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On soluble just-non-Cross varieties

of groups

J. M. Brady

We prove a partial confirmation of Kovacs and Newman's

conjecture that a just-non-Cross variety is soluble if and only

if it is in the following list: A , A A , A T , A A A ,

where p, q and r are any three distinct primes.

1. Introduction

The Oates-Powell Theorem enables us to call a variety (of groups)

Cross if it can be generated by a single finite group. L.G. Kovacs and

M.F. Newman [7, Theorem 1] have pointed out that a variety is non-Cross if

and only if it contains a non-Cross variety whose proper subvarieties are

all Cross: a so-called jnC (just-non-Cross) variety. In [6], Kovacs

and Newman prove that the decomposable (that is, nontrivially factorisable)

jnC varieties are precisely the A A , A T and A A A , where p,

q and r are any three distinct primes, and they propose the following

conjecture [6, p. 222].

CONJECTURE 1.1. Every soluble jnC variety of finite exponent is

decomposable.

Our aim in this paper is to substantially reduce Conjecture 1.1 by

proving:
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314 J.M. Brady

THEOREM 1.2. If there is a soluble jnC variety V, of finite

exponent which is not decomposable, then one can find (distinct) primes p

and q and an integer n (all three depending on Vj , such that V. is

a subvariety of A ^ A B ) , where X A £ n
 i s nilpotent of class at

~* q q
least three.

Theorem 1.2 is phrased so as to emphasise the fact that i ts

hypotheses can be satisfied (if and) only if Conjecture 1.1 is false.

Consider the following special case of Conjecture 1.1.

CONJECTURE 1.3. I f | is a nilpotent variety of class at least two

and exponent a power of the prime q , and if p is a prime unequal to

q , then AT is the unique jnC subvariety of A N .

COROLLARY 1.4. Conjecture 1.1 is true if and only if Conjecture 1.3

is.

To date, the only significant progress we have made with Conjecture

1.3 is [2, 1.2], which shows i t to be true in case 1J has class two.

COROLLARY 1.5. The soluble jnC varieties which are not

abelian-by-nilpotent are the AAA , where p, q and r are any three

distinct primes.

COROLLARY 1.6. The nonmetabelian jnC varieties which are

abelian-by-nilpotent-of-class-two are the AT , where p and q are

distinct primes.

Theorem 1 .2 i s a s i m p l e c o n s e q u e n c e of [ / , 3-6 (ii)2, [ 2 , 1 . 2 ] , t h e

" i n t e r n a l " r e s u l t of John C o s s e y ' s t h e s i s [ 3 ] (which s t a t e s t h a t A A A

i s j nC) , and t h e f o l l o w i n g two r e s u l t s .

THEOREM 1.7. If V, is a soluble jnC variety which is not locally

nilpotent, there are primes p3 q and r , with p not equal to q or

r , and a nilpotent subvariety J. of V_ of exponent a power of r , such

that V 5 A All and p = r if and only if £ i s abelian-by-nilpotent.

THEOREM 1.8. Let p3 q and r be pairwise distinct primes, and

suppose that V. is a jnC subvariety of A A N , where £ is a

https://doi.org/10.1017/S0004972700046013 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046013


Soluble just-non-Cross var ie t ies 315

nilpotent variety of exponent a power of r . If V, is not

abelian-by-nilpotent, then ^ < A A A .

2. Preliminaries

Throughout this paper, "group" means "finite group", except in

certain places, where its meaning will always be clear from the context.

We shall follow as far as possible the notation of Hanna Neumann's book

[S], to which we refer for an account of the basic facts about varieties.

Notice however that we shall prefer to call a quotient group of a subgroup

of a group G a section of G . If G is a group, the socle M{G) of

G is the product of the minimal normal subgroups of G ; a group is

called monolithic if it has precisely one minimal normal subgroup.

We shall often be concerned with restricting a (linear)

representation of a group to a normal subgroup, so, rather than refer each

time to [4, V, 17.3] (say), We shall make this one reference to it and

henceforth feel free to appeal to "Clifford's Theorem". In this

direction, we need the following corollary to [I, 2.6].

LEMMA 2.1. Let the minimal normal subgroup M of G be abelian of

exponent p 3 and consider M as an irreducible ?{p)G-module (G acts

on M by conjugation)t where F(p) is the field of p elements. If N

is a normal subgroup of G containing M t and N is supplemented in G

by a Sylow p-subgroup P of G 3 then

(i) the number of homogeneous components of Mj, is a power of p ,

say p° ;

(ii) c is less than the class of P .

Proof. We shall use Clifford's Theorem. Let M , , H, be the

homogeneous components of M^ , and let H\ be the inertia group of Mj .

Then \G : Hx\ = k , and N £ #j . Since NP = G , it follows that

\G : Hl\ is a power of p . This proves the first part. The elements of

N stabilise each M. , and so P must act transitively on
0

, ..., M \ . Since P contains M , it follows from [/, 2.6] that
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the class of P is at least c + 1 . / /

We shall find the following lemma quite useful. We refer to [S,

53-11] for the definition of similarity of normal subgroups.

LEMMA 2.2. Let V, be a variety, G a group in X , and N an

dbelian normal subgroup of G . Then ^ also contains a group G* ,

which has a complemented, self-centralising (abelian) normal subgroup

N* , with N* similar to N .

Proof. (L.G. Kovacs) Denote the direct square G x G of G by

K , and the normal subgroup N x E of K by M . Let L be the

diagonal in K , and denote L n (C x C) by J , where C i s CAN) .
u

Put ML/J equal to G* , MJ/J equal to N* , and L/J equal to H* .

Then G* i V; , and N* is a self-centralising normal subgroup of G*

which is complemented in G* by H* . Define p : N •* N* by

n\i = (n, e)J , and v : G/C -*• G*/N* by gCv = ((g, g)j)fl* ; it is easy

to check that y and V are in fact isomorphisms. Finally,

[ng% = n% = [ng, e)J

= (n, e)i9' g)J

= (n, e)J^> g)J^

= mgCv . II
We conclude this section by recalling Kovacs and Newman's version of

the Oates-Powell Theorem, as it is the more convenient for our purposes.

For positive integers e, m and c denote by £(e, m, c) the class of

all (not necessarily finite) groups of exponent dividing e whose

chief-sections have order (at most) m , and whose nilpotent sections have

class (at most) a . They prove [5]:

THEOREM 2.3. For all positive integers e3 m and c , £(e, m, a)

is a Cross variety. Furthermore, a variety V_ is Cross if and only if

there exist positive integers e, m and c such that V is a subclass of

£(e, m, c) . II

3. The proof of Theorem 1.7

As V. is not abelian, it has finite exponent, say n , and hence it
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is locally finite. Since ^ is not even locally nilpotent by [J, 3.7]

there is a prime, say p , and an infinite set, say T , of monolithic

groups in V. such that:

(i) X = varr ;

(ii) the monolith of each group in T is complemented,

self-centralising, and has exponent p ;

(iii) {|M(G)| : G f D is an infinite set.

We denote by I the least positive integer such that V is a subvariety

of A ; then Y A 4 i s Cross. (Such an I exists since £ is

assumed soluble.) If A = {G € T : G i A } , then varA 5 V A £ , and so

it is Cross. It follows that var(F-A) is non-Cross, and hence equals

V^ , and so we may as well suppose that A is empty; that is, we suppose

that every group in T has solubility length Z + 1 precisely.

Let G i T , and denote M(G) by V .

LEMMA 3.1. G{1) = V , and if k < I , G{k) > V .

(k)
Proof. Since G has solubility length precisely I + 1 , G is

trivial if and only if k i I + 1 . Since G is also monolithic,

G^k' 2; V for k 5 I . As (T ' is abelian, and V is a

self-centralising subgroup of G^ , V = <T . If k < I ,

G{k) > G ™ = V . II

Let H be a complement for V in G , and observe that by Lemma

3.1, J ( A . Thus if W = var{fl : G $ T) , W is a Cross subvariety of

V_ , and V is a subvariety of A W . By properties (ii) and (iii) of

F , and [g, 52.21*], {|#| : G (. T} is an infinite set, and hence there is

a positive integer, say m , 0 < m < I , which is least such that

{|#^m'| : G € I1} is finite, say \H^ \ < d for all C ( r . From now

on we think of V as a faithful irreducible F(p)#-module.

LEMMA 3.2. m i I - 1 .

Proof. Denote C^H^} by C ; then {\H : C\ : G i T] is
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bounded (by d\ ). If T is a (right) transversal of C in H , and W

is an irreducible submodule of V , it follows from Clifford's Theorem

that Kc = l{Wt : t i T) , and hence that {\w\ : G Z T} is infinite.

Since V is jnC , we have by Theorem 2.3 that V, = var{KC : G € T} .

But C ( m + 1 is trivial, and so ^ S jf+ 2 ; that is, m > Z - 1 . //

LEMMA 3.3. There is a prime q , unequal to p , such that either

or B. has an abelian normal subgroup Q of eoqponent q

with {\Q\ : G i T} infinite.

Proof. By Clifford's Theorem, V ,, . is completely reducible.
H

(7 l)
Since V is faithful and HK ' is abelian, it follows ([4, V, 5.17])

that H is a p'-group. Thus in case m = I (so that

{\H I : G € F} is an infinite set), there is a prime, say q , such

that {\Q\ : C f r} is infinite, where Q is the socle of the Sylow

q-subgroup of H .

Suppose, on the other hand (using Lemma 3.2), that m = Z - 1 . We

replace H by Cu\fl ) (as ^n * n e Proof of Lemma 3.2) and apply Lemma

2.2 and Theorem 2.3. In this way, we may suppose that H is central

(1-2)
in H , and in particular that it is cyclic. It follows that H is

nilpotent of class two, and so, by the argument used for H ~ above, it

is a p'-group.

In case 1=2 , we use Theorem 2.3 to reduce to the case that H is

a ^-group, for some prime q . It then follows from [2, 1.2] that ^ is

A T .
T^7

Finally, if I > 2 , then since X A 4 i s Cross, it follows from

Theorem 2.3 that the orders of the irreducible components of V ,~ „) form
H

a finite set as G ranges through T . By Lemma 3.2, {|# '| : G I T}

is an infinite set, and so there is a prime, say q , such that
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{\A\ : G d T} is infinite, where A is the Sylbv ^-subgroup of HK ~ ' .

Since # is cyclic, we have that A is cyclic. Now V is

completely reducible by Maschke's Theorem, and so since V is faithful

and A is cyclic, there is an irreducible direct summand, say U , of

VA such that the kernel K of U avoids /T 1 ' . Now VA d X A A ,

which is Cross, and so {\u\ : G d Y} is a finite set, say \u\ < f , for

all G d T . Hence {\A : K\ : G d T] is bounded by f\ . Since

{\A\ : G d ?} is infinite, it follows that {\K\ : G d T] is infinite.

But K n A^1' = E , and so K < Z(4) ; hence {|z(4)| : G £ T] is an

infinite set, and we can choose Q = M[Z(.A)) . II

If V is A T , Theorem 1.7 is proved fwith r = a , N = A ) , and

so we shall assume that U has an abelian normal subgroup Q of exponent

q such that {\Q\ : G d D is infinite. Suppose (using Clifford's

Theorem) that ]/„ has homogeneous components U-, , •••, U 1 _\ 5 and denotey -i- a\u)

a(G)
the kernel of U. by X. . Now V is faithful, and so n K. is

^=l

trivial. Since Q f A. , Q/K. is (cyclic) of order q ; hence
-q ^

{a(G) : G € D is infinite. Now a(G) is the index of the inertia

subgroup of f/j in G , so that every prime dividing a(c) divides n •

But n is finite, and so there is a prime, say r (which for all we know

at this stage could be p) , such that {a (G) : G d V} is infinite,

where a ((?) is the r-share of a(G) . If i? is a Sylow r-subgroup of
v

G and P/ is an irreducible submodule of Vnn , it follows from [I, 2.8]

that if Vo has d(G) homogeneous components, then d(G) 2 a (G) . In

particular, since ^ is jnC , it follows from Theorem 2.3 that

V, = variWQR : G d V) , and hence V 5 A A var{i? : G d T] . Recall that

since V, is not locally nilpotent, there is a bound, say c , on the

nilpotency class of the nilpotent groups in V^ . Hence var{fl : G d T] is

a nilpotent subvariety H of V of class at most c and exponent a power

of r .
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Since {d{G) : G t T) is infinite, there is a group, say G , in T

such that d{G) > p . Lemma 2.1 now shows that r is not equal to p .

Moreover, even d(G) > 1 implies that Q is not centralized by R , so

if q $ r then QR is not nilpotent and hence neither is H . In this

case, as M{G) is self-centralizing, G is not abelian-by-nilpotent.

Thus if q # r then ^ is not abelian-by-nilpotent. On the other hand,

suppose q = r . Then A B is locally nilpotent while ^ is not, so

V A A N is nilpotent; and of course V 5 A A N implies V̂  £ A (V A A N )

so now VI is abelian-by-nilpotent. The proof of Theorem 1.7 is complete.

4. The proof of Theorem 1.8

Suppose that Y. is not abelian-by-nilpotent. Observe that V, is

locally finite, being soluble of finite exponent. If a denotes the

class of 21 , then all the nilpotent groups in V_ have class at most a .

It follows that V̂  is not locally nilpotent, and so by [/, 3.7], there is

a prime, say t , and an infinite set, say V , of monolithic groups in V̂

such that:

(i) X = v a r r 1

(ii) the monolith of each group in T is complemented,

self-centralising, and has exponent t ;

(iii) {|A/(G) I : G i V) is an infinite set.

In every group in- V̂  , the Sylow p-subgroup is normal, and its quotient

group lies in _A 1J . Since V A A 1! is Cross, it follows from Theorem

2.3 that

t = p .

Suppose G d T , and denote the monolith M(G) of G by V . Let H be

a Hall p'-subgroup of G , and let Q be the Sylow ^-subgroup and R a

Sylow r-subgroup of H . Denote W(z(i?)) by Y . Then V can be

thought of as a vector space over F(p) , in which case H is faithfully

and irreducibly represented (by conjugation) on V . Suppose that

£/n , ..., U /„> are the homogeneous components of V. , and let K. be
J. G\(j J hi 1*

the kernel of U. . We need to prove three preparatory lemmas.
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LEMMA 4.1. The set T = {\Q\ : G € Y} is infinite.

Proof. By property (iii) of Y , {\v\ : G € T} is infinite. As V

is a self-centralising chief section of G (property (ii) of r) , it

follows from IS, 52.2U] that {|#| : G (. Y} is infinite. Suppose

contrary to the lemma that T is finite, say \Q\ < U for all G in

T , and denote CR(Q) by C . Then {\H : C\ : G i Y} is bounded by

u\ , and so by Clifford's Theorem, if W is an irreducible submodule of

Vn , {\w\ : G (. T} is infinite. Using Lemma 2.2, we replace VC by

(WC)* ; by TheoremJ2.3, ^ = var{(M7)* : G i Y) . Thus we may suppose

that C = H , for all G in Y . In this case of course Q 5 Z(fl) , and

so S is cyclic of order at most q . It follows that i? is normal in

H and \H : JR\ S q . Then again by Clifford's Theorem, VR is a

(homogeneous) direct sum of at most q irreducible submodules of common

dimension. Thus there is no bound on the orders of the irreducible

submodules of VR , as G ranges through Y . It follows from Theorem

2.3 that V_ = var{W? : G € Y} , and hence that V_ is abelian-by-nilpotent,

a contradiction. //

COROLLARY 4.2. The set $ = {\R\ : G £ Y} is infinite.

Proof. As Q/K. is faithfully and irreducibly represented on an

irreducible component of U. , it is cyclic of order q . But V is

faithful, and so flOc. : 1 < i < a(G)} is trivial. As • T is infinite

(Lemma U.l), it follows that ia(G) : G € Y) is infinite. By Clifford's

Theorem, a{G) 5 \H : Q\ = \R\ , and so $ is infinite. //

LEMMA 4.3. The set Y = {|l| : G (. Y} is infinite.

Proof. By Maschke's Theorem, V is completely reducible; let

H

be a direct decomposition of V into irreducible submodules. Since
n

V_ A A H is Cross, it follows from Theorem 2.3 that

{\V.\ : 1 2 i < l(G), G (. Y] is finite, say \V^\ < m for all i, G .

If the kernel of V. is R• , then
1r 1r
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{\R : R.\ : 1 £ i < l(G), G t T}

is bounded by m\ . Since V is faithful, fl{i?. : 1 S i 5 Z(G)} is

trivial. Choose a subset, say A(C) , of {l Z(G)} which is

minimal with respect to fl{i?. : i i. A(G)} being trivial. Since $ is an

infinite set (Corollary U.2), it follows that {|A(C)| : G i T} is

infinite. We suppose that the components of V- have been numbered so
n

that A(G) = {1 k(G)} . Put 5. = MR. : 1 5 j < k{G), j f i} ,

1 < i < k{G) . By the minimality of A(G) , each S. is a nontrivial

normal subgroup of R , and if £ ? 3 , S. n 5. = E . Hence
^ 3

UG)
\Y\ > i + I (|5 o y| - i) .

But for each i , 5. n Y is nontrivial, so |Y| > k(G) . Since

k{G) = \h{G)\ , and {|A(G)| : G € D is infinite, the proof is complete.

//

We are now in a position to prove Theorem 1.8. Observe that Q¥ is

a normal subgroup of E which is supplemented in H by R . Thus if W

is an irreducible submodule of V-y , it follows from Clifford's Theorem

that

VQy = l{Wx : x d R} .

Suppose that M is the kernel of W ; then the kernel of Wx is AT5 .

Since V is faithful, it follows that D{ATC : x € i?} is trivial. But if

a: € R ,

tf* n Y = (M n Y)x = M n Y ,

and so M n ^ is trivial. Thus Y acts faithfully on W ; that is, Y

is isomorphic to a subgroup of Autd' . In particular, \w\>. > \Y\ . It

follows from Lemma U.3 that {\w\ : G € T} is an infinite set, and so by

Theorem 2.3,

V = v&r{WQY : G (. D .
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Hence V_ is a subvariety of A A A,
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