).
Hence if X were p-restricted, we could apply (5, Lemma 10.3) to ¥ as we did
above to & to conclude that ¥ C I, which is not the case. Thus ¥ is not
p-restricted. But by assumption, ¥ is not of characteristic p* with n > 1;
and hence p = 3 and ¥/0(¥) is isomorphic to PT'L(2, 8). Next let T be a
four-subgroup of X. By Lemma 2.5(iii) a maximal element of UNg(T; p) is
contained in O(9), and consequently P is a maximal element of Ug(T; p).
Since ¥ = N(¥P), it follows at once that P is, in fact, a maximal element of
M(Z; p). Thus X satisfies conditions (i)—(v) of the lemma. We shall show that
¥ also satisfies (vi).

Let &; be an Sy-subgroup of ¥, which without loss we may assume contains
<. Since P is a maximal element of U(T; p), certainly P is also a maximal
element of U(S;p). Now let X C 9 C & with p € 7,(9)) and suppose &,
is not an Ss-subgroup of §). Then ¥ has characteristic 2¢, d > 3, by Lemma
2.5(i), and so 9 is p-restricted by Proposition 1(ii). But O, (§)) = 1 since
p € 11, Po € Y, and B, contains every element of % A4(F). Furthermore,
by our maximal choice of &, Py is an S,-subgroup of N(0,(9)), whence
Z(R) CZ(P) < 0,(Y). But now, if ¢ denotes the largest normal subgroup
of 9 which centralizes Z($), we can apply (5, Lemma 10.3) once again to
conclude that 9 = Ny (LBy). As above, this yields ¥ C ) C M. Thus S; is an
Ss-subgroup of 9 and (vi) also holds.

We may therefore assume finally that & does not possess a unique subgroup
M which is maximal subject to containing B and p € =,(M). Let § be a
subgroup of ® containing § such that p € 7,($). Then B = F N O(H) = 1.
Set ¥ = N(%P), and let §) be any subgroup of & containing ¥ such that
p € m,(9). We first consider the case that for each such subgroup 9, there
exists such a subgroup 9) containing ¥ which is both p-restricted and p-reductive.

Set & = O(9H)P. Then H = K(Y N ) by Sylow’s Theorem. It follows
that for at least one such choice of §, Z(F) is not normal in both & and 9);
otherwise Z(T) <a © for each  and M = N(Z(T)) would be the unique
subgroup of ® which is maximal subject to € M and p € =, (M). But K,
being of odd order, is p-restricted and p-reductive by (5, Propositions 6 and 7),
and the same is true of §) by assumption. Suppose Z () is not normal in {.
Let € be the largest normal subgroup of & which centralizes Z(T) and set
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3 =C® NZO,R). Then 3<a &, Z(F) C 3, and we have ¥ = Cg(3)
and 0,(8/9) = 1. If T C &, then & = WNg(F) by Sylow’s Theorem, whence
R CN(Z®D) and Z(P) < R, a contradiction. Thus the hypotheses of
(5, Lemma 10.1) are satisfied, and it follows from (5, Lemmas 10.1 and 10.2)
that ® possesses an elementary subgroup € of order p? which is weakly
embedded in ®. On the other hand, if Z(T) < &, then Z(F) is not normal in 9),
and we reach the same conclusion by the same argument applied to ) in place
of §.

As in (5, Section 10), we now set L = V(cclg(G); P) and denote by T*
the subgroup of T generated by its subgroups § which are of index p in G¢
for suitable G in . Since & and ) are each p-restricted and p-reductive,
we can apply (5, Lemma 10.4) to each of them to conclude that

£ = ® NN NNR)
and

9 = QNN@G)Q NNDR),

where 9, N2 are any one of the three pairs (Z(F), W), (Z(T), W*),
(Z(W*), W). Since H = 0(H)(® M H) and O(H) C &, it follows that
O = (D NN@) (S NNEOL)

for each of the three pairs (1, N2) and for each subgroup H of & containing
P for which p € m(§). But now the proof of (5, Theorem D) applies to show
that M = N(Z(P))N(W) is a group and that it is the unique subgroup of
which is maximal subject to containing T and p € =,(I), contrary to our
present assumption.

There must therefore exist a subgroup $ such that if any subgroup 9)
contains ¥ = N(PB) and satisfies p € 7,(9), then 9 is either not p-restricted
or not p-reductive. Hence under our present assumptions, we conclude that
p = 3 and that 9/0(9) is isomorphic to PTL(2, 8) for each choice of 9. In
particular, ¥/0(X) is isomorphic to PT'L(2, 8). Since $ and ¥ contain the
S,-subgroup P of ©,

P=PNOW®) =FNO®X),
and hence P is an S,-subgroup of O (X). Furthermore, O, (¥) = 1since p € =y;
and if T is any four-subgroup of ¥, we conclude, as in the preceding case, that

P is a maximal element of M(Z; p). Thus all parts of the lemma hold in this
case as well.

ProrositioN 8. ® satisfies the uniqueness condition for all p in o* M 7y

Proof. Let X be a subgroup of O satisfying the conditions of the preceding
lemma. Let T be a four-subgroup of ¥, let T be an Ss-subgroup of ¥ containing
<, and let P be a maximal element of Nx(T; p). Then we know that P is a
maximal element of M(T; p), that O, () = P N O(¥), and that either X is
of characteristic p", n > 1, or p = 3 and ¥ is of characteristic 8. If ¥ has
characteristic p", then £ = T* and hence T* normalizes P. On the other hand,
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if X has characteristic 8, then € O(¥) by Lemma 2.5(iii), whence B = O, (%),
and so T* normalizes P in this case as well. Furthermore, as in Lemma 7.1,
we let 8 be an element of % () which is weakly embedded in ®, where P
is an S,-subgroup of ® such that { M ¥ is an S,-subgroup of ¥. Since ¥ con-
tains an S,-subgroup of N (0, (¥)), O, (¥) contains every element of 7% 15(B)
by (5, Lemma 3.4). Since B is contained in such an element, 8 C 0,(¥), and
hence ¥ = V(cclg(B); B) = 1.

For the sake of clarity, we divide the proof into several statements.

(a) If X is of characteristic p*, n > 1, then both N(Z (%)) and N () are
Ai-groups. Set R = PN O®X), k = |B/R|,and » = n/k. Then by Lemma 2.8,
r is an integer and either » = 1 and p = 3 or else Nx(P) is an A;-group of
characteristic p’. However, since # > 1, it follows in the first case that
n =~k =231t>1,so that X is an 4;-group of characteristic 3", > 3. But
then by definition of ¢*, 3 is not in ¢*, contrary to the fact that p = 3 is in o*.
We conclude that N(P) is an 4 ;-group. But as Z(PB) and B are each normal
in B, (a) follows at once.

(b) B is permutable with an Ss-subgroup of & containing T*. Let & be an
Se-subgroup of ® containing £*, and let Q be a maximal element of N (S; p).
If £ = T* then N(T) D C(T), and we can assume, in virtue of Proposition
4(i), that & C P. On the other hand, if |T*| = 8, then clearly P is a maximal
element of M (T*; p). In this case, we can assume that Q C P by Proposition
4(ii). Now let 74, Ts, 7’3 be the involutions of T and let P = Po Pi' B By’
and L = Qo Q' Q' Q4 be the T-decompositions of P and Q respectively.
Then by Lemma 4.4(ii), we have P,/ = Q/, 1 = 1, 2, 3. Since & is abelian,
this implies that & normalizes

Pro= (B, P, BS) = (Q, Q, Q).
On the other hand, Py normalizes each PB./, and hence also normalizes T*.
Since B = Po P*, we conclude that N(P*) contains both & and P. If N(P*)
is an A;-group, it follows from Lemma 2.5(iii), since |&| > 4, that P is per-
mutable with an Se-subgroup ©* of N(P$*) containing T ; and the same con-
clusion follows from Lemma 2.4(iii) if N(P*) is solvable. But &* is an S,-
subgroup of &, thus proving (b).

Without loss we may assume that &* = &. Set § = ©P. Since 0,(X)
contains every element of .7 A45(P) and 0,(X¥) € B and since p € 4, it
follows from (5, Corollary 4.3) that O, (9) =1 and Z(B) € 0,($H). Since
9 is p-restricted by Proposition 1(ii), we can therefore apply (5, Lemma 10.3)
to conclude that § = ¥, Ng(B), where ¢ is the largest normal subgroup of
which centralizes Z (). We next prove

() LN S C T* Assume by way of contradiction that £, N &S & T*.
Since £y T* € N = N(Z(P)), this implies that |© N N| > |T*|. However, if
X is of characteristic 8, T* is an Sy-subgroup of M by Lemma 7.1(vi) since
XC N and p € 7, (N). Thus X has characteristic p*, n > 1, and T = T*
Since an Ss-subgroup of M has order at least 8, we also have that N is of

https://doi.org/10.4153/CJM-1965-085-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-085-x

900 DANIEL GORENSTEIN

characteristic 2¢ by Lemma 2.5(1). Furthermore, since Z(P) centralizes
NS #1,6C=CZD) ZOM). Since €<aN and N contains no normal
subgroup of index 2 by Lemma 2.6(iii), € contains an Sy-subgroup of 9t and
consequently £ € €. But by Lemma 2.6(vi), B = RCp(T), where
RN =B N OX). It follows therefore from Lemma 2.9 that T C CG(Z(N)).
Thus €; = Cx(Z(RN)) € O(X¥). Since C;<1¥, we conclude that G, is an
Aq-group of the same characteristic p* as X. But since Z(P) & Z(R),
€, € C(Z(B)) TN, and consequently N is an A;-group of characteristic p7,
r > n, by Lemma 2.6(i), contrary to the fact that 9t is of characteristic 2%

Using these results, we shall now complete the proof of the proposition.
We have $ = & Ng(8B), whence Ho = LB <3 H. Now P N Ho is an S,-
subgroup of $o. Furthermore, since ¢, N & C T*, T* M H is an Se-subgroup
of 9o, and therefore P M H, is normalized by an Ss-subgroup of £, But
9 = Ho H1 by Sylow’s Theorem, where H; = Ng(P M Ho). Thus

[D] = [Do| [91]/]D0 M Dl

Since 9o M ;1 contains an Se-subgroup of Yo, it follows that §; contains an
Se-subgroup of 9, and consequently P M Hy is normalized by an Ss-subgroup
of 9, which without loss we may assume to be & itself. Since L& C B N Ho,
we conclude that @ C N* = N().

Suppose first that ¥ is of characteristic 8. Since ¥ € N* and p € 7, (N¥),
Lemma 7.1(vi) implies that N* is also of characteristic 8. But © C N*, and
hence & is elementary of order 8. Furthermore, ¥ = ¥/0(¥) is isomorphic to
PrL(2, 8) by Lemma 7.1(iv), whence |[Ng(&)/Cz(S)| = 21, where & is the
image of & is ¥. We conclude that |[N(&)/C(®)| = 21, which contradicts
Proposition 2(ii).

Thus ¥ has characteristic ", # > 1. Since N* is an A4;-group by (a), N* is
of characteristic 27® by Lemma 2.5(i). But now if ¥ C R, then ¥ T N*,
and this is impossible by Lemma 2.6(1). Thus 8 € 9 and hence B € O (¥).
But X satisfies the hypotheses of (6, Lemma 8.3), and consequently
X = WNg (L), where ¢ is the largest normal subgroup of X which centralizes
Z(P). Since B £ O(%), this forces ¥ Z O(¥), whence € is an A,-group of
characteristic p" and T centralizes Z (). Thus « € N(Z(PB)) = N, and there-
fore M is an A;-group of characteristic p™, m > n, by Lemma 2.6(i).

Finally set t* = B N O(N*) and N1 = No=(N*). Then by Sylow’s Theorem
N1is an 4;-group of the same characteristic 2™® as N*. Furthermore, T C N;.
Also P = RN*Cy(T) by Lemma 2.5(iii). Since T centralizes Z(P), Lemma 2.9
implies that T centralizes Z(RN*). But then C* = Cg, (Z(R*)), being normal
in Ny, is an 4;-group of characteristic 2™, Since Z(P) C (Z(RN*)), € C N,
and hence M is of characteristic 2¢ for some d, contrary to the fact that
has characteristic p™. The proposition is proved.

PROPOSITION 9. o* M 74 15 empty.

Proof. Suppose by way of contradiction that there exists a prime p in
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o* M 4. Then by the preceding proposition, & satisfies the uniqueness con-
dition for p. Let & be an Si;-subgroup of &, let P be a maximal element of
U(S; p), let T be an S,-subgroup of © containing P, and let M be the unique
subgroup of & containing § which is maximal subject to the conditions that
M contains an element of .o/ (P) and that p € 7,(M). Then S centralizes
0, (M) by Proposition 5. Furthermore, & C M and B < O(IN) by Lemma 5.1.
Set € = Cp(0,(M)). Then CE<a I and & C €. It follows therefore that
Y&PB C P N E. On the other hand, since p € =4, 0, (0O(IN)) = 1. But now
as PSS OMM), (9. Lemma 1.2.3) implies that Cg(0,(IN)) C O, (M). Thus
PBPNEC S O0,(M and consequently ySP C O,(M). Since & centralizes
0,(M), S stabilizes the chain 1 C O,(M) € P, and we conclude that S
centralizes P. But since p € ¢, © does not centralize B by Proposition 4 and
the definition of ¢, and the proposition is proved.

By the preceding proposition, ¢* & m;. We shall now show that ¢* is empty.
Our argument follows rather closely that of (6, Section 9). Assume then that
o* is non-empty. Since ® is ¢*-tame by Proposition 7, it follows therefore
from (5, Theorem A) that © satisfies Ej«-subgroup and hence that @ contains
an Sj«-subgroup. We shall use this result to derive the following lemma.

LeEMMA 7.2. & possesses a subgroup O with the following properties:
(1) O contains an S,-subgroup of & for each p in o*.

(ii) An Sp-subgroup of O(D) is normal in H.

(iii) & possesses a 2-subgroup T such that T C [Ng(T), Ng(2)].

(iv) T does not centralize 0,(9) for some p in o*.

Proof. Let & be an Sp-subgroup of ¢, and let & be an S,-subgroup of
S(2). Then by definition of an Si«-subgroup, & <1 ¢, 7({) = ¢*, and { contains
an S,-subgroup of ® for each p in o*. In particular, € O(%). Choose p in
(F(R)). Let © be an Sy-subgroup of ®, let § be a maximal element of
U(S; p), and set M = N(§). Then by Lemma 4.1, we have & & C(F), and
S C [Np(©), N (©)]. Let B be a p-subgroup of & of maximal order contain-
ing § with the property that Mt; = N (%) possesses a non-trivial 2-subgroup &
such that T Z G(PB) and T C [Ny, (), N, (2)]; and assume that T is
chosen to be of minimal order satisfying these conditions. Finally let T be an
S,-subgroup of & such that $ N My is an S,-subgroup of M;. Replacing ¢
by a suitable conjugate, if necessary, we can assume without loss that  C €.

Let A € 7ZAN4(F), let B = V(ccls(2); F), and set Ny = N(Z(L)) and
D =FNO,, (N). Then L C D by (5, Lemma 5.5). Furthermore, if P*
is a T-invariant S,-subgroup of O(I,), then certainly T & C(P*), and by
Sylow’s Theorem, T C [Ny«(T), Nge(T)], where IM* = N (P*). Hence

T C [Nnp» (), Nnps (D) ],

and it follows from our maximal choice of P that P* = P. Thus P is an
S,-subgroup of O(M;) = ON(P)). Since P contains a subgroup of type
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(p, p, ), and © is weakly p-tame, we conclude from (5, Lemma 3.4) that
9 C P. But then My, SN, by (5, Lemma 5.4). In particular, it follows from
the maximality of P that © C P. Furthermore, Z($) € U since A & P, and
hence Z(P) £ B C D.

Since T C [Ny, (), N, (T)] and T Z C(B), Ny, (T) contains a cyclic
subgroup N of odd order which does not centralize T/T M G(P). It follows that
T possesses an N-invariant subgroup T; such that T, € C(P) and such that
R acts irreducibly on £,/D(Z;). But then

T, C [T, TR S [Naw, (To), Nop, (D) |-

Thus T, = T by our minimal choice of T, and hence 9N acts irreducibly on
T/D(I).

Now let Q be a F-invariant S,-subgroup of O, (f) and set 3, = Cz (Q)
and 3* = N,3,, taken over all primes ¢ in 7(0, (f)). Since T normalizes
Q and Z(D), 3, <7 T for each ¢ and hence 3* <1 P. Furthermore, 3* centralizes
0, (). On the other hand, since FNF(R) # 1 by our choice of p, 3y =
Z(@) NFR) # 1. But Q C C(30) and 3o € Z(F) C Z(D), whence 3, C 3,
for each ¢. Thus 3* # 1.

By (5, Lemma 8.1), 0,.() contains a maximal element of U(TB; ¢). Then
by (5, Lemma 4.2), we have 9, = O, (0) (Ot N\ N), where N = N(Q).
Since T T N1 NN and D is an S,-subgroup of O, ,(N,), it follows that D
is an S,-subgroup of O, ,(9: N N). Hence Ny = O, (N1)No, where Ny =
Ng,nn (D). But then T¥ C N, for some X in O, (N,). Clearly X € C(Z(Q)).
Since A € B € D and A is an S,-subgroup of C(A), we have Z(T) & Z(V),
whence X € C(Z(D)). Now Q and D are each invariant under ¥, and
hence so is 3, But X centralizes 3, € Z (D), and we conclude that 3, is
T-invariant. Furthermore, since N & PW; & Ny, we have R¥ C Ny, (TY).
But since 91 = O, (1)No and X C N,

Nu, (T¥) S O, (91)Na, (T).

Thusif RN = (R), wehave R*¥Y € Ny, (T¥) for some Vin O, (N1). In particular,
RXY € No. But now the same argument as above shows that 3, is R-invariant.
Since N = (R) is defined independently of ¢, we conclude that 3* is invariant
under both ¥ and 9R.

Set M* = N(B*). Since 3* = 1, M* C &. Furthermore,

<OZJ'($€)! SB) zy E}t> g EUB*.

Since T normalizes O, () and @ is p-tame, 0, () < O, (M*) by (5, Lemma
4.1). But O,/ (&) contains a maximal element of U(§; ¢) for each ¢in o* — p,
and hence O, (&) is necessarily an S-subgroup of O, (M*). It follows that
(B, T, N) = PITR normalizes some conjugate of O, (), which without loss
we may take to be O, (&) itself. Moreover, since )t & IM*,

T S [No+(T), Ny (T) ]
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As 0, (®) is an S-subgroup of O, (IM*), we also have IM* = O, (M*)M,,
where My = Ngx(0, (®)). Finally since T C My, it also follows that
T C [N, (T), Nap, (T)].

First consider the case O, (&) # 1, and set $* = N (0, (f)). Since ¢ C H¥,
$* contains an S,-subgroup of & for each 7 in ¢*;and in particular, $* contains
$. Furthermore, since My C $*, we also have T C [Ng«(Z), Ne+(T)]. Now
let € be a TR invariant S-subgroup of O(H*) containing P M O(H*) and
set O = Ng«(€). Then it follows immediately that § satisfies conditions
(1), (i), and (iii) of the lemma. We shall show that condition (iv) also holds.
If © is solvable or if § is an 4-group of characteristic 27, then

P = (FNO(9)Cx(T)

by Lemmas 2.4 (iii) and 2.5(iii). On the other hand, if § is an 4;-group of odd
characteristic, the same conclusion follows from Lemma 2.6(vi) since
IR C Ne(B). But B £ C(T), and consequently BN O(H) £ C(T). Thus T
does not centralize a T-invariant S,-subgroup €, of €. Suppose T C C(F(E)).
Then

7ZEE, € Ge(F(€) N E, = F(€) NG,

and T stabilizes the chain 1 CT F(€) N §, C §,. Thus T centralizes §,, a
contradiction. Hence & & C(F(E)) and we conclude that T does not centralize
0,(9) for some prime 7 in ¢*, proving (iv).

Finally consider the case O, (&) = 1. In this case, & C 0,(&) by (5, Lemma
5.5). Hence 8 C N; by (5, Lemma 5.4) and consequently 9N; contains an
S,-subgroup of ® for each 7 in ¢*. Since M1 < N;, we also have

T © [N, (T), N, (T)]

and R C Ny. But now if we let € be a L-invariant Se-subgroup of O(MN,)
containing B N O(MN,) and set § = Ny, (€), we conclude as in the preceding
paragraph that  satisfies the requirements of the lemma. This completes the
proof.

We now let § be a subgroup of © satisfying the conditions of the previous
lemma and let € be an S,-subgroup of O(9). Then € <1 . Furthermore,
$ contains a 2-subgroup T such that T C [Ng(T), Ng(T)] and such that &
does not centralize P = 0,(C€) for some prime p. We set B* = yB<. Finally
let § be an S,-subgroup of § (and hence also of ®) such that T N € is T-
invariant, let 9 € .72 A45(D), and set B = V(cclg(A); T) and Ny, = N(Z(D)).

Then we have

LEMMA 7.3. B* centralizes every element of VI(B; q) for all primes q, with the
possible exception ¢ = 3. If B* does not centralize every element of W(R; 3), then
3 € g — o

Proof. We first argue that P* centralizes every element of U (T; ) for ¢ in
r=0¢*—p. Since P<aP, 3=PNZEP) #1. Set & =N(3). Since
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$ S F(G), 0, (C) C &. Furthermore, since 0, (G) is P-invariant and
P C K, (5, Lemma 4.1) implies that O, (€) C 0, (f). Hence by (5, Lemma
8.1), 0,/ (€) is an S,-subgroup of O, (&). Since $* centralizes O, (€) and since
any two P*-invariant S,-subgroups of O, () are conjugate by an element of
Cg(PB*), we conclude from D« in O, (R)P* that P* centralizes every r-sub-
group of O, (&) which it normalizes.

Now let Q be a maximal element of U(F;¢) with ¢ in 7. Then O, (G)
contains a maximal element O* of U(B; ¢); and by (5, Theorem 1), we have
Q* = QF for some X in C(YA). Now C(A) = A X D, where D is a p’-group
by (4, (3.10)). Since Q is Y-invariant, we may assume that X € ©. But
8 C U, whence D C & = N(3), and consequently © C O, (&) by (5, Lemma
4.1). Since X € © and Q* C 0,/ (8), it follows that O € O, (&). But then
PB* centralizes Q by the preceding paragraph. We conclude at once that P*
centralizes every element of U (%; ¢) for ¢ in .

Before treating the case ¢ ¢ 7, we make a preliminary remark. We have
VLS PN E by (5, Lemma 5.5), and hence H; = Ng(BT N E) SN, by (5,
Lemma 5.4). Since € C §;, we conclude that T C N;.

Now let Q be a maximal element of U(F;q), ¢ # p, and set N = N(Q).
Then Ny = O, (N) (N1 NAN) by (5, Lemma 4.2). Let € = Ng, (B*). Then by

Sylow’s Theorem, we have
0, M) = 0, (M) (RN N).

Since T C &, it follows that T* =T¥ C NN for some ¥V in O, (N,).
Furthermore, * = yIP* by (4, Lemma 8.11), since P* = yITP by definition.
But then P* = yITP*, where T, P* denote the images of T and P* in
N = N,/0, (N,). Since T* and T have the same images in N;, we conclude
at once that yT*P* = P*,

Now T* C € N\ N and hence T* normalizes Q. If T* centralizes Q, then
YT*¥P* C C(Q). Since yT*P* = P*, P* centralizes Q in this case. Suppose
that T* does not centralize Q. Since T C [Ng(T), Ng(T)], T is certainly
non-cyclic, and hence also T* is non-cyclic. But then Q = (Co(7)|T € T*).
Since each Cgq (7)) is invariant under $*, there must therefore exist an element
T 5 1 in T* such that T* does not centralize Qo = Cq (7). Set € = G(7).
Then € is solvable and hence Q; = yQo,3* € O(€) by Lemma 2.4(iii). Let
Qs be a T*-invariant S,-subgroup of O(C€) containing L, and let © be an
Se-subgroup of € containing £* and normalizing Qi Now T* does not
centralize Q;; otherwise $* would centralize Q, by (4 Lemma 8.11). Since
T* C &S and Q1 C Qs, S does not centralize Qs But & is an Ss-subgroup
of ®, and Q. € U(&; ).

We conclude therefore from the definition that ¢ € ¢. Buteither ¢ = ¢* or
o = o* U {3}. Since B* centralizes every element of U(E;q) for ¢ in = by
the first part of the proof, the lemma follows.

Let p be defined as in Lemma 7.3. Then we have
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ProrosiTioN 10. © satisfies the uniqueness condition for p.

Proof. We preserve the notation of Lemma 7.3. We have
T C [Ns(D), Ns ()],

P* = yZTP, and P £ C(T). Furthermore, since P<a O, Ng(T) normalizes
PB*. Suppose P* were cyclic. Then [Ng(T), Ng(T)] would centralize PT*,
whence yTP* = 1. But then P C C(T) by (4, Lemma 8.11), a contradiction.
Thus $* is non-cyclic, and therefore the normal closure 8* of $* in P is non-
cyclic. But then 8* contains a subgroup B of type (p, p) which is normal in .

Now let Q be an element of M (T; ¢). Then by the preceding lemma, either
P* centralizes Q or else ¢ = 3. However, in the first case, T* C 0,(QF), by
(9, Lemma 1.2.3), whence $* = 8% C 0,(QF). But this implies that B*
centralizes Q. We conclude that 8 centralizes every element of U (; q) for
all but at most the prime ¢ = 3. But now the hypotheses of (5, Theorems C
and E) are satisfied, and therefore @ satisfies the uniqueness condition for p.

This leads to the following result.

ProrosiTiON 11. & does not contain an Ai-subgroup of characteristic 3°,

t > 1. In particular, ¢ = o*.

Proof. By Proposition 6 and the definition of o*, either ¢ = ¢* or
o =¢*\U {3} and & possesses an A4;-subgroup of characteristic 37 ¢ > 3.
Thus the second assertion of the proposition will follow at once from the first.

Suppose first that ¢* is non-empty. Then & satisfies the uniqueness condition
for some prime p in ¢* M 73 by the preceding proposition. But in this case
Proposition 5(ii) implies that every 4 -subgroup of & has characteristic 2" for
some #z. But then by Lemma 2.6(i) no 4;-subgroup of & is of characteristic
3Lt > 1.

Suppose next that ¢* is empty. Since ¢ is non-empty and either ¢ = o* or
o = ¢* U {3}, this implies that ¢ = {3}. Assume by way of contradiction
that © possesses an A;-subgroup $ of characteristic 3% ¢ > 1. Let $ be an
Sp-subgroup of $. Then by Lemma 2.6(vii) there exists a prime ¢ # 3 such
that if L is a maximal element of Us(T; ¢), then T does not centralize Q.
Arguing now as at the end of the proof of Lemma 7.3, we see that there exists
an element 7" in IF such that ¥ normalizes, but does not centralize,
Qo = Co(7). Setting € = C(T'), we have Q; = vQ0 T € O(C) by Lemma
2.4(iii), and also Q; £ 1. Then if Q; is a T-invariant S,-subgroup of O(E)
containing Q; and if & is an Ssy-subgroup of € containing ¥ and normalizing
Qs, we have Qs € U(S; q) and Qo € C(S). But then ¢q € ¢, contrary to the
fact that ¢ = {3} and ¢ # 3.

Combining our results, we prove finally
ProproSITION 12. o 1s empty.

Proof. First of all, ¢ = ¢* by the preceding proposition; and secondly
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o* M 74 is empty by Proposition 9. Thus ¢ C 7. Suppose by way of contra-
diction that ¢ is non-empty. Since ¢ = ¢* C 73, we can choose a prime p in
o so that the conditions of Lemma 7.3 hold for $*, where ¢, ©, T, ¥, and $*
are defined as in that lemma. Then © satisfies the uniqueness condition for p
by Proposition 10. Let I be the corresponding subgroup of & which is unique
subject to containing an element of .oz (P) and p € 7, (M). Then H < M
since BC O and P = 0,(H) # 1. Thus T C [Ny (B), Ny(P)]. If M is an
Aj-group of odd characteristic, then ¥ is an Ss-subgroup of I, and it follows
from Lemma 2.6(vi) that $ = (BN OM))Ce(T). Since P* = yPI, this
implies that P* C O(M). On the other hand, if I is an Ae-group or an 4;-
group of characteristic 2", the same conclusion follows from Lemma 2.4 (iii)
and 2.5 (iii). But T normalizes an S,-subgroup Q of O, (F(M)) for each ¢ # p
in 7 (F(M)). Since ¢ = ¥, P* centralizes O by Lemma 7.3, and consequently
P* centralizes O, (F(M)). This implies that T Z € = Cypu(0,(M)); for other-
wise, P* = yTP* C €, whence P* centralizes F(IM). But then P* C O, (M).
Since £ does not centralize B*, we conclude that T does not centralize O,(IMN).
But now if & is an Ss-subgroup of I containing T, & does not centralize
0,(M). However, & centralizes O,(IM) by Proposition 5. This contradiction
completes the proof of the proposition.

Since ¢ is non-empty by Proposition 3, Proposition 12 shows that no simple
group exists satisfying the assumptions of Theorem 3. Thus Theorem 3, and
consequently also Theorem 1, is proved.
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