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NECKLACE PROCESSES VIA PÓLYA URNS

TOSHIO NAKATA,∗ Fukuoka University of Education

Abstract

Mallows and Shepp (2008) developed the following necklace processes. Start with a
necklace consisting of one white bead and one black bead, and insert, one at a time,
under a deterministic rule, a white bead or a black bead between a randomly chosen
adjacent pair. They studied the statistical properties of the number of white beads by
investigating the nature of the moments and the expected number of gaps of given length
between white beads. In this note we study the number of white beads via Pólya urns
and give a classification of necklace processes for some general rules. Additionally, we
discuss the number of runs, i.e. the number of consecutive same color beads, instead of
the number of gaps.
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1. Introduction

The necklace process was proposed by Mallows and Shepp [9] in the following way.

(N1) Start with a necklace consisting of one white bead and one black bead.

(N2) Add one new bead at a time between a randomly chosen adjacent pair of old beads with
probability 1/n, when there are n beads. The color of the newly inserted bead is decided
by the following deterministic rule.

(R) If both colors of the chosen pair of adjacent beads are black then the color of the
inserted bead is white. Otherwise, it is black.

Let Wn be the number of white beads when the total number of beads is n. Mallows and
Shepp [9] gave the exact expectation of Wn and the exact variance of Wn. They also showed a
central limit theorem with respect to Wn. Moreover, they derived the expected number of gaps
of given length between white beads in the necklace. The results concerning the number of
white beads are as follows.

Theorem 1. ([9].) For the necklace process, the exact expectation of Wn and the exact variance
of Wn are respectively given by

E(Wn) = n

3
and varWn = 2n

45
. (1)
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Necklace processes via Pólya urns 285

Moreover, the following strong law of large numbers and central limit theorem hold, respec-
tively: as n → ∞,

Wn

n
→ 1

3
almost surely, (2)

Wn − n/3√
2n/45

→N(0, 12) in distribution, (3)

where N(µ, σ 2) denotes a normally distributed random variable with expectation µ and
variance σ 2.

Although (2) was not directly described in [9], we give another proof of Theorem 1 including
(2) in a later section. Investigating the properties of the moments and cumulants of Wn, they
obtained (3). They tried to determine the exact moments; however, it seemed to be difficult.
By way of experiment, let us try to give exact forms of the distribution of Wn instead of the
moments using a standard technique. Namely, the probability generating function of Wn is
defined by

Gn(s) = E(sWn) =
n∑

l=1

P(Wn = l)sl,

which satisfies

Gn+1(s) =
⎧⎨
⎩

2s(1 − s)

n
G′

n(s) + sGn(s) if n ≥ 3,

s if n = 2,
(4)

because W2 = 1, W3 = 1, and, for n ≥ 3,

P(Wn+1 = Wn | Wn) = 2Wn

n
,

P(Wn+1 = Wn + 1 | Wn) = 1 − 2Wn

n
.

(5)

Note that (5) was given in [9, p. 272]. Since Gn(s) is polynomial for each n, we can easily
evaluate (4) using some symbolic computation software. For small n, we see that

G4(s) = s2 + 2 s

3
, G5(s) = 2 s2 + s

3
, G6(s) = 2 s3 + 11 s2 + 2 s

15
,

G7(s) = 17 s3 + 26 s2 + 2 s

45
, G8(s) = 17 s4 + 180 s3 + 114 s2 + 4 s

315
,

and so on. Now, Brennan and Prodinger [2] obtained closed-form solutions for a case as as
complicated as this. However, in this case it seems difficult to completely determine closed-
form solutions for coefficients of sk in Gn(s). So we should stop trying to obtain closed-form
solutions of the distributions. Hence, we will use another approach to investigate Wn.

In this note we deal with necklace processes via Pólya urns. Namely, some results of
Pólya urns are applicable to the necklace process. In particular, (3) is easily obtained without
moment calculations. Moreover, we consider some general rules which are not limited to
rule (R). Namely, procedures (N1) and (N2) remain, and rule (R) is enhanced in the sense that
the color of the newly inserted bead is generally determined by the colors of both beads which
are incident with a randomly selected edge. Note that edge means a pair of adjacent beads in
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the necklace. Hereafter, we use the terminology for simplicity. For each rule, we study the
necklace process via Pólya urns.

Additionally, we discuss the number of runs, i.e. the number of consecutive same color beads
in the necklace, instead of the number of gaps studied in [9, Theorem 3]. For 1 ≤ j ≤ n − 1,
let RW

j (n) and RB
j (n) be the number of white runs of length j and the number of black runs

of length j in a necklace with n beads, respectively. We determine either the distributions of
RW

j (n) and RB
j (n) or their expectations for simple cases.

The plan of this note is as follows. In Section 2 we classify some rules for constructing
necklaces. In Section 3 we shortly review Pólya urns. In Section 4 we apply some results of
Pólya urns to the necklace processes for each rule and give some discussion of runs. Finally,
in Section 5 we give several concluding remarks.

2. Rules for constructing necklaces

When constructing necklaces, we assume the following rules. Procedures (N1) and (N2)
remain, and rule (R) is enhanced in the sense that the color of the newly inserted bead is
determined by the colors of both beads which are incident with a randomly selected edge.
First, if the selected edge has two beads with different colors, by symmetry we have either
(A) or (B):

(A) :
{

◦ − • ⇒ ◦ − • − •
• − ◦ ⇒ • − • − ◦ (B) :

{
◦ − • ⇒ ◦ − ◦ − •
• − ◦ ⇒ • − • − ◦

Throughout this note, ‘◦’ and ‘•’ denote a white bead and a black bead, respectively, and
‘⇒’ represents the transition by the insertion of a bead. After consideration of symmetry and
exception of triviality, (A) and (B) are further classified in Table 1.

Since the processes are started with ◦ − • or • − ◦ by (N1), the edge ◦ − ◦ does not appear
for rules (A1), (A2), and (A3). Accordingly, transition (d) can be ignored for these three rules.
Therefore, rule (A3) is trivial; in fact, the newly inserted bead is always black. Note that rules
(A1) and (A2) are identified with rule (R), so that they are equivalent to the model of Mallows
and Shepp. Hence, we only consider rules (A1), (B1), (B2), and (B3).

Table 1.

(A1) (A2) (A3)

(a) • − • ⇒ • − ◦ − •
(b) ◦ − • ⇒ ◦ − • − •
(c) • − ◦ ⇒ • − • − ◦
(d) ◦ − ◦ ⇒ ◦ − • − ◦

• − • ⇒ • − ◦ − •
◦ − • ⇒ ◦ − • − •
• − ◦ ⇒ • − • − ◦
◦ − ◦ ⇒ ◦ − ◦ − ◦

• − • ⇒ • − • − •
◦ − • ⇒ ◦ − • − •
• − ◦ ⇒ • − • − ◦
◦ − ◦ ⇒ ◦ − ◦ − ◦

(B1) (B2) (B3)

(a) • − • ⇒ • − • − •
(b) ◦ − • ⇒ ◦ − ◦ − •
(c) • − ◦ ⇒ • − • − ◦
(d) ◦ − ◦ ⇒ ◦ − ◦ − ◦

• − • ⇒ • − ◦ − •
◦ − • ⇒ ◦ − ◦ − •
• − ◦ ⇒ • − • − ◦
◦ − ◦ ⇒ ◦ − • − ◦

• − • ⇒ • − • − •
◦ − • ⇒ ◦ − ◦ − •
• − ◦ ⇒ • − • − ◦
◦ − ◦ ⇒ ◦ − • − ◦

https://doi.org/10.1239/jap/1238592130 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592130


Necklace processes via Pólya urns 287

3. A short review of Pólya urns

In this section we give a short review of Pólya urns to apply to necklace processes. The
original model was proposed by Eggenberger and Pólya [4]. There is a large amount of literature
concerning generalized Pólya urns, including recent results (see [6] and [8]). These results are
especially important in the field of informatics and bioscience (see [8, Chapters 8 and 9]).

Consider an urn containing w0 white balls and b0 black balls. The urn evolves according
to the following procedure. A ball is randomly chosen from the urn. The color of the ball is
inspected as follows.

• If the color of the ball is black, a black balls and b white balls are placed into the urn.

• If the color of the ball is white, c black balls and d white balls are placed into the urn.

Note that the chosen ball is not removed. The above procedure is specified by the matrix(
a b

c d

)
, (6)

which is called the ball replacement matrix. Some models are named according to special
parameters of the matrix (see Table 2).

Throughout this section, let wn be the number of white balls after n draws. Then some
limit theorems concerning wn/n are known for these models. We now refer to the following
well-known basic result.

Lemma 1. ([4].) Consider an urn containing one white ball and one black ball with ball
replacement matrix (

1 0
0 1

)
.

Then

P(wn = k) = 1

n − 1
for 1 ≤ k ≤ n − 1.

Moreover, as n → ∞, wn/n → X almost surely, where X is a random variable whose
distribution is uniform on [0, 1].

Table 2.

The Pólya Eggenberger urn [4], [8, Section 3.2]

(
1 0
0 1

)

The Friedman urn [8, Section 3.3], [6, Section 2.2]

(
0 1
1 0

)

The coupon collector urn [6, Section 2.4]

(−1 1
0 0

)

The Ehrenfest urn [8, Section 3.5]

(−1 1
1 −1

)

The OK corral urn [6, Section 8]

(
0 −1

−1 0

)

The Mabinogion urn [11, Section 15.3], [5]

(
1 −1

−1 1

)
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Lemma 1 is a simplification of [10, Theorem 2.1]. Under the condition of Lemma 1, we can
obtain the closed-form expression of P(wn = k). However, in general, it is difficult to obtain
the exact form of the distributions or the moments.

Moreover, we also refer to a strong law of large numbers and a central limit theorem for wn.

Lemma 2. ([1].) Consider an urn containing b0 black balls and w0 white balls with ball
replacement matrix (6). Moreover, assume that a + b = c + d =: s ≥ 1, w0 + b0 ≥ 1,
w0, b0 ≥ 0, a ≥ 0, b, c > 0, a − c ≤ s/2, and a 
= c, and if d < 0 then d divides both b

and b0. Then, as n → ∞,
wn

n
→ c

b + c
almost surely,

wn − E(wn)√
n

→N

(
0,

bc

(b + c)2

(s − b − c)2

2b + 2c − s

)
in distribution.

The above statement is a simplification of [3, Lemma 2] or [8, Theorem 3.5].

4. Necklace processes via Pólya urns

4.1. Rule (A1)

Remember that rule (A1) is identified with rule (R), so that it is equivalent to the model
of Mallows and Shepp [9]. To determine the total number of white beads, it is sufficient to
investigate the number of ◦ − •, • − ◦, and • − • edges in the necklace. Hence, we should
investigate the change in the number of these edges at each step. Since the transitions of ◦ − •
and • − ◦ are the same for rule (A1), we do not distinguish between ◦ − • and • − ◦. Hence,
◦ − • is adopted for convenience. We argue that the necklace process of rule (A1) is regarded
as a Pólya urn. In fact, a ◦ − • edge in the necklace is identified with a white ball and a • − •
edge is identified with a black ball. For convenience, we call it the Pólya urn induced by edges.
Throughout this subsection, let wn be the number of edges of ◦ − • in a necklace with n beads.
Similarly, we define bn as the number of edges of • − • in a necklace with n beads.

Claim 1. For rule (A1), we have (w2, b2) = (2, 0) and the ball replacement matrix of the Pólya
urn induced by edges is (

0 1
2 −1

)
. (7)

Proof. By the definition of wn, bn, and (N1), we have (w2, b2) = (2, 0). Suppose that rule
(A1) holds. If the chosen edge is ◦ − • for (N2) then we have ◦ − • − •. Namely, the number
of edges of • − • increases by 1 and the number of edges of ◦ − • remains the same. If the
chosen edge is • − • for (N2) then we have • − ◦ − •. Namely, the number of edges of ◦ − •
increases by 2 and the number of edges of • − • decreases by 1. Hence, we have (7).

Moreover, by the definition of wn, the number of white beads Wn satisfies

wn = 2Wn. (8)

Using Claim 1 and (8), we give another proof of Theorem 1.

Proof of Theorem 1. We first check (1). Considering the derivatives of both sides of (4), we
have

G′
3(1) = 1, G′

n+1(1) =
(

1 − 2

n

)
G′

n(1) + 1 for n ≥ 3.
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Therefore, G′
n(1) = E(Wn) = n/3 is the unique solution. Similarly, considering the second

derivatives of both sides of (4), we have

G′′
5(1) = 4

3
, G′′

n+1(1) =
(

1 − 4

n

)
G′′

n(1) + 2

3
n − 4

3
for n ≥ 5.

Therefore, G′′
n(1) = E(Wn(Wn − 1)) = n(5n − 13)/45 is the unique solution. Hence, we also

have varWn.
Next we check (2) and (3). Set a = 0, b = 1, c = 2, d = −1, w2 = 2, and b2 = 0 in

Lemma 2. Therefore, in this case, as n → ∞,

wn

n
→ 2

3
almost surely,

wn − E(wn)√
n

→ N

(
0,

8

45

)
in distribution.

Hence, we have (2) and (3) because of (8).

Remark 1. The random variable Wn under rule (A) is equivalent to the number of leaves of a
random binary search tree with n nodes (see [3, Theorem 2]). Actually, matrix (7) also appears
in [3, p. 313], so these two models are indistinguishable.

Moreover, we investigate RW
j (n), the number of white runs of length j in a necklace with

n beads, and RB
j (n), the number of black runs of length j in a necklace with n beads. By the

definition of rule (A1), no two white beads are adjacent. Hence,

RW
j (n) =

{
Wn if j = 1,

0 if 2 ≤ j ≤ n − 1.

We directly apply the result of gaps studied in [9, Theorem 3] to this case.

Proposition 1. ([9, Theorem 3].) For n ≥ 2 and 1 ≤ j ≤ n − 1, we have

E(RB
j (n)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j (j + 3)2j+1

(j + 4)! n if 1 ≤ j ≤ n − 5,

j2j+1

(j + 2)! if j = n − 3, n − 4,

0 if j = n − 2,
2n−2

(n − 1)! if j = n − 1.

Let jlongest be the length of the longest run in a necklace with n beads. Then, by [9, Section 7]
and Proposition 1,

jlongest ∼ log n

log log n
, (9)

which is obtained by E(RB
j (n)) ∼ 1.

4.2. Rule (B1)

Suppose that rule (B1) holds. We then have the observation that the color of the newly
inserted bead is the same as its clockwise adjacent neighbor. When an edge is randomly chosen
with respect to (N2), we should consider that the former bead of the edge in a clockwise direction
is chosen instead of the edge. Hence, the necklace process of rule (B1) is regarded as a Pólya
urn. For convenience, we call it the Pólya urn induced by beads.
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Claim 2. For rule (B1), we have (B2, W2) = (1, 1) and the ball replacement matrix of the
Pólya urn induced by beads is (

1 0
0 1

)
.

By the definition of rule (B1), Claim 2 is easily proved. By Claim 2, the necklace processes
are the same as the Pólya–Eggenberger urn processes. Hence, we have the following statement,
which corresponds to Lemma 1.

Proposition 2. For rule (B1), we have

P(Wn = k) = 1

n − 1
for 1 ≤ k ≤ n − 1. (10)

Moreover, as n → ∞,
Wn

n
→ X almost surely,

where X is a random variable whose distribution is uniform on [0, 1].
For the number of runs, we have the following corollary.

Corollary 1. For rule (B1), we have

P(RW
j (n) = 1) = P(RB

j (n) = 1) = 1

n − 1
for 1 ≤ j ≤ n − 1.

Proof. By rule (B1), the necklace is constructed using one white run and one black run with
probability 1 for each n. Using (10), we have

P(RW
j (n) = 1) = P(Wn = j) = 1

n − 1
for 1 ≤ j ≤ n − 1.

By symmetry, we have P(RW
j (n) = 1) = P(RB

j (n) = 1).

4.3. Rule (B2)

Suppose that rule (B2) holds. We then have the observation that the color of the newly
inserted bead is of opposite color to its clockwise adjacent neighbor. Hence, we deal with this
case in the same manner as the rule (B1) case.

Claim 3. For rule (B2), we have (B2, W2) = (1, 1) and the ball replacement matrix of the
Pólya urn induced by beads is (

0 1
1 0

)
.

By the definition of rule (B2), Claim 3 is easily proved. By Claim 3, the necklace processes
are the same as the Friedman urn processes. Hence, we have the following statement, which
corresponds to Lemma 2.

Proposition 3. For rule (B2), we have, as n → ∞,

Wn

n
→ 1

2
almost surely,

Wn − n/2√
n

→ N

(
0,

1

12

)
in distribution.
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Now we discuss the number of runs. By definition,

n−1∑
j=1

j{RW
j (n) + RB

j (n)} = n. (11)

By the symmetry of rule (B2), RW
j (n) and RB

j (n) have the same distribution. For simplicity, we

write E(Rj (n)) instead of E(RW
j (n)) or E(RB

j (n)). Considering the expectation of both sides
of (11), we have

n−1∑
j=1

j E(Rj (n)) = n

2
. (12)

We have the following result, which corresponds to Proposition 1.

Proposition 4. For n ≥ 2, we have

E(Rj (n)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j2 + 3j + 1

(j + 3)! n if 1 ≤ j ≤ n − 3,

n − 2

(n − 1)! if j = n − 2,

1

(n − 1)! if j = n − 1.

(13)

By Proposition 4, the asymptotic behavior of the lengths of the longest runs is also (9) by
the same argument as in [9, Section 7].

Proof of Proposition 4. We first prove that, for n ≥ 2 and 1 ≤ j ≤ n,

E(Rj (n+1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 3

n

)
E(R1(n)) + 1

n

n−1∑
i=1

E(Ri(n)) + 1

2
if j = 1,

E(Rj−1(n))

n
+

(
1 − j

n

)
E(Rj (n)) + 2

n

n−1∑
i=j+1

E(Ri(n)) if 2 ≤ j ≤ n − 2,

E(Rn−2(n)) + E(Rn−1(n))

n
if j = n − 1,

E(Rn−1(n))

n
if j = n.

(14)

By rule (B2), we have, for 1 ≤ j ≤ n,

P(Rj (n) − 1 ≤ Rj (n + 1) ≤ Rj (n) + 2) = 1.

Consider j = 1. Then by the same technique as in [9, Section 10] we have, for n ≥ 4,

P(R1(n + 1) = R1(n) − 1 | Fn) = R1(n)

n
,

P(R1(n + 1) = R1(n) + 1 | Fn) = 2
∑n−1

i=3 Ri(n) + ∑n−1
i=2 (i − 1)Ri(n)

n
,

P(R1(n + 1) = R1(n) + 2 | Fn) = R2(n)

n
,
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where Fn is the minimum σ -field generated by {Rj (n)}n−1
j=1. Hence,

E(R1(n + 1)) = E(R1(n)) + 1

n

(
−E(R1(n)) + 2

n−1∑
i=2

E(Ri(n)) +
n−1∑
i=2

(i − 1) E(Ri(n))

)

=
(

1 − 3

n

)
E(R1(n)) + 1

n

n−1∑
i=1

(i + 1) E(Ri(n))

=
(

1 − 3

n

)
E(R1(n)) + 1

n

n−1∑
i=1

E(Ri(n)) + 1

2
.

The last equality holds because of (12). Similarly, we have, for 2 ≤ j ≤ n − 3,

P(Rj (n + 1) = Rj (n) − 1 | Fn) = jRj (n)

n
,

P(Rj (n + 1) = Rj (n) + 1 | Fn) = 1

n

(
Rj−1(n) + 2

( n−1∑
i=j+1

Ri(n) − R2j (n)

))
,

P(Rj (n + 1) = Rj (n) + 2 | Fn) = R2j (n)

n
.

Hence,

E(Rj (n + 1)) = E(Rj (n)) + 1

n

(
E(Rj−1(n)) − j E(Rj (n)) + 2

n−1∑
i=j+1

E(Ri(n))

)
.

The other two cases, j = n − 1 and j = n, can be treated similarly. Therefore, (14) holds. By
(14) and E(R1(2)) = 1, we have (13) with some calculation. Note that we obtain, for n ≥ 4,

n−1∑
i=1

E(Ri(n)) = n

3
,

while solving the difference equation (14).

4.4. Rule (B3)

The investigation under rule (B3) is more difficult than the previous cases. Hence, we only
give some simple estimates. Observing rule (B3), we may think that the number of black beads
is intuitively much larger than the number of white beads for sufficiently large n. Actually, this
is true, and we have the following proposition.

Proposition 5. For rule (B3), we have, as n → ∞,

Wn

n
→0 in probability,

which is equivalent to Bn/n → 1 in probability as n → ∞.

To prove this statement, we introduce some additional terminology and lemmas.
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For n ≥ 2, let an, bn, cn, and dn be the number of • − •, ◦ − •, • − ◦, and ◦ − ◦ edges in a
necklace with n beads, respectively. We abuse the notation slightly by using the same symbol
bn as used in Section 3; however, this should cause no confusion. Define αn, βn, γn, and δn as

E(an) = αn, E(bn) = βn, E(cn) = γn, E(dn) = δn.

Lemma 3. For rule (B3), we have βn = γn and

E(Wn) = βn + δn, E(Bn) = αn + βn, for n ≥ 2. (15)

Moreover,⎛
⎝α2

β2
δ2

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠ ,

⎛
⎝αn+1

βn+1
δn+1

⎞
⎠ =

⎛
⎝1 + 1/n 1/n 0

0 1 1/n

0 1/n 1 − 1/n

⎞
⎠

⎛
⎝αn

βn

δn

⎞
⎠ for n ≥ 2. (16)

Proof. By the definition of rule (B3), we have

(a2, b2, c2, d2) = (0, 1, 1, 0),

an+1 − an, bn+1 − bn, cn+1 − cn, |dn+1 − dn| ∈ {0, 1} for n ≥ 2,
(17)

and, for n ≥ 2,

P(an+1 = an + 1 | Fn) = an + bn

n
,

P(bn+1 = bn + 1 | Fn) = dn

n
,

P(cn+1 = cn + 1 | Fn) = dn

n
,

P(dn+1 = dn + 1 | Fn) = bn

n
,

P(dn+1 = dn − 1 | Fn) = dn

n
,

where Fn is the minimum σ -field generated by an, bn, cn, and dn. By considering expectations
we obtain

P(an+1 = an + 1) = αn + βn

n
, P(bn+1 = bn + 1) = δn

n
,

P(cn+1 = cn + 1) = δn

n
, P(dn+1 = dn + 1) = βn

n
, P(dn+1 = dn − 1) = δn

n
.

(18)

By (17), the random variable bn has the same distribution as the random variable cn. Therefore,
we obtain βn = γn. Now, enumerating the white beads and the black beads, we have

Wn = bn + cn + 2dn

2
and Bn = 2an + bn + cn

2
.

Hence, (15) holds.
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By (18), we have, for n ≥ 2,

αn+1 = (αn + 1)
αn + βn

n
+ αn

(
1 − αn + βn

n

)
=

(
1 + 1

n

)
αn + 1

n
βn,

βn+1 = (βn + 1)
δn

n
+ βn

(
1 − δn

n

)
= βn + δn

n
,

δn+1 = (δn + 1)
βn

n
+ (δn − 1)

δn

n
+ δn

(
1 − βn + δn

n

)
= βn

n
+

(
1 − 1

n

)
δn.

Hence, (16) holds.

Lemma 4. For n ≥ 2, we have βn > δn.

Proof. We proceed by induction. If n = 2, we have β2 = 1 > 0 = δ2. Assume that βk > δk .
Then we have

δk+1 = βk

k
+

(
1 − 1

k

)
δk <

βk

k
+

(
1 − 1

k

)
βk = βk ≤ βk+1.

Note that the first equality holds because of (16).

Lemma 5. We have

lim
n→∞

βn

n
= 0. (19)

Proof. Using (16), we have, for n ≥ 2,

n(n + 1)βn+2 − 2n2βn+1 + (n − 1)βn = 0.

Namely, (
1 + 1

n

)
βn+2

n
− 2

βn+1

n
+ n − 1

n2

βn

n
= 0.

Since 0 < βn ≤ n, there exists lim supn→∞ βn/n =: A, say. Then 0 ≤ A ≤ 1 and A−2A = 0.
Therefore, A = 0, which implies (19).

Under these preparations, we prove Proposition 5.

Proof of Proposition 5. For ε > 0, we have

0 ≤ P

(
Wn

n
> ε

)
≤ E(Wn)

εn
= βn + δn

εn
≤ 2βn

εn
→ 0 as n → ∞.

The equality holds by (15). The last inequality holds by Lemma 4. The convergence holds by
Lemma 5.

5. Concluding remarks

In this note we studied necklace processes via Pólya urns. For simplicity, we just gave naive
applications among the deeply investigated results of Pólya urns. When detailed properties of
the necklace process are desired, we may proceed using some rich results of Pólya urns. For
example, applying [7, Propositions 2.1 and 2.2], which are precise results of Lemma 2, we
will have functional central limit theorems for necklace processes. On the other hand, with
reasonable changes to rule (R), we may also obtain similar results by finding a corresponding
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Pólya urn model. For example, consider the rule which states that if both adjacent beads of the
chosen edge are black for (N2) then ◦ − • is inserted between the edge and • − • is inserted
otherwise. Then the ball replacement matrix of the Pólya urn induced by edges is(

0 2
2 0

)
,

by the same approach used in the proof of Claim 1, and we can also apply Lemma 2. Moreover,
even if the number of inserted beads is an integer-valued random variable, or the number of
colors is greater than 2, we may obtain some limit theorems which correspond to [8, Sections 6.4
and 6.5], respectively. Similarly, we can also consider some complicated models which
correspond to some Pólya urn models. In conclusion, necklace processes can be considered to
be a graph expression of Pólya urns with rings.
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