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Abstract. This paper develops an analytic theory of Dirichlet series in several complex vari-
ables which possess sufficiently many functional equations. In the first two sections it is
shown how straightforward conjectures about the meromorphic continuation and polar divi-
sors of certain such series imply, as a consequence, precise asymptotics (previously conjec-
tured via random matrix theory) for moments of zeta functions and quadratic L-series.
As an application of the theory, in a third section, we obtain the current best known error
term for mean values of cubes of cent ral values of Dirichlet L-series. The methods utilized
to derive this result are the convexity principle for functions of several complex-variables
combined with a knowledge of groups of functional equations for certain multiple Dirichlet
series.
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1. Introduction

A Dirichlet series of type
o0 o0
Z Z / f a(my, ..., My, by, . )" de - de
— — -my’

(where a (my,...,my,, t1,...,t) is a complex-valued smooth function) will be
called a multiple Dirichlet series. It can be viewed as a Dirichlet series in one
variable whose coefficients are again Dirichlet series in several other variables.
One of the simplest examples of a multiple Dirichlet series of more than one
variable is given by

i L(S, Xd)
|d| w ’

d
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where the sum ranges over fundamental discriminants of quadratic fields, y, is the
quadratic character associated to these fields, and

L(S7 Xd) = Z Xd(gn)
n=1

n

is the classical Dirichlet L-function. This type of double Dirichlet series and a
method to obtain its analytic continuation first appeared in a paper of Siegel [S]
in 1956. More generally, one may consider

L(Sl ’ Xd) : L(S2’ Xd) s L(Snu Xd)
|d|w °

Z(S1,82, oy Sy W) = Z

d

(1.1)

Multiple Dirichlet series arise naturally in many contexts and have been the sub-
ject of a number of papers in the recent past. See, [B-F-H-2] for an overview and
references. The reason for their interest is most apparent when they take the form
(1.1). It is easy to see that if, for fixed sy, s, ..., sy, the analytic continuation of
Z(s1, 82, ...,5u, w) could be obtained to all w € C then standard Tauberian argu-
ments could be used to obtain information about the behavior of L(si, y,):
L(s2, x4) -+ L(Sm, x4) as d varies. For example, mean values could be obtained if there
is a pole at w=1. The situation becomes even more interesting when it is noted that
quadratic twists of the L-series of automorphic forms on GL(m) can be viewed as
special cases of the product L(sy, y) - L(s2, x4) - - - L(Sm» x4)- The first example of this
type of application that we are aware of is [G-H] in the case m = 1. Here mean value
results are obtained for quadratic Dirichlet L-series. Similar results over a function
field are obtained in [H-R], and recently, over more general function field, in [F-F].
Examples of the cases m =2, 3 when the numerator is the L-series associated to a
GL(m) cusp form are given in [B-F-H-2], [B-F-H-1].

In all these examples (except for [F-F]), the analytic continuation of (1.1) was
obtained by treating the variable w separately. The fact that the L-series or products
of L-series in the numerator occurred in the Fourier coefficients of certain meta-
plectic Eisenstein series was exploited, and analytic continuation in w was achieved
by the application of Rankin-Selberg transforms.

It later became apparent, however, that there were many advantages to viewing
multiple Dirichlet series as functions of several complex variables. In particular, con-
sider (1.1) but ‘improve’ it by redefining the L-series in such a way that [T/, L(s;, z,)
is the usual product of L-series if d is (the square free part of) a fundamental discri-
minant, and is [[;” | L(s;, x,,) times a correction factor if d is a square multiple of the
square free part dy. The correction factors are Dirichlet polynomials with functional
equations and will be discussed further in Section 4.

The improved, or ‘perfect’ series, Z*(sy, 52, ..., S, W), then possesses some un-
expected properties. In particular, in addition to the obvious functional equations
sending s;, > 1 —s;,i =1, ..., m, there are some ‘hidden’ functional equations that
correspond to some surprising structure when the order of summation in Z* is altered.
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The fact that such a phenomenon can occur was first observed by Bump and
Hoffstein in the case of m=1 and a rational function field, and is mentioned in
[H]. It was first observed and applied in the case m =2 in [F-H]. The possibility of
using these extra functional equations as a basis for obtaining the analytic continua-
tion of double Dirichlet series was then discussed in [B-F-H-2]. It was observed there
that in the cases where the numerator is an L-series of an automorphic form on
GL(m), if m=1, 2 or 3 then the functional equations of the corresponding perfect
double Dirichlet series generate a finite group. It was also noted that by applying
these functional equations to the region of absolute convergence a collection of over-
lapping regions was obtained whose convex hull was C. Thus by appealing to a well
known theorem in the theory of functions of several complex variables, the complete
analytic continuation of Z* could be obtained.

In later work, [B-F-H-1], it was observed that a uniqueness principle operated in the
cases m = 1, 2, 3 and the correction factors were determined by, and could be compu-
ted from, the functional equations of Z*. Curiously, for m > 4 the group of functional
equations becomes infinite and simultaneously the uniqueness principle fails. The space
of local solutions becomes 1 dimensional in the case m = 4, and higher for m > 4. This
appears to correspond to an inability to analytically continue the double Dirichlet ser-
ies past a curve of essential singularities. See [B-F-H-1,2] for further details. The paper
of [F-F], in addition to providing a completely general analysis of the case m =1 over a
function field, contains some further insights into this curious phenomenon.

We shall call a multiple Dirichlet series (of » complex variables) perfect if it has
meromorphic continuation to C" and, in addition, it satisfies a group of functional
equations. The case m =3 is thus of great interest as the last instance in which the
perfect multiple Dirichlet series (for the family of quadratic Dirichlet L-functions)
are understood completely. In [B-F-H-1] a description of the ‘good’ correction fac-
tors was obtained for the case of m=3 and an arbitrary automorphic form f on
GL(3). These are the factors corresponding to primes not dividing 2 or the level
of f. This information was then used to obtain the analytic continuation of the asso-
ciated perfect double Dirichlet series. As a consequence, non-vanishing results for
quadratic twists of L(1/2,f, x,) were obtained. Also, after taking a residue at
w=1, a new proof was obtained for the analytic continuation of the symmetric
square of an automorphic form on GL(3).

One purpose of this paper is to apply the ideas of [B-F-H-1] to obtain the mero-
morphic continuation of the series Z*(s, s, s, w). After obtaining this and developing
a sieving method analogous to that used in [G-H] we reconstruct the unimproved
series of (1.1). Applying the analytic properties of this we prove the following

THEOREM 1.1. For d summed over fundamental discriminants, and any ¢ >0

5
Y L xdf(l —“‘j') LS L dogf + 3 enxllog) + 0,064,

=—-—a3 - —
= 2 w7 2880 —

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018137.38458.68

300 ADRIAN DIACONU ET AL.

The constants c¢; are effectively computable. The following unweighted estimate also
holds:

6 1 3 4
3 _ 6 i 0+¢
D L 1) = 303 g x(og 0 + Y divllogx) + O (x").
ld|<x i=0
where the constants d; are also effectively computable and 9:%(47—\/265)~
0.853366. ..

This improves on Soundararajan’s [So], bound of O(x%“). The weight
(1 = (]d|/x)) is included in the first part to show the optimal error term obtainable
by this method. It will be shown in Section 4.4, Proposition 4.12, that we expect
the multiple Dirichlet series Z*(, 4,1, w) to have an additional simple pole at w =3
with non-zero residue. Note that the function Z*(i, 1,4, w) is perfect and has
meromorphic continuation everywhere. It is unclear whether Z(i, 1,1, w) has a pole
at w =3, assuming it has meromorphic continuation to J(w) >3 —¢ for some
€ > 0. We expect this matter to be clarified shortly by computations being done
by Q. Zhang.

Remark. In general, for higher moments, careful analysis of Sections 2.3 and 3.1
can be used to obtain all the coefficients of the polynomial in log x of the main term
in the asymptotic formula.

The major objective of this paper is to, at least conjecturally, pass the barrier of
m = 4. The first obstacle to accomplishing this is our incomplete understanding of
the correct form of the class of perfect multiple Dirichlet series for m > 4. There is
an infinite family of choices, every member of which possesses the correct func-
tional equations. However, for any one of these choices, if an analytic continuation
could be obtained to a neighborhood including the point (1/2,1/2,...,1/2, 1) then
a sieving argument could be applied and a formula analogous to Theorem 1.1
could be proved. In particular, this would imply the truth of Conjecture 3.1 of
Conrey, Farmer, Keating, and Snaith giving the precise asymptotics for the
moments of Zld‘@ L(1/2,y,)" for m=1,2,3,.... In [B-F-H-2] it is explained
how if the variables are specialized to s = sy = - - - = s,,, then any multiple Dirichlet
series possessing the correct functional equations must hit a certain curve of essen-
tial singularities. A similar hypercurve is encountered for m > 4 when the variables
are not specialized. However, the point (1/2,1/2,...,1/2,1) lies well inside the
boundary of this curve. Another way of saying this is that by taking the area of
absolute convergence of a corrected analog of (1.1) and applying the infinite group
of functional equations a region of analytic continuation is obtained. For m > 4
the point (1/2,1/2,...,1/2,1) lies outside this region, but inside the region
contained by the curve of essential singularities. The case m =4 is particularly
intriguing, as (1/2,1/2,1/2,1/2,1) lies right on the edge of the open hyperplane
of analytic continuation that can be obtained.
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In Section 3 we make the reasonable assumption that an analytic continuation
exists past the point (1/2,1/2,...,1/2,1) for a corrected analog of (1.1). We then
calculate the contribution of the 2™ polar divisors of (1.1) that pass through
this point. This gives us a description of the whole principle part in the Laurent
expansion of (1.1) around this point. This description is then translated into
Conjecture 3.1.

As far as the present authors are aware, the first examples of multiple Dirichlet
series involving integrals appear in the paper of A. Good [G] first announced in
1984. Let f(z) be a holomorphic cusp form of even weight k for the modular group
I' =SL(2, 7). By developing an ingenious generalization of the Rankin—Selberg
convolution in polar coordinates Good obtained the meromorphic continuation of
the multiple Dirichlet series

o0 ko
/1 ‘Lf<§ + ll)

where L,(s) is the Hecke L-function associated to /by Mellin transform. He showed
that this function has at most simple poles at w = % + ir, where w = % + 7% is an eigen-
value associated to a Maass form on I". Good [G] even showed how to introduce
weighting factors into the integral which gave a functional equation in w. His
method can also be extended to obtain the meromorphic continuation of

2
" dt,

[o¢]
/ Ly(s1 + it)Ly (s, — i)t dt.
1

In Section 2, we develop the theory of multiple Dirichlet series associated to
moments of the Riemann zeta function. In this case, the perfect object has been
found for m =2 (using theta functions) and for m = 4 (using Eisenstein series) by
Good [G], but his theory has never been fully worked out. We consider the multiple
Dirichlet series

Z(Sl’ oo Som, W) = / C(S] + lt) T é/(sm + ll) . C(Sm-H - ll) s C(Szm — l.l)l_w ds
1

and show that it has meromorphic continuation (as a function of 2m + 1 complex
variables) slightly beyond the region of absolute convergence given by
N(s) > 1,A\w) > 1(=1,2,...,2m) with a polar divisor at w=1. We also show
that Z(sy, ..., som, w) satisfies certain quasi-functional equations (see Section 2.2)
which allows one to meromorphically continue the multiple Dirichlet series to an
even larger region. It is proved (subject to Conjecture 2.7) that Z(%, ey %, w) has a
multiple pole at the point w=1, and the leading coefficient in the Laurent expansion
is computed explicitly in Proposition 2.9. Under the assumption that Z(%, . ,%, w)
has holomorphic continuation to the region Re(w) > 1 (except for the multiple pole
at w=1, we derive the Conrey-Ghosh-Keating-Snaith conjecture (see [Ke-Sn-1] and
[C-Gh-2]) for the (2m)th moment of the zeta function as predicted by random matrix

theory.
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Recently [CFKRS] have presented a heuristic method via approximate functional
equations for obtaining moment conjectures for integral as well as real and complex
moments for general families of zeta and L-functions. Their method is related to
ours in that it uses a group of approximate functional equations in several complex
variables.

Remark. Notice that the methods presented in this paper do not require that the
L-functions (for which we want to obtain moments) have an Euler product. It is
only necessary that they have meromorphic continuation and satisfy a group of
functional equations.

Moments of the Riemann Zeta—Function

For ¢ > 1, let

00 -1
IS )
n=1 V4

denote the Riemann zeta function which has meromorphic continuation to the whole
complex plane with a single simple pole at s = 1 with residue 1. It is well known (see
Titchmarsh [T]) that { satisfies the functional equation {(s) = y(s){(1 — s) where

S

21— 5) = —— — 2020y cos( :

2(5)
In 1918 Hardy and Littlewood [H-L] obtained the second moment

)r(s). (2.1)

/h |E¢ + if))> dr ~ xlog x,
0
and in 1926 Ingham [I] obtained the fourth moment
X o 1 A
/ I{G+in|* dt ~ 5— x(log x)".
0 . 2n

This result was not significantly improved until the work of Heath and Brown [H-B]
in 1979 where it was shown that

/y LG+ in]* di = x - Py(logx) + O(x+),
0

where P4 is a certain polynomial of degree four. More recently, Zavorotny [Z]
(1989), and by a different method, Motohashi [Motl1] (1993) has proved that

/ LG+ in)* di = x - Pylogx) + O,
0
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Motohashi’s work was based on earlier work of Atkinson [A]. By a careful analysis
of the Kuznetsov trace formula, Motohashi [Mot2] introduced and was able to
obtain the meromorphic continuation (in w) of the function

/ ~ Ls + i) (s — i’V de. (2.2)
1

Motohashi pointed out that it is, therefore, possible to view the Riemann zeta
function as a generator of Maass wave form L-functions. Motohashi [Mot3] has
generalized his methods to a wide variety of cases which include mean square and
fourth moment of the Riemann zeta function, mean square of Hecke L-series
attached to holomorphic cusp forms, and mean square of quadratic zetas. These
should be compared to the earlier work of Good [G].

There has been a longstanding folklore conjecture that

f ) L@+ i) dt ~ crx(log x)F (2.3)
0

In 1984 Conrey and Ghosh [C-Gh-2] gave the more precise conjecture that

8rdk

Cl = m, (24)
where
k2 oo 2
@ = ]‘[(1 _ 1) 3 dk(”]j/) 2.5)
p L=

is the arithmetic factor and gy, an integer, is a geometric factor. Here, di(n) denotes
the number of representations of n as a product of k positive integers. In this nota-
tion, the result of Hardy and Littlewood states that g; = 1, while Ingham’s result is
that go = 2. In 1998, Conrey and Ghosh [C-Gh-1] conjectured that g3 = 42, and
more recently in 1999, Conrey and Gonek [C-G] conjectured that g4 = 24024. Up
to this point, using classical techniques based on approximating {(s) by Dirichlet
polynomials, there seemed to be no way to conjecture the value of g in general.
In accordance with the philosophy of Katz and Sarnak [K-S] that one may associate
probability spaces over compact classical groups to families of zeta and L-functions,
Keating and Snaith [Ke-Sn-2] (see also [B-H]) computed moments of characteristic
polynomials of matrices in the unitary group U(n) and formulated the conjecture that

=
gk—k!g(j+k)! (2.6)
for any positive integer k. This conjecture agreed with all the known results and was
strongly supported by numerical computations.

We show in the next sections that there exists a multiple Dirichlet series of several
complex variables of the type (2.2) previously introduced by Motohashi, with a polar
divisor at w =1, whose residue is simply related to the constants (2.4), (2.5), (2.6). We
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further show that if one could holomorphically continue this multiple Dirichlet series
slightly beyond this polar divisor, a proof of the Conrey—Ghosh—Keating—Snaith
conjecture would follow.

2.1. THE MULTIPLE DIRICHLET SERIES FOR THE RIEMANN ZETA FUNCTION

Let s1, 52, ..., 8um,, w denote complex variables, k be an integer, and ¢; = +1 for
i=1,2,...,2m. We shall consider multiple Dirichlet series of type

ZE],..A,éz,“,k(Sla vy S2my M")
0 2me\ <

:f {(s1 +erin) - L(s2m +€2mil)<7) ~de. (2.7)
1

It is easy to see that the integral in (2.7) converges absolutely for Si(w) > 1 and
N(s;)>1,(i=1,2,...,2m), and defines (in this region) a holomorphic function of
2m + 1 complex variables. These series are more general than the series (2.2) intro-
duced by Motohashi in that they contain the factor (2me/7)*. It will be shortly seen
that this factor occurs naturally because of the asymptotic formulae [T]

) w (2T 1 Dme\ ! 1
15+ i) =e (7> (T) {1+0<?)},

) s—1 —it
y(s +it)y=e+ (2_n> <%) {1 + OG)} (for fixed s and ¢ — 00),

t t
(2.8)

for y, the function occurring in the functional Equation (2.1) for the Riemann zeta
function.

PROPOSITION 2.1. For ¢ >0, the function Z ., k(St,...,Sam, W) can be
holomorphically continued to the domain N(s;)) > —c (fori=1,...,2m) and
_____ omk can be holomorphically
continued for R(w) > 0 and R(s; + (w/|k])) > 1+ |k|™" (i=1,...,2m), and for k = 0,
it can be meromorphically continued for W(w) > 0 and R(s;)) > 1(i=1,...,2m) witha
single simple pole at w=1 with residue

-5 —$m
z : Z1 "'€2m

Proof. The first part of the Proposition follows immediately from the well-known
convexity bound

(s + in)] <5 (14 [2)F,
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for NR(s) > —o, where the implied constant depends at most on s. For the second
part, we need the following lemma.

LEMMA 2.2 Let B> 0 and k € R be fixed. For W(w) > 1 the integral

00 ) 2 kit ,
(W) = / B! <7;e> v dr
1

converges absolutely and defines a holomorphic function of w. Further, for
{B, k} # (1,0}, the function Ip(w) may be holomorphically continued to R(w) > 0,
and for 0 < R(w) < 1, it satisfies the bound

_1 if k=0,
g (W) <Kk, |log B 1-9R(w) v
1+B 7% (1+]|logB|) if k#0O.

Finally, when B — 1,k =0, we have I} o(w) = 1/(w — 1).

Proof. First, a simple computation shows that 1) o(w) = 1/(w — 1). Also, inte-
grating by parts, it can easily be seen that /zo(w) is a holomorphic function for
NA(w) > 0. In this case, we have the estimate

po(0)] < —
B,o0\W w |10g B| .

For k # 0 and Bt > (2m)~!, we split the integral defining /5 into two parts

A+l kit 00 kit
< (A X A X
Ip (W) = f (—) Vdr + / (—) " dt,
P! 4\

where 4 = 2re - Bt. We estimate the first integral trivially, so, for 0 < R(w) < 1,
AL g\ it . (A_H)l—?“(w)_l A+1 1-R(w) A+1
" de| < < log —

e
1 —3(w) e
Now, integrating by parts, we have

% /4 kit 0 / 4 kit 1
2) rrdr= [ (2) ik(ogd —logr—1)- d
/_1<;> rod L(z) llog 4 —log! = 1) rice 4 —Togr— v

3

—MR(w
Kiw B (1 + | log B)).

ki(A+1)

)T e e
= . S — = -] x
ik log(1+4) (A+1)" ik Jeu\1
1
X —
(log A —logt — 1)“ v+l

dr +

w 00 A kit 1
+- 2y . dt
ik Jani \ 1 (log 4 —logt — 1)+l
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It follows that the last two integrals converge absolutely for $i(w) > 0, and hence, the
function I is holomorphic in this region. Moreover, we have the estimate

00 é k[tl—wdt em(w)Alfm(W)
A+l \ 1

L———7+
Ik|

+\W‘ool L g L] L g
k @log(ﬁ) 4R k| Lﬂlogz(%) 100w

L | eM0n 41900 N Mo * 1 1
Row) ] |k|A?“(”’) 141 10g2 u TR u
W] N0 41-9(w) 1-9i(r)
. AN BTa
SHen T m Sk

which combined with the previous one gives the required bound for the function
Ipi. For the remaining case, Bt < 2n)”", we split once again the integral into
two parts

1+1 v kit 0 /4 kit
Ip(w) = / (—) Vdr+ / <—) " dr.
1 l 14\ 1

A similar argument implies that the second integral converges absolutely for
NR(w) > 0, and that [Ig,(W)| Kk 1.
We now return to the proof of Proposition 2.1. For N(s;)) > 1 (i=1,...,2m),

o 2me\ M
§ —Si —s2 ¢ €m it —w
Z([,...,(zm,k(sl’ ceey S2m, ‘/V) - gl M '821;; mn '/; ((11 M Zzzrl;,;) ( ) Z " dty

L1yeeilom 4
(2.9)

where the sum ranges over all 2m-tuples {¢1, ..., £5,} of positive integers. For k # 0
and 0 < N(w) < 1, it is clear that the series on the right side of (2.9) is absolutely
convergent provided N(s;)) (i=1,...,2m) are sufficiently large. In fact, the esti-
mates from Lemma 2.2 imply that we have absolute convergence even for
N(s; + ﬁ) >141k|™" (i=1,...,2m). For k = 0, we break the sum on the right side
of (2.9) into two parts

Yo=Y o+ > . (2.10)

L1y lom (fl.,m(lzm (Zl,u-(,fzm
U pm 1.2
Elag@n=t  ¢lg2mz]

2m 2m

By Lemma 2.2 it immediately follows that the first sum in (2.10) will contribute a
pole at w = 1 with residue precisely as stated in Proposition 2.1. It is also clear from
Lemma 2.2 that the second sum in (2.10) will give a holomorphic contribution to
(2.9) provided N(s;) (i=1,...,2m) are sufficiently large so that the sum over
li,..., 0, converges absolutely. To show convergence for N(s;) > 1,
(i=1,...,2m), is more delicate and we give the details.
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It follows from Lemma 2.2 that for H(s;))=o > 1, (i=1,...,2m),

00
-5 —S2 € Eom\il ;—W
Y og ---e2m1/ (65 - £2n ™ di
(fl.---(qu 1

fl e"l”#‘l

2m

1 1
’ ’ 2.11
< Z (EIEQm)GUOgE?E;Z’n’;I ( )

> = >+ 2.12)

Cryeilom Lryeilom Lyl
LA W A z“me(o,%(u)z,oo) ¢ tme(h, HU(1,2)

2m 2m 2m

The first series on the right side of (2.12) is obviously convergent for ¢ > 1. We shall
show that the second one is also convergent.
Without loss of generality, let us write

-k,

€| ©m __
Oty =
r+1 " t2m

2m

It follows, upon setting € ---£, =k, €,11--- £y, = k £ a, that

1 1

ll ----- Lom (K Ezm) ‘log ,fll iZm
€3, DU(1,2)

d(k) d2m r(k+a) 1
Z Z (k+a) 10g(1+%)_

‘3+| fz

o dr(K) < dzm ok — S “do ik + @) k

23: Z a" log(l ; Z (k+a)° a+
d,(k) dz,,, ,(k k

; Z : mr(zkgéza(k+0)

o0 [2] o0
1 logk
+ < ,
kZ ko= ;a(k a) k=2 ko=

for some arbitrarily small ¢ > 0. Clearly, the last sum converges if ¢ > 1. This
completes the proof of Proposition 2.1. O

We now deduce a more precise form of the residue given in Proposition 2.1. This is
given in the next proposition.
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PROPOSITION 2.3. Fix €>0. Let N(s;)) >2+¢, ¢ ==%1, (i=1,...,2m), and
define r to be the number of ¢, =1, (i=1,...,2m). If Z, ., i denotes the multiple
Dirichlet series defined in (2.7), then we have

Res[Z,, . 0081, -« oy S2ms W] = Re(s1, - -, S2m)- 1_[ {(si + 57),
w=l 1<i<r
r+1<j< 2m

where R.(s1,...,Syn) can be holomorphically continued to the region N(s;) > %— €.
Further,

1 1 1 m? 00
Rl=,....,=) = 1—= d.(p") o (p"pH ),
(2 2> 1]( p> (; "o (p")p )

and in particular,

el 1\ _
m 27"'72 _aﬂ'l’

the constant defined in (2.5).
Proof. Define

—s —s
U (sty...,5m) = E @1 ! '~~£2m2”’
lyy.lom
Lyl =Ly Lo

It follows from Proposition 2.1, that up to a permutation of the variables sy, ..., 5,
the function U, is precisely the residue of Z,, ., o(s1, ..., S2m, w) at w=1.

If f(n) is a multiplicative function for which the sum ) .-, f(n) converges
absolutely, then we have the Euler product identity

S re) =]A+1) + 1P+ + ). (2.13)
n=1 P

It follows from (2.13) that

o0

Ui(st, ..., Sum) = 1_[ E z p_(8151+"'+€2n152m)

P u=0 er+-+te=pn
ertlteten,=p
20, (i=1.2m)
Let us now define
-1
Rr(Sl,...,Szm): Ur(S],...,Szm)c 1_[ C(Sz‘i‘s/) X (214)

1<i<r
r+1<j<2m

By carefully examining the Euler product for the right-hand side of (2.14), one sees
that R.(sq, ..., $2,) is holomorphic for M(s;) > %— ¢, (i=1,...,2m).
Now,

Yo 1 =d(p"dum P

ept-te=u
erltten,, =u
e; =0, (i=1,...,2m)
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Consequently, if we specialize the variables to s; =5, = --- = 57, = 5, we obtain
1\ (&
o =T1(1- ) (St i),
V4 u=0

The proof of Proposition 2.3 immediately follows upon letting s — %

2.2. QUASI-FUNCTIONAL EQUATIONS

Fix variables sy, 52, ..., 8y, w. Let Dsy, ..., so,, w denote the infinite-dimensional
vector space, defined over the field

K ..., = C(20)", ..., 2n)"™m),

generated by the multiple Dirichlet series

,,,,, ok (ST, s Som, W),

where the variables ¢;, k, S;, and W range over the values

gelxl}, (j=1,...,2m) keZ,
Sje{Sivl_Sj}v (j:l,,2m),

2m
1
W=w+ Zéj(sj —§>
=

with 6, € {0, 1}, (j=1,...,2m).
Forj=1,2,...,2m, we will define involutions y;: D5, __s,,.w —> Ds,.._sp0-

DEFINITION 2.4. Forj=1,2,...,2m, we define an action 7; on
Ze| ,,,,, ézm,/C(Sl! ceey Sva W) S Dsl ,,,,,, S W

(the action denoted by a right superscript) as follows:

i 1
=¢ 4’(27-5)5/ Ze, =G Com kG (Sy,...,1— S,-, e S, W+ Sj;%).

The involutions 7(Jj=1,...,2m) generate a finite Abelian group G, of 2°" ele-
ments which, likewise, acts on Dy, s, w-

We will also denote by y; (j = 1,2, ..., 2m), the affine transformations induced by
this action

Vi
1, .oy Som W) —> (51, ..., 1L =55, .., Som, 55+ w —1/2).

By Proposition 2.1, we know that Z. .. x(si,..., 52, w) has holomorphic
continuation to the region

0<Ns) <1, (=1,....,2m), NRw)>1+m. (2.15)
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We would like to use the functional Equation (2.1) to obtain a functional equation
for the multiple Dirichlet series Z,, ., k(S1,-..,S2m, w). To abbreviate notation,
we let Z(s1, ..., S2ms W) = Zey....oom kST« + s S2my W).

We shall need an asymptotic expansion of Stirling type [T]

A(s+in=e™ 2\ (2me 1+ZN‘,cnf”+O(fN*1)
t t — ’
1 .
27\ T 2me\ " N (2.16)
v(s—if)= ind [ = =t 1 —nlfn O thfl
y(s—it)=e (t) <t> {+n2_1:c +0( )}

(for fixed s and t — 00),

where ¢, are certain complex constants. Such expansions are not explicitly worked
out in [T], but they are not hard to obtain.

It now follows from Definition 2.4, Stirling’s asymptotic expansion (2.16), and the
functional Equation (2.1), that in the region (2.15), we have for y € Gy, the quasi-
functional equation

Z(S1, ooy Soma W) ~ Z(S1, .., Som, W) + Z ) Z(s1y ey Somew+n),  (2.17)
n=1

where ¢, (7,) = ¢, if ¢ =+1 and ¢,(y) =cn if ¢ = -1, for j=1,2,...,2m, and in
general, ¢/ (y) is a linear combination of ¢, and ¢, with n’, n”" < n.

We shall be mainly interested in 7y € Gy, for which the action given in
Definition 2.4

Zq,...,(z,,,,O(Sl’ ey S2my W) — Z(1 ..... (2,,,,0(51 s ooy S2ms W)v (218)
stabilizes kK = 0. An element y € Gy, is said to stabilize k relative to {ey, ..., €}
provided

Zey. oo k81 oSy W) = Cs1, oy 50m) - Ze e (S e S W)
for some C(sy, ..., S2m) € Ky,....5,, With k =K.

DEFINITION 2.5. Fix¢; = +1,(i=1,...,2m). We define Gy,,(¢y, . . ., €2,,,) to be the
subset of G, (defined in Definition 2.4) consisting of all y € G»,, which stabilize 0
relative to {eq, ..., €}

PROPOSITION 2.6. Let 1 <r < 2m, and

€y =€ = =€ = +1, Cipy = Cipyy = =+ = €y, = —1.
Then Gyp(€y, - - ., €am) 1S the subgroup of G, which is generated by the elements Vi, " Vi,
withl <u<r,r+1<v<22m.

Proof. Note that if we write y =y, - ; (with i # j) then under the action (2.18) we
see that
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k=0} - {k=c+¢)

So if we choose i from the set {7}, ..., i} and j from the set {i,,1, ..., iy,} then we see
that {k = 0} is stabilized. It easily follows that these elements generate a group and
every element of this group stabilizes 0 relative to {¢j, ..., ¢, }. Furthermore, every
element which stabilizes 0 relative to {¢i, ..., ¢,} must lie in this group.

Remark. We introduced the group Gy,(cq, ..., €,) because it is precisely this
group which gives the reflections of the polar divisor at w=1 of the multiple
Dirichlet series Z,, _,,.0(51, .., S2m, w). This will be further explained in the next
section.

2.3. A FUNDAMENTAL CONJECTURE FOR THE RIEMANN ZETA FUNCTION

We observed in Proposition 2.1 that the hyperplane w — 1 = 0 belongs to the polar
divisor of the multiple Dirichlet series Z, ., if and only if k£ = 0. It was also seen
that this hyperplane is the only possible pole in the region F defined by

F={(s1,...,59mw) € C" N NRs) >0 @G=1,...,2m), Rw) > 1 +m}U
U{(st, ..oy S, w) € CPFHRW) > 0, N(s) >2 G =1,...,2m)}.

Now, the set mycsz P(F) is nonempty, since it contains points for which
N(s;) ~1/2(i=1,...,2m) and NR(w) is sufficiently large. It follows from the quasi-
functional Equation (2.17) that the multiple Dirichlet series Z, .0 have mero-
morphic continuation to the convex closure of the region U},(Gm y(F) with poles, pre-
cisely, at the reflections of the hyperplane w — 1 = 0 under Gy,,,(¢y, ..., €,). In order
to obtain the continuation, it is understood that we first multiply Z,, .0 by certain
linear factors in order to cancel its poles. We propose the following conjecture.

CONJECTURE 2.7. The functions Z, .. .,,o0 have meromorphic continuation to a

tube domain in C*"*' which contains the point (%, ..., 1, 1). All these functions have the
same polar divisor passing through this point consisting of all the reflections of the
hyperplane w — 1 = 0 under the group Gay(cy, ..., €am). Moreover, the functions

are holomorphic for R(w) > 1.

THEOREM 2.8. Conjecture 2.7 implies the Keating—Snaith—Conrey—Farmer
Conjecture (2.3).
Proof. From now on, we fix

cl=a=-=€,=+1, i =€u2="=6€yu=—1,
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and let G%,, denote the group Gau(cy, ..., €). The reflections of the hyperplane
w — 1 = 0 under the group G5, are given by

2m

o1+ +om+2
5 =
where 9; =0 or 1 and 61+ + 3,y = Sy + -+ - + O2m-
In this and the next section we require a version of the Wiener—Ikehara Tauberian
theorem. Stark has proved a vast generalization of this theorem, [St]. We will quote
here a limited a case of his result which is sufficient for our needs.

0181 + -+ + SomSom + W — 0, (2.19)

TAUBERIAN THEOREM (Stark). Let S(x) be a nondecreasing function of x and let

Z(w) = /loo S(2) - l‘”’%.

Let PW) =y + vy i(w =1+ +7p,(w— DM (M >0) be a polynomial with
Y # 0 such that Z(w) — P(w)(w — D™=V is holomorphic for R(w) > 1 and continu-
ous for R(w) = 1. Then

S ~ 2 x(log ¥, (as x = o).

We now let z(f) = {(1/2 + it)" and S(x) = f(;v |z(1)*> d¢ in the Tauberian theorem.
It follows by integration by parts that

/ S(t) - t“"g = —/ |z(¢) | 2¢7 dt.
1 wJi

t

Consequently, it is enough to show that

. m>+1 2
hml(w -1 Zey i 0815 - ooy S2y W) = oo™,
w—>

where

m—1 Yi

&om = H :m,

=0
and ay,, is the constant given in (2.5).
Let U(sy, ..., S2m, w) denote the function defned by

m  2m

1_ 1 Rm(Sl s oo SZm) l_[ l_[ C(Si + S/)

i=1 j=m+1

w

Then Conjecture 2.7 implies that

Loy 0815 ooy S2my W) — Z UQy(st, -y Soms W) (2.21)
yéG,le
is holomorphic around (%, .. .,%, 1). The proof of Theorem 2.8 is an immediate

consequence of the following proposition.
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PROPOSITION 2.9. Form=1,2, ..., let G%,, denote the subgroup of G5, generated
by the involutions Vi =YiVp (i=1,....mandj=m+1,...,2m). Then we have

: . m?+1 2
lim lim (W - 1) E U(V(Sl s ooy S2ms W)) = dym&2mMm !
wW=1 (s, s2m) > G,k d) 1G,

m

where

m—1 Z'
8om = g m7

and ayy, is the constant given in (2.5).
Proof. We start by taking the Taylor expansion of

f*(Sl,...,Sz )
U(st, ..., Som, W) = dom p T n (2.22)
w=DILL T2 Gi+s—1)
around (s, ..., s5m) = (§,....%). Here
[e%e) [e%e) 1 Vi 1 Vom
S, Som) = 1+Z"' Zk(Vl,---,Vzm) (Sl —§> "'(SZm_E) ,
vi=0 Vam=0
Vi, =1
(with k(vy, ..., va) € ©), will be a holomorphic function which is symmetric sepa-
rately with respect to the variables sy, ..., s, and s,11, ..., Sun-

Now, make the change of variables s; = % +u; for i=1,2,...,2m, and
w=v+1. Then, for i=1,...,m and j=m+1,...,2m, the involutions V; are
transformed to

W1y ey Uiy oo Uy ooy Uy oy Uy, D) AN
W1, ooy =Ujy oo Uy ooy —Ujy oo Uy, Ui+ U+ D).
Henceforth, we denote by G5, the group generated by the above involutions.

Then by (2.22), it is enough to prove that

lim lim ST H st 0) | = gom ), (2.23)

v 0 (uy,...,u2m) — (0,...,0) e

2m

where

1 PEEEEER Y
He(ui, ..., uyn, v) = — S Unm)

. . ,
0TI T s+ )

and f (which is simply related to *) is a certain holomorphic function and symmetric
separately with respect to the variables uy, ..., u, and w1, ..., uy,. It also satisfies

£0,...,0)=1.
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The proof of the Proposition is an immediate consequence of the following
Lemma.

LEMMA 2.10. The limit (2.23) exists.

Proof. Let f=73",- fk, where f; (for k=0,1,2,...) is a homogeneous poly-
nomial of degree k and which is also symmetric separately with respect to the
variables w1, ..., u, and uy11, ..., usy,. Here fo = 1. It follows that H, = ZkZOHﬁc'
Since the action of the group G’ commutes with permutations of the variables

2m
uy, ..., uyy, it casily follows that
Z ka(’y(ul s eees UDm, U))
yeq),

2m

is also symmetric separately with respect to the variables uy,...,u, and
Um+1s - -+ Udm-
Define

1 1

Nf}\»(ul’ e U, U) :[ 61=0 =0 (U + 511/!1 + .- 4 52;11142111):| X
01440 =0mt1++0um

x Z Hy (y(u, . .., uym, v)).

=
v€@,

Then Ny is invariant under the group G5, and it is symmetric separately in the

variables uy, ..., t,, and w1, ..., us,. Moreover, by checking the action of the
group G5 on the product

2m

m

2m
l_[ l_[ (ui + wy),

i=1 j=m+1

it follows that N, is a rational function

K
Np = D‘i" (2.24)

Ji

with denominator

m 2m
D;((ul,...,uzm,v)=1_[ l_[ (ui+uj) 1_[ (Ui_uj) 1_[ (ui—uj). (225)
i=1j=m+1 1<i<j<m m+1 <i><j<2m
The function Ny, is, in fact, a polynomial in the variables uy, ..., uy,, v. To see this,

we first observe that, for | <i<j<morm+1<i<j<2m,
N)fk(...,u[,...,u/,...,v):—N?k(...,u/,...,u[,...,v). (226)
This implies that

NZ(...,ul’,...,ul‘,...,U):O
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which gives

(u; — uj) | Nj’fk(m, ey U, V), (2.27)
forl<i<j<morm+41<i<j< 2m. On the other hand, it can be observed that

D.;:“’“’ e Uoms U) = _D;A(Vlj(ulv sy U, U))s (228)
fori=1,...,mand j=m+1, ..., 2m. Since the function Ny, is invariant under the
group G5, it follows from (2.24), and (2.28) that

Ny iy, ooty v) = =Ny (0w, - o, ), (2.29)
forl<i<j<morm+1<i<j<2m. This together with (2.27) implies that

(i + ) | Ny (ur, - . .., uam, V), (2.30)

for 1 <i<mandm+1<j=2m. Finally, it follows from (2.27) and (2.30) that for
N(v) > 0, the limit

lim He (y(uy, ..., Uy, v
(oot > (O, . O)y;; G o, 1))

2m

exists. Our lemma is proved.

Now, set u; =upyy;=i-€ (for i=1,2,...,m—1), u, =0 and uy, =m-¢€. By
induction over m, it can be checked that

{51u1+"‘+52mu2m|5i:071;51+"'+5m:5m+1+"'+52m:{0713~~,m2}'

(2.31)
From Lemma 2.10 and (2.31), it follows that for k =0,1,2, ...,
Pk(e, v
D HLOG -t 1) = (€ 2) : (2.32)
yeG,, Hz:O(U + Ze)
where Pi(e, v) is a homogeneous polynomial of degree k in the two variables ¢, v.

Consequently

lim fim oY Hy (s, 1) = 0

>0 0
00 e~ v

2m

if £ > 0, and the limit exists if k£ = 0. Using that f, = 1, the proposition follows by
taking the residue at v = 0 on both sides of (2.32).

3. Moments of Quadratic Dirichlet L-Functions
Let

i) if d=1 (mod4),

La(n) =
(g) if d=2,3 (mod4),
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denote Kronecker’s symbol which is precisely the Dirichlet character associated to
the quadratic field Q(+/d). For R(s) > 1 we define

00
%a(n)
L(Sv Xd) = 22—3 ’
n=1

to be the classical Dirichlet L-function associated to y,.

We shall always denote by Zl 4 @ sum ranging over fundamental discriminants of
quadratic fields. We shall consider moments as x — oo. Jutila [J] was the First to
obtain the moments

1 6
Z L<2, Xd) ~ a5 X log(x%) (3.1
ld| <x T
and
I 6
S L(5o) ~2- 22 xlog () (3.2)
2 312
|d| <x
with
w —m —m
1 1 1
(1=3) * ((=%) +(+FH)
am:H ; 5 +1—7 , (m=1,2,...).
(3.3)
Subsequently, Soundararajan [So] showed that
1y a3 6 6 1
Z‘L<2, Xd) ~ 1655 x1og’(¥). (3.4)
|d| <x
He also conjectured that
YL LU D 10( by (3.5)
2k 101727 08 ‘

|d| <x

Motivated by the fundamental work of Katz and Sarnak [K-S], who introduced
symmetry types associated to families of L-functions, the previous results (3.1),
(3.2), (3.4), (3.5), and calculations of Keating and Snaith [Ke-Sn-2] based on random
matrix theory, Conrey and Farmer have made the following conjecture.

CONIJECTURE 3.1. For every positive integer m, and x — 00,

Ll "6 g I M
Z <§,/{d> ”;am'gw'x(oé’x) ,

ld| <x

where M = "1
= mntl),
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3.1. THE MULTIPLE DIRICHLET SERIES FOR THE FAMILY OF QUADRATIC
L-FUNCTIONS

For w, s1, 52,...,5, € C with R(w) > 1 and N(s;) > 1(i= 1,2, ..., m), consider the
absolutely convergent multiple Dirichlet series

L(Sl ’ Xd) : L(SZ’ Xd) ce L(va Xd)
[d"

Z($1, 820 S W) = Y (3.6)

d

where the sum ranges over fundamental discriminants of quadratic fields.

Recently, (see [B-F-H-1]), for the special cases m = 1, 2, 3 a new proof of Conjec-
ture 3.1, based on the meromorphic continuation of Z(sy, ..., s, w), was obtained.
Unfortunately, the method of proof breaks down when m > 4 because there are
not enough functional equations of Z(sy,...,s,,w) to obtain its meromorphic
1

continuation slightly beyond the first significant polar divisor at w=1, and, s; — 3,
=3 s> L
We shall show that Z(sy, ..., s,, w) (suitably modified by breaking it into two parts

and multiplying by appropriate gamma factors) satisfies the functional equations

1o os Sy W (51, L=ty Sw i =0, (=1,2,...,m). (3.7

We then show that for N(s;) sufficiently large (i = 1,2, ..., m), that Z(sy, ..., Sy, W)
has a simple pole at w=1, and that the residue has analytic continuation to the
region

Eﬁ(si)>%—e, (i=12,...,m),

for any fixed ¢ > 0. The residue of Z(sy, ..., s,, w) at w=1 and s; — L s, > %
can be computed exactly and coincides with the constant in Conjecture 3.1. This is
the basis for Conjecture 3.6 given in Section 3.2.

In order to determine the residues and poles of Z(sy, ..., sy, w), it is necessary to

introduce a modifed multiple Dirichlet series defined by

L(st, 7)) -+ L(Sy,
ZEsi s = Y H “’)| o O 10), (3.8)
dzvi(f;?)d@
d-sq. free
We set
Zi(sl, ey S, W) = Zf(sl, ey Sy W)
FAT(ZES s Sy W)+ ZE(STs s Sy W)). (3.9)
Further, we define
— n 5 S
ZH(S1, ooy Sy W) = (1_[ 77:_7'1"(—’)) SZT(Si L S W) (3.10)
i=1 2
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and

= (s _
Z_(sl,...,sm,w)z(l_[n 2F<'2 ))Z (S1yeees Sy W). (3.11)

i=1

The following two propositions summarize the analytic properties of the func-
tions Z*.

PROPOSITION 3.2. For ¢ > 0, the functions Z* can be meromorphically continued
to the domain

Rs)>—0 (=1,2,....m), Rw)>1+m-G+o).

The only poles in this region are at s; = 1, (i =1, ..., m). Moreover, both Z* are invari
ant under the finite abelian group G, (of 2™ elements) generated by the involutions

o .
(StooesSpw) — (1, L= sow+s;,—3), (=1,2,...,m).

Proof. Note that the term corresponding to d =1 in the definition of Z* as a
Dirichlet series (see (3.8), (3.9)) contributes {(s;) - - - {(s,,) which has poles at s; = 1 for

i=1,...,m. The functional equation of L(s, y,) (see [D])may be written in the form
_sta (St a
A, 70) = 7T (55) s, 20

= DAl =5, 70),
where ¢ = 0, 1 is chosen so that y,(—1) = (—1)¢, and

D— d if d=1 (mod4)
" l4d if d=2,3 (mod4)

is the conductor of y,. It follows from (3.12) that for N(s) > —a, and d > 1,

IL(s, 70)] = O(d**), (3.13)

where the O constant depends at most on (s). Plugging the estimate (3.13)
into the Definition (3.8) of Zf(sl,sz,...,sm,w) (with v=1,2,3) viewed as an
infinite series, we see that the series (with terms d > 1) converges absolutely
provided R(w) > 1 +m - (% + o). This establishes the first part of Proposition 3.2.
Now, both Z* are invariant under permutations of the variables sy, 52, ..., Sp.
Therefore, to prove the invariance under the group G, it suffices to show the
invariance under the transformation «;, say. To show this invariance, we invoke
the functional equation (3.12) with s = s;. The invariance under the transformation
o; immediately follows. [
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PROPOSITION 3.3. The functions {(2w)Z* can be meromorphically continued for
Nw) > 0 and N(s;) sufficiently large (i =1,2,...,m). They are holomorphic in this
region except for a simple pole at w=1 with residue

RE:IS[C(Z}V)Z+(S1, e Smw)] = R_els[C(Zw)Z_(sl, e Sy W]

1 l—lplnl nm(l +p_l)_

Sm

2 n1 R 74
ny-ny=0

Here [] denotes any square integer, and the sum ranges over all m-tuples {ny, ..., n,}

of positive integers.
Proof. 1t follows from (3.8) that

La(m -
Z]i(sl, ey S, W) = E p— E LA a”‘ . (3.14)
e tm l M d= li(;ilgcu) | |
d-sq. free

For any fixed m-tuple {n,...,n,} of positive integers, we may write
ny -y = 2nN*M? so that

e 1 is square-free
e p|N = pln (3.15)
e nand M are both odd and coprime.

It immediately follows from (3.15) that the inner sum in (3.14) can be rewritten as

Z La(n - nm)_ Z 14(2)° /Cd(”) Z 1a(d) - /n(d)

+d>0 |d| " +d>0 | d| " +d>0 | d| "
d=1 (mod 4) d=1 (mod4) d=1 (mod 4)
d-sq. free d-sq.free(d, M)=1 d-sq.free
(d.M)=1
@) (d) 22(d) - 71(d) - 1(d)
Z T Z o . (3.16)
ey |d| e |d|

d-sq.free d-sq.free
(d.2M)=1 (d.2M)=1

Here we have used the law of quadratic reciprocity

22(d) = if d=1 (mod4),
1a(2) = { ] if d=2,3 (mod4),
and
140 = 1,(d) - (=1) ", (d, n, 0dd).

Further, for d odd, %(1 + y_1(d)) is 1 or 0 according as d =1 or 3 (mod 4). This
last assertion follows from the identity
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—4 Nt sen(@d-1 _
d 0 if d=0(mod2).

In order to complete the proof of Proposition 3.3 we require the following lemma.

LEMMA 3.4. Let y be a primitive quadratic Dirichlet character of conductor n, and
let b be any positive integer. If Ly(w, x) is the function defined by

L= Y 2O

"
d>0 d

d-sq.free

(d,h)=1

then {2w)Ly(w, x) can be meromorphically continued to W(w) > 0. It is analytic every-
where in this region, unless n = 1 (i.e., L(w, x) = {(w)), when it has exactly one simple
pole at w=1 with residue

1\
Res[C2w)Ly(w, )] = [ | (1 + —) .
w=1 p
plb
Proof. The proof of Lemma 3.4 is a simple consequence of the elementary
identity

L(w, %)

Lb(Mjﬂ X) = C(ZW)

JIa+xee™ " [T -7
b

pl pln

It immediately follows from (3.16) and Lemma 3.4 that

X (nl N ) ) ’
Z W = %LzM(W, 15 1) + %LZM(W, 05Tt L) (3.17)
+d>0
d=1 (mod 4)
d-sq.free

and that the right-hand side of (3.17) has a meromorphic continuation to Ry, > 0.
Moreover, it is holomorphic in this region unless # = 1 and ¢ = 0 (mod 2), in which
case there is exactly one simple pole at w=1 with residue

Xd(nl o 'nm) -1
{@w) - LEM T | 1
Res ;0 |d)’ _EH 1+-) . (3.18)
d=1 (mod 4) pI2M
d-sq.free
Now, if we sum both sides of (3.18) over all m-tuples {my, ..., m,}, it is clear that

there will only be a contribution to the residue coming from m-tuples where
my - --m, = [J]. Combining equations (3.14) and (3.18), and then removing the factor
1 +27" when ny - --n,, is odd gives
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R_els[C(2w) . Zf(sl, ey S w)]

_ l Z H[)\Zﬂpnnm(l +p—l)_l

K3 Sm
..y, nl] s lm
ny--np=[]
—1\—1 —1\—1
1 np\nl“'”m(l +[) ) 1 Hp|n1--~nm(1 +[7 ) 319
=5 e Py T : (3.19)
2|ny -y, 1 n 2|ny -, 1 mn
ny--np =[] ny--np =[]
In a completely analogous manner, we can also obtain
—1y-1
1 [Ty 27"
Res[C(Zw) S ZE(S1, ey S w)] =_ Z PIHm;1 - (3.20)
w=1 3 5 ny - hpy
1y
ny--tym=C1

for the cases v = 2, 3.

The completion of the proof of Proposition 3.3 now immediately follows from
equations (3.9), (3.19) and (3.20) after separating the cases when the product
ny -+ -n, is even or odd. O

PROPOSITION 3.5. Let N, be sufficiently large for i=1,2, ..., m. Then

EEF[CQW) S Z(s1, oy S w)] = %R(sl, e Sm) - ll;[((2si) l_[ {(si + 57),

1<i<j<m

where R(sy,...,sym) can be holomorphically continued to the region N(s;) > %—e
for some fixed ¢ > 0. Further, R(%%) = a,,, where a, is the constant given
in (3.3).

Proof. If f(n) is a multiplicative function for which the sum Y- | f(n) converges
absolutely, then we have the Euler product identity

D re =JA+/) + 1P+ + ). (3.20)
n=1 V4

It now follows from Proposition 3.3 and (3.20) that

1 N\ ' , .
Il}:e]S[C(ZW)Z+(Sl,...,Sm,W)] :EH 1+<1+p> Z Z plemsittensn)

p p=1 er+-+epn=2p
e;=0,(i=1,....m)

where the product converges for N, > %, (fori=1,2,...,m). On the other hand,
the function R(sy, ..., s,) defined by
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m

-1 o0
l_[ 1+<1 +%> Z Z pf(é’lSlJr"'+€,”Sm) HC(ZSI‘)71 l_[ éf(si_‘_‘s/)*l
i=1

4 u=1 ej+-+e,=2p 1<i<j<m
e; =0,(i=1,....m)

(3.21)

is holomorphic for NR(s;) > % —¢,(i=1,2,...,m) for some fixed small ¢ > 0. This
establishes the first part of Proposition 3.5.
Now, the number of terms in the inner sum

§ p*(elAs'1+--~+e,w\'m)

et ten =2
e; = 0,(i=1,...,m)

of formula (3.21) is precisely

(m+2u—1)!
dn My = .
)= = o
If we specialize to s; = -+ = s, = 5, we get

1 -1 o0
1)1+ (1+))
P p p=1 ej+-ten=2u

e;=0,(i=1,...,m)

-1 oo
= ]_[[1 + (1 + 1) de@z‘*)p‘z“ﬁ}-
r p p=1
It follows from (3.21) that for 9i(s) > 1,

-1 oo
Rst.....s) = 1‘[[1 + (1 +]1,) de(pzf‘)p—ﬂ SCORY
n=l1

p

and

RG, , %) = U[(l _1%>M(1 + (1 +1%>_1§;d,,,(p2ﬂ)pﬂ)}.

If we apply the binomial formula to (1 —p=2)™ + (1 +p 2™ in the definition
of a, given in (3.3) we obtain R(%,...,%):am. This completes the proof of
Proposition 3.5.
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3.2. A FUNDAMENTAL CONJECTURE FOR THE FAMILY OF QUADRATIC DIRICHLET
L-FUNCTIONS

In view of the invariance of Z* under the group G, it follows (as in Section 2.3)
from Proposition 3.5 that the polar divisors of Z* must contain the 2™ hyperplanes

€+ +en+2

asi+ -+ EusSym +w— - = 0, (3.22)
where each ¢, =0 or 1 for i =1, ..., m. All the hyperplanes (3.22) pass through the
point (4, ..., 1, 1). We propose the following conjecture.

CONJECTURE 3.6. The functions Z* have meromorphic continuation to a tube
domain in C"™ 1 which contains the point G..... 1 1), and both these funclions have the
same polar divisor. The part of the polar divisor passing through (% cee 2, 1) consists of
all the hyperplanes (3.22). Moreover, the functions Zi(%, e %, w) are holomorphic for

N(w) > 1.

THEOREM 3.7 For m even, Conjecture 3.6 implies the Keating—Snaith—Conrey—
Farmer Conjecture 3.1.

Proof. We need to again apply Stark’s version of the Wiener—Ikehara Tauberian
theorem as quoted in the proof of Theorem 2.8. Here we take S(x) = Z‘dl <x
L(1/2, x,)". Writing S(x) as a Riemann—Stieltjes integral, it follows by integration by

parts, that
’ /{d)m
Sty -t7"—=— G .
/1 ® Cw Z |l
Since we have assumed m to be even, it follows from (3.8), (3.9) that Z*(}, ... 1, w)

is a Dirichlet series satisfying the conditions of the Tauberian theorem. To prove
Conjecture 3.1, it is enough to show that

3
. M+1
»{,Lnll(w -1 + Zi(%, ... ,%, w) = ;gmamM!,
where
m(m+ 1) m

M==—= 1_[ (25)'

and a,, is the constant given in (3.3).
Let T(sy, ..., s, w) denote the function defined by
1 m s s; +a
2 = Rt ) ];[ s F(T)C(Zvi) [T i+ (3.23)

I<i<j<m

where a = 0, 1 is determined by (—1)* = £1. Then Conjecture 3.6 implies that

COWZEGST. -y Sy W) = 3 T((s1, - s Sy W) (3.24)

aeG,,
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is holomorphic around (1,...,1,1). The Proof of Theorem 3.7 is an immediate

consequence of the following Proposition.

PROPOSITION 3.8. For m=1,2,3,..., let G,, denote the direct product of m
groups of order 2 generated by the involutions (3.7). Let

m

1 .
U(S],...,Sm, W) :mR(Slw--ysm)HQ(zsi) 1_[ C(S,'-I-S,').

i=1 I<i<j<m

Then we have

6
. : M1 w|
lim lim )|:(w 1) E U(o(sy, - -y S, m)):| = amgmM.,

w—1 (s1,..475711)‘>(% ..... % oaeGy
where
m(m + 1) T4
M=———-, = ’
3 Em 1_[ (20)!

and ay, is the constant given in (3.3).
Proof. We start by taking the Taylor expansion of

am f*(sla "'asﬂl)
U(sty ooy Sy W) = = . (3.25)
w—1 [ @2si — 1)1_[1<,-<j<m(sf +s5—1)
around (s, ..., sn) = (,...,3). Here
00 00 1 £ 1 L
f*(Sl,...,Sm) =1 +£Z_:0"'KZ_:OKm(KIv --~7Km)<sl _E) (Sm _E) s
1= m=
Lty > 1
(with (€1, ..., ¢,) € C), will be a holomorphic function which is symmetric func-
tion with respect to the variables sy, ..., s,.
Now, make the change of variables s; =%+ ¢fori=12 ..., mand w=v-+1.
The involutions (3.7) are transformed to
(€1, .0 s €irenny €y V) i>(61,...,—e,»,...,em,v—i—e,-), (i=12,...,m).
Henceforth, we denote by G,, the group generated by the above involutions.
Then by (3.295), it is enough to prove that
lim lim pMH He(a(er, ..., 6m,0) | =2"g,M!, 3.26
lim - lim 0)[ 2 HiGta N =2" (3.26)
where
1 €lyevnsEm
Hi(er e v) =~ — LG ) ’

v
_1_[1 € 1_[1 <i<j<m(61 + 6j)
=
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and f (which is simply related to f*) is a certain holomorphic symmetric function
with respect to the variables ¢, ..., ¢,. It satisfies f(0,...,0) = 1.

The proof of Proposition 3.8 is an immediate consequence of the following two
lemmas. O

LEMMA 3.9. The limit (3.26) exists.

Proof. Let f=7)";-fk. where fi (for k=0,1,2,...)is a symmetric and homo-
geneous polynomial of degree k. Here fo = 1. It follows that Hy =", Hj,. Since
the action of the group G,, commutes with permutations of the variables ¢y, ..., ¢,
it easily follows that

Z Hy (o€, - .. 5 €m, V)

a€Gp
is also a symmetric function with respect to ¢y, ..., ¢,.
Define
m
Ni(er, s emy ) = (]‘[ei [T @ =e?)) > Hy(oer, - em ).
i=1 i<i<j<m oaeGy,
Then Ny is a symmetric function in the variables ¢, ..., ¢y, and it is a rational
function
N;
Ny = D;f (3.27)
Jk
with denominator of the form
1 |
Di(er...coamv) =[] []@+d1er + - + Smem). (3.28)
01=0 Om=0
It follows that
Ni(ooos€iyoos€y oo, 0) = =N (oo, 6y €6y oo, ), (3.29)
which implies that
Ni(ooos€iyoons€yo.,0) =0,
This gives
(6 — ) I Ns(er, ... em,v). (3.30)
Furthermore, since ), . Hy(a(e1, ..., €y, ) is invariant under the group Gy, it
follows that
Ni(oooysiyoo o, 0) = =N (oo, =S5 ..., 0+ 58) (3.31)

which implies that N (...,0,...,v) = 0. Consequently,
si| Ny (er, ...y €m, v). (3.32)
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Also, in the same manner, (3.29) and (3.31) imply that
(5i+ ) | N et - emy ). (3.33)

Finally, it follows from (3.27), (3.28), (3.30), (3.32), and (3.33) that for Ji(v) > 0, the
limit

exists. It further follows that if we set ¢, =i-¢ (for i=1,2...,m) then for

K=0,1,2,3,...,
Pi(¢, v)
Hy(uer, ooy 6ny V) = —70—, (3.34)
a; ' " [Telo(v + £o)

where Pi(¢, v) is a homogeneous polynomial of degree k in the two variables e, v.
Consequently

lim lim p™*! Z Hy (e, ..., €m,0) =0

v—>0e—0
o€Gy,

if £ > 0, and the limit exists if &k = 0. This completes the proof of Lemma 3.9. [

LEMMA 3.10. Let

H ) 1 1
€lyeny Emy V) =—- .
" v [T 6l cicicm@i+6)

Then

lim lim O)ZH(oc(el,...,e,,,,v)):2’"gmM!.

v—=>0 (€1,..0,6m)—(0,..., vl

Proof. We know from Lemma 3.9 that the above limit exists, so we can compute
the limit by setting ¢; = je (for j=1,2,...,m) and letting ¢ — 0. It follows from

(3.34) that
Km
H(o(e, 2¢, ..., me, 1)) = ——m
EXG: [T + te)

for some constant k,,. By taking the reside at w=0 on both sides, we have

1 1 _ Km
m! H (i+)j) M

T1<i<j<m

By induction over m, one can show that k, =2"g,M!, and the lemma
follows.
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4. Cubic Moments of Quadratic L-series

As mentioned in the introduction, in the particular cases when m < 3 it is possible to
define an analog of the multiple Dirichlet series given in (3.6). In this analog the sum
is not restricted to fundamental discriminants, but ranges over all integers d. When
an appropriate definition is given for []1, L(s;, z4) for general d one can extend the
multiple Dirichlet series to a meromorphic function of sy, s, ..., sy, w in Cm+l n
this section we will explicitly provide this continuation in the case m=3 and
s1 = 53 = 53 = 5. This work relies heavily on the results of [B-F-H-1]. We will then
develop a sieving method analogous to that used in [G-H] to isolate fundamental
discriminants and will prove as a consequence Theorem 1.1.

4.1. SOME FOUNDATIONS

The L series {(s)* can actually be associated to a certain Eisenstein series F on GL(3),
and L(s, F) = {(s)*.
For future convenience, we will write

Ly =3 @1

N
I n

where ¢(n) =), 14—, 1, and we have the Euler product decomposition

Lis. Fy=]Ja-p™7", (4.2)
P

the product being over all primes p of Q.

As in the previous sections, let y, denote the primitive quadratic character associ-
ated to the quadratic field Q(v/d). If Fis twisted by y,, then the associated L-series
becomes

L(s, F, zq) = L(s. 20 = [ [ = 2™, (4.3)
P

and by (3.12) the functional equation is given by
(IDPY2Ga(s)L(s, F, 1q) = (D)2 Go(1 = )L = 5, F, 7). (4.4)

Here D =4d or D =d is the conductor of y,; and G,(s) denotes the product of
gamma factors.

The gamma factors (4.4), described in (3.12), depend only on the sign of d.
Although we will not require many explicit properties of the gamma factors, the
following upper bound will be convenient. For o; > ¢, and ¢ real, it follows from
Stirling’s formula that for large ||, independent of d,

|Ga(oy + it)]

LaCASe I Mrd! t| 4 1)30r=o)/2, 4.5
|Gd(az_l.l)|<<(||+) 4.5)

When all primes are included in the product (4.3) the functional equation (4.4) has
its optimal form. However, it is often convenient to omit factors corresponding to
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‘bad’ primes, for example those contained in S, a finite set of primes including 2.
Let M =]],csp. For such M, S, we denote the L-series with Euler factors
corresponding to primes dividing M removed as follows:

Lu(s. ) =[]0 =p™) 7 = L. A [ [ =p™). (4.6)

PES pesS

When twisted by y,, the L-series L(s, F, y;) will have a perfect functional equa-
tion of the form (4.4) when y, is a primitive character. This corresponds to the
case where d is square free. It is very interesting to note that often, when d is
not square free, it is possible to complete L(s, F, y,) by multiplying by a certain
Dirichlet polynomial in such a way that the resulting product has a functional
equation of precisely the same form (4.4), with D replaced by |d| or |4d|. For
the simplest example, with m =1, see [G-H]. What is more remarkable is the fact
that some very stringent additional conditions can be imposed on the Dirichlet
polynomial.

To be more precise, let /, ., > 0,1, | M, and a1, a; € {1, =1} and let y,,,;,, x,,;, be
the quadratic characters corresponding to aily, al» as defined above. We then
formulate the following collection of properties for two classes of Dirichlet poly-
nomials associated to F.

PROPERTY 4.1. For n,d positive integers, (nd, M) = 1, we write d = dodlz, n= non%,
with dy, n square free and dy, ny positive. Let c¢(n) denote the coefficients of L(s, F) as
defined earlier.

For complex numbers AEZ;;“ BE,‘I)) (depending on d, o€ 7,1 < e < a), let PEZI,SI)(S)’

Qf;;fffl)(w) be Dirichlet polynomials defined by

(@) ey () —s (o) —6os
Poid) = [T +40,, 0+ + A wp™®)
p*lldy

and

) QW (w) = cCnond) [ (1 + B, p7" -+ BD , p™),
PPlim

We say that P, Q satisfy the conditions of Property 4.1 if the following identities hold.

X li 3(1—s /
dF P (s) = ) I PPD(1 — ), (4.7)
ny cnon}) Q4 (w) = ™" c(non) Q4 (1 — w) (4.8)
/ Il [ 2
Pl = Piga 61 Qi (00 = Q0. (49)

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018137.38458.68

MULTIPLE DIRICHLET SERIES AND MOMENTS OF ZETA AND L-FUNCTIONS 329

(where dyls, ngl; are positive square free numbers), and if in addition, the following
interchange of summation is valid for s and w having sufficiently large real parts:

[,
Lat(5. F, Ly Tyt oot (d0) PS ) ()
d w

(d.M)=1

(n,M)=1

Lyt(W, g Lasis Xty (”0)6’(”0”%)Q5ﬁf{fl)(w)
ns '

(4.10)

Here 7, denotes the quadratic character with conductor ny defined by 7, (*) = (%).
Recall 2|M, so (2, ny) = 1.

It was observed in [B-F-H-1] that the three properties (4.7), (4.8) and (4.10) were
sufficient to determine the polynomials P and Q, precisely, in the cases of GL(1),
GL(2), GL(3). This unique determination of P and Q corresponded to a finite group
of functional equations of the double Dirichlet series given in (4.10) and this in turn
made it possible to obtain an analytic continuation of the double Dirichlet series in
these three cases. It was also noted that for m > 4 the corresponding group of func-
tional equations becomes infinite and that simultaneously the polynomials P, Q are
no longer uniquely determined by the properties (4.7), (4.8), and (4.10). The space of
local solutions becomes one-dimensional in the case m =4, and higher for m > 4.

In [B-F-H-1] a complete description of certain factors of the polynomials P, Q was
obtained for the case of m =3 and an arbitrary automorphic form fon GL(3). These
were the factors corresponding to the ‘good’ primes, i.e., primes not dividing 2 or the
level of f. It was also verified that for sums over positive integers n, d relatively prime
to the ‘bad’ primes, the relations (4.7), (4.8), (4.9), and (4.10) hold. In addition, it was
verified that for fixed d = dyd? and € > 0, R(s) > 1.

Pois) < ldl. @10

The implied constant depends only on ¢. This bound was then used to obtain the
analytic continuation of the double Dirichlet series on the left hand side of (4.10).
As a consequence, non vanishing results for quadratic twists of L(%, fina) were
obtained and also, after taking a residue at w=1, a new proof was obtained for
the analytic continuation of the symmetric square of f.

As the technique is new, there may be some advantage to presenting the details of
the analytic continuation argument specialized to the very concrete case where
L(s,f. x2) = L(s, F, 1,) = L(s, ,)°, and we will do so below.

4.2 THE CUBIC MOMENT, CONTINUED

Our object will be to obtain the analytic continuation in (s,w), with
N(s) = 1, R(w) > %, and an estimate for the growth in vertical strips w=v + it (for
fixed v and s) of the double Dirichlet series
L(Sv XD)3

Z(Sv W) = |D|w

(4.12)
D=fund. disc
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To accomplish this, we will obtain the analytic properties of a building block: For
Zl, 12 > 0, 11, 12|M and ap, ay € {1, —1}, we define

[
Lar(, F, gy Yy ot (do) P12 (5)

Zni($ W3 Yty Tant) = Y, el (4.13)
(d,M)=1

where we recall that we sum over d > | and use the decomposition d = dodlz, with dj
square free and d| positive.

The following proposition will provide a useful way of collecting the properties of
the multiple Dirichlet series Zy(s, W; J,,1» Xa,,)- FOr a positive integer M, define

DiviM)={a-lla= £ 1,1 <[, [| M},
which has cardinality 2d(M) =23 am 1. Let VA M (S, W Y1 ZDiviary) denote the
2d(M) by 1 column vector whose jth entry is Zy(s, w; x4, 2), where V)
(/j=1,2,...,2d(M)) ranges over the characters y,, with aj =£L 1</, |M.
Then, we will prove

PROPOSITION 4.2. There exists a 2d(M ) by 2d(M ) matrix ®“2 (w) such that for
any fixed w, w # 1, and for any s with sufficiently large real part (depending on w)

— ) %
l_[ (L= p7 22 Z a5, W3 Lot ADiv(M))
pl(M/b)
—_—
= (I)("le)(w) Zys+w—1/2,1—w; Laoly XDiv(M))-

The entries of ®“2(w), denoted by (DEZZIZ) (w), are meromorphic functions in C.
Proof. By Property 4.1,

LatOW, T Xt a1, (10)c(0m?) OL212) ()

Z (S W3 Yty Lant) = D, - . (419
(D=1 n
Now
LM(W’ %no%az/z) = LM(W’, ZnOXazlz) : 1_[(1 - 21101412]2(1))])_“’)’ (415)
pIM

where Ly/(W, 7, 74,1,) satisfies the functional equation

G((W)(nOIQDaglz)W/zL(Wv 7;10%(12[2) = G!(l - W)(n(]12Da212)(17”!)/2L(1 -w, %n()Xazlz)

(4.16)
Here € = 7, %4,1,(— 1),
n—w/21"(w/2) if e=1
- R 4.1
Gew) { 7-L-(w-‘r1)/2]"((11/ +1)/2) if e=-1, @

and

1 if ab=1 (mod4)

Doy = { ,
@b 4 otherwise.
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Combining this with the functional equation for Q given in (4.8), we obtain

Y G WD) >

ZM(S7 wy Xaglf X(l]l]) = Z G((aza,]z)(VV)l’l‘YJr“Y71/2

az=1,—1 (n,M)=1,n=a3(4)
X Sy, (10) Lag(1 = w, 7, 22l c(nom}) QL2 (1 — w)x
< ] 0= Zutan®p™)x

pI(M/h)

< [T (= Zutan@p 7"

pI(M/1)

Here ¢(a) denotes the sign of a. Note that we are leaving out terms in the product
where p|l, as the character vanishes here.
Multiplying by [T, (1 —p~>*") and reorganizing, we obtain

—242w
[T =27 Zais. w3 2astys 2art)
plM/b)

G 5 l—W —w —14+w
_ Z E(asazl_)( )_ Z M(Z3)Xa2[2(1314)l3 14 1+ %

= ; —1/2
a=1,—1 G(azarty) (W2 Dyy)" B lsl(M/ 1), (1s,2)=1

A2(1 —W, ino Xazlg)LM(l -w, 5{}10 Xazlz)c(non%)Q%z,fqzl)(l - W)Xa] L3l (n())

(n.M)=1, nstw—1/2
n=az(4)
where
! it 2%,
A2(W, %no%azlz) = 1 + 5((”0}{“2/2(2)27”7 if a2[2 =1 (mOd 4),
L2 if ahh=—1(mod4).

We have used here the fact that ¥, (13)x,,(l4) = 7;,,(n0), and the identity

(1 - 2_2"’2“’)(1 - %noxazlz(z)z_]-’—w)_l = A2(1 - M}’ Zn(]xazlz)v

for axl, = —1,1 (mod 4).
Using y_, to sieve congruence classes of n (mod 4):

1 if nyp=a; (mod4),
1 o _ 0 3
Al +asg = L)) = { 0 if o= —as (modd),

we finally obtain (in the case of a/, = 1(mod 4))

[T A=p7"") Zua(s. W5 Yty X))

pI(M/b)
1 1/2—w —w— 14w Gé(a a ]7)(1 —W)

L Y it Y G 20) ‘i
2 13,/%/12) ” a3=21,:71 Geasarty)(W) (4.18)

X (Zp(s+w—=1/2,1=W; Y1, Lay1y150,)F
+azZy(s+w—1/2,1=wW; Yo L—ay131,))-
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If a,/, = —1,2 (mod 4), we have a similar expression. Actually, it can be easily
observed that just the behavior at the finite place 2 changes.
This completes the proof of Proposition 4.2. O

The function Zy(s, W; %4,1,» %a,1,) defined in (4.13) also possesses a functional equa-
gg)n as s— 1—s. To describe this, let d(M) be as before, and Ilet
Z y(s, W3 ADivimys Xai,) denote the 2d(M) by 1 column vector whose jth entry is
Zu(s, w5 19, 241,), Where 7 =1,2,...,2d(M)) ranges over the characters y,,,
with ap = £1,1 < b, L|M.

Then we have the following.

PROPOSITION 4.3. There exists a 2d(M) by 2d(M) matrix ¥“"(s) such that for
any fixed s, s # 1, and for any w with sufficiently large real part (depending on s)

4 — s
Z p(s, w; XDiv(]l/[)’Xalll) : l_[ (I-p S )3
pI(M/I)
—_wlah) (7 , .. ,
=¥ ($)Z p(1 —s,w+3s—3/2; ,(DiV(M),,(m,]).

. . / (arly) § ., . .~
The entries of W“'"(s), denoted by ‘{’,-f’,‘ (8), are meromorphic functions in C.
Proof. First, write

Ly(s, F Yo Layr,) = LGS, F, Yaaon,) - l_[ (1- Xaldoll(p)pﬂv)S
pI(M/1)

3

= L(s, F. Zaapt,) - ( > ud )Xaldgfl(l)l“) : (4.19)
1M1 )

By (4.4)

3/2-3s G(1 — S)3

L(S, F’ Xalll'()ll) = (d()llDaldoh) G((S):;

L =5, F, Y0, (4.20)

where G, and D, 4, is given by (4.17) and ¢ equals the sign of a;dp/;.
On the other side of the functional equation (4.20), we have

LA =5, F, i) = Lael = 8, F g = ] (= 2wyt (PP )7
pl(M/l)

In view of the elementary identity

1_[ (1 - p_2+2lv) = A2(1 - S7 Xald()]l) 1_[ (1 + Xald[)ll (p)p_1+y)x

pl(M/) pi(M/1)p#2
< [T (= 2aanp™),
pi(M/l)
where
1 it 2|4,
A2, Layaor) =y V4 Yayao, 2270 if ardoly =1 (mod 4), 4.21)
=272 if aidyly = —1 (mod4),
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it immediately follows that

LA =8, F fgay) - [ A=p7)

pl(M/h)
= LM(I -9, F7 Xaldoll) . A2(1 -9, F’ Xaldoll)3 . l_[ (1 + Xaldoll (p)p71+3.)3
nl(pﬂi/zll)
3
= La(1 = 5. F, 2ya) * A0 =5 Zaa) | D Zanaon DT
Combining the above with (4.7), (4.13), (4.20), we obtain
ZM(S9 wi Xuglz’xalll) ' l_[ (1 _P72+25)3
pl(M/h)
—35Ge(ap(1 —3)3 Ly (Y =5, F, %4 401,) (ail})
= (hD gy, =2 ' s Pardy (1= 9)2ay, (do) x
u;):l o Geta)(5)’ drih=f e "
3
3
x( > u(l)xm,ﬂﬂﬂ) A1 =5, Zana) | D Ayt D'
(M)l /:5.124)/:11])
(4.22)
Write
3
( > u(z)xmha)lﬂ)
N(M/h)
= Y 1 WG D 1Rt WD 1) gty B

LI(M/h) Igl(M /1) LIM /1)

and similarly, write

3
. —1+s
> Lanan (D!
Ayl
1,2)=1
_ N N1+ . N\ —l+s
= 2 a7 Faar, U0
I51(M/1}) Igl(M/1y)

B
(l5,2)=1 L 2)—
5 Uz 2=1

\ AY e

XY Ao B
I51(M/1))
(1.7,2):1

It is quite clear that (4.22) decomposes into a linear combination of the functions

ZM(I -5, w4+ 35 — 3/2, X(*), Xalll)
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depending upon the congruence class of a;/; modulo 4. Since the shape of the final
result is very similar in all the three cases (as in the previous proposition, just the
behavior at the finite place 2 changes), we will just consider the case of
a1y = —1 (mod 4), say. The character y* takes one of the two forms Ayl syl Xaly»
A=t XLyl ol sl Note that for dy=1 (mod 4),1,4,2) =0 and y, 4, =
Layty 24, () = %y, )y (do), for (I',2)=1. For dy=-—1(mod4) and any
[ >0, %440, (D) = x@l)y,(do). Using this and the character y_, to separate the con-
gruence classes, 1, —1 (mod 4), we combine (4.22) with the definition of Z, in (4.13)
to obtain

Z(S W5 Lagty Zat) - [ (1 =p 7Y
pl(M/h)

_ Pl Gea)(1 — 5)° 1 |:43/23X(1 _ o2y

-l
Ge(ul)(s)3 2

S S TI(A YA (A VA S (/) VR (/) Pl
LM /1),(2,1,)=1 lpl(M/1),2,1)=1

S SR 1 (7 VN (5T S N ()l
LIM /1), (2,1)=1 lI(M/1),(2,1)=1

x> LT Y (B X
LI(M/1),(2,15)=1 LI(M/1),(2,5)=1

X (Zu(1 —s,w+3s —3/2; iyt gl Xaslo Layt,) +
+Zy(l —s,w+ 35 —3/2; L\ Xl sty sty Xy N+

+ > wlp @b Y w0 pl)g (@)L

LI(M/h) lgl(M/1) LI(M/h)
-1 -1 -1
XD g YT g @)Y ) %
L|(M/1) (M /1) LI(M/1)

X(ZM(1 -5 w4+ 35 — 3/2! X/,[/gl;‘lgl/}lfxaﬂz’ Xalll) -
- ZM(l -5, w+ 35— 3/2, X—]Xlxllgl«l‘l&[iglf;{azlz’ Xalll ))i| . (423)
This rather complicated formula is the content of Proposition 4.3, where it is expres-

sed in a considerably more compact way.
This completes the proof of Proposition 4.3. O

4.3. THE ANALYTIC CONTINUATION OF Zy/(s, W; Zy1,+ Zarsy)

We begin by recalling some fundamental concepts from the theory of several
complex variables. Our basic reference is Hérmander [H6].
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DEFINITION 4.4. An open set R in C" is called a domain of holomorphy if there
are no open sets Ry and R, in C” such that @ £ R; C Ry N R, R, is connected and
not contained in R, and for any holomorphic function fin R there exists a holo-
morphic function f; in R, satisfying f'= f> in R;.

DEFINITION 4.5. An open set Q in C" is called a trube if there is an open set w in
R™, called the base of Q, such that Q = {s| N(s) € w}.

We will denote by R, the convex hull of a subset R C R™ or C™. It is easy to see
that the convex hull Q of a tube Q is a tube with base ®.

PROPOSITION 4.6. IfQisa connectefi tube, then any holomorphic function in Q can
be extended to a holomorphic function f in Q.

PROPOSITION 4.7. Let R and R’ be domains of holomorphy in C" and C",
respectively, and let f be an analytic map of R into C". Then the set

Ry={seR|f(s) € R"}

is a domain of holomorphy.

In order to analytically continue Z/(s, w; %4,1,» %a,1,) @s a function of two complex
variables s, w, we repeatedly apply the functional equations given in Propositions
4.2,4.3.

Accordingly, we define two involutions on C x C:

w(s,w)—> (1—=s,w+35s—3/2) and f:(s,w)—=> (s+w—1/2,1—w).

Then a, generate D, the dihedral group of order 12, and o?=p>=1,
(af)® = (B=)® = 1. Note that off # fuo.

We will find it useful in the following to define three regions R, R,, Rz as follows:
Write s, w as s=a + it, w=v + iy.

The tube region R is defined to be the set of all points (s, w) such that (o, v) lie
strictly above the polygon determined by (0,5/2),(3/2,0), and the rays
v=-30+5/2 for ¢ <0and v= -0+ 3/2 for ¢ > 3/2. Note that R is the convex
closure of the region given in Figure 1 which is bounded by the dotted lines and the
tworaysv = —3ag+ 5/2 for ¢ < 0and v = —o + 3/2 for ¢ > 3/2, which is the actual
region that comes up in the proof of Propositions 4.8, 4.9.

The tube region R; is defined to be the set of all points (s, w) such that (g, v) lie
strictly above the line segment connecting (—1/2,3) and (3/2,0) and the rays
v=-20+2foro< —1/2,and v=—6+3/2 for ¢ > 3/2.

The tube region Rj is defined to be the set of all points (s, w) such that (g, v) lie
strictly above the line v = —2¢ 4 2.

These regions are related by the involutions «, f as described in the following
proposition. The proof, a simple exercise, is omitted.
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PROPOSITION 4.8. The regions Ry and a(Ry) have a nonempty intersection, and the
convex hull of Ry Uoa(R)) equals Ry. Similarly, R, and B(R,) have a nonempty
intersection and the convex hull of R, U B(Ry) equals Rs. Finally, Ry and a(R3) have a
nonempty intersection and the convex hull of Ry U o(R5) equals C?>.

A%

2\ 4
X\ — ~
A o
W -

o3
[}
(0, 5/2)

Figure 1.

Figure 2.
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>

26+v=2

Figure 3.

Let
P(s, w) = (s — *(w — 1). (4.24)

We will begin by demonstrating the following proposition:

PROPOSITION 4.9. Let R be the tube region defined above. The function
P(Sv W)ZM(Sf W Lazlrs Xalll)

is analytic in R;.

Proof. Consider first the left-hand side of the expression for Za/(s, W; %415 Xay1,)
given in (4.10). If the sum were restricted only to square free d = dj, then the usual
Phragmen-Lindel6f bounds or L(s, x,) would imply absolute convergence for v > 1
when o > 1, for v > (—=3/2)0 +5/2 when 0 < ¢ <1 and for v > —30 4+ 5/2 when
¢ < 0. Because we have the bound (4.11) and functional equation (4.7) applied to
Pgét’(l,‘])(s), precisely the same estimates apply as we sum over all d. Consequently,
Z (S, W3 Xantr» Xaply) CONVErges above the given lines, and the factor (s — 1)* in P(s, w)
cancels the pole at s = 1.

Noting that both sides of the expression converge when v, ¢ > 1, we now change
the order of summation and examine the right-hand side. Here the coefficients ¢(n)
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are order 3 divisor functions and are bounded above by n‘ for any ¢ > 0. Con-
sequently, applying Phragmen-Lindelof again to L(w, z,,) and the corresponding
estimate and functional equations for c(nn7)Q{“2)(w), we obtain convergence of
Zum(S, W; Laptys Xayry) for o >1 when v > 1, for ¢ > (=1/2)v +3/2 when 0 <v <1
and ¢ > —v+3/2 when v < 0. The factor w—1 in P(s, w) cancels the pole at
w=1. These regions overlap when v,o > 1, and thus by Proposition 4.6,
Zum(S, W3 Yayty» Xayr, ) P(s, w) has an analytic continuation to the convex closure of
the regions, which is R; described above.

This completes the proof of Proposition 4.14. O

Our plan is now to apply the involutions o, ff, « in that order to R;, and use
Propositions 4.2 and 4.3 to extend the analytic continuation to C2. To aid in this,
it will be useful to introduce some additional notation to make the content of these
propositions a bit clearer and easier to apply. Let

A(s, w) = Ay(s, w) = H(l _ ey

piM
and
B(s, w) = By(s, w) = [ [(1 = p7>), (4.25)
pIM
;r_lgﬂwl)et PO (s w) = WOV [T (1= p272)°, @B, w) = D) T, (1~

The following is a reformulation of the content we require now from Propositions
4.2 and 4.3. For (s, w) such that both sides are contained in a connected region of
analytic continuation for P(s, w)Zu(S, Wi Xu1,> Xay.1y)

A(s, W)Z m (s, W5 Ipivnys L) = PN (s, w)Z (os, w); ADivOM)s Xayly) (4.26)

and

B(s, W)Z m(S, W3 Loty » XDiviM))
= D) (5, W) Z 1 (B(S: W): L+ ADiven))- (4.27)

O

The following proposition will now complete the analytic continuation of
ZM(S’ Wi Xarhy» Xalll)'

PROPOSITION 4.10. Let

Pl,w)=s5(s— 1D s +w—=3/21Cs+w— 1P +w—1/2°Qs+w—2)°x
x wiw—1)Bs+w—5/2)3s + 2w — 3)(Bs + w — 3/2).
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Then the following product has an analytic continuation to an entire function in C*:

Zat(SW: T Tant) 7= A5 W) A5, W) A(B(s. w) ABo(s. w) B(s, w)x
x B(a(s, W)P(s, W)Z (S, W; Laytys Layiy)-

Proof. In Proposition 4.9 we established the continuation of Zas(s, W; %41+ Xay1,)
P(s,w) in R;. As o> = 1 and P“"(s, w) is meromorphic in C?, it follows that

li’(‘“l‘)(s, w)Z p(o(s, w); ADivM)s Xay )P(a(s, w))

is a meromorphic function in «(R;). From (4.23), we observe that poles can just
occur at the points s =1,3,5,... or s = 2,4, 6, ... (depending on ¢(a;)). However,
except for the possible pole at s = 1, all the others are canceled by the trivial zeros
of L(I—s,%,). We can conclude from Proposition 4.9 and (4.26) that
A(s, w)P(s, w)P(ou(s, W) Z 7 m(S, Ws Lpivimy» Zayr) 18 analytic in Ry Ua(Ry), Ry and
o(R;) having a substantial intersection (containing Ji(s), R(w) > 1). Thus by Propo-
sition 4.6, this function is analytic in R, the convex hull of the union.

Since *> = 1 and (iD(“2/Z)(s, w) is moromorphic in C?, it follows from what we have
just proved that

B (s, w) A(B(s, W) P(B(s. W) P@B(s. WNZ sa(B(s. W: Lo ZDiv(m))

is a meromorphic function in S(R;). As before, all the poles, except the possible one
at w=1, of ®@"R)(s, w) are canceled by trivial zeros of L-functions. From (4.27), we
conclude that

A(s,w)A(B(s, w))B(s, w)P(s, w)P(a(s, W) P(B(s, W) P(a(s, W))EM(S, W Layly» XDiv(M))
(4.28)

is an analytic function in Ry U B(R3). As this has a non-empty intersection, it follows
from Proposition 4.6 again that (4.28) is analytic in Rj3, the convex hull of
Ry U B(Ry).

To complete the argument, apply o to (4.26), obtaining

A(s, W)Z p(ols, W); Zpivemtys Layt,) = PN (s, W) Z (s, wi ADivM) > ZLayly)-

Multiplying the above by A(s, w)A(S(s, w))B(s, w)P(s, w)P(a(s, w))P(B(s, w))
P(afi(s, w)) and applying (4.28), we see that

A(s, w)A(a(s, w)A(B(s, w))B(s, w)P(s, w)P(a(s, w)) P(B(s, w))x

X P(OC/))(Sv W))Z M(OC(S, W); ADiv(M)> Xall])
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is analytic for (s, w) € R3. Replacing (s, w) by a(s, w), we obtain

A(s, w)A(a(s, w)A(B(s, w)A(ols, w)B(s, w)B(a(s, w)) P(s, w)P(a(s, w))x

x P(B(s. W) P(Ba(s. W) Pxf(s. W) P(xfou(s., W) Z (s, w: ADivv)» Layly)

is analytic for (s, w) € a(R3). Combining this with the fact that (4.28) is analytic in
R3, we obtain the analytic of

A(s, w)A(a(s, w) A(B(s, w)) A(Pods, w))B(s, w)B(a(s, w)) P(s, w)P(a(s, w)) x

x P(B(s, W) P(Box(s. W) P(x(s. w)) (x5, W) Z ue (s, w: ADivM)» L)

in R3 Ua(R3). As this has a nonempty intersection, it follows from Proposition 4.6
again that the above is analytic in C2, the convex hull of R3 U B(R3).

In fact, P(afi(s, w)), P(afo(s, w)) have one factor in common: 2w + 3s — 3, and so
in the last step we included one unnecessary multiple of 2w + 35 — 3. Removing this,
we complete the proof of Proposition 4.10. O

4.4. AN ESTIMATE FOR Zy(, w; 741 Zas) IN VERTICAL STRIPS

In this section we will use the analytic continuation and functional equations (4.26),
(4.27) for Z y(s, w; Zpivmy» Zays,) to locate poles and obtain an estimate for the
growth of this function in a vertical strip. Before doing this, however, we need some
additional notation.

Let Z (s, w) denote the 4d(]\/[)2-dimensio§al column vector consisting of the
concatenation of the 2d(M) column vectors Z y(s, W; %41, XDivwy) for az € {1, —1}
and all ,|M. Then by Propositions 4.2 and 4.3, combined with (4.26), (4.27), there
exist 4d(M)* by 4d(M)* matrices @ (s, w), ¥ (s, w) such that

A (s, w)? m(s, w) =W y(s, w)z m(a(s, w)) (4.29)
and
Bua(s, W)Z aa(s, w) = Bs(s, W) Z s (Bs, w)) (4.30)

Here A (s, w), By(s, w) are given by (4.25). The matrices @y (s, w), Wy,(s, w) are
constructed from blocks of ®“2)(s, w) and li‘("‘l‘)(s, w) on the diagonal.

Next, we use Proposition 4.7 to show that the function Z(1/2, w; Lasty> Xayl,)s
defined in Proposition 4.10, is of finite order. Although it seems to be a one-variable
problem, the theory of several complex variables is still needed in the proof.

PROPOSITION 4.11. The entire function

~ 1
ZM<§, Wi Xarly th)

is of the first order.
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Proof. First, the convexity bound L(1/2, z,4,) < dglﬂ together with (4.11), implies
that

1
YAY: <2, W3 Lashy» sz1> <L 1,

for RNw) =v > %+e. Applying (4.29) and (4.30) several times in succession, we
obtain

Z a5 w) = Bag(s. w) ™ ®asls, w)Aus(Bls, )~ Par(Bls, w) Bas(eef(s, w)) ™'
x D (o fi(s, W) A (BoB(s, w) ™ W ar(BeBs, w)) Bar(2) (s, w)) ™" x
x @ ((2f)*(s, w))zM(s, 5/2 —3s—w).

For s = 1, we observe that zM(l/2, w) is related to EM(1/2, 1 — w) by the func-
tional equation (4.31). Using Stirling’s formula, we can bound from above the entries
of the right hand side matrices in (4.31), obtaining

1 .
ZM<27 v+ lt; Xazlza Xmll) <<e (1 + |t|)C7
where C is an absolute positive constant and v < —% —c

The proof of Proposition 4.11 is based on an application of Proposition 4.7 to the
function f: C? — C, defined by

F (s, w) = T(s + ST + ) Zui(S, W; Loty Layt,)-

Now let Qy be the tube region whose base is given in Figure 1. This tube already
appeared at the end of the proof of Proposition 4.9 (its convex hull is R;). Reflecting
several times under «, 5, «, ..., until it stabilizes and then taking the union, we
obtain a tube whose base is R? with a hole in the middle (see Figure 4 below).

This hole is a tube with base a polygon, which lies inside the open ball B(0, 4) (of
radius 4 centered at the origin) in R%. The function Z(s, w; Lastr» Xay1;) 1S obviously
of polynomial growth in J(s) and J(w) as long as (s, w) € Qp, and ¢, v are both boun-
ded. Applying Stirling’s formula in equations (4.18) and (4.23), we observe that the
same holds when o, f§ are applied. Combining this with Stirling’s formula, we
conclude that the function f(s, w) is bounded in the tube Q' with base the annulus
o’ ={(o,v) € R*| 16 < o2 +v* < 25}. See Figure 5 below.

Let R C C? be the tube whose base is B(0, 5) in R?, and let R’ = B(0, m) € C,
where m is an upper bound for f on the annulus Q’. Since B(0, 5) in R? is a convex
set, it follows that R is a domain of holomorphy. Obviously, R’ is also a domain of
holomorphy. Applying Proposition 4.7, it follows that

L(s + ST + 5)Zui(S, W3 Layrys Layt,)
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Re (w)

(-1/2, 1) /2, 0)

Re(s)

(2, -3/2)

3/2, 20 (2, -2

Figure 4.

is bounded in R, since in this case, the set Ry contains the annulus Q" whose convex
closure contains R. In particular, the function is bounded in the tube with base given
by the polygon in Figure 4. Proposition 4.11 immediately follows.

One of the key ingredients in what follows, is that the series

4
. _
e 3+ i) 1t 432)
dy
Re (w)
B(0,5)
{-1, 5/2)
-
Re(s)

Figure 5.
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is convergent, for v = M(w) > 1. Here the summation is over all positive or negative
square free integers. This follows from the work of Heath-Brown [H-B]. Applying
the Cauchy-Schwartz inequality, we deduce that

1
> el L(—+ it, xd>
- 2

is convergent, for v = M(w) > 1, and any sequence ¢, such that ¢; <, d¢. Here the
summation is over all intergers. O

3
ld|™" (4.33)

We now show:

PROPOSITION 4.12. Let w=v+it. For ¢ >0,—c <v, and any aj,a; € {1, —1},
h, LIM the function Zy(1/2, W; Y41, Aa,) 18 an analytic function of w, except for
possible poles at w = % and w=1. If (I, b) =1 or 2 and |t| > 1, then it satisfies the
upper bounds

1 .
ZM(E, VA8 Yyl Xam) & 1,

for 1 +¢<v, and
3
1 _ e L5, Ly Lt
Zy <§,v+ll; Xazlz’Xu|/1><<(M3(l v)+v1(e)|t|5(l V)+va(e) Z Z Z |(2d17_;3_(“)|,
a=1,—1I[M (dy, M)=1 0

for —e < v < 1+ ¢. The functions vy(¢), v2(c) are some explicitly computable functions
satisfying
lim v1(€) = lim v,(¢) = 0.
¢—0 —0
Proof. The first bound in the region 14 ¢ < v is immediate by the remarks
concerning (4.33). The bound for —¢ < v < 1 + ¢ is more difficult to obtain. We shall
first obtain a bound for Zy (%, v +it; %1, %4, ) (i-€., for v = —¢), and then apply a

convexity argument to complete the proof for —¢ <v < 1+e¢.
Recall the functional equations

3 .
a(s, w) = <1 —s5,35+w— 2) (see Equation (4.23)),

Pls, w) = <s +w —%, 1— w) (see Equation (4.18)).

Fix (s, w) = (3, —¢ + if). We then have
Pls,w)y=(—e+it,1 +e—it), ap(s,w)=(+e—it,—1/2—2¢c+ 2it),
Pof(s, w) = (—e+it,3/2 + 2¢ — 2it), oafafi(s,w) = (1+¢€—it, —c+it),

and

Pofaf(s, w) = (%, 14+¢— il).
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We shall estimate Z, (%, V4 it; Y ay,) DY alternately applying the functional
equations f, « as above. Note that each time we apply f the value of w is either
—c+1it or —%—264‘21'[, and each time we apply o, the value of s is —¢+1ir. It
is thus sufficient to obtain upper bounds in only these cases. We proceed to do
this.

Now, it immediately follows from (4.18) and Stirling’s asymptotic formula for the
Gamma function that away from poles,

Zu(S, =€ 40t Loty Lty

1
K BN MY it

LM/ az=1,-1
X (

1 . .
+‘ZM (S - E —€c+ lta 1 +e€— lt; Xazlz’ X—tl]lll3[4)

1 . .
Zm<s -3~ e+it, 1 +e—1it; Yy, Xa]1113/4>’+

)

Since M is even and squarefree, we also have (b, [j/3l4)) =1 or 2. The characters
Layn s, A0d 7y 10, can be replaced by 7, 4> X—4 4, With dy squarefree.

Similarly, for w= —%— ¢ + it, we have, after replacing /, by ds and [} by d,
that

1 . 13
ZM(»Y» 5~ 2¢ + 20t; Y goay5 Xa1d2> L dy* Z M3, Z 2]+ x
[3,14|M/d3 (13:1,71
“

.3 .
+ 'ZM(S— 1 —2e+211,§+2€—211; ;{azd3,x_ald4)‘>,

+

3
Zm<s —1—-2¢+ 2it,§+26 —21it; Lards> Xa1d4)

where we have denoted by ds, the squarefree part of dpl3ly. Note that
(d3, d4) =1or?2.

In a similar manner, we consider s = —e + it in (4.23). It follows from Stirling’s
formula that away from poles,

Z/\/[(_6 + ita W; Xazlzs Xaldz)

3
<, |d2 . l|2+3e Z M3e %
/«,1/3,17,15,1/},1;|(M/[1)

. .3
X <‘ZM<1 +ec— im,w— 36 + 3” - 57 X/,Jﬁl,’-/aﬁlﬂ,l-; : Xaz[z’ Xa1d2> ‘—i_
. .3
HZyl 1 4+¢—it,w—3c+ 3it — 5; 1 — lulplylz, Iif’ L - Lasty Lar ds .

As before, (lal,;lylgtl/;l}-,, d>) =1 or 2. We can replace lalﬁl;,lalﬁly by d3, squarefree. We
again obtain that (d;, d>) = 1 or 2.
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It now follows from the previous estimates and remarks that

ZM(%’ —e+it; Larhy» Xalll)
1 3 1 3 3 1
L0 MG T AT A A s
:l t |5+l()e MlOe(d] dz)%Jre x
1 1.3 1
X (chds Y (dsda) (dadsyd; 1 2d]T - S

where dy = b, d; = 2%bj,0; =0 or 1, and b; [7, (b, bjy1) =1 (G=1,2,...,5),and S is
a sum of absolute values of the multiple Dirichlet series Z,, at various arguments of
the characters. We can take

= > ZZM< l+¢ /Cal)

a=1,-1 1M
P(al

. |L(%7F’ Xd(,Xal) do, d1(1/2)|

=22 2 e :
a=1,—1 |\M d:dodf
(d,M)=1

The positive integer dj is such that dy, = d>/3/4 modulo squares, and /3, [4| M. Since
M is square free, it follows that

ord, (dzl§d4) <2,
ly

for any prime dividing %. Consequently,

L 13 1
| t|5+106 MIOE(dl dz)%Jre (d2d3)%+é(d3d4)%+t(d4d5)%+é d22+€[3214 2d42+€ <, M3+l6e | l|5+10£ )
We finally arrive at the bound
ZM(%’ —e+it Larh Xﬂlll)
<<£ M3+30( | [|5+106 %
LG F. ata) P (1/2)] (4.34)
x 222 e :

a=1,=1 lIM d=dya?
(d,M)=1

We now need to establish that Zy(, w; 14,1+ Z4,;,) 18 analytic for w in the region
described in the proposition. We have already shown, in Proposition 4.10 that the
product

A(s,w)A(a(s,w))A(B(s,w))A(Po(s, w))B(s,w)B(a(s,w)P(s, W)Z) M (S W3 LDivivys Xayly)-

is an entire function of s, w. Specializing to s = é,

of Z M(zv W3 ADiv(M)s Xayy) COUld occur at zeros of

we see that the only possible poles

A(1/2, w)A((1/2, W) AB(L/2, w) A(Ba(1/2, w))B(1/2, w)B(o(1/2, w))P(1/2, w).
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Zeros of P(1/2, w) can only occur on the real line, at w = 0, %, 1. The other terms in
the product have factors of the form (1 — p~2t2") for p | M. Thus the only potential
locations for poles in the region under consideration are w = 1 + it, for a discrete
sequence of ¢ £ 0. Such poles cannot occur, h(ﬁ)vever, for the following reason.
For any s, w with N(s) > % gr)ld ROw) > 1, Z ym(s, W5 Apivianys Xayy) 18 an analytic
function of s and w. Suppose ZM(%, W; ADiv(M)» Xay;) has @ pole of order y > 0 at

w =1+ ity. Then

lim  Py(s, w)?M(s, W; Apivimys Xay) 7 05
(s.0)=> (5 Lity)
where Py(s, w) is a product of y linear factors of the form w —1—ity, s+ w—
3/2 —ity,2s +w—2 —ity or 3s+w — 5/2 — ity. These correspond to potential zeros
of the products A(f(s, w)), A(Pa(s, w)), B(s, w) and B(a(s, w)). By the analyticity in
s, w, we can interchange the limits:

. .
lim  Po(s, w)lim Z a(s, w5 Apivians Xai,)
w—>I+itg 51

. . =
=lim lim Py(s, w) Z p(s, w; ADiv(M)» Larty)-

s—1w—1+if

On the right-hand side, for any s with 9i(s) > %, let

. —>
1(s) = w_l)lm[m Pols, W) Z p(s, W; Apiviarys Layty)-

Then 7(s) is an analytic function around s = % Since for f(s) sufficiently large the
right-hand side of (4.10) converges absolutely, it is clear that if Py(s, w) contains a
factor of the form w — 1 — ity then T(s) = 0 for all such s. This would imply that
the left-hand side equals zero, which contradicts our assumption. In a similar way
we will eliminate the possibility of the other three factors dividing Py(s, w).

By applying (4.30) to f(s,w) and setting w=3/2+ ity —s, we obtain the
relation

1—[(1 _p_2(3/2+ito—x))7M(1 + ity, s — 1/2 — ity)
pIM

— D5 — 12— ito) Z a5, 3/2 + it — 5).

For M(s) sufficiently large and /y # 0, the left-hand side of the above converges abso-
lutely and, hence, the right-hand side is an analytic function of s. Consequently,
Po(s,3/2 + ity — s) times the right-hand side will vanish identically if P°(s, w)
contains a factor of s +w — 3/2 — ity. As d(s — 1/2 — ity) does not vanish identically,
it follows that the right-hand side of (4.36) equals zero if we approach along the line
w=3/2+ ity — s. This is a contradiction, so Py(s, w) does not contain a factor of
s+w—3/2 —it.
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Similarly, applying (4.29), (4.30) and setting w =2 + ity — 25, we obtain the

relation
H(l _p—4+4s—2ito))1_[(l _p—4+25—4i10))1_[(1 _p—3+2s—2ito))3 ZM(I Fity,5—1=2ity)
pIM pIM pIM

=R (25— 1—itg) ¥y (25— 1 —itg)D (25— 1 —itg) Zps (s, 2+ ity —25).

By the same argument as above, Py(s, w) does not contain a factor of 25+ w—
2 —ity.

Finally, applying (4.29) to a(s, w) and setting w = 5/2 + ity — 3s, we obtain the
relation

[T = p Y Z a1 = 5.1+ itg) = Wasr(1 = )Z aa(s. 5/2 + it — 39,
pIM
from which it follows that Py(s, w) does not contain a factor of 3s+w — 5/2 — ity.

The possibility of a pole at w = 0 can be eliminated in the same way.

To see that there may, actually, be a pole at w = %, observe that the transformation
of relates the hyperplane w = 1 to 3s 4+ 2w — 3 = 0. Since w = 1 may certainly be a
pole, it follows from (4.18) and (4.23) that 3s + 2w — 3 = 0 may be a pole.

This establishes the analyticity of Z(%, w) for —e < R(w) < 1 + ¢, except possibly
atw=31.

The upper bound follows from (4.11), (4.34) and the Phragmen—Lindel6f
principle.

This completes the proof of Proposition 4.12.

4.5. THE SIEVING PROCESS

In this section we will use the series Z,, as building blocks to construct

3
205, = S HLL (4.35)
d

where the sum ranges over square free integers dy and for each dy, d is the associated
fundamental discriminant. This is simply the series (4.12), as y, = x4, The series
Z(s, w) will then inherit its analytic properties from those of Zy,.

Our object is to prove

THEOREM 4.13. Let the series Z(s, w) be as defined above, and choose any ¢ > 0.
When the specialization s = % is made, Z(%, w) is an analytic function of w_for R(w) > %
except for a pole of order 7 at w=1. For w=v + it, with v > %, Z(%, w) satisfies the

upper bound

~ 1 1 if l+ec<v,
5’ w K¢ (1 + |t|)5(17v)+b‘(£) lf %>< v < 1 +e,

https://doi.org/10.1023/B:COMP.0000018137.38458.68 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018137.38458.68

348 ADRIAN DIACONU ET AL.

where v(€) is an explicitly computable function satisfying lim._.o v(¢) = 0.

Also,
6a
. 7 1 _ 3
lim (w — 1) Z(5.w) = el

where as is given by (3.3).

In this section let r denote a positive square free integer with (r,2) = 1. We also
fix the notation aj,a; € {1, —1} and [}, € {1, 2}. Let F, as before, be the GL(3)
Eisenstein series associated to L(s, xdo)>, so L(s, F, ydo) = L(s, ydo)’. For any /| r,
define

/
Z L2(S, F, XdOXalll )Xazlz (dO)PEZ){c}l)(S)

(1) _
Zalll.,azlz(s’ W) - av

(4.36)

(dy.2)=1.(dy .21)=1
d=dyd}
and as usual dy varies over positive square free integers and d; varies over positive
integers.
If we then define

Zaah (s wir) =Y p(NZ, (5. w), (4.37)
I|r

where p denotes the usual M6bius function, it is easy to check that

ayl
La(s, F. 707a,1,) Xy, (do) P13 (s)

o (4.38)

Zulll,uzlz(s’ w;r) =
(dydy 2=1,d; =0 (mod )
tl:dotllz

In the next proposition we demonstrate that Zﬁfl)/l’az (5 W), and hence Z,;, 4,1,(s, w; 1)
can be written as a linear combination of the functions Zy/(s, w; %4,1,» %4,;,) Whose
analytic properties have already been studied in the preceding sections.

PROPOSITION 4.14. We have

/ —
Zﬁn)ll,az/z(& W) - H(] —p )

pll
1 —-w —
25213 1_[(1 —p ¥y x
5l Pl

Xal [1 13 (mlm2m3)Xﬂzlz (13) %

X
(mymyms3)°

my,my,m3|(I/13)
X (Zz[(S, w; Xag/ZXmlmzm;’ X[11/113)+
+ Zz[(S, W3 Larh Xmymoms » Xa1/|l3)+
+ X—l(m1m2m3)221(51 Wi Layly Xmymyms » Xa]hl;)_
- X_l(l’l/lll’l’Qm:;)Zz/(S, W5 Laylo X—mymams s Xullllg))'
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Proof. Referring to (4.36) and (4.9), write

L1
Z Z Lo(s, F, XdobXal/l)Xazlz(d0[3)Ps:)l,dl,3)(s).

Zfz/al(sw) v Tw 12w
141,d262 d(;tl;dlu

l3|1 (d()d] ,2]):1

Replacing  La(s. F. Lyt Xar) DY Lai(s, F. a2yt - Tl = Zaots Xty @D
multiplying both sides by le (1= )3, the result follows after some simple mani-
pulations, and the use of y_; to dlstmgulsh the cases mymyms =1 (mod 4) and
mymoyms = 3 (mod 4)

This completes the proof of Proposition 4.14. O

It follows from Propositions 4.12, 4.14, and the definition of Z,,;, 4,1, (s, w; r) in (4.37)
that fore > 0, if w = v 4 it, with v > —¢, then Z,,;, 4,1,,(1/2, w; r) is analytic except for

possible poles at w —% 1, and satisfies the upper bound

L > Lo X l
Zalll,az/z( —e+it; r) <, r3+vz(f)|t|5+b4(f) Z ZZ| 2 d1+0( a ’
a=1,—1 112r dp

with v3(e), v4(¢) some explicitly computable functions satisfying lim, .o v3(€) =
lim,,ova(€) =0. For v> 1, the series Z, 4,,(1/2, w;r) converges absolutely,
by (4.11) and (4.33), and a factor of r* factors out of the denominator.
Thus Zu,1.a5(1/2, 1 + ¢ + it; 1) < 17272, Combining these bounds and applying
Phragmen—Lindel6f, we obtain, for —e < v < 1 +¢ and || > 1,

LG5 ta
. 3—5Sv+v 5—5v+u. di l
Zarls.aohs (%’ v+ it: r) L r v+L3(e)|t| v+4(e) Z ZZ | dl-:( a
a=1,—1 12r dy

(4.39)
We now define
Zall],azlz(sa W’) - Z :u(r)Za]]l,aglz(sa Wa }"),
(r2)=1
and observe that

3 La(S, gy Yty Leaotr (o)

Zalll,azlz(s’ W) = 4" ’
0

(do,2)=1

where the sum is over odd, square free positive integers . The sum over r has removed
all d; # 1 from the sum. Applying the bound of (4.39) and taking v > v, > , we have

Zuanbov i) <, 50 Y oo 52 Sy IEG Al dylf’,f’(y"’

(r,2)=1 a=1,-1 l|21 dy
L(A
5—5v+uvs4(e) ’ 2 /{doya/
<L ZIZZ d1+‘l5‘ —3-13(¢) Z [ 15v=3— m(()
a=1,— !

<<vo,e | t|575\’+04(() ,
(4.40)
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if ¢ is chosen sufficiently small. In (4.40), the last estimate follows from (4.33).
We have thus proved

PROPOSITION 4.15. For any aj,a; € {l,—1} and L, €{1,2}, the series
Zaly.arhy (% w) is analytic for w = v + it when v > %, except possibly for a pole at w = 1.

For |t| > 1 it satisfies the upper bound
Zatyants (5, v + i) & |17+,

To complete the proof of the first part of Theorem 4.13, we make choices of
1, —1,2, =2 for a1/, and ax/; and take linear combinations of Z,;, 4,,(1/2, w) to iso-
late sums over dy > 0, dy < 0, and for each sign, sums over dy =1 (mod8), dy =5
(mod 8), dy = 3 (mod4) and dy = 1 (mod 4). After these sums are isolated, the 2-fac-
tor of the L-series can be restored, and the analyticity of Z (% w) for w # 1 together
with the upper bound stated in Theorem 4.13 follows.

It now remains to calculate the order of the pole and compute the leading coeffi-
cient in the Laurent expansion at w = 1. This can be done directly from the analytic
information and functional equations we have accumulated about Z,, 4,5(s, w).
However, it is an intricate computation, and so we will instead make use of the com-
putations already performed in Section 3 for a general multiple Dirichlet series.

In the notation of Section 3, taking m =3, Z(s,w) = Z(s, s, s, w), Where
Z(s1, 52, 53, w) is defined by (3.6). In the previous work of this section we considered
the L-series L(s, F) = {(s)°. Here F was an Eisenstien series on GL(3) specialized to
the center of the critical strip. We could just have easily have considered the L-series
associated to F’, a general minimal parabolic Eisenstein series. In the case of F, the
Euler product parameters at a prime p were o, = 8, =y, = 1 and the corresponding
local factor of the Euler product was (1 — p~*)~>. For the more general F’, we can take
%, =p~, B, =p"? 7, =p"" The corresponding local factor of L(s, F') is then
equal to (1 —p~~)(1 — p~2)(1 — p~tata))~! Applying exactly the same argu-
ments as before, we may obtain the analytic continuation of the more general object

L(S + €1, X{{O)L(S + €, XdO)L(S — €] — €, X{l’o)

Z(S+€1,S+62,S_€1_62,W):Z |d|w

d

in a neighbourhood of s = 1/2 and ¢; = ¢; = 0. Setting 51 = s+ ¢, 5 = s+ ¢, and
§3 =8 —¢ — ¢, we are in a position to take advantage of the calculations done
in Section 3, as we have established the conjectured analytic continuation. This
completes the proof of Theorem 4.13.

It is worth remarking that we could just as easily have proved the more general
analytic continuation of Z(sy, 52, s3, w). However, our intent was to make the out-
lines of the technique as clear as possible. Writing out the explicit details in greater
generality would have made it significantly harder to distinguish the ideas through
the notation.
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We now have only a small additional piece of work to do to complete the proof of
the first part of Theorem 1.1. Applying the integral transform

1 /2”“’ x"dw {(l—l/x) if x> 1,

2mi 2 —ico w(w—i—l): 0 if 0<x<1,

we obtain first
2-++i00 NyW 3
L. Z(1/2, w)x dw:ZL l,Xd 1_|iz’| .
270 Jr_ioo ww + 1) = 2 X

Moving the line of integration to f(w) = % + ¢, for € > 0, we pick up from the pole at
w=1 a polynomial type expression of the form x(4s(log x)°+ As(log x)’

+ ... 4 Ayp), where the constants A, ..., Ay are computable and
6613
6 — —2 5
8126!

i.e., 1/2 the constant of Theorem 4.13, divided by 6!. The integral at %(w) =%+ €
converges absolutely by the upper bound estimate of Theorem 4.13, and con-
tributes an error on the order of x$+¢. This completes the proof of the first part of
Theorem 1.1 OJ

4.6. AN UNWEIGHTED ESTIMATE

In this section we will prove the second part of Theorem 1.1. An essential ingredient
of an estimate for such a theorem, and, more generally, an estimate for an unweigh-
ted sum ) ,_.ay when q, is not known to be non-negative, is an estimate for sums of
ay over short intervals. In our case, if d is square free then a; = L(1/2, ;{d)3 , while if
d = dyd? with dy square free, then

ag = L(1/2, 14, Pay.a, (1/2), (4.41)

where d™ « Py q,(1/2) < d°. Here Py, 4,(1/2) is a linear combination of PE;;{([;]) (1/2).
As a first step we will require the following.

PROPOSITION 4.16. For x > 0 sufficiently large, ¢ > 0, and 3 < 0y < 1,

D L(1/2,14) < XM

|d—x|<x%

The sum here is over d of the form d = dym?> for some m, with dy square free and either
positive or negative.

Proof. The easiest way to prove the Proposition is to apply Theorem 4.1 of [C-N]
to the analog of Zu(s,w; x;, ) of (4.13) in the case of GL(2), i.e., when
Ly(s, F, x4,) = Lu(s, Xd())z for dy square free. Then all coefficients are nonnegative.
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There are four gamma factors, so 4 =2 in their notation, and the result with
exponent 3/5 follows immediately, by ignoring all but the square free terms.
(The sum over m does not affect the exponent.) The derivation of the analytic
continuation and functional equation of Zy(s, w; x;, ;) is done precisely as in the
preceding sections and is omitted. Alternatively, and more traditionally, one could
obtain this analytic continuation by considering the Rankin—Selberg convolution of
a half-integral weight Eisenstein series with itself. The analysis, however, is
considerably more complicated.

Fix an x, and r < /x. The following Proposition will begin the proof of our esti-
mate for unweighted sums of coefficients of Z,,;, 4,1, (s, w; r). To simplify notation we
will suppress ay, a, [1, [, and write

a(d) = Lo(1/2, L4y Zart,) Tt (d0) Py ) (1/2). (4.42)

Thus
a(d
Zata,(1/2, w5 1) = c(l“')‘ (4.43)
(dody 2)=1.d =0(mod r)
d=dyd?
O

PROPOSITION 4.17. Fix x, T > 0, r square free, ay,ay € {1, =1}, 11, L € {1, 2}, and
¢ > 0. Let

W= [ D2 O

201 Jiyeir w

Then for any 1 = 0y > 3/5
(1460)/2 1 (G—00)/2
no= 3 aaro(ee(3) ) so (e (3) )
d<x,d=0(mod r?) 1 Iz

Proof. Applying the integral transform

1T xvdw 1 if x>1 1
— = : O x"*min( 1, -——
i W {o if 0<x<1' ‘(x mm( 7| log(x)|>)

to Zu1,.40(1/2, w; r) and interchanging the order of summation and integration, as
we are in a region of absolute convergence, we obtain

Ln= ). ad)+E,

d<x,d=0(mod r?)

where

x\ l+e | 1
E < Y |“(d)|(21) mm(l’m)

d=0(mod r2),d#0
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Break the sum E; into three pieces: E| = E, + E3 + E4, where the sums are over
d <1x,d > 2x and Ix < d < 2x, respectively. Write d = dym?r?, with dy square free.
By its definition in (4.42), together with the bound of (4.11), we have the bound

ald) < 1LA/2, gy dai)V - d° (4.44)

Applying (4.44) to E,, E3, we see that Ey, E3 <, x!7=272T ! follows immediately
from the absolute convergence of > L(1/2, xd0)3 |do|~'~¢ (which follows, as remarked
before, from Heath-Brown’s results [H-B]).

To analyze E4, note that we are summing over the range $xr—2 < dom? < 2xr72, so

. 1
Es L > la(d))| -m1n<1, W)' (4.45)

d=0(mod 12) Lx<d<2x
We are summing over the range lxr=? < dr™? = dym?® < 2xr~2. Consequently, for
any 0y > 0 we may write dom® = [xr2 4+ d'(xr ) +d"]. As d’,d" vary over the
ranges 0 < |d'| < (xr )% and 0 < d” <« (xr 2", the full range of values of
dym?* will be hit. We will treat the cases d’ =0, —1 and d’ # 0, —1 separately.

Write E4 = E5 + E¢ where Es is the sum over d with d’ = 0, —1. The choosing 1 in
the minimum of (4.45) we have

Es< Y Y lad) =Y lad),

d'=0,-1 o<d«(x2)%
where Y°* denotes the sum ranging over d’, dy, m satisfying d’ = 0, —1 and
0 < |dom® — xr 2 — d'(xr )" « (xr ).
Also, by (4.44)
a(d) e rXVL(/2, gy L)) -

It follows by the Cauchy—Schwartz inequality that
1/2

Es < (301072 taa)F) (30O /2 24 ai))
where Y™ denotes the sum ranging over dy, m satisfying the condition

-2

; 72)00
dy — — K
m

(xr

m2

Using [H-B] to bound the sum of fourth powers by x, and using Proposition 4.16 to
bound the sum over squares we obtain

X

(1400)/2 0 x\ (I4+00)/2
() E
,,

Zm—l—% <, 7 x© =
.

m=1

(4.46)

To bound Eg we first use the same argument as above to bound the sum over d” for
fixed d’. We then observe that for d’ # 0, —1 and any d” we have |log(d/x)|"! «
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(xr~2)!'=% /|d"|. Taking the log term in the minimum of (4.45) and summing over
d’ # 0 we obtain

(1+0 )/2 (3+00)/2
Eg<orx(3) 170 Y o) d <X T (S) T (44
d'#0,—1

This completes the proof of Proposition 4.17. O

Continuing with the proof of the Theorem, we now define, for ¢ > 0, and any
—c<o<1—¢

1 (7T Z 1/2, w; r)x"d
I, 0) = 5 [ auhoant(1/2, W 17 dw (4.48)
i S, it W
and
I(r. o) = 1 /l+‘+iTZa]11.,,212(1/2, w; r)x" dw
. 27 Joir w ’
L(r,0) = : /‘”T Zah,ab(1/2, wi r)x" dw
4 2ni Jipeir w '
Thus,
6 .
L(r)=xY_dir)(ogx) + L(r, o) + I3(r. o)+
i=0
+ I(r, 0) + 04 x4 . Res(Zal;1 ab(1/2, w; 1)), (4.49)

for some computable constants d;(r). The main term is contributed by the seventh
order pole at w =1 and the residue term comes from the possible pole at w = ;”—‘,
provided —e <o < %— ¢ for some sufficiently small ¢ >0. Here d6,=1 if
—€<0< %— ¢ and J, = 0, otherwise. Note that there is no pole at w = 0, so there
are no additional error terms.

It immediately follows from Proposition 4.17 and (4.49) that

6
> ar= ) u |:x Y " dir)logx)' + L(r, 0) + Ii(r. 0) + Lu(r. )+

d=x r<yJx i=0

d square free

(1400)/2
+3, —x4-Res(Zul/, wn(1/2,w5) + O, ( “(%) )+

1L=4

1 (3—00)/2
+O, (x‘r‘ - (%) ﬂ (4.50)

The sum } _ fu(r)xz o di(r)(log x) will glve the main term of the second part
of Theorem 1.1 with a negllglble error of 0(x’+() Thus, to complete the proof of
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Theorem 1.1 it remains to estimate the integrals and error terms in (4.50). These will
be estlmated by breaking the sum over rinto 1 < r < x” and x’ < r < /x for some
0<y< 5 to be chosen later. We note that we will make different choices of 7 and ¢
depending on whether 1 <r < x" or x’ <r < /x. After computing all the error
terms, we will make an optlmal choice of the variables y, a, T, 6.

In order to estimate the integrals in (4.50), we make use of the upper bound (4.39).
It follows that for —e <v < 1,

Zati.ash (35 v+ 05 1)
<, r3_5v+y3(()(1 + |t|)5—5v+b‘4(() Z Z Z |L(2 s /Cdo/(al)| ] (451)

14€
a=1,—1 12r dy d

O

PROPOSITION 4.18. Let x, T > 0, r square free, and ¢ > 0. The integral I,(r, —¢)
given in (4.48) satisfies

L(r, —¢) = 1 /‘(+~T Zaityanh, (172, w; 1)x" dw

27i iT w

< PO 3 ZZ|L(2 );do/(al)|
d+c ’

a=1,—1 112r dy

where vs(€) and ve(€) are some explicitly computable functions satisfying

lin% vs(e) = lir% ve(e) = 0.

Proof. The ultimate effect of this proposition is to save a power of 7'/2 in the
estimate for I,. To accomplish this, our goal is to apply the functional equation
(4.31) to Zu 1 .a,(1/2, —€ + it; r), reflecting it into a region where it converges
absolutely. This functional equation reflects Z into a new series which is actually a
linear combination of convergent series. This combination is summed over divisors
of 2r and also over ratios of gamma factors corresponding to L series with both
positive and negative conductors. The easiest way to deal with this is to use the
following notation:

Let B = (B, B2, Ps. P4, Bs), where each f3; € {0, 1}. Let Af; denote the product of
gamma factors

Aj(w) = GO + BG(w + B2) G2w — 1/2 + B3)G(w + B4) G(w + Bs),

where G(w) = 7"/ (w/2).

Then for fixed x and 7, it follows from (4.31) and the explicit forms of the functional
equations of Proposition 4.2 and 4.3 given by (4.18) and (4.23) that we may reflect
Zat.ah(1/2, w; r) into a complicated sum of Dirichlet series evaluated at 1 — w.
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By a similar argument to the one given in the proof of Proposition 4.13, it can be
observed that the bound for the integral I; follows, if we show the estimate

TA;(L+e+in)

. dt <, TH10, 4.52
v Aj(—e—if) e+t D (4.52)

IF(y, T,¢):=

where y is any positive number.
To prove the estimate (4.52), we first observe that from Stirling’s formula, we have

A=(1 + € + if)
B — 5+10(+101t cit 1
7A7(—£ —) 1] c'(e, p ){l + O<|l|)} (4.53)

for certain constants, ¢, ¢/(e, ?).

Replacing the ratio on the left-hand side of (4.53) with the main term, the contri-
bution from the error term is easily seen to be bounded above by O(7*), and using
the expansion

1 i( (;z) (ie)z )
—=—- |1+ (=) + (=) +- ).
c+ 1t t t t

it is enough to prove that

T o k.
f A0t Tl 2 %f uz=0, (4.54)
1 T2 if u<O.

This is a simple consequence of the following lemma [T].

LEMMA 4.19. Let F(x) be a real funclion twice differentiable, and let F"(x) =
m>0,or F'(x) < —m <0, for any x, a < x < b. Let G(x)/F'(x) be monotonic, and
|G(x)| < M. Then

8M
< —.
m

b
/ G(x)eT™ dx

Choosing F(t) = t(10logt + log y) and G(¢) = ¢, we can divide the interval [1, T']
in several subintervals such that the conditions in the Lemma 4.19 are satisfied in
each subinterval. The bound (4.54) follows:

This completes the proof of Proposition 4.18. O

LEMMA 4.20. Let 0 <y < p and x — oo. Then for any ¢ > 0,

Z Z ZZ!L zs/CdO/{al <« xPlutte if u>-—1,
d1+( ¢ xv(u+l)+e lf u<—1.

x'<r<x?  a=1,—-1112r dy
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Proof. Let S denote the quadruple sum given above. By interchanging sums and
writing 2r = [ - r;, we easily see that

LG va )l
§= Z Z Zz—u Z(Z;‘)”.%

a=1,-11<2x" dy 2r=0(1)
1 ., . 3
ut1+4c u |L(§’ /Cdol{a[)|
< [ - T .
a=1,—11<2x" dy %x‘/grl g%xﬂ 0

Now, if u < —1, the inner sum over r; is a convergent series which is bounded by
x/#+D+¢ The remaining sums are absolutely convergent and bounded by (4.33). This
establishes the first case of the Lemma.

If u > —1, then the inner sum over ry is bounded by (3 x”)u+l+(. The result then
again immediately follows from (4.33). This completes the proof of Lemma 4.20. [

We now proceed to systematically estimate the integrals and error terms in (4.50).
Consider first the case r > x” for some y to be determined later. Choosing 7 =
X302 ¢ =1 — ¢,and summing over x’ < y < x2, we find that the error contributions.

0y

o(r(2)7) el 3(2)7) @59

are dominated by the first, which contributes (changing ¢ as appropriate)

1409

3 xfr‘(%) T & X (4.56)

1
< r<x2

Applying 4.51 and Lemma 4.20 to the definition of I,(r, ¢) given in (4.48), it follows
that

L 1 - ol < x'T (4.57)

1
X'<r<x2

again changing ¢ as appropriate. Similarly, using (4.51) and Lemma 4.20, the inte-
grals I3(r, 1 —¢) and I4(r, 1 — ¢) contribute a smaller amount than the above error
terms.

Finally, we consider the case when r < x”. For this case, we choose 6 = —¢, T = f—,;
with o — fy > 0 where 0 < «, f will be chosen later. First, we consider the error from
the pole at w = %. It follows from (4.51) and Lemma 4.20 that the contribution is

bounded by
3y 2 743
Zr THa g xrtate,
r<x’

This error will be negligible compare to the others and can be discarded. The error
coming from the /; integral can be estimated using Proposition 4.18 and Lemma
4.20. We obtain
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> h(r.-9 < e > A DI LG ’d/szrn(%a/

r<x’ r<x’ a=1,—1 112r d,
9(4-3p+¢) 8
T AN (4.59)
x¢ it p<g.

We now estimate the errors contributed by (4.55). First

> (2) " (4.60)

r<x’

Secondly, we have

3-0y

Z S (_) 2 a+ﬂ+(z B—3+0,

r<x’ r<x’

30y .
<<:x_ if 3—0p—f>1, “60)

30,

xT et e if 3 g)— B < 1,

where a = oo — yf5. All the other error terms contribute a smaller amount. We leave
them as an exercise.

Collecting all the error terms in (4.56), (4.57), (4.58), (4.59), (4.60), and (4.61), we
see that if § > g and 3 — 0y — § < 1, then the total error is

—y 1+0p 9, 3% a0y —2y
o(xl ,+é+x 5+¢ +xzx+e L X a+y0y 2,+€). (462)

If we equalize these four error terms above, and solve in terms of 0, it follows that

1 — 0y e 1+ 6

9 7 9
The condition 3—6y—f <1 implies that f>2—0, which implies that
o =7yp > (2 — 6y) which gives

V= a=0= a=7p.

1+ 6 - 1

9

These inequalities imply that 0y > — (29 V/265). With this choice, the total error in
(4.62) is O(4T=V265)4¢)  where (47 — /263) ~ 0.853366... This completes the
Proof of Theorem 1.1. OJ
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