GENERATORS OF CHEVALLEY GROUPS OVER Z

BOMSHIK CHANG

1. Introduction. Let $\mathscr{L}(K)$ be the universal Chevalley group ([1], p. 197)
 set of roots of \mathscr{L}. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}, \ldots, a_{n}\right\}$ be a fundamental system of roots of \mathscr{L} and put

$$
\begin{aligned}
W & =\phi_{\alpha_{1}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \phi_{\alpha_{2}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \\
M & =\phi_{\alpha_{1}}\left(\begin{array}{rl}
1 & 1 \\
-1 & 0
\end{array}\right) \phi_{\alpha_{2}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) .
\end{aligned}
$$

Then we know from [2] (p. 950) that

$$
W^{h}=M^{h+1}= \pm 1
$$

where h is the Coxeter number of \mathscr{L}. We call an element of $\mathscr{L}(K)$ conjugate to W a Coxeter element and an element conjugate to M a Kac element. The purpose of this note is to prove:

Theorem. The group \mathscr{L}_{z} is generated by a Coxeter element and a Kac element if $\mathscr{L} \neq B_{2}, C_{2}$.

This theorem may be regarded as a generalization of the well-known fact that the second order unimodular group is generated by

$$
\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) .
$$

The proof will be carried out by case-by-case computation. The classical types and type G_{2} will be settled in Section 2 using matrix representations ([1], pp. 183-188) of $\mathscr{L}(K)$. For types E_{n} and F_{4}, our arguments will depend solely on the commutator formulas and the effect of the conjugation by W on $x_{r}(\pm 1)$ and these will be done in Section 3.

In this note, the conjugation by Y means $X \rightarrow Y X Y^{-1}$, and as in [1],

$$
[X, Y]=X Y X^{-1} Y^{-1}
$$

Denote by w the Coxeter element in the Weyl group defined by

$$
W x_{r}(t) W^{-1}=x_{w(r)}(\pm t)
$$

By the w-closure of a subset S of Φ, we mean the minimal subset T of Φ such that

> (i) $S \subseteq T$
> (ii) $r, s \in T, r+s \in \Phi \Rightarrow r+s \in T$ and
> (iii) $r \in T \Rightarrow w(r) \in T$.

Note that, if the Dynkin diagram of \mathscr{L} is simply laced, so that the commutator formula is

$$
\left[x_{r}(t), x_{s}(u)\right]=x_{r+s}(\pm t u) \text { or } 1
$$

then the subgroup generated by $\left\{x_{r}(1) \mid r \in S\right\}$ and W contains

$$
\left.\left\langle x_{r}(1)\right| r \in w \text {-closure of } S\right\rangle
$$

2. The classical types.

2.1. $\mathscr{L}=A_{n}$. We choose the fundamental system

$$
\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}
$$

in the usual way, i.e., $\alpha_{i}=e_{i-1}-e_{n}, i=1, \ldots, n$ where $\left\{e_{0}, \ldots, e_{n}\right\}$ is an orthonormal basis of $R^{n+1}([1]$, p. 46), and use the identification $A_{n}(K)=S L_{n+1}(K)([\mathbf{1}]$, p. 184). Then

$$
\begin{aligned}
& W=\left(\begin{array}{rrlrr}
0 & 0 & \ldots & 0 & 1 \\
-1 & 0 & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & -1 & 0
\end{array}\right), \\
& M
\end{aligned}=\left(\begin{array}{rrlrl}
1 & 1 & \ldots & 1 & 1 \\
-1 & 0 & \ldots & 0 & 0 \\
0 & -1 & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & -1 & 0
\end{array}\right) .
$$

Unfortunately M and W do not generate \mathscr{L}_{z} and we need a slight modification.
(2.1) If $\mathscr{L}=A_{n}, n \geqq 2$ then \mathscr{L}_{z} is generated by W and $V M V^{-1}$, where $V=x_{\alpha_{1}+\alpha_{2}}(1)$.

Proof. Let $H=\left\langle W, V M V^{-1}\right\rangle$. The action of w is given by

$$
w: e_{0} \rightarrow e_{1} \rightarrow \ldots \rightarrow e_{n} \rightarrow e_{0}
$$

and we can see easily that the w-closure of any α in Π is the whole set Φ. Therefore, we need only to show that $x_{\alpha}(1) \in H$ (or $x_{-\alpha}(1) \in H$) for some $\alpha \in \Pi$.

Let $M^{\prime}=V M V^{-1}, X_{1}=M^{\prime} W^{-1}, X_{2}=W X_{1} W^{-1}, X_{3}=W^{2} X_{1} W^{-2}$ and $Y=X_{1} X_{2}$. Then matrix computations show that
(2.1.a) $\quad\left[Y, X_{1}\right]\left[Y^{2}, X_{1}^{-1}\right]=x_{-\alpha_{1}}(1), \quad$ if $n=2$
(2.1.b) $\quad\left[X_{2},\left[X_{2},\left[X_{1}, X_{3}\right]\right]\right]=x_{\alpha_{1}}(-1), \quad$ if $n=3$
(2.1.c) $\quad Y W^{-1} Z W Y^{-1} Z=x_{\alpha_{2}}(-1)$, if $n \geqq 4$
where $Z=\left[Y, X_{1}\right]\left[Y^{2}, X_{1}^{-1}\right]$.
(Note that $V=I+e_{02}$ in the notation of [1]. One can obtain

$$
Z=x_{e_{1}-e_{3}}(-1) x_{e_{1}-e_{4}}(1)
$$

and (2.1.c) for $n=4$ by direct computation. Then, for $n \geqq 5$, these expressions may be verified inductively by conjugating X_{1} and Y with $x_{\alpha_{n}}(1)$ which will bring them "into $A_{n-1}(K)$ ".)
2.2. $\mathscr{L}=B_{n}, C_{n}, n \geqq 3$. Here again, Π is chosen as in [1], p. 47 and use the matrix representations of $B_{n}(K)$ and $C_{n}(K)$ given in [1], pp. 185-187. Thus

$$
\begin{aligned}
& x_{\alpha_{1}}(t)=I+t\left(e_{12}-e_{-2,-1}\right) \\
& \cdots \\
& x_{\alpha_{n}}(t)=I+t\left(2 e_{n 0}-e_{0,-n}\right)-t^{2} e_{n,-n}
\end{aligned}
$$

in $B_{n}(K)$ and

$$
\begin{aligned}
& x_{\alpha_{1}}(t)=I+t\left(e_{12}-e_{-2,-1}\right) \\
& \cdots \\
& x_{\alpha_{n}}(t)=I+t e_{n,-n}
\end{aligned}
$$

in $C_{n}(K)$. The action of w is given by

$$
w: e_{1} \rightarrow e_{2} \rightarrow \ldots \rightarrow e_{n} \rightarrow-e_{1}
$$

in both B_{n} and C_{n}. We show that
(2.2) If $\mathscr{L}=B_{n}$ or C_{n} and $n \geqq 3$ then \mathscr{L}_{z} is generated by W and M.

Proof. Let $X_{1}=M W^{-1}, X_{2}=W X^{-1}, X_{3}=W^{-2} M W^{-2}$ and $H=$ $\langle W, M\rangle$. In $B_{n}(K)$, we have

$$
\begin{equation*}
X_{2}^{-1} X_{1} X_{2}\left[\left[X_{1}, X_{2}\right],\left[X_{2}, X_{3}\right]\right]=x_{\alpha_{1}}(-1) . \tag{2.2.a}
\end{equation*}
$$

This can be verified by direct computation when $n=3$ and $n=4$. For $n \geqq 5$, we may see it inductively as follows. We have, from the matrix representation,

$$
\begin{aligned}
X_{1} & =x_{e_{1}-e_{2}} \ldots x_{e_{1}-e_{n-2}-2} x_{e_{1}-e_{n-1}} x_{e_{1}-e_{n}} x_{e_{1}}, \\
X_{2} & =x_{e_{2}-e_{3}} \ldots x_{e_{2}-e_{n-1}} x_{e_{2}-e_{n}} x_{e_{2}+e_{1}} x_{e_{2}}, \\
X_{3} & =x_{e_{3}-e_{4}} \ldots x_{e_{3}-e_{n}} x_{e_{2}+e_{1}} x_{e_{3}+e_{2}} x_{e_{3}}
\end{aligned}
$$

where $x_{r}(-1)$ is denoted by x_{r} for brevity. Then the conjugation by $V=x_{e_{n-1}-e_{n}}(1)$ eliminates $x_{e_{1}-e_{n}}, x_{e_{2}-e_{n}}$ and $x_{e_{3}-e_{n}}$ in X_{1}, X_{2} and X_{3}, respectively (and thus X_{1}, X_{2} and X_{3} are brought "into $B_{n-1}(K)$ "). Then by the induction hypothesis,

$$
V Y V^{-1}=x_{\alpha_{1}}(-1)
$$

where Y is the left hand side of (2.2.a). Hence

$$
Y=x_{\alpha_{1}}(-1)
$$

Once we have $x_{\alpha_{1}}(1) \in H$, we can prove (2.2) again inductively as follows. First, we can show easily that

$$
x_{\alpha_{1}}(1) \in H \Rightarrow x_{r}(1) \in H
$$

for all $r \in \Phi$, in $B_{3}(K)$. Then for $n \geqq 4$,

$$
x_{\alpha_{1}}(1) \in H \Rightarrow W^{h / 2} x_{\alpha_{1}}(1) W^{-h / 2}=x_{-\alpha_{1}}(\pm 1) \in H
$$

Hence

$$
\begin{aligned}
& \phi_{\alpha_{1}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \phi_{\alpha_{1}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \in H, \quad \text { and } \\
& \phi_{\alpha_{2}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \\
& \phi_{\alpha_{2}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \in H .
\end{aligned}
$$

Then by the induction hypothesis $x_{r}(1) \in H$ for all r in the root system of B_{n-1} spanned by $\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}$, and hence $x_{r}(1) \in H$ for all $r \in \Phi$.

An argument almost identical to the above will settle the case when $\mathscr{L}=C_{n}$. The key identity in this case is

$$
X_{2}^{-1} X_{1}^{-1} X_{2}\left[\left[X_{1}, X_{2}\right],\left[X_{2}, X_{3}\right]\right]=x_{\alpha_{1}}(1)
$$

2.3. $\mathscr{L}=D_{n}$. Once again Π is as in [1], p. 47 and use the matrix representation in [1], p. 185. Thus

$$
\begin{aligned}
& x_{\alpha_{1}}(t)=x_{e_{1}-e_{2}}(t)=I+t\left(e_{1,2}-e_{-2,-1}\right) \\
& \ldots \\
& x_{\alpha_{n}}(t)=x_{e_{n-1}+e_{n}}(t)=I+t\left(e_{n-1,-n}-e_{n,-n+1}\right)
\end{aligned}
$$

and the action of w is given by

$$
w: e_{1} \rightarrow e_{2} \rightarrow \ldots \rightarrow e_{n-1} \rightarrow-e_{1}, e_{n} \rightarrow-e_{n} .
$$

(2.3) If $\mathscr{L}=D_{n}, n \geqq 4$, then \mathscr{L}_{z} is generated by W and $V M V^{-1}$ where

$$
V=x_{e_{1}+e_{n}}(1)
$$

Proof. Let

$$
\begin{aligned}
& X_{1}=V M V^{-1} W^{-1}, X_{2}=W X_{1} W^{-1}, \\
& Y_{1}=\left[X_{1}, X_{2}\right], Y_{2}=\left[X_{1}, X_{2}^{-1}\right], Y_{3}=\left[X_{1}^{-1}, X_{2}\right] \\
& Y_{4}=\left[X_{1}^{-1}, X_{2}^{-1}\right] \quad \text { and } H=\left\langle W, V M V^{-1}\right\rangle .
\end{aligned}
$$

From the matrix representation, we have

$$
\begin{aligned}
X_{1} & =x_{e_{1}-e_{2}} \ldots x_{e_{1}-e_{n-2}} x_{e_{e_{1}-e_{n-1}}} x_{e_{1}-e_{n}} x_{e_{2}-e_{n}} \\
X_{2} & =x_{e_{2}-e_{3}} \ldots x_{e_{2}-e_{n-1}} x_{e_{2}+e_{1}}^{-1} x_{e_{2}+e_{n}} x_{e_{3}+e_{n}}
\end{aligned}
$$

where x_{r} denotes $x_{r}(-1)$. Here the key identities are:

$$
\begin{aligned}
& Y_{1} Y_{2}=x_{e_{1}+e_{n}}(1), \\
& Y_{1} Y_{3}=x_{e_{1}+e_{2}}(-3) x_{e_{1}+e_{3}}(1), \\
& Y_{2} Y_{4}=x_{e_{1}+e_{2}}(2) x_{e_{1}+e_{3}}(-1) .
\end{aligned}
$$

Again, these identities can be verified by direct computation for $n=4$, then use induction for $n \geqq 5$. So, when $n \geqq 5$, by conjugating X_{1} and X_{2} with $x_{e_{n-2}-e_{n-1}}$ (1) we can eliminate $x_{e_{1}-e_{n-1}}$ and $x_{e_{2}-e_{n-1}}$, then conjugating them again with

$$
\phi_{e_{n-1}-e_{n}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

the e_{n} 's are brought to e_{n-1}. We can then use the induction hypothesis to obtain the desired result.
The above identities show that $x_{e_{1}+e_{2}}(1), x_{e_{1}+e_{n}}(1)$ and $x_{e_{1}+e_{n}}(1) \in H$. Then it is easy to check that the w-closure of $\left\{e_{1}+e_{2}, e_{1}+e_{3}, e_{1}+e_{n}\right\}$ is the whole set Φ and this proves (2.3).
2.4. $\mathscr{L}=G_{2}$. In this case we have the following matrix representation:

$$
\begin{aligned}
& \phi_{\alpha_{1}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{llllll}
a & b & & & & \\
c & d & & & & \\
& & a^{2} & 2 a b & -b^{2} & \\
& a c & a d+b c & -b d & & \\
& & -c^{2} & -2 c d & d^{2} & \\
& & & & & \\
& & & -b & \\
& & & & \\
& & & &
\end{array}\right) \\
& \phi_{\alpha_{2}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{rrrrrrr}
1 & & & & & & \\
& a & b & & & & \\
& c & d & & & & \\
& & & 1 & & & \\
& & & & a & -b & \\
& & & & -c & d & \\
& & & & & & 1
\end{array}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& X_{1}=M W^{-1}, X_{2}=W X_{1} W^{-1}, X_{3}=W^{2} X_{1} W^{-2} \\
& \quad \text { and } H=\langle W, M\rangle .
\end{aligned}
$$

Then using the above representation, we can show that

$$
\left[X_{3}, X_{1} X_{2} X_{3} X_{1}^{-1}\right]=x_{3 \alpha_{1}+2 \alpha_{2}}(-1)=W^{-1} x_{\alpha_{2}}(-1) W
$$

Since $w^{3}(r)=-r$,

$$
x_{\alpha_{2}}(1) \in H \Rightarrow x_{-\alpha_{2}}(1) \in H .
$$

Hence

$$
\phi_{\alpha_{2}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \phi_{\alpha_{2}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \in H,
$$

which implies also that

$$
\phi_{\alpha_{1}}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \phi_{\alpha_{1}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \in H .
$$

Hence $x_{\alpha_{1}}(1) \in H$. Now w acts transitively on the short (and the long) roots. Therefore $x_{r}(1) \in H$ for all $r \in \Phi$, i.e., $\mathscr{L}_{z}=\langle W, M\rangle$.

3. Exceptional types.

3.1. $\mathscr{L}=F_{4}$. Choose the fundamental system Π as in [1], p. 47. Thus

$$
\begin{aligned}
\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \alpha_{3} & =e_{3}, \\
\alpha_{4} & =\left(-e_{1}-e_{2}-e_{3}+e_{4}\right) / 2
\end{aligned}
$$

Let Φ_{l} and Φ_{s} be the sets of long roots and short roots, respectively, and recall the commutator formulas:
(3.1.a) $\quad\left[x_{r}(t), x_{s}(u)\right]=x_{r+s}(\pm t u) \quad$ if $r, s, r+s \in \Phi_{l}$

$$
\begin{aligned}
& =x_{r+s}(\pm t u) x_{r+2 s}\left(\pm t u^{2}\right) \\
& =x_{r+s}(\pm 2 t u) \quad \text { if } r, s \in \Phi_{l}, s, r+s \in \Phi_{s} \\
& =x_{r+s}(\pm t u) \quad \text { if } r, s, r+s \in \Phi_{l} \\
& =1 \quad \text { if } r+s \notin \Phi .
\end{aligned}
$$

The action of w is given by

$$
\begin{aligned}
& w: e_{1} \rightarrow\left(e_{1}+e_{2}-e_{3}+e_{4}\right) / 2, \\
& e_{2} \rightarrow\left(e_{1}-e_{2}+e_{3}+e_{4}\right) / 2, \\
& e_{3} \rightarrow\left(-e_{1}-e_{2}-e_{3}+e_{4}\right) / 2, \\
& e_{4} \rightarrow\left(-e_{1}+e_{2}+e_{3}+e_{4}\right) / 2
\end{aligned}
$$

Let $X_{1}=M W^{-1}, X_{2}=W X_{1} W^{-1}, X_{3}=W^{2} X_{1} W^{-2}$ and $H=\langle W, M\rangle$. Then

$$
X_{1}=x_{e_{1}-e_{2}}(\pm 1) x_{e_{1}-e_{3}}(\pm 1) x_{e_{1}}(\pm 1) x_{\left(e_{1}-e_{2}-e_{3}+e_{4}\right) / 2}(\pm 1)
$$

We note also that
(3.1.b) $[a b, c]=[a,[b, c]][b, c][a, c]$,

$$
[a, c d]=[a, c][c,[a, d]][a, d] .
$$

In particular,

$$
\text { (3.1.c) } \begin{aligned}
{[a b, c] } & =[a, c] \\
& \text { if }[b, c]=1, \\
& =[b, c]
\end{aligned} \quad \text { if }[a, b]=[a, c]=1 . ~=[a, c] \quad \text { if }[a, d]=1 .
$$

Now using (3.1.a), (3.1.b) and (3.1.c) we compute:

$$
\begin{aligned}
{\left[X_{1}, X_{2}\right]=} & {\left[x_{\left(e_{1}-e_{2}-e_{3}+e_{4}\right) / 2}(\pm 1), x_{e_{2}}(\pm 1)\right] } \\
& {\left[x_{e_{1}}(\pm 1), x_{e_{2}}(\pm 1)\right] } \\
& {\left[x_{e_{1}-e_{2}}(\pm 1), x_{e_{2}-e_{3}}(\pm 1)\right] } \\
& {\left[x_{e_{1}-e_{2}}(\pm 1), x_{e_{2}}(\pm 1)\right] } \\
= & x_{\left(e_{1}+e_{2}-e_{3}+e_{4}\right) / 2}(\pm 1) x_{e_{1}+e_{2}}(\pm 2) \\
& x_{e_{e_{1}-e_{3}}}(\pm 1) x_{e_{1}}(\pm 1) x_{e_{1}+e_{2}}(\pm 1) .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
& {\left[X_{1}, X_{3}\right]=x_{e_{1}+e_{4}}(\pm 2)} \\
& {\left[X_{1}, W^{2}\left[X_{1}, X_{2}\right] W^{-2}\right]=x_{e_{1}+e_{4}}(\pm 1 \pm 2 \pm 2 \pm 2)}
\end{aligned}
$$

These two identities imply that $x_{e_{1}+e_{4}}(1) \in H$. Then it is easy to check that the w-closure of $e_{1}+e_{4}$ is Φ_{l} which implies, together with the first formula of (3.1.a), that

$$
x_{r}(1) \in H \quad \text { for all } r \in \Phi_{l} .
$$

As for the short roots, we know that

$$
\begin{aligned}
& Y=x_{e_{1}}(\pm 1) x_{\left(e_{1}-e_{2}-e_{3}+e_{4}\right) / 2}(\pm 1) \\
& \left(=X_{1} \text { less } x_{e_{1}-e_{2}}(\pm 1) x_{e_{1}-e_{3}}(\pm 1)\right)
\end{aligned}
$$

is in H. Hence

$$
\left[Y, W Y W^{-1}\right]=x_{\left(e_{1}+e_{2}-e_{3}+e_{4}\right) / 2}(\pm 1) x_{e_{1}+e_{2}}(\pm 1) \in H .
$$

Hence

$$
x_{\left(e_{1}+e_{2}-e_{3}+e_{4}\right) / 2}(1) \in H .
$$

The w-orbit of $r=\left(e_{1}+e_{2}-e_{3}+e_{4}\right) / 2$ contains one-half of the short roots and the other half is the w-orbit of

$$
r-w(r)=r+w^{7}(r) .
$$

Hence $x_{r}(1) \in H$ for all $r \in \Phi_{s}$, too. Hence $H=\mathscr{L}_{z}$.
3.2. $\mathscr{L}=E_{n}, n=6,7,8$. For E types, we find it most convenient to use the description of the roots of E_{8} given in [3], p. 19-09. So, let $\omega_{1}, \ldots, \omega_{9}$ be vectors in R^{8} such that $\omega_{1}+\ldots+\omega_{9}=0,\left(\omega_{i}, \omega_{i}\right)=8 / 9,1 \leqq i \leqq 9$ and $\left(\omega_{i}, \omega_{j}\right)=-1 / 9, i \neq j, 1 \leqq i, j \leqq 9$, where $($,$) is the inner product in$ R^{8}. Then the fundamental system of E_{8} is given by

$$
\begin{aligned}
& \alpha_{i}=\omega_{i}-\omega_{i+1}, \quad 1 \leqq i \leqq 7 \quad \text { and } \\
& \alpha_{8}=\omega_{6}+\omega_{7}+\omega_{8} .
\end{aligned}
$$

We choose $\left\{\alpha_{3}, \ldots, \alpha_{8}\right\}$ and $\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{8}\right\}$ for the fundamental systems of E_{6} and E_{7}, respectively.

The set of roots of E_{8} is given by

$$
\begin{aligned}
\Phi=\left\{\omega_{i}-\omega_{j}, \pm\left(\omega_{i}+\omega_{j}+\omega_{k}\right) \mid 1 \leqq i, j,\right. & k \leqq 9 \\
& i \neq j \neq k, i \neq k\}
\end{aligned}
$$

Let w_{r} be the reflection defined by $r \in \Phi$. Then $w_{\omega_{i}-\omega_{j}}$ interchanges ω_{i} and ω_{j} and leaves $\omega_{k}, k \neq i, j$ unchanged, and $\omega_{\omega_{i}+\omega_{j}+\omega_{k}}$ sends ω_{m} to

$$
\omega_{m}+1 / 3\left(\omega_{i}+\omega_{j}+\omega_{k}\right) \quad \text { if } m \neq i, j, k,
$$

and to

$$
\omega_{m}-2 / 3\left(\omega_{i}+\omega_{j}+\omega_{k}\right) \quad \text { if } m=i, j \text { or } k .
$$

Now we show that
(3.2). If $\mathscr{L}=E_{6}, E_{7}$ or E_{8}, then L_{z} is generated by W and M.

Proof. Assume that $\mathscr{L}=E_{6}$. Let $X=M W^{-1}$. Then

$$
X=x_{\omega_{3}-\omega_{4}} x_{\omega_{3}-\omega_{5}} x_{\omega_{3}-\omega_{6}} x_{\omega_{3}-\omega_{7}} x_{\omega_{3}-\omega_{8}} x_{\omega_{3}+\omega_{7}+\omega_{8}}
$$

Here, and in what follows, $x_{r}, y_{r}, z_{r}, \ldots$ denote $x_{r}(\pm 1)$. Now, we look for a conjugate $W^{i} X W^{-i}$ of X such that, in computing $\left[X, W^{i} X W^{-i}\right]$, we can take advantage of (3.1.c) as much as possible. We find that

$$
W^{3} X W^{-3}=x_{\omega_{3}+\omega_{6}+\omega_{8}} x_{\omega_{3}+\omega_{4}+\omega_{6}} x_{\sigma} x_{\omega_{3}+\omega_{5}+\omega_{6}} x_{\omega_{3}+\omega_{6}+\omega_{7}} x_{\omega_{4}+\omega_{6}+\omega_{8}}
$$

where $\sigma=-\left(\omega_{1}+\omega_{2}+\omega_{9}\right)=$ the maximal root of E_{6}, is a reasonably good one. So

$$
\begin{aligned}
Y & =\left[X, W^{3} X W^{-3}\right]=\left[x_{\omega_{3}-\omega_{4}} x_{\omega_{3}-\omega_{6}} x_{\omega_{3}-\omega_{8}}, x_{\omega_{4}+\omega_{6}+\omega_{8}}\right] \\
& =x_{\omega_{3}+\omega_{6}+\omega_{8}} x_{\omega_{3}+\omega_{4}+\omega_{8}} x_{\omega_{3}+\omega_{4}+\omega_{6}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[Y, W Y W^{-1}\right]=y_{\omega_{3}+\omega_{4}+\omega_{6}} y_{\sigma}} \\
& {\left[Y, W^{2} Y W^{-2}\right]=z_{\sigma}}
\end{aligned}
$$

Hence $x_{\omega_{3}+\omega_{4}+\omega_{6}}(1), x_{\sigma}(1) \in H$. Now

$$
\begin{aligned}
& \left(\omega_{3}+\omega_{4}+\omega_{6}\right)+w^{5}\left(\omega_{3}+\omega_{4}+\omega_{6}\right)=\omega_{6}-\omega_{7} \\
& \sigma+w^{5} \sigma=\omega_{6}+\omega_{7}+\omega_{8}=\alpha_{8}
\end{aligned}
$$

The w-orbit of $\omega_{6}-\omega_{7}=\alpha_{6}$ contains all the $\alpha_{i}, 3 \leqq i \leqq 7$. Hence the ω-closure of $\left\{\omega_{3}+\omega_{4}+\omega_{6}, \sigma\right\}$ is the whole set Φ. Hence $H=\mathscr{L}_{z}$.

Next, let $\mathscr{L}=E_{7}$. We have

$$
X=M W^{-1}=x_{\omega_{2}-\omega_{3}} x_{\omega_{2}-\omega_{5}} x_{\omega_{2}-\omega_{6}} x_{\omega_{2}-\omega_{7}} x_{\omega_{2}-\omega_{8}} x_{\omega_{2}+\omega_{7}+\omega_{8}} .
$$

Here, again we compute:

$$
\begin{aligned}
Y & =\left[X, W^{3} X W^{-3}\right] \\
& =\left[x_{\omega_{2}-\omega_{3}} x_{\omega_{2}-\omega_{5}} x_{\omega_{2}-\omega_{8}}, x_{\omega_{5}-\omega_{6}} x_{\omega_{3}+\omega_{5}+\omega_{8}}\right] \\
& =y_{\omega_{2}-\omega_{6}} y_{\omega_{2}}+\omega_{5}+\omega_{8} y_{\omega_{2}+\omega_{3}+\omega_{8}} y_{\omega_{2}+\omega_{3}+\omega_{5} .} .
\end{aligned}
$$

Then we get

$$
\left[Y, W^{4} Y W^{-4}\right]=z_{\omega_{2}+\omega_{3}+\omega_{5}} .
$$

Put $r=\omega_{2}+\omega_{3}+\omega_{5}$. Then

$$
r+w^{7}(r)=\omega_{2}+\omega_{5}+\omega_{6}=s, \quad w^{-5}(r)+s=\omega_{2}-\omega_{3} .
$$

In other words, we have

$$
x_{\alpha_{2}}(1) \in\langle W, M\rangle=H .
$$

Since $w^{h / 2}=-1$ in E_{7}, we also have $x_{-\alpha_{2}}(1) \in H$ and, as in the proof of type B_{n}, the problem for E_{7} is reduced to that of E_{6}. This proves $\mathscr{L}_{z}=H$ in E_{7}.

Finally, let $\mathscr{L}=E_{8}$. Here again, $w^{h / 2}=-1$. Hence we only have to show that

$$
x_{\alpha_{1}}(1) \in\langle W, M\rangle=H .
$$

Let $X=M W^{-1}, Y=\left[X, W^{3} X W^{-3}\right]$, then

$$
\left[Y, W^{6} Y W^{-6}\right]=x_{\omega_{1}-\omega_{9}}
$$

Since

$$
W x_{\omega_{1}-\omega_{9}} W^{-1}=x_{\omega_{2}-\omega_{9}}
$$

(and $w^{h / 2}=-1$) we have

$$
x_{\omega_{1}-\omega_{2}}(1)=x_{\alpha_{1}}(1) \in H
$$

This completes the proof of the theorem.
4. Remark. The condition that $\mathscr{L} \neq B_{2}, C_{2}$ in the theorem cannot be removed. This can be seen as follows. Let $G=B_{2}(2)$. Then $\left(G: G^{\prime}\right)=2$ ($[1]$, p. 176). Clearly, M (hence its conjugates) is in G^{\prime} and

$$
\begin{aligned}
W & \equiv x_{a}(1) x_{b}(1) \equiv x_{a+b}(1) x_{2 a+b}(1) \equiv\left[x_{a}(1), x_{b}(1)\right] \\
& \equiv 1\left(\bmod G^{\prime}\right)
\end{aligned}
$$

where a is a short root and b is a long root. Hence $\langle W, M\rangle=G^{\prime}$. However, if char $K>2$, then we still have $\mathscr{L}_{z}=\langle W, M\rangle$.

References

1. R. W. Carter, Simple groups of Lie type (John Wiley, New York, 1972).
2. B. Chang, Elements of order Coxeter number +1 in Chevalley groups, Can. J. Math. 34 (1982), 945-951.
3. C. Chevalley, Classifications des groupes de Lie algebriques, vol. 2 (Secretariat mathematique, Paris, 1958).

University of British Columbia,
Vancouver, British Columbia

