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GENERATORS OF CHEVALLEY GROUPS OVER Z 

BOMSHIK CHANG 

1. Introduction. Let &{K) be the universal Chevalley group ( [1], p. 197) 
of type Se over a field K and<J^ = (xr{\) \r e $> ç (jg^jf) ) where 0 is the 
set of roots of££. Let n = {al5 a 2 ) . . . , û „ } be a fundamental system of 
roots of J*? and put 

*-4-!ik(-?J)-^(-?J)-
-v(_! iW-1 ;)*-.(-! i) 

Then we know from [2] (p. 950) that 

Wh = Mh + X = ±1 

where h is the Coxeter number of J£ We call an element of J?(K) conjugate 
to W a Coxeter element and an element conjugate to M a Kac element. 
The purpose of this note is to prove: 

THEOREM. The group ££z is generated by a Coxeter element and a Kac 
element if & ^ B2, C2. 

This theorem may be regarded as a generalization of the well-known 
fact that the second order unimodular group is generated by 

(_; i) and (_; i). 

The proof will be carried out by case-by-case computation. The classical 
types and type G2 will be settled in Section 2 using matrix representations 
([1], pp. 183-188) of S£(K). For types En and F4, our arguments will 
depend solely on the commutator formulas and the effect of the 
conjugation by W on xr(±\) and these will be done in Section 3. 

In this note, the conjugation by Y means X —» YXY , and as in [1], 

[X, Y] = XYX~XY~\ 

Denote by w the Coxeter element in the Weyl group defined by 

Wxr(t)W~x = xw{r)(±t). 
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By the w-closure of a subset S of 0, we mean the minimal subset T of 0 
such that 

(i) S Q T, 

(ii) r, s <= T, r + s £ < I > = > r + s e T and 

(hi) r <E T =* w(r) e 7. 

Note that, if the Dynkin diagram of J? is simply laced, so that the 
commutator formula is 

[xr(t),xs(u)] = xr+s{±tu)ox 1, 

then the subgroup generated by {xr(\) \r e S} and Wcontains 

(xr(l)\r G w-closure of S). 

2. The classical types. 

2.1. «JSP = An. We choose the fundamental system 

n = {«„.. . ,«„} 

in the usual way, i.e., at = ei_l — en, i = 1 , . . . , n where { e 0 , . . . , en) 
is an orthonormal basis of Rn + X ( [1], p. 46), and use the identification 
An(K) = ^ + 1 ( ^ ) ( [ l ] , p . 184). Then 

j r 

M = 

0 0 0 1 
1 0 0 0 
0 - 1 0 0 

0 0 . . - 1 0 

1 1 1 r 
1 0 0 0 
0 - 1 0 0 

0 0 . . - 1 o, 
Unfortunately M and W do not generate J£J and we need a slight 
modification. 

(2.1) If & = An, n ^ 2 then J£! is generated by W and VMV~\ where 

r = * « 1 + a 2 ( l ) . 
Proof. Let H = (W, VMV~X). The action of w is given by 

w:e. o eo> 

and we can see easily that the w-closure of any a in II is the whole set O. 
Therefore, we need only to show that xa(\) e H (or x_ a ( l ) ^ / / ) for some 
« e n . 
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CHEVALLEY GROUPS 389 

Let M = VMV \ X, = M'W~\ X2 = WXXW ', X3 = W2XXW 2 and 
7 = XXX2. Then matrix computations show that 

(2.1.a) [7, XX][Y\ X,-'] = jc_ai(l), if n = 2 

(2-l.b) [X2 ,[X2 ,[X1 )X3]]] = ^ | ( - 1 ) , if» = 3 

(2.1.c) YW~]ZWY~]Z = x a 2 ( - l ) , if n ^ 4 

where Z = [7, X,][72, AT,"1]. 
(Note that V = / + e02 in the notation of [1]. One can obtain 

Z = x e i _ e 3 ( - l K i _ e 4 ( l ) 

and (2.1.c) for n = 4 by direct computation. Then, for n ^ 5, these 
expressions may be verified inductively by conjugating Xx and Y with 
xa (1) which will bring them "into An_](K)9\) 

2.2. J£ = Bn, Cn, n ^ 3. Here again, II is chosen as in [1], p. 47 and use 
the matrix representations of Bn(K) and Cn(K) given in [1], pp. 185-187. 
Thus 

*«,(0 = I + 'O12 ~ e-2,-1) 

jcttn(0 = / + / ( 2 ^ 0 - e0_n) - t2en_n 

in £„(iT) and 

*«,(0 = 7 + t^u ~ e-2,-\) 

"n, — n 
xa(t) = I + ten 

in Cn(K). The action of w is given by 

w:ex - > e 2 - > . . . - » e n - ^ - e , 

in both i?„ and Cw. We show that 

(2.2) If Se = Bn or Cn and « ^ 3 then J£J is generated by W and M. 

iVw/. Let Xj = MW~\ X2 = WX~\ X3 = W~2MW~2 and H = 
(W,M). In Bn(K\ we have 

(2.2.a) X2
XXXX2[ [X,, X2], [X2, X3] ] = x t t ] ( - 1). 

This can be verified by direct computation when n = 3 and n = 4. For 
« = 5, we may see it inductively as follows. We have, from the matrix 
representation, 

X\ = Xe]~e2 ' ' • Xe]-en^2
Xel-en_l

Xe]-en
Xe^ 

X2 = Xe2-e3 • • ' Xe2-en_]
Xe2-en

Xe2 + e]
Xe2> 

X3 = Xe3-e4 * * * Xe3-en
Xe2 + el

Xe3 + e2
Xe3 
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where xr(—l) is denoted by xr for brevity. Then the conjugation by 

V = x (\) eliminates x e , xei-en
 a n d xe3-e„ i n x\> X2 a n d x^ 

respectively (and thus Xl9 X2 and"x3 are "brought "into Bn_](K)"). Then 
by the induction hypothesis, 

VYV-] =xai(-l) 

where Y is the left hand side of (2.2.a). Hence 

Y = xai(-l). 

Once we have xa(l) G H, we can prove (2.2) again inductively as 
follows. First, we can show easily that 

xai(l) e ff => xr{\) e H 

for all /• e $, in 53(A"). Then for « â 4, 

xtti(l) G ^ H / » \ ( l ) r w = x_ t t i(±l) e 7/. 

Hence 

*«,(_? J).*«,(_! J ) e * . and 

*«2(_? J) •••*«„(_? J). 

Then by the induction hypothesis xr{\) e / / for all r in the root system of 
Bn_] spanned by {a2, . . . , «„}, and hence xr(\) e 7/ for all r G O. 

An argument almost identical to the above will settle the case when 
J£ = C,r The key identity in this case is 

x2'x;xx2\ \xx, x2], [x2, x,} ] = xai(\). 
2.3. J£ = Dn. Once again II is as in [1], p. 47 and use the matrix 

representation in [1], p. 185. Thus 

*«,(') = **,-e2(0 = / + t(eu2 - e - 2 , - i ) 

*«„(') = *,„_,+*„(') = ! + t(en-u-n ~ <?„,_„+1) 

and the action of w is given by 

w:e, -*e2^>...^>e„_} -» - e „ e„-» - e „ . 

(2.3) If :S? = Z)„, w ^ 4, then iÇ is generated by W and KMK" ' where 

V = xe<+e{\). 
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Proof. Let 

Xx = VMV~]W~\ X2 = WXXW~\ 

YX = [xhx2i Y2 = [xl9x2\ Y3 = [x;\x2] 
Y4 = [X;\ X2

]] and H = (W, VMV~]). 

From the matrix representation, we have 

1 = Xe\~e2 ' ' ' Xe\~en~2Xe\~en-\Xe\~enXe2~en 

X2 = Xe2-e3 • • ' Xe2-en-l
xe2 + e]

xe2 + en
xe3 + e„ 

where xr denotes xr( — 1). Here the key identities are: 

Y,Y2 = xei+e(Y), 

Y^i = xei+e2(-3)xei+e{\), 

Y2Y4 = xei+e2(2)xe]+ei(-l). 

Again, these identities can be verified by direct computation for n = 4, 
then use induction for n è 5. So, when n ^ 5, by conjugating Xx and X2 

with x„ _„ (1) we can eliminate xfi _p and xp _p , then conjugating 
en-2 en-\K 7 e \ en-\ e2 en-\> J ° ° 

them again with 

v.-4-î o)' 
the en

9s are brought to en_x. We can then use the induction hypothesis to 
obtain the desired result. 

The above identities show that xe +e (1), xe +e(\) and xe +e (1) e H. 
Then it is easy to check that the w-closure of {ex + e2, ex + e3, ^ -f en } is 
the whole set O and this proves (2.3). 

2.4. J£? = G2. In this case we have the following matrix representation: 

b 
d 

K\c d) = 

a2 lab -b2 

ac ad + be ~bd 
c2 — led d2 

a 
— c 

-b 
d 

M e d) = 

a b 
c d 

a —b 
-c d 
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Let 

Xx = MW~\ X2 = WXXW"\ X3 = W1XXW~1 

and H = (W, M). 

Then using the above representation, we can show that 

[X3, XXX2X,X^] = x 3 a | + 2 t t 2 ( - l ) = W-'xai{-\)W. 

Since w (r) = — r, 

xai(l) e H => x_«2(l) e / / . 

Hence 

M-i o)'*4-i o) e / f ' 
which implies also that 

*.,(_; J).*.,(_! J)e#-
Hence xa (1) G /T. Now w acts transitively on the short (and the long) 
roots. Therefore jcr(l) e H for all r e 0, i.e, J2£ = (W, M). 

3. Exceptional types. 

3.1. J? = F4. Choose the fundamental system n as in [1], p. 47. Thus 

«l = e\ ~ e2, a2 = e2 - e3, a3 = e3, 
«4 = ( — ex — e2 — e3 + eA)/2. 

Let 07 and $s be the sets of long roots and short roots, respectively, and 
recall the commutator formulas: 

(3.1.a) [xr(t\ xs(u) ] = xr+s{±tu) if r, s, r + s e 07 

= - x : r + , ( ± ^ K + 2 , ( ± ^ 2 ) 
if r e 0 /5 s, r + j G 05 

= jc r+^(±2ta) if r, s e $^, r + s e $ ; 

= xr+5(±:/w) if r, s, r + j G 05 

= 1 if r + J Ï $ . 

The action of w is given by 

w:ex -> (e, + e2 - e3 + e4)/2, 

e2 -* (e\ ~ e2 + ei + ed/2> 

e3 -» ( - * , - e2 - e3 + <?4)/2, 

e4-^ (~e] -\- e2 -h e3 -\- e4)/2. 
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Let X] = MW~\ X2 = WX\W~\ X3 = W2XXW~2 and H = (W, M). 
Then 

X, = xet_e2(±\)xei_e3(±\)xei(±\)x{e^e2_ei+ei)/2(±\). 

We note also that 

(3.1.b) [ab, c) = [a,[b,c]][b,c][a,c], 

[a, cd] = [a, c][c, [a, d] ][a, d]. 

In particular, 

(3.1.c) [ab,c] = [a, c] if [b, c] = 1, 

= [b,c] if [a9b] = [a,c] = 1. 

[a, cd] = [a, c] if [a, d] = 1 

= [a, d] if [c, d] = [a, c] = \. 

Now using (3.1.a), (3.1.b) and (3.1.c) we compute: 

[Xu X2] = [x(ei_e2_e3 + ei)/2(±llxe2(±\)] 

[xei(±l),xei(±\)] 

[xe!_e2(±\),xe2_ei(±l)) 

[* e i _ e 2 (±l ) ,x e 2 (±l ) ] 
= x(e]+e2-e3+eA)/2(±l)xei+e2(

±2) 

xei_e3(±l)xei(±l)xei+ei(±\). 

Similarly, we get 

[Xu W2[Xh X2]W~2] = xei+eJi±l ± 2 ± 2 ± 2). 

These two identities imply that xe +<, (1) e H. Then it is easy to check that 
the w-closure of ex + eA is 0/ which implies, together with the first formula 
of (3. La), that 

x r(l) e H for all r e 0/. 

As for the short roots, we know that 

y = x e i (± i )x ( e i _ e 2 _ e j + e 4 ) / 2 (± i ) 

( = X , l e s s ^ i _ e 2 ( ± l ) x e i _ e 3 ( ± l ) ) 

is in i/. Hence 

[y, ^ y ^ - ' ] = x ( C l + f r t J + f 4 ) / 2 ( ± l K l + e 2 ( ± D e 7/. 

Hence 
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(e]+e2-e3 + e4)/l(^) G H-

The w-orbit of r = (el + e2 — e3 + e4)/2 contains one-half of the short 
roots and the other half is the w-orbit of 

r — w(r) = r + w (r). 

Hence jcr(l) e # for all r e 05, too. Hence H = S?z. 
3.2. J? = En, n = 6, 7, 8. For £ types, we find it most convenient to use 

the description of the roots of £ 8 given in [3], p. 19-09. So, let co1? . . . , co9 

be vectors in R* such that <oj + . . . + w9 = 0, (co,-, co,) = 8/9, 1 i / ^ 9 
and (co„ to.) = - 1/9, / ¥= j , 1 ^ /,y ^ 9, where (,) is the inner product in 
R . Then the fundamental system of £ 8 is given by 

at = co, — co, + 1, 1 ^ / ^ 7 and 

«g = C06 4" C07 + COg. 

We choose {a3, . . . , a8} and {a2, « 3 , . . . , a8} for the fundamental systems 
of £ 6 and E7, respectively. 

The set of roots of Eg is given by 

0 = {co, - coy-, ±(co, 4- <oy. + co )̂ |1 g i, y, A: g 9, 

i * j * k, i ¥* k). 

Let wA. be the reflection defined by r £ $ . Then ww._w. interchanges co, and 
coj and leaves coh k ¥= i,j unchanged, and ww +60 + w sends com to 

u>m 4 l/3(co- 4- co- 4 cok) if m ¥" i9j, k, 

and to 

com — 2/3(co, 4- co»• + o)k) if m = /, y or /c. 

Now we show that 

(3.2). If £P = E6, E7 or E%, then Lz is generated by W and M. 

iVw/. Assume that & = £6 . Let X = MW~X. Then 

-* co3 — 6O4 co3 — co5-^co3 — to^ co3 — «7-*a>3 — co8 <o3 + co7 + co8 * 

Here, and in what follows, xr, yn zn . . . denote xr(zb 1). Now, we look for a 
conjugate WlXW~l of X such that, in computing [X, WlXW~% we can 
take advantage of (3.1.c) as much as possible. We find that 

— X^ + <o6 + co8-*w3 + co4 + co6-^a-^co3 + œ5 + co6^<o3 + w6 + <o7 -* w4 + w6 + wH 

where a = — (coj 4- co2 4- co9) = the maximal root of E6, is a reasonably 
good one. So 
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Y = [X, W3XW 3] = [xai-uxU}_uxU}_Us, xW4+„6+U8] 

Then 

[ y , » r > r - 1 ] = ^ + t t 4 + ^ 
[y, W2YW~2] = za. 

Hence *W3+W4+„/!),• xa(l) G i/. Now 

(<o3 + co4 + co6) + w (<o3 + <o4 + co6) = co6 — <o7, 

a + w a = <o6 + <o7 -f Wg = a8. 

The w-orbit of <o6 — <o7 = a6 contains all the ai9 3 ^ / ^ 7. Hence the 
w-closure of {<o3 + co4 + co6, a} is the whole set $. Hence i / = JS£. 

Next, let «^ = £7 . We have 

Here, again we compute: 

Y = [X, W3XW~3] 

^(C02 — W6 ^C02 + 605 + Ug 

Then we get 

[7, ^ 7 ^ 4 ] = zU2 + U}+ai. 

Put r = <o2 + co3 + <o5. Then 

r + w (r) = (o2 + co5 + <o6 = s, w (r) + 5" = <o2 ~~ w3. 

In other words, we have 

xa2(l) e (W, M) = H. 

Since wh/2 = — 1 in £7 , we also have x _ a (1) G H and, as in the proof of 
type Bn, the problem for E7 is reduced to that of E6. This proves 2£z = H 
in E7. 

Finally, let «£? = £8 . Here again, w 7 = — 1. Hence we only have to 
show that 

xa i(l) <E (W,M)=H. 

Let X = M W - ' , Y = [X, W3XW~3], then 

[Y, W^YW-*} = xU]_„9. 

Since 

CO j IO9 CO2 COç 
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(and w = — 1) we have 

*0i-4V = x4l) e H-
This completes the proof of the theorem. 

4. Remark. The condition that ££ ^ B2, C2 in the theorem cannot be 
removed. This can be seen as follows. Let G = B2(2). Then (G:G) = 2 
( [1], p. 176). Clearly, M (hence its conjugates) is in G and 

W s xa{\)xh{\) s xa+b{\)Xla+h{\) ^ [xa(\\ xh(\)] 

= l(mod G) 

where a is a short root and b is a long root. Hence (W, M) = G. However, 
if char K > 2, then we still have £z = (W, M). 
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