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Abstract

This paper studies outflow of a light fluid from a point source, starting from an initially
spherical bubble. This region of light fluid is embedded in a heavy fluid, from which it
is separated by a thin interface. A gravitational force directed radially inward toward the
mass source is permitted. Because the light inner fluid is pushing the heavy outer fluid,
the interface between them may be unstable to small perturbations, in the Rayleigh–
Taylor sense. An inviscid model of this two-layer flow is presented, and a linearized
solution is developed for early times. It is argued that the inviscid solution develops
a point of infinite curvature at the interface within finite time, after which the solution
fails to exist. A Boussinesq viscous model is then presented as a means of quantifying
the precise effects of viscosity. The interface is represented as a narrow region of large
density gradient. The viscous results agree well with the inviscid theory at early times,
but the curvature singularity of the inviscid theory is instead replaced by jet formation
in the viscous case. This may be of relevance to underwater explosions and stellar
evolution.
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1. Introduction

Rayleigh–Taylor flows typically occur when a horizontal layer of heavy fluid overlies
a lighter fluid layer and there is a narrow interface separating them. Disturbances
to the interface are then unstable, and the two fluids attempt to exchange positions,
essentially through the formation of fingers that grow at the interface. These unstable
flows were initially studied by Rayleigh [43] and Taylor [50], who considered a
small sinusoidal disturbance applied to the interface, within the context of linearized
theory and for inviscid fluids. It was assumed in that theory that the interface shape
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represented only a small disturbance to a horizontal plane, but the linear theory
predicts exponential growth of the interface, and so can only be valid for early times.
Nonlinear effects become important at later times, and can be responsible for complex
mathematical and physical effects in these flows.

The Rayleigh–Taylor instability has been the subject of intensive study, since it
occurs in a wide variety of applications. Much of the earlier work on this topic
is summarized in review articles by Kull [31] and Sharp [47] and the extensive
presentation of Inogamov [28]. The instability occurs in oceanography, where
fluid layers overturn through the formation of fingers and plumes, as discussed by
Lazier et al. [33]. Rayleigh–Taylor flows are also believed to be of importance
in astrophysics, where they could account for the structures seen by McClure-
Griffiths et al. [38] in their radio observations of galaxies, and may also play a
role in galactic super-bubble formation, as suggested by Low and McCray [36].
A careful observational analysis of 34 planetary nebulae was undertaken by Dgani
and Soker [17], who argued that Rayleigh–Taylor instability could account for
fragmentation of the halo of the nebula, thus permitting the interstellar medium to
penetrate and affect inner regions, too. In astrophysical situations, magnetic fields
are expected to have a significant effect on the evolution of the instability, and a
review of the magnetohydrodynamics of these situations is presented by Shariff [46].
The Rayleigh–Taylor instability is investigated in planar geometry by Chambers and
Forbes [12] for charged fluids in magnetic fields. It is also of interest in geology,
and Neil and Houseman [41] have even suggested it as a possible mechanism for the
formation of mountains.

Experimental observations of the Rayleigh–Taylor instability in the laboratory have
also been undertaken in a variety of situations. In a review article by Berthoud [10]
devoted to vapour explosions, the role of this instability in the fragmentation of jets is
discussed, and its effect on the break-up of spherical bubbles during violent collapse
is analysed by Lin et al. [34] and compared with the predictions of experiments.
The effects of magnetic fields in confining some of the unstable spikes produced by
Rayleigh–Taylor instability have been studied in a series of experiments undertaken
by Kuranz et al. [32] using a laser to initiate the flow. The similarity of this situation
to the blast-wave driven instability that might occur in the explosion of a supernova is
observed. A recent review by Andrews and Dalziel [3] discusses the development of
Rayleigh–Taylor instability, from its early phase of exponential growth to its saturation
phase when nonlinear mushroom-shaped bubbles form, and its eventual formation of
a mixing layer, and summarizes the results of experimental work for small density
difference between the two fluid layers.

In the classical Rayleigh–Taylor instability involving planar flow and two inviscid
fluids separated by an infinitesimally thin interface, disturbances are predicted from
linearized theory to grow exponentially with time. Eventually, however, nonlinear
effects dominate as the interfacial waves grow to finite amplitude, as discussed by
Andrews and Dalziel [3]. It is usually observed in simulations that the numerical
methods then fail in finite time. This is remarked upon, for example, by Sharp [47].
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It is now known from the work of Moore [40] on the related Kelvin–Helmholtz
instability that a curvature singularity forms at the interface within finite time. After
this critical time, the inviscid model loses its validity, and so the solution then
ceases to exist. Cowley et al. [15] confirmed Moore’s analysis with an asymptotic
argument, for the Kelvin–Helmholtz shear-flow instability, and Baker et al. [6]
also demonstrated the use of Moore’s analysis in estimating the time to curvature
singularity formation in the Rayleigh–Taylor situation. Very recently, the finite-
time curvature singularity predicted by Moore [40] has been generalized by Fontelos
and De la Hoz [20], and calculated asymptotically both for planar water waves as
well as for the Rayleigh–Taylor instability. Baker and Xie [8] have considered the
asymptotic behaviour of singularities involved in irrotational models of water waves in
deep fluid.

When viscous effects are reintroduced into the model, the curvature singularity
predicted by the inviscid theory is instead replaced by a small region of high vorticity,
in a flow that is otherwise almost irrotational. This was demonstrated recently in
numerical calculations by Forbes [21], but has been understood to be the case for a long
time. This patch of vorticity then causes the interface to roll up and form a mushroom-
shaped structure. In the related Kelvin–Helmholtz instability, Krasny [29] introduced
a “vortex blob” method that effectively replaced the sharp interface between the two
fluids with a more diffuse region. His calculations showed that the interface rolled up
into the familiar spiral shapes associated with the Kelvin–Helmholtz instability. More
recently, Baker and Beale [5] and Baker and Pham [7] have argued that different types
of “vortex blob” methods may themselves influence the outcome of the flow, so that a
consistent limit may not even be achieved as the effective “blob” size is reduced. This
is perhaps to be expected given that these flows are unstable, and so care is evidently
needed in the interpretation of these results. Nevertheless, “vortex blob” calculations
are in broad agreement with the predictions of fully nonlinear numerical solutions of
the Navier–Stokes equations, such as those undertaken by Tryggvason et al. [51].

Extensive direct numerical simulation of the Rayleigh–Taylor instability has been
undertaken in the past few decades. A comprehensive review of many of the numerical
techniques used in these interfacial flows is given by Scardovelli and Zaleski [45]. An
essentially nonoscillatory finite-difference scheme was tested on the Rayleigh–Taylor
instability by Shi et al. [48], who demonstrated its ability to compute overturning
mushroom-shaped plumes in planar compressible flow. Numerical codes for more
complex Rayleigh–Taylor situations have also been devised, such as that reported
by Cook and Dimotakis [14], in which provision is made in the modelling for the
effects of turbulence. Ramaprabhu et al. [42] and Young and Ham [54] have
likewise modelled the turbulent situation in three-dimensional flow. Calder et al. [11]
developed a numerical code for simulating astrophysical events, and verified it against
experimental data, for the Richtmyer–Meshkov instability (a shock-induced motion
of an interface) as well as for the classical Rayleigh–Taylor flow, both of which are
believed to be of importance in astronomy. Boundary-integral methods have also
been used to compute unstable interface motion, and a review of these techniques
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is presented by Hou et al. [27], where their application to the computation of Kelvin–
Helmholtz and Rayleigh–Taylor instabilities is discussed.

Rayleigh–Taylor type flows are of interest in geometries other than the purely
planar case, and may occur again in astrophysical situations, or in the collapse of a
spherical bubble. Epstein [18] points out that these instabilities are also of importance
in the inertial confinement of plasmas during fusion experiments. Furthermore, the
nonplanar geometry may modify the stability properties of the Rayleigh–Taylor flow
through compression and convergence, which is the so-called Bell–Plesset effect.
Mikaelian [39] presented a linearized analysis for planar, cylindrical and spherical
geometry, and considered the case of concentric shells of fluid undergoing implosion
or explosion. This linearized analysis has been extended to the case of compressible
fluids by Yu and Livescu [55], and a linearized analysis for both Rayleigh–Taylor and
Richtmyer–Meshkov instabilities has been presented by Amendt [2] and applied to the
analysis of an implosion in inertial confinement confusion.

Nonlinear effects in curved geometries have also been studied. For the related
Richtmyer–Meshkov instability, in which an interface is disturbed by a shock,
Matsuoka and Nishihara [37] undertook a weakly nonlinear analysis and compared
it against the predictions of a numerical solution for an inviscid two-fluid model, using
an approach similar to that of Krasny [29]. The way in which the flow evolves is
strongly dependent on the initial conditions, which is perhaps to be expected in these
unstable situations, and small initial perturbations of different modes produce very
differently shaped outflows at later times. Matsuoka and Nishihara [37] showed results
for tri-polar outflows, in which three mushroom-shaped plumes were arranged around
the circumference of a cylinder. Very recently, Forbes [22] considered the analogous
problem for the Rayleigh–Taylor situation. In that study, a line source ejected a light
fluid into a surrounding heavy fluid, so that a cylindrical interface between the fluids
moved radially outward as time increased. Small perturbations to the initial fluid speed
from the line source then resulted in instabilities at the interface. The inviscid problem
with a sharp interface was solved using a spectral method developed for free-surface
problems by Forbes et al. [23], and it was shown that curvature singularities were to
be expected at the interface within finite time, similar to those predicted by Moore [40]
for the planar Kelvin–Helmholtz instability. When viscous effects were included, those
points of infinite curvature at the interface were replaced with small regions of very
high vorticity, and these ultimately led to the overturning of the interface. Forbes [22]
displayed results for several different modes, including a tri-polar outflow similar to
that obtained by Matsuoka and Nishihara [37] for the Richtmyer–Meshkov instability.

In the present paper, outflow from a point source located at the origin of a coordinate
system is considered, as a model for injection through a narrow pipe in a laboratory
experiment, or outflow from a star. The inner injected fluid is lighter than the outer
surrounding fluid, and the possibility of an inwardly directed radial gravitation term is
included. This is therefore a flow of Rayleigh–Taylor type. For simplicity, the outflow
is assumed to be rotationally symmetric about the z-axis, and the instability develops
from an initial sphere of radius a. The shape adopted by the outflow is influenced
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by initial conditions, and various different Fourier modes may initially be excited.
Particularly in the viscous case, however, nonlinearity eventually results in a cascade
of energy down to the first Fourier mode, and this dominates the shape of the final
outflow, as is illustrated here.

The inviscid model is developed in Section 2, for two immiscible fluids separated by
a sharp interface. The linearized solution for this situation is presented in Section 3,
and shows the influence of both the Bell–Plesset effect as well as Rayleigh–Taylor
instability. A method for including viscous effects in the model is outlined in Section 4,
using a Boussinesq approximation for weakly miscible fluids, and the results of
calculations are presented and discussed in Section 5. A summary and discussion
in Section 6 conclude the paper.

2. The inviscid model

Consider a spherical bubble of fluid of density ρ1 lying within a second fluid of
density ρ2. The inner fluid (fluid 1) is lighter than the outer one (fluid 2), so that
ρ1 < ρ2. The spherical region of fluid 1 is centred at the origin of a Cartesian coordinate
system, and its initial radius is a. A point source located at the origin is turned on
impulsively at time t = 0, and thereafter it ejects the light fluid (of density ρ1) at the
volume flow rate m. In the inviscid model of this phenomenon, the two fluids are
separated by a sharp interface, and for simplicity, it is assumed in this investigation
that the flow remains rotationally symmetric about the z-axis.

It is convenient to represent the situation in terms of spherical polar coordinates
(r, φ, θ), which are related to the Cartesian system by means of the equations

x = r sin φ cos θ, 0 < r <∞,

y = r sin φ sin θ, 0 < φ < π,

z = r cos φ, 0 < θ < 2π.

(2.1)

In this coordinate system, the interface between the two fluids is written in the form
r = R(φ, t). Initially, R(φ, 0) = a, and if the expanding bubble of fluid 1 were to remain
spherical, it would have radius

A(t) =

[
a3 +

3mt
4π

]1/3

(2.2)

at all subsequent times. However, since this flow is unstable, any small perturbation
to the initial condition will destroy the spherical symmetry (2.2) of the expanding
interface.

It is convenient now to make use of nondimensional coordinates and variables, in
which all lengths are referenced against the initial radius a of the spherical bubble
of fluid 1. Similarly, all times and speeds are referred to the quantities a3/m and
m/a2, respectively. As each fluid is inviscid and incompressible, each therefore
flows irrotationally and so has a velocity potential Φ j, j = 1, 2. These are made
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Fluid 2

z
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F 1. A sketch of the dimensionless flow configuration for the inviscid cylindrical Rayleigh–Taylor
problem.

dimensionless using the scaling factor m/a. In these nondimensional coordinates, the
average radius (2.2) of the expanding bubble of fluid 1 takes the form

A(t) =

[
1 +

3t
4π

]1/3

. (2.3)

A sketch of these dimensionless flow coordinates is given in Figure 1. Initially,
the interface is the sphere r = 1, but at later times the interface forms some different
shape dependent upon the initial disturbance made to the original sphere. These two
interface configurations are represented in Figure 1. In addition to the details of
the initial disturbance, the expanding interface shape is also dependent upon the two
dimensionless parameters

D =
ρ2

ρ1
, F =

m
√

a3GM
. (2.4)

The first of these parameters, D, is the density ratio of the outer to the inner fluid,
and for the Rayleigh–Taylor instability of interest, D > 1. The second parameter, F,
is a type of Froude number based on the gravitational constant G and the massM of
the star at the origin, and it is assumed that the gravitational force is directed radially
inward.

Both the fluids are incompressible and flow irrotationally in the inviscid model, and
so the velocity potential Φ j, j = 1, 2, of each fluid satisfies Laplace’s equation

∇2Φ j =
∂2Φ j

∂r2
+

2
r

∂Φ j

∂r
+

1
r2

∂2Φ j

∂φ2
+

cot φ
r2

∂Φ j

∂φ
= 0. (2.5)

The velocity vector has components u and w in the radial r and axial φ directions,
respectively, and these are obtained as the gradient of the potential, in the form

u j =
∂Φ j

∂r
, w j =

1
r

∂Φ j

∂φ
. (2.6)
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There is a mass source at the origin, and so the potential of the lighter inner fluid
must therefore behave according to

Φ1→−
1

4πr
as r→ 0. (2.7)

Far away, by conservation of mass, the flow of the outer fluid must likewise resemble
outflow from a source at the origin, so that

Φ2→−
1

4πr
as r→∞. (2.8)

Since neither fluid may cross the interface at r = R(φ, t), there are therefore the two
kinematic boundary conditions

u j =
∂R
∂t

+
w j

R
∂R
∂φ
, j = 1, 2, on r = R(φ, t) (2.9)

that must be obeyed on the interface.
There is also a dynamic condition that must apply at the interface, since the

pressures in each fluid must be equal there. Bernoulli’s equation holds in each fluid
region, and so the pressures p1 and p2 are found in the dimensionless forms

p1 = p∞ −
∂Φ1

∂t
−

1
2

(u2
1 + w2

1) +
1

F2r
−

1
2

D − 1
(4πA2)2

+
D − 1
F2A

, (2.10)

p2 = p∞ − D
∂Φ2

∂t
−

1
2

D(u2
2 + w2

2) +
D

F2r
, (2.11)

consistently with Batchelor [9, p. 383]. Here, the parameters D and F are as defined
in (2.4) and the function A(t) is the mean radius given by (2.3). The quantity p∞ is the
pressure infinitely far away. The additional terms in the expression for the pressure
p1 in equation (2.10) arise from the fact that the two pressures must be equal at the
interface, even for the trivial (unperturbed) solution

Φ1 = Φ2 = −
1

4πr
, R(φ, t) = A(t)

of the flow equations. The requirement that the two pressures in equations (2.10)
and (2.11) must remain equal at the interface then gives the dynamical constraint

D
∂Φ2

∂t
−
∂Φ1

∂t
+

1
2

D(u2
2 + w2

2) −
1
2

(u2
1 + w2

1) −
D − 1
F2r

=
1
2

D − 1
(4πA2)2

−
D − 1
F2A

on r = R(φ, t) (2.12)

at the moving interface.
A numerical solution is sought to this nonlinear problem, which has the additional

feature that it is singular, due to the presence of the source at the origin. This requires
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a representation of the two velocity potentials Φ1 and Φ2 in a form that identically
satisfies Laplace’s equations (2.5), the condition (2.7) near the mass source, and (2.8)
far away. This is achieved by the series

Φ1(r, φ, t) = −
1

4πr
+ B0(t) +

N∑
n=1

Bn(t)rnPn(cos φ), (2.13)

Φ2(r, φ, t) = −
1

4πr
+

N∑
n=1

Cn(t)r−n−1Pn(cos φ). (2.14)

In these expressions, the Fourier–Legendre coefficients Bn(t) and Cn(t) are unknown
functions of time t, and the symbol Pn(z) denotes the Legendre polynomial of order n
and argument z, as presented by Gradshteyn and Ryzhik [26, p. 973]. The shape of the
interface r = R(φ, t) is similarly represented as

R(φ, t) = A(t) + H0(t) +

N∑
n=1

Hn(t)Pn(cos φ), (2.15)

in which the unperturbed radius function A(t) is as defined in equation (2.3). These
expressions become exact as the number N of Fourier modes is increased. For later
use, it is convenient to define interfacial velocity components U j and W j along the
interface, using (2.6) and the forms (2.13) and (2.14). This gives functions

U1(φ, t) =
1

4πR2
+

N∑
n=1

nBn(t)Rn−1Pn(cos φ), (2.16)

W1(φ, t) = −

N∑
n=1

Bn(t)Rn−1P′n(cos φ) sin φ (2.17)

in fluid 1, and

U2(φ, t) =
1

4πR2
−

N∑
n=1

(n + 1)Cn(t)R−n−2Pn(cos φ),

W2(φ, t) = −

N∑
n=1

Cn(t)R−n−2P′n(cos φ) sin φ

for the velocity components in fluid 2.
It remains to find the three sets of coefficients Bn(t), Cn(t) and Hn(t) that satisfy

the three conditions in (2.9) and (2.12). This is done here using the method of Forbes
et al. [23]. The kinematic condition (2.9) in fluid 1 is analysed at the zeroth Fourier
mode by multiplying by R2 sin φ and integrating over the interval 0 < φ < π. It may be
shown from the definitions (2.16) and (2.17) and integration by parts that∫ π

0
R
∂R
∂φ

W1 sin φ dφ =

∫ π

0
R2U1 sin φ dφ −

1
2π
,
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so that, at the zeroth order, the kinematic condition in fluid 1 gives rise to the condition∫ π

0
R2 ∂R

∂t
sin φ dφ =

1
2π
. (2.18)

The representation (2.15) of the interface shape is used in the result (2.18), and gives
rise to the condition

M00H′0(t) +

N∑
n=1

M0nH′n(t) =
1

2π
−

M00

4πA2(t)
. (2.19)

In expression (2.19), the quantity A(t) is the undisturbed radius function defined in
equation (2.3). The remaining intermediate functions in this relation are

M0n(t) =

∫ π

0
R2(φ, t)Pn(cos φ) sin φ dφ, n = 0, 1, . . . , N. (2.20)

The higher-order Fourier modes are similarly obtained by multiplying condition (2.9)
for fluid 1 by the functions R2P`(cos φ) sin φ, ` = 1, 2, . . . , N, and integrating over the
interval 0 < φ < π. After integration by parts, and making use of the definitions (2.16)
and (2.17), the higher modes for the kinematic condition in the inner fluid yield the
system of differential equations

M`0H′0(t) +

N∑
n=1

M`nH′n(t) =

N∑
n=1

S (1)
`n Bn(t) − A′(t)M`0, ` = 1, 2, . . . , N. (2.21)

In expression (2.21), the intermediate functions are again as defined in (2.20), along
with the additional quantities

M`n(t) =

∫ π

0
R2(φ, t)P`(cos φ)Pn(cos φ) sin φ dφ. (2.22)

The symbol A(t) denotes the unperturbed radius (2.3) and A′(t) = 1/(4πA2(t)) is its
derivative. The right-hand side of this expression also involves the quantity

S (1)
`n (t) =

1
(n + 1)

∫ π

0
Rn+1(φ, t)P′n(cos φ)P′`(cos φ) sin3 φ dφ (2.23)

as a further intermediate variable.
In analysing the second kinematic condition in the system (2.9), it is convenient to

follow the algorithm of Forbes et al. [23] and Forbes and Hocking [25], by replacing
the second kinematic condition with the difference of the two. The contribution from
the zeroth Fourier mode is obtained by multiplying by R2 sin φ and integrating over
0 < φ < π as previously. After integration by parts and making use of the definitions
(2.16) and (2.17) it may be shown that this zeroth mode is satisfied identically.
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The higher-order modes are similarly obtained by multiplying the difference of the
two kinematic conditions by the functions R2P`(cos φ) sin φ, for ` = 1, 2, . . . , N, and
integrating as previously. This gives the system∫ π

0
R2(U2 − U1)P`(cos φ) sin φ dφ

=

∫ π

0
R(W2 −W1)

∂R
∂φ

P`(cos φ) sin φ dφ, ` = 1, 2, . . . , N. (2.24)

The term on the right-hand side of equation (2.24) is integrated by parts, and after a
little algebra the equations reduce to

N∑
n=1

S (1)
`n (t)Bn(t) +

N∑
n=1

S (2)
`n (t)Cn(t) = 0, ` = 1, 2, . . . , N, (2.25)

in which the intermediate quantity S (1)
`n in the first sum has been defined in (2.23). The

function in the second sum is written as

S (2)
`n (t) =

1
n

∫ π

0
R−n(φ, t)P′n(cos φ)P′`(cos φ) sin3 φ dφ. (2.26)

The result (2.25) has an elegant form, but is not convenient for the present application,
since it would result in a system of differential algebraic equations when combined
with other conditions such as (2.21) at the interface. However, a strength of the present
spectral approach is that the identity (2.25) can be differentiated directly with respect
to time t, as suggested by Forbes et al. [23], and this yields the further system of
differential equations

N∑
n=1

S (1)
`n (t)B′n(t) +

N∑
n=1

S (2)
`n (t)C′n(t)

+

[ 1
4πA2(t)

+ H′0(t)
]
T`0 +

N∑
n=1

T`nH′n(t) = 0, ` = 1, 2, . . . , N, (2.27)

involving the Fourier coefficients. The additional intermediate functions

T`n(t) =

∫ π

0
R(W2 −W1)P′`(cos φ)Pn(cos φ) sin2 φ dφ (2.28)

have been defined for convenience of notation.
The dynamic condition (2.12) is similarly subjected to Fourier–Legendre

decomposition. The contribution from the zeroth-order Fourier modes is obtained by
multiplying by sin φ and integrating, which results in

D
N∑

n=1

K(2)
0n C′n(t) − 2B′0(t) −

N∑
n=1

K(1)
0n B′n(t) +

1
2

DJ(2)
0 −

1
2

J(1)
0 −

(D − 1)Y0

F2

= (D − 1)
[ 1
(4π)2A4(t)

−
2

F2A(t)

]
. (2.29)
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The higher-order Fourier modes result from multiplying equation (2.12) by the basis
functions P`(cos φ) sin φ and integrating. This gives the further system of differential
equations

D
N∑

n=1

K(2)
`n C′n(t) −

N∑
n=1

K(1)
`n B′n(t) +

1
2

DJ(2)
`
−

1
2

J(1)
`
−

(D − 1)Y`
F2

= 0. (2.30)

In these expressions, it has proven convenient to define the intermediate functions

K(1)
`n (t) =

∫ π

0
RnP`(cos φ)Pn(cos φ) sin φ dφ, (2.31)

K(2)
`n (t) =

∫ π

0
R−n−1P`(cos φ)Pn(cos φ) sin φ dφ, (2.32)

J(1)
`

(t) =

∫ π

0
(U2

1 + W2
1 )P`(cos φ) sin φ dφ, (2.33)

J(2)
`

(t) =

∫ π

0
(U2

2 + W2
2 )P`(cos φ) sin φ dφ, (2.34)

Y`(t) =

∫ π

0

1
R

P`(cos φ) sin φ dφ, (2.35)

for n = 1, 2, . . . , N and ` = 0, 1, 2, . . . , N.
These differential equations for the evolution of the Fourier coefficients in time

are now integrated numerically. The zeroth-order dynamical condition (2.29) is
essentially just a differential equation for the quantity B0(t). However, since this can be
ignored in equations (2.13) and (2.14) with no penalty to the velocity components in
fluid 1, both B0 and the condition (2.29) are disregarded in the numerical solution.
This then leaves the system of 3N + 1 differential equations (2.19), (2.21), (2.27)
and (2.30). This matrix system of ordinary differential equations is integrated
forward in time using the classical fourth-order Runge–Kutta method described
by Atkinson [4, p. 371]. The intermediate quantities in equations (2.20), (2.22),
(2.23), (2.26), (2.28) and (2.31)–(2.35) all involve periodic integrands, and are
evaluated using the composite trapezoidal rule, which is exponentially accurate in
these cases [4, p. 253]. Highly converged results are obtained here using up to N = 45
Fourier modes and with 401 spatial points in the angle φ for the numerical evaluation
of the integrals.

The initial conditions for the flow are assumed to be that the interface is spherical,
but that the velocity is subject to a small perturbation. Thus

H0(0) = 0 and Hn(0) = 0, n = 1, 2, . . . , N, (2.36)

so that R(φ, 0) = 1 from equations (2.15) and (2.3). If a perturbation at the Kth
Fourier mode is desired at time t = 0, then this may be achieved by taking Bn(0) = 0
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and Cn(0) = 0 in equations (2.13) and (2.14), except for

BK(0) =
ε

K
and CK(0) = −

ε

K + 1
, (2.37)

in which ε is a small parameter related to the amplitude of the initial perturbation.
In order to speed up the numerical algorithm, it has been found useful to cache

the functions Pn(cos φ) and the derivatives P′n(cos φ). These are computed from the
three-term recurrence relations

P0(cos φ) = 1, P1(cos φ) = cos φ, P′1(cos φ) = 1,

Pn+1(cos φ) =

(2n + 1
n + 1

)
cos φPn(cos φ) −

( n
n + 1

)
Pn−1(cos φ),

P′n+1(cos φ) = cos φP′n(cos φ) + (n + 1)Pn(cos φ).

These formulae may be derived from identities given by Abramowitz and Stegun [1].

3. The linearized inviscid model

If the amplitude ε of the velocity perturbation in the initial conditions (2.37) is
small, it is possible to construct a linearized problem, in which the interface shape
is assumed to represent only a small change to the spherical surface r = A(t) in
equation (2.3). The two velocity potentials and the interface shape are expressed in
terms of the regular expansions

Φ1(r, φ, t) = −
1

4πr
+ εΦ11(r, φ, t) + O(ε2), (3.1)

Φ2(r, φ, t) = −
1

4πr
+ εΦ21(r, φ, t) + O(ε2), (3.2)

R(φ, t) = A(t) + εR1(φ, t) + O(ε2). (3.3)

These expressions are substituted into the governing equations and terms are retained
to the first order in powers of the small parameter ε.

It is found that the perturbation potential Φ11 in (3.1) satisfies Laplace’s
equation (2.5) within the linearized zone r < A(t), and the potential Φ21 in (3.2)
similarly satisfies this equation in r > A(t). The two kinematic conditions (2.9) take
the linearized form

∂Φ j1

∂r
=
∂R1

∂t
+

R1

2πA3(t)
, j = 1, 2, on r = A(t), (3.4)

and the dynamic condition (2.12) linearizes to

D
∂Φ21

∂t
−
∂Φ11

∂t
+

D
4πA2(t)

∂Φ21

∂r
−

1
4πA2(t)

∂Φ11

∂r

−
2(D − 1)R1

(4π)2A5(t)
+

(D − 1)R1

F2A2(t)
= 0 on r = A(t). (3.5)
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If a perturbation at the Kth Fourier mode is assumed, as in the initial
conditions (2.37), then the solution for the linearized potentials is

Φ11(r, φ, t) = BK(t)rK PK(cos φ), r < A(t), (3.6)

Φ21(r, φ, t) = CK(t)r−K−1PK(cos φ), r > A(t), (3.7)

which follows directly from the more general representation given in equations (2.13)
and (2.14).

The two linearized kinematic conditions in (3.4) are subtracted and the potentials
in (3.6) and (3.7) are substituted into the resulting equation. This shows that the
coefficients are related according to the formula

CK(t) = −

( K
K + 1

)
BK(t)A2K+1(t). (3.8)

It follows from the linearized dynamic condition (3.5) that the perturbed interface
shape has the form

R1(φ, t) = −
[(D + 1)K + 1]
(D − 1)(K + 1)

G1(t)PK(cos φ), (3.9)

in which

G1(t) =
B′K(t)AK+5(t) + (K/(4π))BK(t)AK+2(t)

2/(4π)2 − A3(t)/F2
,

after use is made of relation (3.8). Finally, equation (3.9) is substituted into the first
of the linearized kinematic conditions in (3.4), and after some algebra an ordinary
differential equation of the form

AK+5(t)
d2BK

dt2
+ F1(t)

dBK

dt
+ F0(t)BK = 0 (3.10)

is obtained for the coefficient BK(t). The intermediate functions appearing in this
expression are defined to be

F1(t) =
(2K + 7)

4π
AK+2(t) +

3
4πF2

AK+5(t)
[2/(4π)2 − A3(t)/F2]

,

F0(t) =
(D − 1)(K + 1)
[(D + 1)K + 1]

[ 2K
(4π)2

AK−1(t) −
K
F2

AK+2(t)
]

+
K(K + 4)

(4π)2
AK−1(t) +

3K
(4π)2F2

AK+2(t)
[2/(4π)2 − A3(t)/F2]

.

This differential equation, although linear, does not have a straightforward solution in
closed form.
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In the limit that the inwardly directed acceleration due to gravity is zero, the Froude
number F→∞, as is evident from the definition (2.4). In this special case, the
perturbed interface shape function R1 takes the form

R1(φ, t)→−
[(D + 1)K + 1]
(D − 1)(K + 1)

(4π)2

2
ηK(t)PK(cos φ),

in which it is appropriate to define

ηK(t) = B′K(t)AK+5(t) +
K
4π

BK(t)AK+2(t). (3.11)

Now it is possible to eliminate BK in favour of the amplitude variable ηK in (3.11), and
after some algebra the differential equation (3.10) becomes

η′′K(t) + 3
A′(t)
A(t)

η′K(t) −
A′′(t)
A(t)

ηK(t)
[ (D − 1)K(K + 1)

(D + 1)K + 1
− 2

]
= 0 (3.12)

in the variable ηK . The differential equation (3.12) is identical to that derived by
Mikaelian [39, equations (1c) and (2)].

It is possible to obtain the solution of the differential equation (3.10) in the zero-
gravity case F→∞ by regarding the unperturbed radius A in equation (2.3) as the
independent variable, rather than time t. In the absence of gravity, the governing
differential equation becomes

A2 d2BK

dA2
+ A

dBK

dA
(2K + 5) + KBK

[2(D − 1)(K + 1)
[(D + 1)K + 1]

+ K + 4
]

= 0. (3.13)

Equation (3.13) is of Euler–Cauchy type and, subject to the initial conditions (2.36)
and (2.37), gives the solution

BK(t) =

(2 + β

2βK

)
A−K−2+β −

(2 − β
2βK

)
A−K−2−β

for the Fourier coefficient BK . The linearized solution for the perturbed interface shape
in (3.3) then becomes

R1(φ, t) =
2π
β

[Aβ − A−β]PK(cos φ). (3.14)

The constant β in the solution (3.14) is determined from the expression

β2 =
4(D + 1)K + 4 − 2K(K + 1)(D − 1)

(D + 1)K + 1
. (3.15)

Perturbations R1 to the expanding bubble of fluid 1 will grow unstably if the
constant β in equation (3.15) is real. This is the case whenever 0 < D < 1. For D > 1,
this also gives rise to the condition

D <
(K + 1)(K + 2)

K(K − 1)
. (3.16)
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Thus the lowest Fourier mode K = 1 is always unstable for any density ratio D, as
may be confirmed directly from equation (3.15), and so grows exponentially with
time. The bipolar mode K = 2 is unstable for any density ratio D < 6, as indicated by
inequality (3.16). This is possibly a case of some interest in astrophysical applications,
particularly in the context of star formation. As indicated by Stahler and Palla [49],
bipolar flow is often observed in outflow from young stars, although magnetic fields
may perhaps play a strong role in that situation and are ignored in the present study.
Inequality (3.16) shows that the lowest Fourier modes are actually the most unstable,
and as K→∞ this condition in fact suggests instability only when D < 1. This
indicates that higher modes are less affected by the Rayleigh–Taylor instability when
D > 1; rather, it is the curved geometry of the spherical surface that is the driving
mechanism for growth in these higher modes. This phenomenon is the Bell–Plesset
effect, and is discussed by Epstein [18], who points out that it can act as a further
destabilizing influence on the usual Rayleigh–Taylor instability.

An essentially similar conclusion can be derived from the linearized equation (3.10)
for the full system, in spite of the fact that there is no closed-form solution to it in
general. When the mode number K is very large, the differential equation becomes
asymptotically

A6(t)
d2BK

dt2
+

K
2π

A3(t)
dBK

dt
+

K2

(4π)2
BK = 0.

When the unperturbed sphere radius A(t) is again regarded as the independent variable
rather than time t, this equation takes the form

A2 d2BK

dA2
+ 2(K − 1)A

dBK

dA
+ K2BK = 0,

following similar developments to those used in obtaining equation (3.13). This is
again a differential equation of Euler–Cauchy type, and for large K it takes solutions
of the asymptotic form

BK ∼ Aλ with λ ∼ −K ± i
√

3K. (3.17)

The result (3.17) again confirms that higher-order modes are the most stable, at least
when D > 1, so that they are most strongly influenced by Bell–Plesset effects rather
than directly by the Rayleigh–Taylor instability alone.

4. The Boussinesq model for viscous flow

The inclusion of viscous effects in this model requires the solution of the usual
Navier–Stokes equations in both fluids, subject to the conditions of continuity of the
normal and tangential components of the stress tensor at the interface, as given by
Batchelor [9, p. 150]. This is a difficult task, and is circumvented here by instead
adopting an approximate Boussinesq model for viscosity, following the approach taken
by Farrow and Hocking [19], who used it to study viscous effects on the withdrawal
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of fluid from a tank. In this approach, the two distinct and immiscible fluids 1 and
2 in Figure 1 are replaced with a single (miscible) fluid that is regarded as weakly
compressible, so that the interface is approximated by a narrow region in which
the density changes rapidly but smoothly. As the outflow from a point source is
irrotational, the radial and axial velocity components u and w can still be obtained
from (2.7), and represent an exact solution to the Navier–Stokes equations of viscous
flow.

Dimensionless variables are defined as previously in Section 2, such that the
reference length is the initial radius a of the bubble and a3/m is the reference time,
in which m denotes the strength of the sink (volume per unit time) in dimensional
units. The density is written in the dimensionless form ρ(r, φ, t) = 1 + ρ̄ and it is
understood that the quantity ρ̄(r, φ, t) is small relative to unity. The full continuity
equation expressing conservation of mass (for a compressible fluid) is “split” into an
incompressible part

1
r2

∂(r2u)
∂r

+
1

r sin φ
∂(sin φw)

∂φ
= 0 (4.1)

involving the velocity components u and w, and a weakly compressible part

∂ρ̄

∂t
+ u

∂ρ̄

∂r
+

w
r
∂ρ̄

∂φ
= σ

[
∂2ρ̄

∂r2
+

2
r
∂ρ̄

∂r
+

cot φ
r2

∂ρ̄

∂φ
+

1
r2

∂2ρ̄

∂φ2

]
(4.2)

for the perturbed density function. Here σ is a density diffusion coefficient related
to a Prandtl number associated with the stratification (see the paper of Farrow and
Hocking [19]) and made dimensionless by reference to the quantity m/a.

As in the papers of Forbes [22] and Forbes and Hocking [24], it is convenient to
adopt a vorticity streamfunction approach to these equations, rather than the primitive
variables system used by Farrow and Hocking [19]. Thus equation (4.1) is satisfied
identically by a streamfunction Ψ(r, φ, t) from which the velocity components u and w
are obtained by means of the equations

u =
1

r sin φ
∂(sin φΨ)

∂φ
, w = −

1
r
∂(rΨ)
∂r

. (4.3)

The vorticity is defined in the usual way as the vector curl of the fluid velocity vector,
and in these spherical coordinates it has the form ζeθ of a vector pointing in the purely
azimuthal eθ direction, with the single component

ζ = −

[
∂2Ψ

∂r2
+

2
r
∂Ψ

∂r
+

cot φ
r2

∂Ψ

∂φ
+

1
r2

∂2Ψ

∂φ2
−

Ψ

r2 sin2 φ

]
. (4.4)

By taking the curl of the viscous Navier–Stokes equations, with the Boussinesq
approximation ρ = 1 + ρ̄, a transport equation is derived for the vorticity ζ in
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equation (4.4). This takes the form

∂ζ

∂t
+ u

∂ζ

∂r
+

w
r
∂ζ

∂φ
−
ζ

r
(u + w cot φ)

=
1

F2r3

∂ρ̄

∂φ
+

1
Re

[
∂2ζ

∂r2
+

2
r
∂ζ

∂r
+

cot φ
r2

∂ζ

∂φ
+

1
r2

∂2ζ

∂φ2
−

ζ

r2 sin2 φ

]
. (4.5)

The constant Re in this expression is the viscous Reynolds number. It is defined from
the dimensional quantities as Re = m/(νa), in which ν represents the dynamic viscosity
of the fluid. Equation (4.5) is of a similar form to the usual vorticity equation given by
Batchelor [9, p. 267].

Near the source, the streamfunction behaves as

Ψ→−
cot φ
4πr

as r→ 0, (4.6)

and in fact this is an exact solution to the system (4.2)–(4.5) if ρ̄ is constant, since it
represents irrotational outflow from the source. For computational purposes, uniform
outflow is also imposed at some “artificial” boundary r = β, chosen to be sufficiently
far from the source as to have only a minor effect on the details of the outflow. This is
achieved here by imposing

Ψ(β, φ, t) = −
cot φ
4πβ

, ζ(β, φ, t) = 0 at r = β. (4.7)

The second condition in (4.7) is equivalent to allowing slip on this artificial boundary,
consistently with the Boussinesq viscous approximation employed by Farrow and
Hocking [19].

A spectral solution is now sought to this nonlinear weakly viscous system.
A representation must be chosen for the streamfunction, such that the outflow
conditions (4.6) and (4.7) are satisfied identically, but which is consistent with the
developments in Section 2 in the purely irrotational case. Therefore, it is appropriate
to choose

Ψ(r, φ, t) = −
cot φ
4πr

+

M∑
m=1

N∑
n=1

Bmn(t)
Jn+1/2(αn,mr)

√
r

P′n(cos φ) sin φ. (4.8)

In this expression, Pn are the Legendre polynomials, as in Section 2, and Jn+1/2 are
the Bessel functions of first kind, of half-fractional order. It is convenient to define the
constants

αn,m =
jn+1/2,m

β
, (4.9)

in which the symbol jν,s denotes the sth zero of the Bessel function of order ν,
consistently with the notation of Abramowitz and Stegun [1, p. 370].
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The equations in (4.3) combined with the representation (4.8) show that the radial
and axial velocity components may be expressed in the forms

u(r, φ, t) =
1

4πr2
+

M∑
m=1

N∑
n=1

n(n + 1)Bmn(t)
Jn+1/2(αn,mr)

r3/2
Pn(cos φ) (4.10)

and

w(r, φ, t) = −

M∑
m=1

N∑
n=1

Bmn(t)
[1
2

r−3/2Jn+1/2(αn,mr)

+ αn,mr−1/2J′n+1/2(αn,mr)
]
P′n(cos φ) sin φ.

Finally, the vorticity is obtained from the definition (4.4) as the expression

ζ(r, φ, t) =

M∑
m=1

N∑
n=1

Amn(t)
Jn+1/2(αn,mr)

√
r

P′n(cos φ) sin φ,

in which the new coefficients are defined to be

Amn(t) = (αn,m)2Bmn(t),

with αn,m given in equation (4.9). As yet, these coefficients Amn and Bmn are unknown
functions of time.

After a careful analysis of the vorticity equation (4.5), it is evident that the
appropriate representation for the perturbed density must be

ρ̄(r, φ, t) = (D − 1)
( r
β

)3

+

M∑
m=1

Cm0(t) sin
(mπr3

β3

)
+

M∑
m=1

N∑
n=1

Cmn(t)r5/2Jn+1/2(αn,mr)Pn(cos φ). (4.11)

The additional coefficients Cmn in equation (4.11) are also unknown at this stage.
The governing equations are now spectrally decomposed, using the orthogonality

relations ∫ π

0
Pn(cos φ)P`(cos φ) sin φ dφ =

0 if ` , n

2/(2n + 1) if ` = n
(4.12)

for the Legendre polynomials, and∫ β

0
rJ`+1/2(α`,mr)J`+1/2(α`,kr) dr =

0 if m , k

(β2/2)J2
`+3/2(α`,kβ) if m = k

(4.13)
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for the first-kind Bessel functions. These results may be derived from well-known
identities given in Gradshteyn and Ryzhik [26] (p. 782, formula 7.221.1 and p. 658,
formula 6.521.1, respectively).

The density equation (4.2) is first multiplied by sin φ and integrated, making use
of (4.12). The resulting expression is then further multiplied by r2 sin(kπr3/β3) and
integrated with respect to r. This gives a system of ordinary differential equations
for the zeroth-order coefficients Cm0, presented in Appendix A as (A.1). The
Fourier modes for the general `th Fourier mode in φ are similarly derived by first
multiplying equation (4.2) by P`(cos φ) sin φ and integrating over φ, then multiplying
by r−3/2J`+1/2(α`,kr) and integrating over r. This gives a further system of MN
differential equations, presented in Appendix A as (A.2).

A similar Fourier decomposition process is applied to the vorticity equation (4.5).
This expression is first multiplied by P′`(cos φ) sin2 φ and integrated over the interval
0 < φ < π. It is necessary to make use of the further orthogonality relation∫ π

0
P′n(cos φ)P′`(cos φ) sin3 φ dφ =

0 if ` , n

2n(n + 1)/(2n + 1) if ` = n
(4.14)

for the derivatives of Legendre polynomials. The result (4.14) may be derived from an
identity given by Abramowitz and Stegun [1, p. 338, formula 8.14.11]. The resulting
equation is now further multiplied by r3/2J`+1/2(α`,kr) and integrated over r, making
use of the identity (4.13). After some algebra, a system of MN ordinary differential
equations is obtained for the Fourier coefficients Ak`, and these equations are also given
in Appendix A as the system (A.3), for completeness.

It remains to specify appropriate initial conditions for the flow. For comparison
with the inviscid solution in Section 2, conditions are chosen so as to imitate (2.36)
and (2.37) as closely as possible. The initial density profile is therefore chosen to be

ρ̄(r, φ, 0) =

0 if 0 < r < 1

D − 1 if 1 < r < β,
(4.15)

corresponding to an effective interface at initial radius r = 1. The representation (4.11)
is made equal to the profile (4.15) at t = 0 and Fourier analysed. This shows that the
appropriate choice for the coefficients in expression (4.11) is

Ck0(0) =
2(D − 1)

kπ
cos(kπ/β3), (4.16)

Ck`(0) = 0, k = 1, 2, . . . , M, ` = 1, 2, . . . , N. (4.17)

In order to achieve an initial velocity perturbation at the Kth mode, mimicking (2.37)
for the inviscid solution, it is appropriate to impose the initial radial velocity

u(r, φ, 0) =
1

4πr2
+

εrK−1PK(cos φ) if 0 < r < 1

εr−K−2PK(cos φ) if 1 < r < β.
(4.18)
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This is now compared with the representation (4.10) at the initial time, and spectrally
decomposed to give the coefficients. It is found that Amn(0) = 0 in general, except for
the Kth mode, in which case

AmK(0) =
2εαK,m

K(K + 1)β2J2
K+3/2(αK,mβ)

[ (2K + 1)
αK,m

JK+1/2(αK,m) −
JK−1/2(αK,mβ)

βK−1/2

]
. (4.19)

The constant ε is a small parameter related to the amplitude of the initial perturbation,
precisely as in Section 2.

The time evolution of the viscous Boussinesq outflow at the Kth mode is thus
determined by solving the system of M(2N + 1) ordinary differential equations (A.1)–
(A.3) for the Fourier coefficients, subject to the initial conditions (4.16), (4.17)
and (4.19). This has been done by a variety of integration schemes, but in order
to reduce computer run time and to improve accuracy, a fourth-/fifth-order adaptive
Runge–Kutta–Fehlberg algorithm bas been used for the results presented in this paper
(see the book by Atkinson [4]). The integrals with respect to the axial angle φ in
these differential equations are evaluated numerically using the composite trapezoidal
rule, which is extremely accurate for periodic integrands, as indicated by Atkinson
[4, p. 253]. The integrations with respect to the radial coordinate r are performed
to a high degree of accuracy using the Gauss–Legendre routine provided by von
Winckel [52]. The Legendre polynomials and Bessel functions are computed only
once and then cached in computer memory, as this greatly reduces the run time of
the solution algorithm. Converged results are obtained with M = N = 25 coefficients
and 81 numerical integration points in both r and φ, and the time steps are chosen
adaptively by the integration algorithm.

5. Presentation of results

A large number of solutions have been computed with the techniques outlined in
Sections 2 and 4, for a variety of different parameter values. In this paper, however,
a sample cross-section of results is presented, which is nevertheless representative of
the solution behaviour in general. The density ratio is set at the value D = 1.05, which
is typical for a fresh-water–salt-water interface, for example, and for simplicity the
Froude number is fixed at F = 1. The amplitude of the initial velocity perturbation
is taken to be ε = 0.03. For the viscous results, it is convenient to take the density
diffusion parameter and the Reynolds number to have the values σ = 10−4 and Re =

250, respectively, although the solutions are not qualitatively affected by this choice.
The evolution of an inviscid interface, calculated using the methods of Section 2, is

shown in Figure 2. This is a solution obtained at the second mode K = 2, representing
an outflow that is initially bipolar in the presence of a gravitational field. Results are
presented at the five times t = 1, 2, 3, 4, 5, and were obtained with N = 45 Fourier–
Legendre modes, using 401 points along the interface. Figure 2(a) shows the actual
interface shape at the different times; the scale on both axes is the same, so that the
profiles are as they would actually appear in cross-section on the plane y = 0. Since
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F 2. The inviscid solution at five different times t = 1, 2, 3, 4, 5, computed with parameter values
D = 1.05, F = 1, ε = 0.03, for the second mode K = 2. Results are shown for (a) the interface shape and
(b) the curvature. The scale in (a) is the same on both axes.

axial symmetry is assumed in this paper, the interfacial surfaces at the different times
can be obtained by rotating the shapes in Figure 2(a) about the z-axis.

From Figure 2(a), it is evident that although the interface begins as a sphere at
time t = 0, it evolves into a shape with pointed lobes at the two poles as the outflow
progresses. This continues up until about time t = 7, after which the numerical
algorithm of Section 2 fails. Similar behaviour is known to occur in the planar and
cylindrical Rayleigh–Taylor problems, and has been discussed by Forbes [21, 22]. It
is associated in both those geometries with the formation of a curvature singularity at
the interface, within finite time; this effect has been studied extensively in the planar
case by Moore [40], Baker et al. [6] and Cowley et al. [15]. The pointed regions
in Figure 2(a) on the interface at the two poles suggest that a similar phenomenon is
likely in this axially symmetric geometry also.

For a parametrically defined space curve r(s) with parameter s, the curvature may
be obtained from the formula

κ =

√
(r′ · r′)(r′′ · r′′) − (r′ · r′′)2

(r′ · r′)3/2
, (5.1)

in which primes denote derivatives of the indicated vector with respect to s. This result
may be obtained from the book by Kreyszig [30, p. 400]. For the spherical coordinate
system in (2.1), in which the inviscid interface is written in the form r = R(φ, t), the
curvature (5.1) may be shown to be given by the expression

κ =
R2 + 2R2

φ − RRφφ

(R2 + R2
φ)3/2

, (5.2)
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and this is evaluated directly from the spectral representation (2.15), using exact
differentiation.

Figure 2(b) shows the curvature computed from equation (5.2), for the same five
times as in Figure 2(a). At the initial time t = 0, the interface is simply a sphere of unit
radius, and so it has constant curvature κ = 1. This is also approximately true at the
earliest time t = 1 shown in Figure 2(b), as may be seen from the diagram. As time
progresses, however, large spikes in curvature appear at the two poles, and these are
evident in the figure. This is consistent with the suggestion of a finite-time curvature
singularity at about t = 7.

Solutions for this same case K = 2 have been computed for a Boussinesq viscous
fluid using the method outlined in Section 4. In this method, it is necessary to impose
an artificial boundary at r = β, as in (4.7), and here β = 5 has been found to give reliable
solutions. It is found that, in the early stages of the evolution of the flow, there is
close agreement between the predictions of this viscous approach with the interface
computed from the inviscid theory, as is discussed more fully later.

Figure 3(a) shows contours of the density perturbation ρ̄ at three times t = 2, 3
and 4. Necessarily, the scale on the horizontal and vertical axes is not the same, but
these three diagrams are sufficient to reveal an interesting effect. For this second-mode
solution (K = 2), the outflow is bipolar at early times, and is very similar to the results
presented in Figure 2(a). The solution at t = 3 even shows the similar peaked structure
at the two poles. However, by t = 4 the solution starts to lose its bipolar symmetry and
instead develops a stronger jet at the bottom of the picture than the corresponding jet
at the top. This has been checked carefully and is a genuine feature of the solution
rather than a mere numerical artifact, and more detail is given in regard to this issue
in Section 6. It is simply observed here that, since the gravitational body force is
purely radial and directed inward toward the origin, there is no preferred “top” or
“bottom” in these figures; thus, changes to numerical features (such as the number of
coefficients used) may change whether the larger jet appears at the top or the bottom of
the diagrams, but the solution is otherwise unchanged under a simple rotation through
180◦. Evidently, the mode-one configuration is the preferred outflow type, so that
different initial conditions eventually give rise to this configuration.

This is investigated further in Figure 3(b), where contours of the vorticity function ζ
are shown for this solution at the same three times. In the inviscid solution of Section 2,
this function is identically zero over the whole region, but now the introduction of
viscosity in Figure 3 provides a mechanism for vorticity to be produced. Nevertheless,
the vorticity is zero over almost all of the solution domain, which certainly justifies the
approximation in (4.7) that vorticity could be set approximately to zero on the edge
r = β of the computational domain. At the early times t = 2 and t = 3, the vorticity
retains a bipolar form, being antisymmetric about the plane z = 0. However, by time
t = 4 the vorticity is clearly concentrated either side of the narrow jet escaping toward
the bottom of the picture.

As a further aid to flow visualization, the instantaneous streamlines for this same
flow are presented in Figure 3(c). From Batchelor [9], streamlines are curves in
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F 3. The viscous solution at the three times t = 2, 3, 4 for the case D = 1.05, F = 1, ε = 0.03, β = 5,
for the second mode K = 2. Solution contours are shown for (a) the density, (b) the vorticity and (c) a
variable related to the location of the streamlines.

the fluid for which the tangent is parallel to the velocity vector; from the streamline
equations in the present spherical coordinates (2.1) it is straightforward to show that, at
least in steady flow, the quantity rΨ sin φ is constant along streamlines. Accordingly,
this has been calculated for these viscous flows, based on the representation in
equation (4.8), and contours drawn at the three times shown. At the early time t = 2,
the streamlines are approximately just straight lines emanating from the origin, as is
to be expected for purely radial outflow from a point source. At the next time t = 3,
this largely continues to be the case, although viscous entrainment near the source has
created small recirculating regions near the origin, and these are consistent with the
vorticity patterns at this time shown in Figure 3(b). However, the bipolar nature of
the flow is still in evidence, as the streamline pattern remains symmetric about the

https://doi.org/10.1017/S1446181112000090 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181112000090


110 L. K. Forbes [24]

1

1

0.5

0

0

–0.5

–1

–1

–1.5

–2 –2

0

2

2
y

x

1.5

–2

z

F 4. The axi-symmetric surface formed by the density contour ρ̄ = 0.03 in the viscous solution at
time t = 5, for the case D = 1.05, F = 1, ε = 0.03, β = 5, for the second mode K = 2.

plane z = 0. However, at t = 4, the bipolar outflow has clearly been replaced by a
unipolar flow with a single jet exiting downward in the picture. Either side of this jet
are small recirculating regions resulting from viscous entrainment.

With the choice of density ratio D = 1.05 illustrated in this paper, the maximum
value of the density perturbation ρ̄ is therefore 0.05. Comparisons with the inviscid
solutions of Section 2 show that, for early times, the inviscid interface lies roughly
along the contour ρ̄ = 0.03. Figure 4 shows the axi-symmetric surface formed by this
contour, for the second-mode solution (K = 2), at the later time t = 5. The surface
clearly still retains some features of its initial bipolar shape, and there are outflows
near both poles. But the jet at the bottom of the picture is clearly the larger of the two,
and confirms that the mode-one solution has now dominated the outflow shape.

It is evident from Figures 3 and 4 that the mode-one solution (K = 1) ultimately
dominates as time progresses. This could, perhaps, be inferred from the linearized
inviscid result (3.16) which shows that the K = 1 mode is the most unstable. Evidently
the inclusion of viscosity in the model couples all the modes in a manner that the
pure nonlinearity of the inviscid solutions in Figure 2 does not achieve, so allowing a
cascade of energy down to this lowest mode. Given its importance in the viscous case,
it is therefore worth studying the first-mode solution directly, and this is achieved by
setting K = 1 in the initial conditions (4.15)–(4.19). In order to improve accuracy in
this important case, solutions were obtained with M = N = 25 Fourier coefficients and
161 mesh points in the two coordinates r and φ.
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F 5. A comparison of the viscous and inviscid solutions for the first-mode solution (K = 1), at times
(a) t = 0.5 and (b) t = 1.5. Density contours are shown for the viscous solution, and the interface in the
inviscid case is shown as a thick dashed line. The scale on both axes is the same.

Two solutions are shown in Figure 5, at the two times t = 0.5 and t = 1.5 for the
case K = 1. For the viscous results, contours of the density perturbation function ρ̄
are presented, and care has been taken to show the same contour levels 0 < ρ̄ < 0.05 in
each diagram, to enable comparison. In addition, the nonlinear interface computed for
the inviscid solution at the appropriate time is also overlaid on both diagrams, and is
drawn with a thick dashed line.

For the early time t = 0.5, there is very close agreement between the inviscid and
viscous results, with the inviscid interface lying almost exactly along the contour
ρ̄ = 0.02, as may be seen in Figure 5(a). (There is no significance to the large number
of contours shown at the edge of this figure, since they are all representations of
ρ̄ = 0.05. This may be confirmed by reference to the colour bar shown at the right
of the figure. Colour available online.) As time increases, the inviscid interface bulges
slightly toward the top of the diagram, until at some time a little greater than t = 1.5,
the curvature at the top pole becomes very large, similar to that shown in Figure 2(b).
Beyond that time, the inviscid solution fails, and it appears to be the case that an
interfacial curvature singularity is formed there in finite time, analogously to the work
of Moore [40]. In the plane Rayleigh–Taylor case, Forbes [21, 22] among many others
suggested that the curvature singularity in the inviscid solution was the trigger in the
viscous case for the formation of small regions of intense vorticity, and these caused
the viscous interface to overturn. In the present three-dimensional geometry, this
curvature singularity appears to be associated with jet formation at the lowest mode
K = 1, and this may be seen in Figure 5(b) at the later time t = 1.5. Interestingly, the
inviscid interface nevertheless lies almost exactly between the ρ̄ = 0.02 and ρ̄ = 0.03
contours almost everywhere, except for the narrow jet region at the top of the figure.
Again, it must be remembered that there is no significance to the fact that the jet in this
diagram appears at the “top” of the picture instead of at the “bottom” as in Figures 3
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F 6. The viscous solution at the three times t = 0.5, 1, 1.5 for the case D = 1.05, F = 1, ε = 0.03,
β = 5, for the first mode K = 1. Solution contours are shown for (a) the density, (b) the vorticity and (c) a
variable related to the location of the streamlines.

and 4; since gravity is directed purely radially inward, there is no preferred direction
in this sense.

A more detailed view of the evolution of the mode-one jet for these same parameter
values is presented in Figure 6, for the three time values t = 0.5, 1 and 1.5. In
Figure 6(a) density contours are shown, as in Figure 5, and the growth of the jet at
the top of these diagrams can be seen. Figure 6(b) presents vorticity contours for these
same three times. As with Figure 3(b), the vorticity is zero over almost all of the
computational domain, so that this is almost an irrotational flow. However, there is
a strong narrow region of vorticity either side of the mode-one jet that forms at the
top of these pictures, similar to the behaviour of vorticity in a forced plume (see the
paper of Forbes and Hocking [24]). In spherical polar coordinates (2.1), the quantity
rΨ sin φ is constant along streamlines in steady flow, and contours of this function are
presented in Figure 6(c) for the three times shown. These streamlines start as simple
straight lines radially outward from the point source at small times, as expected, but
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F 7. The axi-symmetric surface formed by the density contour ρ̄ = 0.03 in the viscous solution at
time t = 1.5, for the case D = 1.05, F = 1, ε = 0.03, β = 5, for the first mode K = 1.

quickly develop into an asymmetric jet directed toward the top of the diagram. At the
early time t = 0.5, there are small wiggles in some of the streamlines far from the point
source. These are again a consequence of the sensitivity of the contouring algorithm
to very small oscillations in numerical values of Ψ (particularly when multiplied by
the radial coordinate r), but they are of no physical significance.

As a further aid to visualization of the mode-one jet, the surface formed by the
contour ρ̄ = 0.03 at time t = 1.5 is shown in Figure 7. At the bottom of this diagram,
the surface essentially still forms a spherical globe, but there is a strong jet at the top of
the region. This axi-symmetric outflow plume possesses a number of small-amplitude
wavelets along its length, due to viscous entrainment of the surrounding medium. This
is consistent with the patterns of vorticity along the jet, as seen in Figure 6(b).

To conclude this presentation of results, the mode-four solution is considered. This
is obtained simply by setting K = 4 in the initial conditions (2.37) for the inviscid
case and (4.15)–(4.19) for the corresponding viscous solution. The inviscid solution
is shown in Figure 8, for the five values of time t = 1, 2, 3, 4, 5. Figure 8(a) shows
interface profiles at the different times, and the four lobes corresponding to the K = 4
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F 9. A comparison of the viscous and inviscid solutions for the fourth-mode solution (K = 4), at
times (a) t = 3 and (b) t = 5. Density contours are shown for the viscous solution, and the interface in the
inviscid case is shown as a thick dashed line. The scale on both axes is the same.

solution can be seen clearly. Again, a small region of high curvature develops near the
two poles on the z-axis, and eventually these high-curvature regions cause the failure
of the numerical method in Section 2, at sufficiently large times. The curvature is
shown in Figure 8(b) at the five different times, and the growth of regions of very
high curvature near the two poles can be seen in this diagram. The development of
Moore curvature singularities [40] within finite time at the interface seems highly
likely for these inviscid flows, corresponding to their formation in planar Rayleigh–
Taylor flows [21, 22].

In Figure 9, a comparison is made between the predictions of the nonlinear inviscid
theory and the Boussinesq viscous result, at the two different times t = 3 and t = 5. The
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F 10. Growth of a mode-one type jet in the viscous solution for the mode-four case K = 4. Density
contours are shown at the three times t = 3, 4, 5.

large number of contours at the outer regions of these diagrams is of no significance,
and is instead merely an artifice of the contouring routine, since all these contours
indicate the same level ρ̄ = 0.05 of the density perturbation function; this is confirmed
by an examination of the colour bar at the right of each diagram (colour available
online). At the earlier time t = 3 shown in Figure 9(a), there is very close agreement
between the viscous and inviscid results, and the interface predicted by the inviscid
theory lies almost entirely along the density contour ρ̄ = 0.025. The density contours
for the viscous solution inside that curve also display the four-lobed shape expected
for this K = 4 fourth-mode solution. At the later time t = 5 shown in Figure 9(b),
however, a single jet has emerged at the top of the diagram, and has almost reached
the edge r = β of the computational window (the numerical solution continues to run
for later times than this, but is likely to be unreliable for this reason). For this higher-
mode solution, it is again evidently the case that the regions of high curvature formed
in the inviscid model serve as a trigger in the viscous case for a cascade of energy
down to the lowest mode K = 1, which is the most unstable; this then results in the
formation of a unipolar jet. In spite of this, however, the nonlinear interface at this
time t = 5 lies very nearly on the density contour ρ̄ = 0.03 over almost all of the lower
section of this figure.

The growth of this single jet out of what was initially a mode-four solution, obtained
with K = 4, is shown in slightly more detail in Figure 10. Here, density profiles are
given at the three times t = 3, 4 and 5, and show clearly the evolution of the mode-
one jet at the top of the picture. At time t = 3, there is close agreement between
the viscous and inviscid results, as observed in Figure 9, and at that time both
solutions are dominated by the mode-four result, with four outflow lobes arranged
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axi-symmetrically around the sphere. However, by time t = 4 a single jet begins to
emerge, and it grows into a large mode-one jet, similar to that shown in Figure 7, by
time t = 5.

6. Discussion and conclusion

This paper has examined the outflow of a light fluid from a point source into a
surrounding heavier fluid, with an interface separating the two regions. Both fluids
are incompressible, and the situation has been modelled for inviscid flows as well
as in a Boussinesq viscous sense, in which the two fluids are of comparable density
and the interface is approximated by a narrow zone across which the density changes
continuously but rapidly. The outflow is unstable due both to Rayleigh–Taylor effects,
since a light fluid is pushing a heavier one, and also as a result of Bell–Plesset effects, in
which the spherical geometry may serve to destabilize the interface. This is discussed
by Epstein [18], and was encountered in Section 3.

The inviscid model has been solved using a spectral technique proposed by Forbes
et al. [23], in which the conditions on the interface are used to derive certain identities
between the various time-dependent Fourier coefficients in the representations of
the solution functions. A strength of this approach is that it allows the interfacial
curvature to be obtained accurately, since the required spatial derivatives are evaluated
by exact differentiation of the Fourier representations. It has been found that the
inviscid outflow is apparently limited by the formation of a curvature singularity on the
interface, at the poles, within finite time. This is consistent with the results of Cowley
et al. [15] and Moore [40] in planar geometry. A linearized analysis of the inviscid
situation, valid for early times when the amplitude of the disturbance is still small,
leads to a difficult equation for which no closed-form solution exists. Nevertheless,
in the zero-gravity limit F→∞, the equation has been shown to be equivalent to
the evolution equation presented by Mikaelian [39], and in that case it does admit a
relatively straightforward solution. This has been compared with the results of the
numerical solution of the inviscid problem, and the two are in close agreement for
early times, although that comparison has not been presented here in the interest of
space.

Viscous effects have also been included in this study, primarily to quantify the effect
that viscosity has on the evolving interface. This has been done using a Boussinesq
approach adapted from Farrow and Hocking [19]. This has the advantage of
simplifying the treatment of the interface between the two fluids, since it approximates
the true situation with a single fluid in which the density changes continuously across a
narrow interfacial zone. This weakly viscous problem has been solved using a spectral
method, and the results are in good agreement with the predictions of the purely
inviscid approach for early times. The inviscid theory fails at a critical time due to
the formation of curvature singularities on the interface; at about this critical time, the
viscous solution undergoes a transition from a state determined by its initial conditions
to a state dominated by a mode-one outflow. This consists of a single jet, which may
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appear at either pole since gravity is directed purely inward toward the point source,
and so neither is preferred in the model equations.

This cascade, in the viscous case, of energy down to the mode-one solution
with its single outflow jet, is an unexpected outcome and so has been checked
very carefully. To safeguard against numerical instabilities, the solutions have been
variously subjected to filtering and to several smoothing algorithms, but these do not
change the results. In addition, as an extra check, the nonconstant gravitational body-
force term per mass −(GM/r2)er used in this paper has been replaced with a simpler
constant inwardly directed gravitational term −ger (both given here in dimensional
variables), but this has had no significant effect on the outcome.

The qualitative difference between these results for spherical outflow and the planar
outflow case discussed by Forbes [22] and Matsuoka and Nishihara [37] is caused
precisely by the different geometry in these two cases. This is reflected in the vorticity
equation (4.5) by the presence of the additional term −(ζ/r)(u + w cot φ) in the viscous
case. A term of this type does not appear in planar geometries. When it is removed
(wrongly!) from equation (4.5), results are then obtained that are qualitatively similar
to those of Forbes [22] or Matsuoka and Nishihara [37]; there is no preference for
mode-one solutions, so that a solution with initial conditions corresponding to mode K
remains in that mode throughout its evolution, and viscosity results in large overturning
plumes with a mushroom shape. So the convergence of solutions in the viscous case
to outflows dominated by mode-one behaviour is a consequence of the inescapably
three-dimensional nature of their geometry.

This then raises the question of the relevance of these results in practice. One
possible laboratory for outflows of this type might be provided by astrophysical
applications. Somewhat in contradiction to the findings of this paper, there are
many instances of strongly bipolar flows occurring in astrophysics, as indicated by
Stahler and Palla [49, Section 13.2.1] and the review by Zinnecker and Yorke [56].
A particularly intriguing example of these types of outflows is to be found in the
remarkable object Eta Carinae, a massive star of probably greater than 100 solar
masses, that underwent an enormous eruption in the 1830s. Its bipolar outflow has
been imaged using the Hubble Telescope, and is approximately axi-symmetric as
assumed in the present paper. A review of work and some ongoing questions about
Eta Carinae is presented by Davidson and Humphries [16]. Nevertheless, the role
of magnetic fields is perhaps unclear in these situations, and the essentially dipole-like
nature of a magnetic source located at the star could certainly promote bipolar outflows
of material. The effect of magnetic fields on planar Rayleigh–Taylor flows has recently
been investigated by Chambers and Forbes [12], for example, and a similar approach
could be adopted in the present application.

Nevertheless, there is a growing body of evidence that one-sided outflows may
indeed occur in astrophysics. Some emission jets of this type are discussed in the
review by Reipurth and Bally [44], and a recent article by Lovelace et al. [35] presents
computational evidence for such behaviour. As observed here, there is no preferred
“up” or “down” direction in these flows, so that the one-sided jet could emerge from
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either pole. Indeed, Lovelace et al. [35] compute situations, for a rotating star, in which
the outflow switches from one pole to the other; some possible experimental evidence
for this behaviour has recently been reported by Chené and St-Louis [13]. In addition,
in the literature on internal confinement fusion, in which spherical implosion occurs,
instability can lead to the formation of a long spike jet, as discussed by Ye et al. [53].

The solutions discussed in this paper are all independent of the azimuthal angle
θ in the spherical polar coordinate system, with the result that they are rotationally
symmetric about the z-axis. Of course, it is also possible to consider outflow types with
variations in both angles φ and θ. In that case, the axial symmetry would be lost, and
extremely complex outflows would be produced, involving fully three-dimensional
geometry. In principle, the techniques of the present paper can be adapted to this
difficult problem, although the computational requirements would be enormous. Those
interesting flows, along with considerations of magnetic field effects, must be left to
future investigation.
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Appendix A. ODEs for viscous Fourier coefficients

For completeness, this appendix sets out the systems of ordinary differential
equations satisfied by the Fourier coefficients in the Boussinesq viscous model
described in Section 4.

The density equation (4.2) is spectrally decomposed, as described in Section 4, and
at the zeroth order in angle yields the system

dCk0

dt
= −

3
β3

∫ β

0

∫ π

0

(
u
∂ρ̄

∂r
+

w
r
∂ρ̄

∂φ

)
r2 sin

(kπr3

β3

)
sin φ dφ dr

+
72σ(D − 1)

β3

∫ β

0

( r
β

)3

sin
(kπr3

β3

)
dr

+
6σ
β3

M∑
m=1

Cm0(t)
[
12mπ

∫ β

0

( r
β

)3

cos
(mπr3

β3

)
sin

(kπr3

β3

)
dr

− 9m2π2
∫ β

0

( r
β

)6

sin
(mπr3

β3

)
sin

(kπr3

β3

)
dr

]
, (A.1)

where k = 1, 2, . . . , M. Similarly, the higher-order coefficients Ck` for the `th-
mode terms in the angle coordinate are found from the system of differential
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equations

dCk`

dt
= −σ(α`,k)2Ck`(t)

−
(2` + 1)

β2J2
`+3/2(α`,kβ)

∫ β

0

∫ π

0

(
u
∂ρ̄

∂r
+

w
r
∂ρ̄

∂φ

) J`+1/2(α`,kr)
r3/2

P`(cos φ) sin φ dφ dr

+
2σ

β2J2
`+3/2(α`,kβ)

M∑
m=1

Cm`(t)
[
6α`,m

∫ β

0
J′`+1/2(α`,mr)J`+1/2(α`,kr) dr

+ 9
∫ β

0
r−1J`+1/2(α`,mr)J`+1/2(α`,kr) dr

]
, (A.2)

where k = 1, 2, . . . , M and ` = 1, 2, . . . , N. The vorticity equation (4.5) is similarly
decomposed spectrally, as outlined in Section 4, and leads to the further system of
MN ordinary differential equations

dAk`

dt
= −

1
F2

Ck`(t) −
1
Re

(α`,k)2Ak`(t)

−
(2` + 1)

`(` + 1)β2J2
`+3/2(α`,kβ)

∫ β

0

∫ π

0

[(
ru
∂ζ

∂r
+ w

∂ζ

∂φ

)
sin φ

− ζ(u sin φ + w cos φ)
]
r1/2J`+1/2(α`,kr)P′`(cos φ) sin φ dφ dr, (A.3)

where k = 1, 2, . . . , M and ` = 1, 2, . . . , N.
This large system of M(2N + 1) equations is now integrated forward in time to give

the solution for the Boussinesq viscous model.
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