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GENERATORS OF CHEVALLEY GROUPS OVER Z
BOMSHIK CHANG

1. Introduction. Let #(K) be the universal Chevalley group ( [1], p. 197)
of type Lover a field K and %, = (x,(1) [r € ®) C (Z(K) ) where @ is the
set of roots of £ Let Il = {ay, ay, ..., a,} be a fundamental system of
roots of £ and put

01 01 01
Wz"’al(—l 0)%2(—1 0)---%"(_1 0)’

11 11 11
M=¢°‘l(—1 0)"’“2(—1 0)"""%(—1 0)'

Then we know from [2] (p. 950) that
wh =M = =1

where h is the Coxeter number of £ We call an element of #(K) conjugate
to W a Coxeter element and an element conjugate to M a Kac element.
The purpose of this note is to prove:

THEOREM. The group %, is generated by a Coxeter element and a Kac
element if & # B,, C,.

This theorem may be regarded as a generalization of the well-known
fact that the second order unimodular group is generated by

0 1 11
(—1 0) and (—1 0)'

The proof will be carried out by case-by-case computation. The classical
types and type G, will be settled in Section 2 using matrix representations
([1], pp. 183-188) of AK). For types E, and F,, our arguments will
depend solely on the commutator formulas and the effect of the
conjugation by W on x,(=%1) and these will be done in Section 3.

In this note, the conjugation by ¥ means X — YX Y"!, and as in [1],

[x, Y] = xyx 'y L
Denote by w the Coxeter element in the Weyl group defined by
Wx, (OW ™! = x,,,(=0).
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By the w-closure of a subset S of ®, we mean the minimal subset T of ®
such that

1S cT,
)yrnseT,r+se®=r+se&T and
(i) r e T=w(r) € T.

Note that, if the Dynkin diagram of % is simply laced, so that the
commutator formula is

[x,(t), x,(u) ] = x,(Ftu) or 1,
then the subgroup generated by {x,(1)|r € S} and W contains

(x,(1) |r € w-closure of S).

2. The classical types.
2.1.# = A,. We choose the fundamental system
II ={a),...,a,}

in the usual way, ie., ¢, = ¢,_; — e, i = 1,...,n where {ey,...,e,}
is an orthonormal basis of R"T! ([1], p. 46), and use the identification
4,(K) = SL,;,(K) ([1], p. 184). Then

0 0 ... 0 1
-1 0 ... 0 0
W = 0o —1 ... 0 0 ,
0 0 —1 0
1 1 1 1
-1 e 0 0
M = 0o -1 ... 0 0
0 0 —1 0
Unfortunately M and W do not generate .%, and we need a slight
modification.
QN IfZ = A, n = 2 then % is generated by W and VMV~ !, where
Vo= Xq + oD

Proof. Let H = (W, VMV~ '), The action of w is given by
W:eo_)el —)...qenﬁeo,

and we can see easily that the w-closure of any « in II is the whole set ®.
Therefore, we need only to show that x (1) € H (or x_ (1) € H) for some
a € I1.
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Let M = VMV~ X, = MW ' X, = wx,W~ ', X; = W X,W % and
Y = X;X,. Then matrix computations show that
@la) [V, XY X" = x_ (1), ifn=2
(2.1b)  [X, [X, [X}, X5]1] = x, (= 1), ifn =3
Q1o YW 'zZwY 'Z = x, (—1), ifnz4

where Z = [Y, X,][Y2 X; 1.
(Note that V' = I + ¢, in the notation of [1]. One can obtain

Z = Xg (= Dx, o (1)

and (2.1.c) for n = 4 by direct computation. Then, for n = 5, these
expressions may be verified inductively by conjugating X; and Y with
X, (1) which will bring them “into 4, (K)”.)

22.% = B,, C,, n = 3. Here again, II is chosen as in [1], p. 47 and use
the matrix representations of B,(K) and C,(K) given in [1], pp. 185-187.
Thus

X, (1) =T + 1(e); —e_5 )

X (1) =1 + 1(2e,9 — €y ) — tzen,_n
in B,(K) and
Xo(t) =1 + t(e; —e_5_y)

;c;;(t) =1+ te,_,
in C,(K). The action of w is given by
wie, e, ... e, > —e
in both B, and C,. We show that
22)If ¥ = B, or C, and n = 3 then % is generated by W and M.

Proof. Let X, = MW ', X, = WX !, X; = W MW ?and H =
(W, M). In B,(K), we have

(222) X, "X\ X[[X), Xl [X0, X311 = x, (= D).

This can be verified by direct computation when n» = 3 and n = 4. For
n = 5, we may see it inductively as follows. We have, from the matrix

representation,
Xl xel‘ez e xel—en~2xel_en—lxel_enxel’
X, = Xey—ey = Xey—e, 1 Xey—e,XeyteXey
X; = Xey—ey + + - Xey—e,Xey+eXey+e,%ey
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where x,(—1) is denoted by x, for brevity. Then the conjugation by

V =x, (1) eliminates x, _,, X, and x, _, in X;, X, and X;,

respectlvely (and thus X;, X, and’ X, are brought “into B, (K)”). Then
by the induction hypothesis,

Yy~ = x,(=1)
where Y is the left hand side of (2.2.a). Hence
Y = x,(—D.

Once we have xal(l) € H, we can prove (2.2) again inductively as
follows. First, we can show easily that

xal(l) €E H=>x,()€e H
for all r € @, in By(K). Then for n = 4,
X (1) € H= W, (WW "2 = x_ (x1) € H.

0 1 1 1

%I(—l 0),%1(_1 0) € H, and
0 1 0 1

¢az(—1 0)"'%"(—1 0)’

11 11
¢“2(—1 0)'“¢’%(—1 O)EH'

Then by the induction hypothesis x,(1) € H for all r in the root system of
B, | spanned by {a,, ..., «,}, and hence x,(1) € H forallr € ®.
An argument almost identical to the above will settle the case when
& = C,. The key identity in this case is
X X[ Xl (X, X51] = xg (D).

23. % = D,. Once again II is as in [1], p. 47 and use the matrix
representation in [1], p. 185. Thus

€|_€2(Z) = I + t(el‘z - eA2’_|)

Hence

Xo (1) = x

X (1) = Xo 1o () =T + 1, —, — € _pt1)
and the action of w is given by
wie, e, ... e, | ™ —e,e, > —e,.
(23) If # = D,, n Z 4, then & is generated by W and VMV ™' where
Vo= x, 4+ (1)

https://doi.org/10.4153/CJM-1986-019-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1986-019-9

CHEVALLEY GROUPS 391

Proof. Let
X, = vMy W Xy = wx,w,
-1 -1
h =X, Xl =X, X ] 1 = [X, , X))
Y, =X . X"} and H = (W, vMvy.
From the matrix representation, we have

X, = x

e X, X, _ X, —p Xy —
€17 € €T ep_2 e T e e T e e e,

-1
X2 = Xey—ey - Xey—e,_ XeyteXe,+e,Xeste,

where x, denotes x,(—1). Here the key identities are:

ny, = xe,+e,,(l)’

Y] Y3 = xe| +ez(_3)xe| +e3(1)’

Y2Y4 = xe,+ez(2)xe|+e3(—1)'
Again, these identities can be verified by direct computation for n = 4,
then use induction for n = 5. So, when n = 5, by conjugating X; and X,
with x (1) we can eliminate x, _, andx, _, ,then conjugating

€n—27 6y -,
them again with

0 1
¢envlien(—1 0)’

the e,’s are brought to e, ;. We can then use the induction hypothesis to
obtain the desired result.

The above identities show that x, .. (1), x +. (1) and x, ., (1) € H.
Then it is easy to check that the w-closure of {e; + e,,e¢; + e3,¢; + ¢,} is
the whole set ® and this proves (2.3).

2.4. % = @G,. In this case we have the following matrix representation:

a b
c d
5 & 2ab — b’
%I(“ d) = ac ad + bc —bd
¢ —cr —2cd &
a —b
—c d
1
a b
(a b) B C d 1
4’012 c df a —b
—c d
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Let
=MW L x, = wxw X, = Wxw?
and H = (W, M).
Then using the above representation, we can show that
(X, X, XX '] = X3 a0 (1) = W lx (=W,
Since w3(r) = —r,

xaz(l) € H= x_az(l) € H.

01 1 1
¢a2(_1 O)’ ¢a2(_1 0) € H’

which implies also that

01 11
%,(_1 0)"1’“1(—1 O)EH'

Hence x, (1) € H. Now w acts transitively on the short (and the long)
roots. Thereforex (1) € Hforallr € ®,1e,% = (W, M).

Hence

3. Exceptional types.
3.1. %2 = F,. Choose the fundamental system II as in [1], p. 47. Thus

o) =€ T €, 0 = & T €, 03 = €,
a4 = (_el - e2 - 63 -+ 64)/2.

Let ®, and @, be the sets of long roots and short roots, respectively, and
recall the commutator formulas:

3.1a) [x,. (), x,(u)] = x, . (Ftu) ifr,s,r +s5s €

2

= xr+s(—tu)xr+2s(—tu )
fred,s,r+sed
o K

= X, (F2tu)y fr,s e d,r+se @
= X, () ifr,s,r+s € @
=1 ifr+s¢& o
The action of w is given by
wie — (e, + e, — ey + e)/2,
e, (e — ey + e3 + ey)/2,
e3> (—e — e — ey + ey)/2,

e, > (—e t e, + e5 + ey)/2.
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Let X, = MW ', X, = WX W', X; = WX,W ?and H = (W, M).

Then
X, = xel_ez(il)xel_83(i—l)xe](il)x(el_ez_e3+£,4),2(i1).
We note also that
(3.1.b) [ab, c] = [a, [b, c]]b, clla, c],
[a, cd] = [a, c]lc, [a, d] ][a, d].
In particular,
(3.1.c) [ab,c] =[a, c] if[b,c] =1,
= [b, c] ifa, b] =[a,c] = L
la, cd] = [a, c] if[a, d] =1
= [a,d] if[c,d] =[a, c] =1
Now using (3.1.a), (3.1.b) and (3.1.c) we compute:
(X1, X5l = [X(e,—ey— ey +egr2(FED, X (1) ]
[ (£ 1), X (£1)]
[ —e(E D). Xy (D) ]
[xe, e E D, X (ED)]
= X(e, +ey—es+egr2(T DX 10 (F£2)
X, e (E DX ()X, 4o (1),
Similarly, we get
[X1, X3] = x, 4,(F2).
[X), WX, Xo]W %) = x, (1 £2 22+ 2)

These two identities imply that x, ., (1) € H. Then it is easy to check that
the w-closure of e, + ¢, is ®, which implies, together with the first formula

of (3.1.a), that
x, (1) € H forallr € @,
As for the short roots, we know that
Y o= x, (FDX( ~ e,y +e92(F D
(= X less xel_ez(il)xel_e3(i—l))
is in H. Hence
Yy, wyw '] = Xe, +ey—erten2(E DX, 1o (1) € H.

Hence
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x(€1+€2‘€3+6’4)/2(1) € 4.
The w-orbit of r = (e; + e, — e; + ¢;)/2 contains one-half of the short
roots and the other half is the w-orbit of

r—w(r) =r+ wr).

Hence x,(1) € H for all r € @, too. Hence H = Z,.

z

32.¢=E,n=6,7,8. For E types, we find it most convenient to use

the description of the roots of Eg given in [3], p. 19-09. So, let w, .. ., wq
be vectors in R® such that w, + ... + wy = 0, (w,, @;) = 8/9,1 =i =9
and (w;, w) = —1/9,i # j,1 =1,/ = 9, where (,) is the inner product in

R®. Then the fundamental system of Eg is given by

o =w — w4y, 1 =i=7 and
We choose {as, ..., ag} and {a,, a3, . . ., ag} for the fundamental systems
of E4 and E;, respectively.

The set of roots of Eg is given by

O ={w~w, T+ +to)ll =ijk=9,
i#j* ki #* k).
Let w, be the reflection defined by r € ®. Then w,, _, interchanges w; and
w; and leaves wy, k # i, j unchanged, and Ww,+wj-|l-w,( “sends w,, to
w, T 13w, + @ + w) ifm#*1ij k,
and to
W, — 2/3(w; t @ t w) ifm =i jork
Now we show that
(3.2). f = Eg, E, or Eg, then L, is generated by W and M.
Proof. Assume that £ = E,. Let X = MW~ '. Then
X =x X

w3 Wy w37w5xw3~w6xw37w7xw3vw3xw3+w7+w8'
Here, and in what follows, x,, y,, z,, . . . denote x,(*£1). Now, we look for a
conjugate W'XW ™' of X such that, in computing [X, W'XW '], we can
take advantage of (3.1.c) as much as possible. We find that

3 -3 _
W xw - xw3+w6+w8xw3+w4+w6x6xw3+w5+w6xw3+w6+w7 KXoy +wg+wy

where 6 = —(w; + w, + wg) = the maximal root of E, is a reasonably
good one. So
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Y =[X, WXW 3 =[x X

w3—w4xw3—w6 w3~ wg? xw4+w6+w8]
= Xyt wgt w0gF ey + g+ g ¥y +wytwg
Then
—1
[Y’ wYw ] = yw3+w4+w6yo
Y, W2Yw 2| = z,.
Hence x,, 4, +o /(1) X,(1) € H. Now
(w3 + wy + wg) + w5(w3 F wy T owg) = wg — Wy,
o+w50=w6+w7+w8=a8.
The w-orbit of wg — w; = ag¢ contains all the o, 3 = i = 7. Hence the
H =

w-closure of {w; + w, + wg, 0} is the whole set ®. Hence Z.
Next, let & = E,;. We have

X=Mw'=x

wz—w3xw2—w5xw2 - w6xw2 - w7xw2 - ngwz +w;twg”
Here, again we compute:
Y = [X, Wxw

= [sz —w:,xwz —wsxwz —wg’ st ~w6xw3 + ws +w8]

= Yw2~w6yw2+w5+w8yw2+w3+w8yw2+w3+w5'
Then we get
4y i —4
[Y, W’Yw 7] = Z o)+ oyt w5
Putr = w, + w3 + ws. Then
r+w7(r)=w2+w5+w6=s, w*5(r)+s=w2—w3.
In other words, we have
x,(1) € (W, M) = H.
Since w2 = —11in E;, we also have x_az(l) € H and, as in the proof of
type B,, the problem for E; is reduced to that of E¢. This proves % = H
in E;.
Finally, let & = E4. Here again, w2 = —1. Hence we only have to
show that

Xo(1) € (W, M) = H.
Let X = MW ' Y = [X, WXW 3], then
—6
[Y, WYW™ ] = x, ..
Since

Wx wl=x

wp T Wy Wy Wy
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hi2 _

(and w —1) we have

X —wy(1) = xq,(1) € H.
This completes the proof of the theorem.
4. Remark. The condition that & # B,, C, in the theorem cannot be

removed. This can be seen as follows. Let G = B,(2). Then (G:G') = 2
([1], p- 176). Clearly, M (hence its conjugates) is in G’ and

W = x,(Dx,(1) = x4 y(Dxagp(D) = [x, (1), x,(1) ]
1(mod G')

I

where a is a short root and b is a long root. Hence (W, M) = G’. However,
if char K > 2, then we still have £ = (W, M).
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