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ON THE ETALE K-THEORY OF AN ELLIPTIC CURVE WITH
COMPLEX MULTIPLICATION FOR REGULAR PRIMES

BY
KAY WINGBERG

ABSTRACT. Generalizing a result of Soulé we prove that for an elliptic
curve E defined over an imaginary quadratic field K with complex mul-
tiplication having good ordinary reduction at the prime number p > 3
which is regular for E' and the extension F of K contained in K(Ep) the
dimensions of the étale K-groups are equal to the numbers predicted by
Bloch and Beilinson, i.e.,

dim K{'(E xk F,Qp/Zp) =[F : Q] forall i22.

Let E be an elliptic curve defined over a number field F with potential good reduc-
tion. Then the rank of the K-group K,;_»(E) for an integer j 2 2 should conjecturally
be equal to the degree [F : Q] (Bloch, Beilinson) which is conjecturally the order of
vanishing of the L-function L(E,s) at s = 2 — j (Serre). In [9] Soulé proved that the
Z,-corank of the étale K-group K3'(E,Q,/Z,), which is isomorphic to K»(E,Q,/Z,)
by the theorem of Merkujew and Suslin, is exactly [F : Q] if £ has complex multi-
plication and p is assumed to be regular for E/F in the sense of Yager [11].

Using the Dwyer-Friedlander and the Hochschild-Serre spectral sequence it is easy
to see that for j = 2 the equality

dim K3/ »(E,Q,/Z,) = [F : Q]
is equivalent to the vanishing of a certain Galois cohomology group:
H*Gal(Fs [F), H'(E,Q,/Z,(j) = 0.

Here S is a finite set of primes of F containing S, = {v | p} and all primes where E
has bad reduction; Fs denotes the maximal S-ramified extension and E is E xf F.
The last assertion is a special case of a conjecture of Jannsen concerning arbitrary
smooth projective varieties over number fields [2].
Our aim is to generalize Soulé’s result to all j = 2. Let K be an imaginary quadratic
field and let E be an elliptic curve defined over K with complex multiplication by an
order of K. Let p > 3 be a prime number which splits in K, i.e., p = pp, and where
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E has good (ordinary) reduction. Let ¥ = K(E,,) and let F be a finite extension of K
contained in ¥. Let x; and x, be the canonical characters with values in Z;j given
by the action of Gal(¥ /K) on the p and p division points of E respectively.

If 1 denotes the Hecke character of E, v its conjugate and L(¢*, s) the primitive
L-function attached to the powers of 1) (k € Z, s € C), then by Damerell’s theorem
the complex numbers

k4 _ 2_7r ! —(k+)) g (T7.k+
Loo (™, k) (\/d_k) QL™ k)

lie in K when k = 1 and j 2 0 (here Q, denotes the complex period). If 0 < j < p—1
and 1 < k = p then the numbers are p-integral. By definition, p is regular for £ and
F if p does not divide the numbers L.,(¢**/, k) for all integers j,k with 1 < j < p—1
and 1 < k < p such that x* xz”j is a non-trivial character belonging to F, i.e., X’l‘x;f
is trivial when restricted to Gal(¥ /F).

According to a theorem of Yager [11] we know:

p is regular for E and F & Fs,(p) is a Zy,-extension of F,

here F&, ( p) denotes the maximal p-extension of F unramified outside S, = {v | p}.

If F, denotes the completion of F' with respect to a prime v then by the theorem
of Grunwald-Hasse-Wang the maximal p-extension F,(p) of F, coincides with the
completion of the maximal p-extension F(p) of F with respect to v:

Fy(p) = (Fy)(p),

(see the proof of Theorem 11.3 in [5]). Consider now the compositum of maps
@y : Gal(Fy(p)/Fy) — Gal(F(p)/F) — Gal(F,,(p)/F)

where the first map is the inclusion of a decomposition group with respect to an
extension of v to F(p) in the global group and the second map is the canonical
surjection on the Galois group of the maximal p-extension Fs,(p) of F unramified
outside S,.

We say: The Galois group Gal(Fs,(p) /F) is purely local with respect to v if ¢,
is an isomorphism:

Gal(F, (p)/Fy) 22 Gal(Fs,(p)/F).

THEOREM. The prime p is regular for E and F if and only ifGal(ng(p)/F) is purely
local with respect to p.

CoroLLARY 1. Let p be regular for E and F, let S O S, be a set of primes of F
and let j € Z. Furthermore let M be a p-primary divisible Gal(Fy,( p)/F)-module of
cofinite type such that for all v € S \Sp with p, C F, the Gal(F,(p) /F v )-coinvariants
of M(j — 1) are zero:

M(j — Dgar,(py/F,) = 0.
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Then
H*(Gal(Fs /F),M(j)) = 0.

COROLLARY 2. Let p be regular for E and ¥, i.e., p and p are regular for E/ ¥,
let F be an extension of K inside F and let S be a set of primes of F containing S,
and all primes where E Xg F has bad reduction, then

H?*(Gal(Fs /F), H'\(E,Q,/Z,(j))) =0

forall j € Z.
CoRrOLLARY 3. Let p be regular for E and F. Then for an extension F of K contained
in F
dim K{'(E x¢ F,Q,/Z,) = [F : Q]
foralli 2 2.

Proor oF THE THEOREM. Consider the commutative and exact diagram

1 — Gal(Fs,(p)/Fs,(p)) —> Gal(Fs,(p)/F) — Gal(Fs,(p)/F) —1

1
I
|

1 —I(F3(p)[F5) —> Gal(F3(p)/F5) —> Gal(F (p)/F5) —>1

where F g’( p) is the maximal unramified p-extension of Fj; and I(Fj(p)/Fj) denotes
the inertia subgroup of Gal(F(p)/F3). Now, if ¢j is an isomorphism then 1; is
surjective, hence Fs,(p)/F is a Z,-extension. By the result of Yager p is regular for
E and F.

Conversely, the induced map 1; is an isomorphism if p is regular. Therefore ¢;
is surjective, since its restriction to the inertia subgroup is surjective; indeed the
normal subgroup generated by the image of I(Fy(p)/F;) is the whole group Gal
(Fs,( p)/FSD( P)), since there is only one prime of the Z,-extension Fy,(p) above p
and Fs (p) has no p-extension unramified outside Sp. But p-groups are nilpotent,
hence the assertion follows.

Now let R be the kernel of ;. The Hochschild-Serre spectral sequence implies an
exact sequence

0 — H'(Gal(Fs,(p)/F),Qy/Z,) — H'(Gal(F5(p)/F5), Qp/Zp)

Gal(Fs /F
*—*HI(R,Qp/Zp) MO

because H 2(Ga1(F5p( P/F),Q,/Z,) = 0, i.e., the Leopoldt conjecture is true for
abelian extensions of K. The (in)-equalities
corankszl(Gal(Fsp(p)/F), Qp/Zp) =[F:K]+1
= corankz,H ' (Gal(Fg(p)/F;), Qy/Z,)

https://doi.org/10.4153/CMB-1990-025-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1990-025-x

148 K. WINGBERG [June

and

dimg, H'(Gal(Fs,(p)/F),Z/pZ) Z [F : K]+ 1+
= dimg, H'(Gal(Fg(p)/F;), Z/pZ)

(6 = 1 if Fj; contains the group p, of p-th roots of unity and § = O otherwise), [3]
Satz 11.8, show that
H' (R, Q, /2" /P = 0

and therefore R = 0. This finishes the proof of the theorem. a

PrOOF OF COROLLARY 1. According to [6] Theorem 1
H*(Gal(Fs [F), M(j)) = H*(Gal(Fs(p)/F), M(})).

Furthermore Gal(Fg( p)/F 5,(p)) is the free pro-p-product of all inertia groups with
respect to primes v of Fg,(p) above S\S,, in particular Gal(Fs(p)/FSp(p)) is a free
pro-p-group (see [10], Theorem 2.2, which goes back on a slightly weaker theorem
of Neumann and also Neukirch in the case F' = Q). Therefore the Hochschild-Serre
spectral sequence yields an exact sequence

H*(Gal(Fs,(p)/F),M(j)) — H*(Gal(Fs(p)/F), M(}))
— H'(Gal(Fs,(p)/F), H ' (Gal(Fs(p)/Fs,(p)), M()))).

Since M (j) is a trivial G(Fs(p) /F s,(p))-module the group on the right is equal to

D H'GalFy (p)/Fo),H UFo(p)[Fu),M(j))
vES\S,

= @ H*Gal(Fo(p)/Fu),M(j)

vES\S,

by [4] Satz 4.1 and Shapiro’s lemma. If p, is not contained in F, then Gal(F,(p) /F»)
is free; otherwise it is a Poincaré group of dimension two with dualizing module
Q,/Z,(1), hence

H*(Gal(F,(p)/F,),M(j)) = lim H(Gal(F, (p)/F ), Hom( ,nM (j), Q,/Z(1))*

= M(j — Daa,(p)/r,) =0
(pmM = {x € M | p"x = 0}).

Therefore we have reduced the corollary to the case S = §,. But, since Gal(Fs,(p) / F)
is purely local with respect to p, we obtain

H*(Gal(Fs,(p)/F),M(j)) = H*(Gal(F3(p)/Fy), M(}))
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which is zero if p, ¢ Fj and otherwise equal to M (j — 1)Gair;(p)/r;) Which is zero by
our assumption. This proves Corollary 1. ‘ O

PrOOF OF COROLLARY 2. Observihg that
HYE,Q,/Z,(1)) = Eywo = Epo ® Eeo
and that the order of Gal(¥ /F) is prime to p it is enough to show that
H*(Gal(Fs/F), Eps(j)) =0

for all j € Z. But E xXg ¥ has good reduction everywhere, hence Ep is a p-primary
divisible Gal(?sp(p)/ F)-module. Now Corollary 1 implies the result because the
Gal(ij(p)/,‘Fv)—coinvariants of Eyw(j— 1) are zero forallj€Z and all v € S. O

ProOF OF CorROLLARY 3. From the Dwyer-Friedlander spectral sequence [1]

st _ [H(E Xk F,Qp/Zp(j), t=-2j ét
ES _{ J o }:>K_S_,(E xx F,Qp/Zy)

and the Hochschild-Serre spectral sequence
Ey' = H'(F,H'(E,Q,/Z,(j))) = H*"(E Xk F,Q,/Z,()))
we obtain for j = 2

dim K§/ ,(E x F,Q,/Z,) = dim H*(E, Q,/Z,(})))
= dim H'(F,H"(E,Q,/Z,()))

and

dim K3 _|(E Xk F,Qp/Z,) = dim H'(E,Q,/Z,(j)) + dim H*(E,Q,/Z,(j + 1))
= 2dim H'(F,Q,/Z,(j)) + dim H*(F,H"(E,Q,/Z,())))

(using H%(E, Q,/Z,(1)) = Q,/Z, and HZ(F,QP/Zp(j)) = 0 for j # 1, [7] Satz 4.1
(i1)). Since

dim H'(F,Q,/Z,(j)) = [F : K]+ dim H*(Gal(Fs, /F),Q,/Z,(})),
[71 4.5 (iii), Satz 4.6,
dim H'(F,H'(E,Q,/Z,(j))) = dim H'(Gal(Fs /F), H'(E,Q,/Z,(j))),

[2] Lemma 2.4 (or see the proof of Proposition 1 in [8]) and

2
> (=Dt dim H*(Gal(Fs /F), H'(E,Q,/Z,()))) = —IF : Q]

k=0
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where S is a finite set of primes of F containing S, and all primes where E X F has
bad reduction, [8] Proposition 2, we obtain (j 2 2):

dim K3/ o(E x¢ F,Q,/Z,) = [F : Q1 +dim H*(Gal(Fs /F),H"(E,Q,/Z,()))),
dim K3/ \(E x¢ F,Q,/Z,) = [F : Q] +2dim H*(Gal(Fs, /F), Q,/Z,(}))
+dim H*(F,H"'(E,Q,/Z,(j))).

Now Corollary 2 completes the proof because as in the proof of Corollary 1 for j # 1

dim H*(Gal(Fs, /F),Q,/Z,(j)) = dim H*(Gal(Fs /F), Q,/Z,(j))
= dim H*(Gal(%s/F),Q,/Z,(j)*7 /P
= dim H*(Gal(%s,(p)/ F), Qp/Z(j) /P
= dim H2(Gal(%3(p)/ %), Qp /Zp (N7
=0. -
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