GENERATORS OF CHEVALLEY GROUPS OVER Z

BOMSHIK CHANG

1. Introduction. Let $\mathscr{L}(K)$ be the universal Chevalley group ([1], p. 197) of type \mathscr{L} over a field K and $\mathscr{L}_z = \langle x_r(1) | r \in \Phi \rangle \subseteq (\mathscr{L}(K))$ where Φ is the set of roots of \mathscr{L} . Let $\Pi = \{\alpha_1, \alpha_2, \ldots, a_n\}$ be a fundamental system of roots of \mathscr{L} and put

$$W = \phi_{\alpha_1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi_{\alpha_2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \dots \phi_{\alpha_n} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$
$$M = \phi_{\alpha_1} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \phi_{\alpha_2} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \dots \phi_{\alpha_n} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}.$$

Then we know from [2] (p. 950) that

$$W^h = M^{h+1} = \pm 1$$

where h is the Coxeter number of \mathscr{L} . We call an element of $\mathscr{L}(K)$ conjugate to W a Coxeter element and an element conjugate to M a Kac element. The purpose of this note is to prove:

THEOREM. The group \mathscr{L}_z is generated by a Coxeter element and a Kac element if $\mathscr{L} \neq B_2$, C_2 .

This theorem may be regarded as a generalization of the well-known fact that the second order unimodular group is generated by

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.

The proof will be carried out by case-by-case computation. The classical types and type G_2 will be settled in Section 2 using matrix representations ([1], pp. 183-188) of $\mathscr{L}(K)$. For types E_n and F_4 , our arguments will depend solely on the commutator formulas and the effect of the conjugation by W on $x_r(\pm 1)$ and these will be done in Section 3.

In this note, the conjugation by Y means $X \rightarrow YXY^{-1}$, and as in [1],

$$[X, Y] = XYX^{-1}Y^{-1}.$$

Denote by w the Coxeter element in the Weyl group defined by

$$Wx_r(t)W^{-1} = x_{w(r)}(\pm t).$$

Received July 30, 1984.

By the *w*-closure of a subset S of Φ , we mean the minimal subset T of Φ such that

(i) $S \subseteq T$, (ii) $r, s \in T, r + s \in \Phi \Rightarrow r + s \in T$ and (iii) $r \in T \Rightarrow w(r) \in T$.

Note that, if the Dynkin diagram of \mathscr{L} is simply laced, so that the commutator formula is

$$[x_r(t), x_s(u)] = x_{r+s}(\pm tu)$$
 or 1,

then the subgroup generated by $\{x_r(1) | r \in S\}$ and W contains

 $\langle x_r(1) | r \in w$ -closure of $S \rangle$.

2. The classical types.

2.1. $\mathscr{L} = A_n$. We choose the fundamental system

 $\Pi = \{\alpha_1, \ldots, \alpha_n\}$

in the usual way, i.e., $\alpha_i = e_{i-1} - e_n$, i = 1, ..., n where $\{e_0, ..., e_n\}$ is an orthonormal basis of \mathbb{R}^{n+1} ([1], p. 46), and use the identification $A_n(K) = SL_{n+1}(K)$ ([1], p. 184). Then

$$W = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & 0 \end{pmatrix},$$
$$M = \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & -1 & 0 \end{pmatrix}.$$

Unfortunately M and W do not generate \mathscr{L}_z and we need a slight modification.

(2.1) If $\mathscr{L} = A_n$, $n \ge 2$ then \mathscr{L}_z is generated by W and VMV^{-1} , where $V = x_{\alpha_1 + \alpha_2}(1)$.

Proof. Let $H = \langle W, VMV^{-1} \rangle$. The action of w is given by

$$w: e_0 \to e_1 \to \ldots \to e_n \to e_0,$$

and we can see easily that the *w*-closure of any α in Π is the whole set Φ . Therefore, we need only to show that $x_{\alpha}(1) \in H$ (or $x_{-\alpha}(1) \in H$) for some $\alpha \in \Pi$.

388

Let $M' = VMV^{-1}$, $X_1 = M'W^{-1}$, $X_2 = WX_1W^{-1}$, $X_3 = W^2X_1W^{-2}$ and $Y = X_1X_2$. Then matrix computations show that

(2.1.a) $[Y, X_1][Y^2, X_1^{-1}] = x_{-\alpha_1}(1), \text{ if } n = 2$

(2.1.b) $[X_2, [X_2, [X_1, X_3]]] = x_{\alpha_1}(-1), \text{ if } n = 3$

(2.1.c) $YW^{-1}ZWY^{-1}Z = x_{\alpha_2}(-1)$, if $n \ge 4$

where $Z = [Y, X_1][Y^2, X_1^{-1}].$

(Note that $V = I + e_{02}$ in the notation of [1]. One can obtain

$$Z = x_{e_1 - e_3}(-1)x_{e_1 - e_4}(1)$$

and (2.1.c) for n = 4 by direct computation. Then, for $n \ge 5$, these expressions may be verified inductively by conjugating X_1 and Y with $x_{\alpha_n}(1)$ which will bring them "into $A_{n-1}(K)$ ".)

²2.2. $\mathscr{L} = B_n$, C_n , $n \ge 3$. Here again, Π is chosen as in [1], p. 47 and use the matrix representations of $B_n(K)$ and $C_n(K)$ given in [1], pp. 185-187. Thus

$$x_{\alpha_{1}}(t) = I + t(e_{12} - e_{-2,-1})$$

...
$$x_{\alpha_{n}}(t) = I + t(2e_{n0} - e_{0,-n}) - t^{2}e_{n,-n}$$

and

in $B_n(K)$ and

$$x_{\alpha_{1}}(t) = I + t(e_{12} - e_{-2,-1})$$

...
$$x_{\alpha_{n}}(t) = I + te_{n,-n}$$

in $C_n(K)$. The action of w is given by

 $w: e_1 \to e_2 \to \ldots \to e_n \to -e_1$

in both B_n and C_n . We show that

(2.2) If $\mathscr{L} = B_n$ or C_n and $n \ge 3$ then \mathscr{L}_z is generated by W and M.

Proof. Let $X_1 = MW^{-1}$, $X_2 = WX^{-1}$, $X_3 = W^{-2}MW^{-2}$ and $H = \langle W, M \rangle$. In $B_n(K)$, we have

(2.2.a) $X_2^{-1}X_1X_2[[X_1, X_2], [X_2, X_3]] = x_{\alpha_1}(-1).$

This can be verified by direct computation when n = 3 and n = 4. For $n \ge 5$, we may see it inductively as follows. We have, from the matrix representation,

$$X_{1} = x_{e_{1}-e_{2}} \dots x_{e_{1}-e_{n-2}} x_{e_{1}-e_{n-1}} x_{e_{1}-e_{n}} x_{e_{1}},$$

$$X_{2} = x_{e_{2}-e_{3}} \dots x_{e_{2}-e_{n-1}} x_{e_{2}-e_{n}} x_{e_{2}+e_{1}} x_{e_{2}},$$

$$X_{3} = x_{e_{3}-e_{4}} \dots x_{e_{3}-e_{n}} x_{e_{2}+e_{1}} x_{e_{3}+e_{2}} x_{e_{3}}$$

where $x_r(-1)$ is denoted by x_r for brevity. Then the conjugation by $V = x_{e_{n-1}-e_n}(1)$ eliminates $x_{e_1-e_n}$, $x_{e_2-e_n}$ and $x_{e_3-e_n}$ in X_1 , X_2 and X_3 , respectively (and thus X_1 , X_2 and X_3 are brought "into $B_{n-1}(K)$ "). Then by the induction hypothesis,

$$VYV^{-1} = x_{\alpha}(-1)$$

where Y is the left hand side of (2.2.a). Hence

$$Y = x_{\alpha_1}(-1).$$

Once we have $x_{\alpha_1}(1) \in H$, we can prove (2.2) again inductively as follows. First, we can show easily that

$$x_{\alpha}(1) \in H \Rightarrow x_r(1) \in H$$

for all $r \in \Phi$, in $B_3(K)$. Then for $n \ge 4$,

$$x_{\alpha_1}(1) \in H \Rightarrow W^{h/2} x_{\alpha_1}(1) W^{-h/2} = x_{-\alpha_1}(\pm 1) \in H$$

Hence

$$\begin{split} \phi_{\alpha_1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \phi_{\alpha_1} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in H, \quad \text{and} \\ \phi_{\alpha_2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \dots \phi_{\alpha_n} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \\ \phi_{\alpha_2} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, \dots \phi_{\alpha_n} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in H. \end{split}$$

Then by the induction hypothesis $x_r(1) \in H$ for all r in the root system of B_{n-1} spanned by $\{\alpha_2, \ldots, \alpha_n\}$, and hence $x_r(1) \in H$ for all $r \in \Phi$.

An argument almost identical to the above will settle the case when $\mathscr{L} = C_n$. The key identity in this case is

$$X_2^{-1}X_1^{-1}X_2[[X_1, X_2], [X_2, X_3]] = x_{\alpha_1}(1).$$

2.3. $\mathscr{L} = D_n$. Once again Π is as in [1], p. 47 and use the matrix representation in [1], p. 185. Thus

$$x_{\alpha_{1}}(t) = x_{e_{1}-e_{2}}(t) = I + t(e_{1,2} - e_{-2,-1})$$
...

 $x_{\alpha_n}(t) = x_{e_{n-1}+e_n}(t) = I + t(e_{n-1,-n} - e_{n,-n+1})$

and the action of w is given by

$$w:e_1 \to e_2 \to \ldots \to e_{n-1} \to -e_1, e_n \to -e_n.$$

(2.3) If $\mathscr{L} = D_n$, $n \ge 4$, then \mathscr{L}_z is generated by W and VMV^{-1} where $V = x_{e_1 + e_n}(1)$.

$$X_{1} = VMV^{-1}W^{-1}, X_{2} = WX_{1}W^{-1},$$

$$Y_{1} = [X_{1}, X_{2}], Y_{2} = [X_{1}, X_{2}^{-1}], Y_{3} = [X_{1}^{-1}, X_{2}]$$

$$Y_{4} = [X_{1}^{-1}, X_{2}^{-1}] \text{ and } H = \langle W, VMV^{-1} \rangle.$$

From the matrix representation, we have

$$X_1 = x_{e_1 - e_2} \dots x_{e_1 - e_{n-2}} x_{e_1 - e_{n-1}} x_{e_1 - e_n} x_{e_2 - e_n}$$

$$X_2 = x_{e_2 - e_3} \dots x_{e_2 - e_{n-1}} x_{e_2 + e_1}^{-1} x_{e_2 + e_n} x_{e_3 + e_n}$$

where x_r denotes $x_r(-1)$. Here the key identities are:

$$Y_1 Y_2 = x_{e_1+e_n}(1),$$

$$Y_1 Y_3 = x_{e_1+e_2}(-3)x_{e_1+e_3}(1),$$

$$Y_2 Y_4 = x_{e_1+e_3}(2)x_{e_1+e_3}(-1).$$

Again, these identities can be verified by direct computation for n = 4, then use induction for $n \ge 5$. So, when $n \ge 5$, by conjugating X_1 and X_2 with $x_{e_{n-2}} - e_{n-1}(1)$ we can eliminate $x_{e_1-e_{n-1}}$ and $x_{e_2-e_{n-1}}$, then conjugating them again with

$$\phi_{e_{n-1}-e_n}\begin{pmatrix}0&1\\-1&0\end{pmatrix},$$

the e_n 's are brought to e_{n-1} . We can then use the induction hypothesis to obtain the desired result.

The above identities show that $x_{e_1+e_2}(1)$, $x_{e_1+e_n}(1)$ and $x_{e_1+e_n}(1) \in H$. Then it is easy to check that the w-closure of $\{e_1 + e_2, e_1 + e_3, e_1 + e_n\}$ is the whole set Φ and this proves (2.3).

2.4. $\mathscr{L} = G_2$. In this case we have the following matrix representation:

$$\phi_{\alpha_{1}}\begin{pmatrix}a & b\\c & d\end{pmatrix} = \begin{pmatrix}a & b\\c & d\\& a^{2} & 2ab & -b^{2}\\& ac & ad + bc & -bd\\& -c^{2} & -2cd & d^{2}\\& & & & \\& & & & -c & d\end{pmatrix}$$

$$\phi_{\alpha_{2}}\begin{pmatrix}a & b\\c & d\end{pmatrix} = \begin{pmatrix}1 & & & & \\& a & b & & \\& c & d & & \\& & a & -b\\& & & c & d\\& & & & & \\& & & & & \\& & & & & \\& & & & & & \\& & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & \\& & & & & & & & & \\& & & & & & & & & \\& & & & & & & & & \\& & & & & & & & &$$

Let

$$X_1 = MW^{-1}, X_2 = WX_1W^{-1}, X_3 = W^2X_1W^{-2}$$

and $H = \langle W, M \rangle$.

Then using the above representation, we can show that

 $[X_3, X_1 X_2 X_3 X_1^{-1}] = x_{3\alpha_1 + 2\alpha_2}(-1) = W^{-1} x_{\alpha_2}(-1) W.$ Since $w^3(r) = -r$,

$$x_{\alpha_2}(1) \in H \Rightarrow x_{-\alpha_2}(1) \in H.$$

Hence

$$\phi_{\alpha_2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \phi_{\alpha_2} \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in H,$$

which implies also that

$$\phi_{\alpha_1}\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}, \phi_{\alpha_1}\begin{pmatrix} 1 & 1\\ -1 & 0 \end{pmatrix} \in H.$$

Hence $x_{\alpha_1}(1) \in H$. Now *w* acts transitively on the short (and the long) roots. Therefore $x_r(1) \in H$ for all $r \in \Phi$, i.e., $\mathscr{L}_z = \langle W, M \rangle$.

3. Exceptional types.

3.1. $\mathscr{L} = F_4$. Choose the fundamental system II as in [1], p. 47. Thus

$$\alpha_1 = e_1 - e_2, \, \alpha_2 = e_2 - e_3, \, \alpha_3 = e_3, \\
\alpha_4 = (-e_1 - e_2 - e_3 + e_4)/2.$$

Let Φ_l and Φ_s be the sets of long roots and short roots, respectively, and recall the commutator formulas:

$$(3.1.a) [x_r(t), x_s(u)] = x_{r+s}(\pm tu) \text{ if } r, s, r+s \in \Phi_l$$
$$= x_{r+s}(\pm tu)x_{r+2s}(\pm tu^2)$$
$$\text{ if } r \in \Phi_l, s, r+s \in \Phi_s$$
$$= x_{r+s}(\pm 2tu) \text{ if } r, s \in \Phi_s, r+s \in \Phi_l$$
$$= x_{r+s}(\pm tu) \text{ if } r, s, r+s \in \Phi_s$$
$$= 1 \text{ if } r+s \notin \Phi.$$

The action of w is given by

$$w:e_1 \to (e_1 + e_2 - e_3 + e_4)/2,$$

$$e_2 \to (e_1 - e_2 + e_3 + e_4)/2,$$

$$e_3 \to (-e_1 - e_2 - e_3 + e_4)/2,$$

$$e_4 \to (-e_1 + e_2 + e_3 + e_4)/2.$$

https://doi.org/10.4153/CJM-1986-019-9 Published online by Cambridge University Press

392

Let $X_1 = MW^{-1}$, $X_2 = WX_1W^{-1}$, $X_3 = W^2X_1W^{-2}$ and $H = \langle W, M \rangle$. Then

$$X_{1} = x_{e_{1}-e_{2}}(\pm 1)x_{e_{1}-e_{3}}(\pm 1)x_{e_{1}}(\pm 1)x_{(e_{1}-e_{2}-e_{3}+e_{4})/2}(\pm 1).$$

We note also that

(3.1.b) [ab, c] = [a, [b, c]][b, c][a, c],[a, cd] = [a, c][c, [a, d]][a, d].

In particular,

$$(3.1.c) [ab, c] = [a, c] \text{ if } [b, c] = 1,$$

$$= [b, c] \text{ if } [a, b] = [a, c] = 1.$$

$$[a, cd] = [a, c] \text{ if } [a, d] = 1$$

$$= [a, d] \text{ if } [c, d] = [a, c] = 1.$$

Now using (3.1.a), (3.1.b) and (3.1.c) we compute:

$$[X_{1}, X_{2}] = [x_{(e_{1}-e_{2}-e_{3}+e_{4})/2}(\pm 1), x_{e_{2}}(\pm 1)]$$

$$[x_{e_{1}}(\pm 1), x_{e_{2}}(\pm 1)]$$

$$[x_{e_{1}-e_{2}}(\pm 1), x_{e_{2}-e_{3}}(\pm 1)]$$

$$[x_{e_{1}-e_{2}}(\pm 1), x_{e_{2}}(\pm 1)]$$

$$= x_{(e_{1}+e_{2}-e_{3}+e_{4})/2}(\pm 1)x_{e_{1}+e_{2}}(\pm 2)$$

$$x_{e_{1}-e_{3}}(\pm 1)x_{e_{1}}(\pm 1)x_{e_{1}+e_{2}}(\pm 1).$$

Similarly, we get

$$\begin{split} & [X_1, X_3] = x_{e_1 + e_4}(\pm 2). \\ & [X_1, W^2[X_1, X_2]W^{-2}] = x_{e_1 + e_4}(\pm 1 \pm 2 \pm 2 \pm 2) \end{split}$$

These two identities imply that $x_{e_1+e_4}(1) \in H$. Then it is easy to check that the *w*-closure of $e_1 + e_4$ is Φ_l which implies, together with the first formula of (3.1.a), that

$$x_r(1) \in H$$
 for all $r \in \Phi_l$.

As for the short roots, we know that

$$Y = x_{e_1}(\pm 1)x_{(e_1 - e_2 - e_3 + e_4)/2}(\pm 1)$$

(= X₁ less x_{e_1-e_2}(\pm 1)x_{e_1-e_3}(\pm 1))

is in H. Hence

$$[Y, WYW^{-1}] = x_{(e_1+e_2-e_3+e_4)/2}(\pm 1)x_{e_1+e_2}(\pm 1) \in H.$$

Hence

$$x_{(e_1+e_2-e_2+e_4)/2}(1) \in H.$$

The w-orbit of $r = (e_1 + e_2 - e_3 + e_4)/2$ contains one-half of the short roots and the other half is the w-orbit of

$$r - w(r) = r + w'(r).$$

Hence $x_r(1) \in H$ for all $r \in \Phi_s$, too. Hence $H = \mathscr{L}_z$.

3.2. $\mathscr{L} = E_n$, n = 6, 7, 8. For *E* types, we find it most convenient to use the description of the roots of E_8 given in [3], p. 19-09. So, let $\omega_1, \ldots, \omega_9$ be vectors in \mathbb{R}^8 such that $\omega_1 + \ldots + \omega_9 = 0$, $(\omega_i, \omega_i) = 8/9$, $1 \le i \le 9$ and $(\omega_i, \omega_j) = -1/9$, $i \ne j, 1 \le i, j \le 9$, where (,) is the inner product in \mathbb{R}^8 . Then the fundamental system of E_8 is given by

$$\alpha_i = \omega_i - \omega_{i+1}, \quad 1 \leq i \leq 7$$
 and
 $\alpha_8 = \omega_6 + \omega_7 + \omega_8.$

We choose $\{\alpha_3, \ldots, \alpha_8\}$ and $\{\alpha_2, \alpha_3, \ldots, \alpha_8\}$ for the fundamental systems of E_6 and E_7 , respectively.

The set of roots of E_8 is given by

$$\Phi = \{\omega_i - \omega_j, \pm (\omega_i + \omega_j + \omega_k) | 1 \leq i, j, k \leq 9, \\ i \neq j \neq k, i \neq k \}.$$

Let w_r be the reflection defined by $r \in \Phi$. Then $w_{\omega_i - \omega_j}$ interchanges ω_i and ω_j and leaves ω_k , $k \neq i, j$ unchanged, and $w_{\omega_i + \omega_i + \omega_k}$ sends ω_m to

$$\omega_m + 1/3(\omega_i + \omega_j + \omega_k)$$
 if $m \neq i, j, k$,

and to

$$\omega_m - 2/3(\omega_i + \omega_j + \omega_k)$$
 if $m = i, j$ or k.

Now we show that

(3.2). If $\mathscr{L} = E_6$, E_7 or E_8 , then L_z is generated by W and M.

Proof. Assume that $\mathscr{L} = E_6$. Let $X = MW^{-1}$. Then

$$X = x_{\omega_3 - \omega_4} x_{\omega_3 - \omega_5} x_{\omega_3 - \omega_6} x_{\omega_3 - \omega_7} x_{\omega_3 - \omega_8} x_{\omega_3 + \omega_7 + \omega_8}.$$

Here, and in what follows, x_r, y_r, z_r, \ldots denote $x_r(\pm 1)$. Now, we look for a conjugate $W^i X W^{-i}$ of X such that, in computing $[X, W^i X W^{-i}]$, we can take advantage of (3.1.c) as much as possible. We find that

$$W^{3}XW^{-3} = x_{\omega_{3}+\omega_{6}+\omega_{8}}x_{\omega_{3}+\omega_{4}+\omega_{6}}x_{\sigma}x_{\omega_{3}+\omega_{5}+\omega_{6}}x_{\omega_{3}+\omega_{6}+\omega_{7}}x_{\omega_{4}+\omega_{6}+\omega_{8}}x_{\omega_{5}+\omega_{6}}x_{\omega_{5}+\omega_{6}}x_{\omega_{5}+\omega_{6}+\omega_{7}}x_{\omega_{4}+\omega_{6}+\omega_{8}}x_{\omega_{5}+\omega_{6}+\omega_{7}}x_{\omega_{5}+\omega_{7}}x_{\omega_{5}+\omega_{6}+\omega_{7}}x_{\omega_{5}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}}x_{\omega_{7}+\omega_{7}$$

where $\sigma = -(\omega_1 + \omega_2 + \omega_9)$ = the maximal root of E_6 , is a reasonably good one. So

$$Y = [X, W^{3}XW^{-3}] = [x_{\omega_{3}-\omega_{4}}x_{\omega_{3}-\omega_{6}}x_{\omega_{3}-\omega_{8}}, x_{\omega_{4}+\omega_{6}+\omega_{8}}]$$

= $x_{\omega_{3}+\omega_{6}+\omega_{8}}x_{\omega_{3}+\omega_{4}+\omega_{8}}x_{\omega_{3}+\omega_{4}+\omega_{6}}.$

Then

$$[Y, WYW^{-1}] = y_{\omega_3 + \omega_4 + \omega_6} y_{\sigma}$$
$$[Y, W^2 YW^{-2}] = z_{\sigma}.$$

Hence $x_{\omega_3+\omega_4+\omega_6}(1), x_{\sigma}(1) \in H$. Now

$$(\omega_3 + \omega_4 + \omega_6) + w^5(\omega_3 + \omega_4 + \omega_6) = \omega_6 - \omega_7,$$

$$\sigma + w^5\sigma = \omega_6 + \omega_7 + \omega_8 = \alpha_8.$$

The w-orbit of $\omega_6 - \omega_7 = \alpha_6$ contains all the α_i , $3 \le i \le 7$. Hence the w-closure of $\{\omega_3 + \omega_4 + \omega_6, \sigma\}$ is the whole set Φ . Hence $H = \mathscr{L}_z$. Next, let $\mathscr{L} = E_7$. We have

$$X = MW^{-1} = x_{\omega_2 - \omega_3} x_{\omega_2 - \omega_5} x_{\omega_2 - \omega_6} x_{\omega_2 - \omega_7} x_{\omega_2 - \omega_8} x_{\omega_2 + \omega_7 + \omega_8}.$$

Here, again we compute:

$$Y = [X, W^{3}XW^{-3}]$$

= $[x_{\omega_{2}-\omega_{3}}x_{\omega_{2}-\omega_{5}}x_{\omega_{2}-\omega_{8}}, x_{\omega_{5}-\omega_{6}}x_{\omega_{3}+\omega_{5}+\omega_{8}}]$
= $y_{\omega_{2}-\omega_{6}}y_{\omega_{2}+\omega_{5}+\omega_{8}}y_{\omega_{2}+\omega_{3}+\omega_{8}}y_{\omega_{2}+\omega_{3}+\omega_{5}}.$

Then we get

$$[Y, W^{4}YW^{-4}] = z_{\omega_{2}+\omega_{3}+\omega_{5}}.$$

Put $r = \omega_2 + \omega_3 + \omega_5$. Then

$$r + w^{\gamma}(r) = \omega_2 + \omega_5 + \omega_6 = s, \quad w^{-5}(r) + s = \omega_2 - \omega_3.$$

In other words, we have

$$x_{\alpha,1}(1) \in \langle W, M \rangle = H.$$

Since $w^{h/2} = -1$ in E_7 , we also have $x_{-\alpha_2}(1) \in H$ and, as in the proof of type B_n , the problem for E_7 is reduced to that of E_6 . This proves $\mathscr{L}_z = H$ in E_7 .

Finally, let $\mathscr{L} = E_8$. Here again, $w^{h/2} = -1$. Hence we only have to show that

$$x_{\alpha_1}(1) \in \langle W, M \rangle = H.$$

Let $X = MW^{-1}$, $Y = [X, W^3XW^{-3}]$, then
 $[Y, W^6YW^{-6}] = x_{\omega_1 - \omega_9}.$

Since

$$W x_{\omega_1 - \omega_9} W^{-1} = x_{\omega_2 - \omega_9}$$

(and $w^{h/2} = -1$) we have

 $x_{\omega_1-\omega_2}(1) = x_{\alpha_1}(1) \in H.$

This completes the proof of the theorem.

4. Remark. The condition that $\mathscr{L} \neq B_2$, C_2 in the theorem cannot be removed. This can be seen as follows. Let $G = B_2(2)$. Then (G:G') = 2 ([1], p. 176). Clearly, M (hence its conjugates) is in G' and

$$W \equiv x_a(1)x_b(1) \equiv x_{a+b}(1)x_{2a+b}(1) \equiv [x_a(1), x_b(1)]$$

= 1(mod G')

where a is a short root and b is a long root. Hence $\langle W, M \rangle = G'$. However, if char K > 2, then we still have $\mathscr{L}_z = \langle W, M \rangle$.

References

- 1. R. W. Carter, Simple groups of Lie type (John Wiley, New York, 1972).
- 2. B. Chang, Elements of order Coxeter number + 1 in Chevalley groups, Can. J. Math. 34 (1982), 945-951.
- 3. C. Chevalley, *Classifications des groupes de Lie algebriques*, vol. 2 (Secretariat mathematique, Paris, 1958).

University of British Columbia, Vancouver, British Columbia

396