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DIFFERENTIAL EQUATIONS DEFINED BY THE SUM
OF TWO QUASI-HOMOGENEOUS VECTOR FIELDS

B. COLL, A. GASULL AND R. PROHENS

ABSTRACT. In this paper we prove, that under certain hypotheses, the planar differ-
ential equation: ẋ � X1(x, y) + X2(x, y), ẏ � Y1(x, y) + Y2(x, y), where (Xi, Yi), i � 1, 2,
are quasi-homogeneous vector fields, has at most two limit cycles. The main tools used
in the proof are the generalized polar coordinates, introduced by Lyapunov to study the
stability of degenerate critical points, and the analysis of the derivatives of the Poincaré
return map. Our results generalize those obtained for polynomial systems with homo-
geneous non-linearities.

1. Introduction and statement of main results. Given p, q, s
��� , we will say that

a function f : � 2 � � is (p, q)-quasi-homogeneous of degree s if f (� px, � qy) ��� sf (x, y)
for � � � , (see [1, p. 32]). A vector field X � (P, Q): � 2 � � 2 is called (p, q)-quasi-
homogeneous of degree r if P and Q are (p, q)-quasi-homogeneous functions of degrees
p + r 	 1 and q + r 	 1 respectively, see [2, Chapter 7].

Observe that the above definition is the natural one for the following reasons:
(i) When p � q � 1, it coincides with the usual definition of homogeneous vector

field of degree r.
(ii) The differential equation dy

dx � Q
P , associated with X, is invariant by the change

of variables x̄ �
� px, ȳ ��� qy.
(iii) Homogeneous vector fields can be integrated using polar coordinates whereas

(p, q)-quasi-homogeneous vector fields can be integrated using the (p, q)-polar coordi-
nates. These generalized polar coordinates were introduced by Lyapunov in his study of
the stability of degenerate critical points, see [14]. In Appendix 1, we consider a small
modification of these coordinates and their main properties.

The (p, q)-polar coordinates have also been applied recently to study properties of
planar differential equations, see [4, 8].

In this paper we study differential equations of type:

(1)
� dx

dt
,

dy
dt 
 ��� P(x, y), Q(x, y)��� X(x, y) � Xn(x, y) + Xm(x, y),

where m � n, and Xu is a (p, q)-quasi-homogeneous vector field of degree u 	 p 	 q+2pq,
for u

���
n, m � .

Note that when p � q � 1, X � Xn + Xm is the sum of two homogeneous vector fields
with n and m degrees of homogeneity respectively and includes quadratic differential
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QUASI-HOMOGENEOUS VECTOR FIELDS 213

equations (p � q � n � 1, m � 2) and polynomial systems with homogeneous non-
linearities (p � q � n � 1), see [6, 7, 9, 10, 12].

In the (p, q)-polar coordinates, (x, y) ����� p Cs( � ), � q Sn(� )� , defined in Appendix 1,
and with a new time variable s, given by dt

ds ��� p+q� 2pq , the differential equation (1)
becomes

˙� � d�
ds
��� p+q+1� 4pq[x2q� 1P(x, y) + y2p� 1Q(x, y)],

˙�!� d �
ds
��� � 2pq[pxQ(x, y) " qyP(x, y)].

Using (1) we obtain

(2) ˙� � ān(� )� n + ām(� )� m,

˙��� bn(� )� n� 1 + bm(� )� m� 1,

where #
āu( � )
bu( � ) $ � # Cs2q� 1(� ) Sn2p� 1( � )" q Sn(� ) p Cs(� ) $ # Pu � Cs( � ), Sn( � )�

Qu � Cs( � ), Sn(� )� $ ,

u %'& n, m ( and Sn(� ) and Cs(� ) are also defined in Appendix 1.
Finally taking the new coordinates r and � and a new time variable v, given by r �� m� n, ����� , dv

ds �
� n� 1, the differential equation (2) writes as

(3) ṙ � dr
dv
� an( � )r + am(� )r2,

˙�)� d �
dv
� bn( � ) + bm(� )r,

where au( � ) � āu( � ) * (m " n) for u %'& n, m ( .
For the values (r, � ) for which bn( � ) + bm( � )r +� 0, equation (3) can be transformed

into a new equation as follows

(4)
dr
d � � S(r, � ) � an( � )r + am(� )r2

bn(� ) + bm(� )r
.

Most properties that we will prove for system (1) will be studied in coordinates r, �
in which this system can be written as (3) or (4). We will define the functions:

(5) F(� ) � an( � )bm( � ) " am(� )bn(� ), and A( � ) � bm(� )F( � ).

Note that the function bm( � ) controls the infinite critical points of (1) in the (p, q)
Poincaré compactification (see Appendix 2). The functions F(� ) and bm(� ) control the
finite critical points of (1), (see Section 2). On the other hand, bn(� ) gives information
about the origin: if bn(� ) +� 0, (0, 0) is a critical point of center or focus type, while if
bn(� ) vanishes, (0, 0) can be the , or - -limit set for some trajectory of system (3). As
the following results show, hypothesizing on A, F, or bn we can establish the number of
limit cycles in (1).

The main results are listed in the following theorems. A more detailed account of
these results and related ones, such as cases bm( � ) . 0, F( � ) . 0, is given at the end of
Section 3.
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214 B. COLL, A. GASULL AND R. PROHENS

THEOREM A. Given system (1), assume that the function F( / ), defined in (5), does
not change sign. Thus, this system has, at most, one limit cycle and, when it exists, it is
hyperbolic, and surrounds the origin.

Furthermore, there are examples of (1), with the above hypotheses, and with one limit
cycle.

THEOREM B. Given system (1), assume that the function A(/ ), defined in (5), does
not change sign. Thus, this system has, at most, two limit cycles and, when they exist, they
surround the origin. Furthermore, if bn(/ ) does not vanish, the sum of the multiplicities
of the limit cycles is, at most, two.

Moreover, there are examples of (1), with the above hypothesis, with two, one or no
limit cycles.

THEOREM C. Given system (1), assume that the function A(/ )bn( / ) does not change
sign. Thus, for this system, if there are limit cycles, they surround the origin and the sum
of their multiplicities is, at most, three.

Note that Theorem C gives new information only if A(/ ) changes sign.
Theorems A, B and C generalize several results obtained for differential equations

with homogeneous non-linearities to systems of type (1) (see again [7, 9, 10, 12]).
We would like to point out that most of the proofs that we present differ from the proofs

that appear in the above mentioned papers. In the main, these papers use the transforma-
tion of equation (3) into an Abel differential equation (see [5, 13]) whereas our different
proofs are based directly on the expression (3), although the ideas used are similar.

The organization of the paper is as follows: Section 2 contains some results on the
location of the critical points and limit cycles of system (1). In Section 3, we give the
proofs of Theorems A, B and C with more detailed information about the number of limit
cycles. There we also consider some examples. Finally, there are three appendices. The
first two of them have already been mentioned. The third one discusses how to verify the
existence of n and m in such a way that a differential equation can be written in form (1).

2. On the location of the finite critical points and the limit cycles. In this Section
we study the situation of the finite critical points and periodic orbits of system (1).

Here we will use the generalized tangent function Tn( / ) 0 Snp(/ )Csq(/ ) and its in-
verse ArcTn(x), introduced in Appendix 1. Let T 0 T(p, q) be the period of the functions
Sn( / ) and Cs(/ ).

Let C 1 0 be the half-curve of points of 2 2 3)4 (0, 0) 5 that has the generalized polar
angle of its points equal to / 0 in the (r, / ) coordinates considered in Section 1. Note that

C1 0 6 C1 0+ T
2
087 (x, y) 9:2 2 : ArcTn ; yp

xq < 0=/ 0 >
087 (x, y) 9:2 2 : ArcTn ; yp

xq < 0=/ 0 +
T
2 > .

We have the following result
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LEMMA 1. (a) If bn(? 1) @ bm(? 1) A 0 and bn(? 1) + bm(? 1) BA 0 or if F( ? 1) BA 0
then system (3) has no critical points on C C 1 .

(b) If bn( ? 1) A bm( ? 1) A 0 then CC 1 is an invariant curve for (3).
(c) If F( ? 1) A 0 and bn(? 1) @ bm(? 1) D 0, then system (3) has exactly one finite

critical point on C C 1 .
(d) If F(? 1) A 0 and bn(? 1) @ bm(? 1) E 0, then system (3) has no finite critical points

on C C 1 .

PROOF. (a) In the first case, bu( ? 1) A 0 for some u FHG n, m I , and then bn( ? 1) +
bm( ? 1)r BA 0 for all r BA 0. To prove that if F( ? 1) BA 0, (3) has no critical points on C C 1 ,
note that if (r1, ? 1) is a critical point different from the origin then an(? 1) + am(? 1)r1 A
bn(? 1) + bm( ? 1)r1 A 0, and F(? 1) A 0.

(b) It is obvious from expression (3).
(c) If we take r1 AKJ bn(C 1)

bm( C 1) , then (r1, ? 1) is a critical point of system (3).
(d) This case follows from (c) because if (r1, ? 1) is a critical point, then r1 L 0.

REMARK 2. (a) It is not difficult to prove that, if p and q are both odd, fu(? +T M 2) A
( N 1)u+1fu( ? ) for fu equals either au or bu and u F�G n, m I . Therefore, in this case it is
possible to relate the number of critical points on C C 1 to the number of critical points on
C C 1+ T

2
taking into account the parity of m N n.

(b) Where p A q, C C is the half ray through the origin with slope tan ? .

Let K be the subset of points of O 2 on which the angular component of the vector
field (3), ˙? , vanishes. In the following lemma we study the geometry of K, when it has
no curves like (e) of Figure 1. We exclude this case because, as we will see in Propo-
sition 4(i), the presence of such curves forces the non existence of periodic orbits. This
lemma improves Lemma 2.2 of [7].

LEMMA 3. Let X be the vector field associated with system (3). Then
(a) K is the graph of the function r APJ bn( C )

bm( C ) .
(b) At point a A (x0, y0) F K, X(a) is tangent to the half-curve C C where ?QA

ArcTn( yp
0

xq
0
).

(c) If K has no curves of type (e) given in Figure 1, then K is either the finite union
of curves given by sectors of type (a), (b), (c), (d) and (f) of Figure 1, or K is one
of the curves which delimit the sets shown in Figure 2.

R!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!RR!R!R!R!R!R!R

S!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!SS!S!S!S!S!S!S

T!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!TT!T!T!T!T!T!T

U!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!UU!U!U!U!U!U!U

VWX!XY Z[ \]^_ `!`ab!b!b!b!b!bb!b!b!b!b!bb!b!b!b!b!bb!b!b!b!b!bb!b!b!b!b!bb!b!b!b!b!bb!b!b!b!b!b

c!c!c!c!c!cc!c!c!c!c!cc!c!c!c!c!cc!c!c!c!c!cc!c!c!c!c!cc!c!c!c!c!cc!c!c!c!c!c
d!d!d!dd!d!d!dd!d!d!dd!d!d!dd!d!d!dd!d!d!d
e!e!e!ee!e!e!ee!e!e!ee!e!e!ee!e!e!ee!e!e!e

(a) (b) (c) (d) (e) (f)
Figure 1
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FIGURE 1. The subset K can be a finite union of the curves given by these sectors.
The shadowed regions in cases (b) and (c) are either positively or negatively invariant
by the flow of (3). In cases (a) and (d) the same happens when one of the hypotheses
assumed in Proposition 4(iii) is satisfied.

f!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!ff!f!f!f!f!f!f!f

g!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!gg!g!g!g!g!g!g
h!h!h!h!h!h!hh!h!h!h!h!h!hh!h!h!h!h!h!hh!h!h!h!h!h!hh!h!h!h!h!h!h
i!i!i!i!i!i!ii!i!i!i!i!i!ii!i!i!i!i!i!ii!i!i!i!i!i!ii!i!i!i!i!i!i

j!j!j!j!j!j!jj!j!j!j!j!j!jj!j!j!j!j!j!jj!j!j!j!j!j!jj!j!j!j!j!j!jj!j!j!j!j!j!j
k!k!k!k!k!k!kk!k!k!k!k!k!kk!k!k!k!k!k!kk!k!k!k!k!k!kk!k!k!k!k!k!kk!k!k!k!k!k!k

(h) (i) (j)
Figure 2

FIGURE 2. The subset K can be one of the curves which delimit the shadowed re-
gions. These shadowed regions are either positively or negatively invariant by the flow
of (3), when one of the hypotheses assumed in Proposition 4(iii) is satisfied.

PROOF. Parts (a) and (b) follow from direct calculations.
(c) When there are l 1 and l 2, not equal, and with bn(l )bm(l ) m 0 for all l in

(l 1, l 2) we have (a) if bn( l 1) n bn( l 2) n 0; (b) if bn(l 1) n bm( l 2) n 0; (c) if
bn(l 2) n bm(l 1) n 0; (d) if bm( l 1) n bm(l 2) n 0. When there is only one l 1 such that
bn(l 1) n 0, bm( l 1) on 0 and bn(l )bm(l ) p 0, for all lqonPl 1, then we have case (f).
When for all l in some interval ( l 1, l 2) we have bn( l )bm( l ) p 0, then K has no points
in this region and we are in case (f). When there exists l 1 such that bn( l 1) n bm( l 1) n 0,
then l!n=l 1 is invariant by the flow of system (3), and we get case (e).

When there is only one l 1 such that bn(l 1) on 0 and bm( l 1) n 0 with bn(l )bm(l ) m 0
for all lron�l 1, we are in case (h). When there is only one l 1 such that bn(l 1) n 0 and
bm( l 1) on 0 with bn(l )bm(l ) m 0 for all lron�l 1, then the form of K is that given in (i)
of Figure 2. When for all l we have bn(l )bm(l ) m 0, then we obtain case (j).

The following proposition gives information about the periodic orbits of system (3)
that surround the origin.

PROPOSITION 4. (i) Assume that K has associated some sector of type (b), (c) or
(e) of Figure 1, then equation (3) has no periodic orbits surrounding the origin.

(ii) Assume that s is a periodic orbit of (3) surrounding the origin, then sut K n:v .
(iii) Assume that one of the functions F(l ) or A( l ) or A(l )bn( l ), associated with

the differential equation (3), does not change sign. If s is a periodic orbit of (3), then s
surrounds the origin. Furthermore, assume that K has associated no sectors of type (a)
of Figure 1 or that the curve K is not like the curves given in (i) or (j) of Figure 2, then the
origin is the only critical point surrounded by s ; otherwise s can surround other critical
points.

PROOF. (i) Let s be a periodic orbit of system (3), then s cannot cross those sectors,
given by K, because of the sign of bn( l ) + bm( l )r in (3) in cases (b) and (c) (note that
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the shadowed regions in those sectors are either positively or negatively invariant by the
flow of system (3)), or because w�x:w 1 is an invariant curve of system (3) in case (e).

(ii) Assume that y{z K |x=} . Then y crosses K transversally because, otherwise, this
contact point will be a critical point of system (3). Hence, y must cross sectors (a) or
(d) or subsets (h) or (i) or (j) in two points, R and S, because y surrounds the origin. In
essence, we will have the situation given in Figure 3, where we mark the direction of
rotation of the flow of the vector field (3), by means of small arrows. We also take into
account that K separates the regions where the directions of rotation are opposed. So by
the uniqueness of the solutions we have a contradiction and, therefore, y cannot surround
the origin.

(iii) From the Index Theory, y has to surround a critical point. This point belongs
to the set K. Note that on K, ṙ(r, w ) x F( ~ )r( ~ )

bm( ~ ) x�� bn( ~ )A(~ )
bm

3( ~ ) x A( ~ )r( ~ )
bm

2(~ ) , so ṙ does not
change sign on the connected components of K. Hence y must surround the origin. If,
in addition, K has associated no sectors of type (a) or (i) or (j) of Figures 1 and 2, the
origin will be the unique critical point that y surrounds because the shadowed regions of
Figures 1 and 2 are invariant under the flow of the system (3). In the other cases y can
surround critical points different from the origin. The examples: (a) ṙ x r(10 � r) cos2 w ,
˙w)x 5 � (1 + sin2 w )r; (b) ṙ x r(10 � r) sin2 w , ˙w!x 5 cos2 w�� r, illustrate this situation,
see Figure 4.

�
S

R

K

Figure 3

FIGURE 3. Standard situation that occurs when y�z K |x�} , and y surrounds the
origin.

(4a) (4b)

K
K

Figure 4

FIGURE 4. Limit cycles for system (3) surrounding several critical points.

COROLLARY 5. Periodic orbits of differential equation (3) surrounding the origin
can be studied as solutions of (4) satisfying r( w 1) x r(w 1 + T) for any w 1.

PROOF. Follows from (ii) of Proposition 4.
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REMARK 6. (a) Note that it is possible that equation (3) has periodic orbits � that
do not surround the origin, and with ��� K ��P� . This can be seen simply by taking a
quadratic differential equation with two limit cycles � 1 and � 2, one of these surrounding
the origin and the other one surrounding a different critical point, see for instance [18].
Of course such a differential equation does not satisfy the hypotheses given in (iii) of
Proposition 4.

(b) Observe that the result obtained in Proposition 4(ii) is true not only for periodic
orbits but also for orbits turning around the origin.

Given a subset C� , we define D�:� C� as the subset of points of C� for which the
Poincaré return map, h, is defined, i.e., the set of points, a � C � for which h(a) : ��� (T, a)
is defined and belongs to C� , where � ( � , a) is the solution of (4) such that � (0, a) � a.
Note that D� is always an open subset of C�

PROPOSITION 7. Assume that either the function F(� ) or A( � ) or A( � )bn(� ), as-
sociated with the equation (3) does not change sign and K is not a simple closed curve
(case j of Figure 2). Then there is a � , such that

(i) All the periodic orbits of (3) belong to the closest connected component to the
origin of D� .

(ii) If bn( � ) does not vanish, 0 � D� .

PROOF. (i) If equation (3) has no periodic orbits, there is nothing to be proved. So,
from Proposition 4(i), cases (b), (c) and (e) will not be considered. We can assume that
there is a � such that C� is a half curve without contact. Assume, now, that on C� , D� has,
at least, two connected components D1 and D2 and equation (3) has a periodic orbit � on
D2 (D1 is closer to the origin than D2). From Proposition 4(ii)–(iii) and Remark 6(b) we
have ��� K �
� , and an orbit ˜� through a point in D1 must, always, surround sectors like
(a) of Figure 1, if K has associated some of them. Hence, if we take a point q on C ��� D�
between D1 and D2, its � -limit or � -limit set must be non-empty. This is impossible
because between ˜� and � there are no critical points. Thus, all periodic orbits of (3) cut
D1, and (i) follows (see Figure 5).

(ii) The proof follows from (i) taking into account that when bn( � ) does not vanish
the origin behaves like a periodic orbit.

�!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!�
�!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!��!�!�!�!�!�!�!�!�!� C�

D2

q
D1

˜� �

Figure 5

FIGURE 5. C� with two different connected components.
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REMARK 8. When K is a simple closed curve and the other hypotheses of Propo-
sition 7 hold, system (3) can have periodic orbits in different connected components of
C� . For instance, one periodic orbit turning counterclockwise and another one turning
clockwise. This is the reason why this case will be studied separately in the following
section. Observe that this situation can only occur when bn(� ) and bm(� ) do not vanish.

3. Proof of Theorems A, B and C. First, we will give some preliminary results.

PROPOSITION 9 (See [15]). Let h(x) be the return map associated with the differential
equation dr � d �)� S(r, � ), then

(i) h � (x) � exp � T
0

∂S
∂r � r( � , x), ��  d � ,

(ii) h � � (x) � h � (x) ¡ � T
0

∂2S
∂r2 � r(� , x), �¢  exp £ �¥¤0 ∂S

∂r (r(s, x), s) ds) ¦ d �¨§ ,
(iii) h � � � (x) � h � (x) ¡ 32 ( h © © (x)

h © (x) )2 + � T
0

∂3S
∂r3 � r(� , x), �¢  exp £ 2 � ¤0 ∂S

∂r � r(s, x), s  ds ¦ d �¨§ ,
where r(� , x) denotes the solution of the differential equation such that r(0, x) � x.

Direct calculations give the following lemma,

LEMMA 10. For equation (4) we have:
(i) S(r, � ) � am( ¤ )

bm( ¤ ) r + F( ¤ )
b2

m( ¤ ) ª F( ¤ )bn( ¤ )
b2

m( ¤ )(bn(¤ )+bm( ¤ )r) ,

(ii) ∂S
∂r (r, � ) � am(¤ )

bm(¤ ) + F( ¤ )bn( ¤ )
bm(¤ )(bn ( ¤ )+bm(¤ )r)2 ,

(iii) ∂2S
∂r2 (r, � ) � « 2F(¤ )bn( ¤ )

(bn( ¤ )+bm ( ¤ )r)3 ,

(iv) ∂3S
∂r3 (r, � ) � 6A( ¤ )bn( ¤ )

(bn( ¤ )+bm ( ¤ )r)4 .

When the return map is defined we obtain the next result,

LEMMA 11. The first derivative of the return map associated to a periodic orbit,
r( � ), of equation (4) is

(i) exp ¬­� T
0

an( ¤ )
bn( ¤ ) d �¯® , if r ° 0,

(ii) exp ¬ ª � T
0

F(¤ )r(¤ )
(bn( ¤ )+bm(¤ )r(¤ ))2 d �¯® , if r ±° 0.

PROOF. (i) follows from the expression obtained for the function S(r, � ) � dr
d ¤ in

Lemma 10(ii), and from Proposition 9(i).
To prove (ii), note that from equation (4),

0 �³² T

0

r � (� )
r( � )

d �!�=² T

0

an(� ) + am(� )r
bn(� ) + bm(� )r

d �
� ² T

0

� an( � ) + am( � )r  � bn(� ) + bm(� )r � bn(� ) + bm(� )r  2 d � ,

and, from this last expression, we have that

² T

0

an(� )bn(� ) + am(� )bm(� )r2

� bn(� ) + bm(� )r  2 d ��� ² T

0
ª r � an( � )bm( � ) + bn(� )am(� ) � bn(� ) + bm(� )r  2 d � .

Hence, using this equality, (i) of Proposition 9 and (ii) of Lemma 10, (ii) holds.

The calculations made in the following lemma are inspired by [16] and are straight-
forward. See also Remark 24.
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LEMMA 12. Let r1( ´ ) µ r2 (́ ) µ r3(́ ) be three positive solutions of (4). If

(6) H ( ´ ) : ¶ S(r1, ´ ) · S(r2, ´ )
r1 (́ ) · r2 (́ )

· S(r1, ´ ) · S(r3, ´ )
r1( ´ ) · r3 (́ )

· S(r2, ´ )
r2( ´ )

+
S(r3, ´ )
r3(́ )

,

where S(ri, ´ ), for i ¶ 1, 2, 3 is defined in (4), then we have

(7) H ( ´ ) ¶ A( ´ )r1 (́ ) ¸ r2(´ ) · r3( ´ )¹¸ bn( ´ ) + bm( ´ )r1 ¹ ¸ bn (́ ) + bm(´ )r2 ¹ ¸ bn (́ ) + bm(́ )r3 ¹ .

The next lemma follows from direct computations and is based on the change of vari-
ables made in [5].

LEMMA 13. If bn( ´ ) does not vanish, the transformation T (r, ´ ) ¶ (º , ´ ), where

º�¶ r
bn( ´ ) + bm( ´ )r

,

is a diffeomorphism between » 2 ¼ K and its image. Furthermore, the differential equation
(4) is transformed into the following Abel differential equation:

(8)
dº
d ´ ¶�½ (́ )º 3 + ¾ (´ )º 2 + ¿ ( ´ )º ,

where

½ (́ ) ¶ bm(́ )
bn(´ )

[an (́ )bm (́ ) · am( ´ )bn( ´ )] ¶ F( ´ )bm( ´ )
bn( ´ )

¶ A( ´ )
bn (́ )

,

¾ (́ ) ¶ 1
bn( ´ )

[bn (́ )am (́ ) · 2an (́ )bm (́ )] +
b Àn( ´ )bm (́ ) · bn( ´ )b Àm( ´ )

bn( ´ )
,

¿ (́ ) ¶ an(´ ) · bÀn (́ )
bn( ´ )

,

REMARK 14. Observe that, from the above lemma, the periodic orbits of (4) that do
not cut K are transformed into T-periodic solutions of (8).

Following [7], equation (8) can be written in a different way as the next lemma shows.

LEMMA 15. Equation (8) is equivalent to

(9)
d ¸ÁºÃÂ 1 · bm(́ )¹

d ´ ¶ ¸ º Â 1 · bm( ´ )¹ÅÄ F(́ )
bn( ´ )

ºÆ· an( ´ )
bn( ´ )

+
b Àn( ´ )
bn( ´ ) Ç .

REMARK 16. Observe that from equation (9), when bn(́ ) and bm (́ ) do not vanish,º ( ´ ) ¶ 1
bm(È ) is a T-periodic solution of (8). Note that this solution is mapped onto infinity

in the (r, ´ ) coordinates.
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LEMMA 17. It is not restrictive, when the function A( É )bn(É ) does not change sign,
to consider A(É )bn(É ) Ê 0 for every É .

PROOF. By using the following change of variables, (r, É ) Ë (r, T Ì�É ), the lemma
follows.

PROPOSITION 18. Assume that the function A( É )bn( É ) does not change sign. Then
the third derivative of the Poincaré return map, h, of (4) is positive.

PROOF. Using Lemma 17, if A( É )bn( É ) does not change sign, one can assume that
A( É )bn(É ) Ê 0. Since, for Lemma 10(iv), ∂3S

∂r3 (r, É ) Í 6A( Î )bn( Î )
(bn(Î )+bm( Î )r)4 Ê 0, it follows from

Proposition 9 that h Ï Ï Ï (x) Ð 0 for all x for which h is defined.

In a similar way as in equation (4), we can define a Poincaré return map h̃ for equation
(8) between ÉÑÍ 0 and ÉÒÍ T. For this map h̃ we have the following result which has
already been proved in several other papers, see for instance [9].

PROPOSITION 19. Assume that the function bn(É ) does not vanish and A( É )bn(É )
does not change sign, then the third derivative of the Poincaré return map, h̃, of (8) is
positive.

PROOF. Since ∂3

∂Ó 3 ÔÖÕ ( É )× 3 + Ø (É )× 2 + Ù (É )×ÛÚÜÍ 6 Õ (É ) Í 6 A(Î )
bn(Î ) , does not change

sign, the proof follows in the same way as the proof of Proposition 18.

REMARK 20. Although the conclusions of Propositions 18 and 19 are similar, we
note that h and h̃ have different properties. For instance, while h(x) is only defined for
positive values of x, h̃(x) has to be studied in all the real line.

First we will prove Theorems A, B and C only when F( É ), A( É ) or bn(É ) are not
identically zero. The case in which one of the three functions identically vanishes is
easier and is studied at the end of this section.

PROOF OF THEOREM A. From Proposition 4(iii), any periodic orbit of (3) surrounds
the origin. As explained in Remark 8, we will divide the proof into two cases:

CASE a). K is not a simple closed curve.
From Proposition 7, there exists a Ý such that all periodic orbits are in the connected

component DÞ of CÞ . Take a periodic orbit Ù of (3). From Lemma 11, since F does not
change sign, it is a hyperbolic stable (resp. unstable) limit cycle if F(É ) is greater than
or equal to (resp. less than or equal to) zero. Hence Ù is unique.

CASE b). K is a simple closed curve.
Periodic orbits of (3) can cut different connected components of C Þ . Of course, the

proof of case a) shows that, in case b), our system has, at most, two limit cycles, one
turning clockwise and another one turning counterclockwise but, as we will see, they
can not coexist.
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From Proposition 4, periodic orbits of (3) surround the origin, furthermore, from Re-
mark 14 and since bn( ß ) does not vanish, we can study the periodic orbits of (3) as T-
periodic solutions of (9). Let r(ß ) be a periodic orbit of (3). It gives a T-periodic solution
of (9), à (ß ). From Lemma 15, we have that:

d
d ß ln áâàÃã 1( ß ) ä bm(ß )å�æèç F(ß )

bn( ß )
à (ß ) ä an( ß )

bn( ß )
+

b én( ß )
bn( ß ) ê ,

and since à ( ß ) is T-periodic,

(10) 0 æ³ë T

0

F( ß )
bn(ß )

à (ß ) d ß + k,

where k æHä ì T
0 an(ß ) í bn( ß ) d ß . Observe that if r1(ß ) and r2( ß ) are two periodic orbits

of (3), they induce two T-periodic solutions of (9), à 1(ß ) and à 2(ß ). We can assume thatà 1(ß ) î=à 2(ß ). But since F(ß ) í bn(ß ) does not change sign,

ë T

0

F(ß )
bn( ß )

à 1(ß ) d ßðïæ³ë T

0

F( ß )
bn(ß )

à 2( ß ) d ß ,

and this contradicts (10). Hence (3) has, at most, one periodic orbit. Using Lemma 11, it
is hyperbolic.

COROLLARY 21. Given the differential equation (1), assume that F( ß ) ïñ 0, does
not change sign and that bn(ß ) does not vanish. Set c æ�ì T

0
an(ò )
bn(ò ) d ß . Then

a) If K is not a simple closed curve, the unique limit cycle for system (1) only exists
when sign(F) ó c î 0.

b) If K is a simple closed curve, it divides ô 2 in two connected components, one
bounded Kb and one unbounded Ku. Thus, if the limit cycle exists in system (1), it is in
Kb (resp. Ku) if sign(F) ó c is plus (resp. minus).

PROOF. Follows easily from Lemma 11 and Theorem A.

PROOF OF THEOREM B. In our hypotheses and from Proposition 4, all periodic orbits
of system (1) surround the origin and do not cut K. Assume that system (1) has three limit
cycles r1( ß ) î r2( ß ) î r3(ß ). From Corollary 5, ri(ß ), i æ 1, 2, 3, can be considered
as positive solutions of equation (4). Since from Lemma 12, A(ß ) does not change sign,
we have that H ( ß ) does not change sign and is a continuous function. But, on the other
hand, we have that:

0 æ log õ á r1( ß ) ä r2( ß )å r3( ß )á r1( ß ) ä r3( ß )å r2( ß ) öø÷÷÷÷÷
T

0
æ ë T

0
H (ß ) d ß ,

and this contradicts the continuity of H ( ß ). Hence system (1) has, at most, two limit
cycles. Now we have to prove that, when bn( ß ) does not vanish, the sum of the multi-
plicities of the limit cycles is, at most, two. In this case, when K is not a simple closed
curve, from Proposition 7 and Corollary 5, all periodic orbits of (4), included the origin,
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belong to the same connected component of Dù . Furthermore, from Proposition 13, the
third derivative of the Poincaré return map of (4), h, is positive. Whence we conclude,
from Rolle’s Theorem, that h(x) ú x has, at most, two simple solutions besides the ori-
gin. Therefore the theorem follows. When K is a simple closed curve bm( û ) does not
vanish. Hence, F( û ) ú A(û ) ü bm(û ) neither changes sign. Therefore from Theorem A,
system (1) has, at most, one hyperbolic limit cycle and again the theorem follows.

REMARK 22. As we have seen in this last proof, the conclusions of Theorem B can
be improved when K is a simple closed curve. In fact, in such situation, system (1) has,
at most, one limit cycle, and when it exists it is hyperbolic.

In the case where A( û ) ýþ 0 does not change sign and bn(û ) ýú 0, for all û (this is the
case where the local phase portrait of the origin of system (1) is of focus or center type),
we obtain a more precise distribution of limit cycles, as we can see in the next theorem.
This theorem is based on [9, Theorem A].

THEOREM 23. Assume that in system (1), A(û ) ýþ 0 does not change sign, bn(û ) ýú 0,
for all û , and K is not a simple closed curve. Then Table I shows the distribution of limit
cycles when A(û )bn(û ) ÿ 0, according to the different values of c and d. (The case
A( û )bn(û ) � 0 has associated the table obtained reversing the inequalities for c and d,
in accordance with Lemma 17).

c � 0 c ú 0 c � 0
d � 0 d ú 0 d � 0 d � 0 d ú 0 d � 0

(I) 1 1 0 0 2 0 0
(II) 1 2 3 2 1 1 1

TABLE I. Maximum number of limit cycles of equation (1) when A( û )bn(û ) ÿ 0.
Here c ú�� T0 an(� )

bn(� ) d û , d ú�� T0 � 2F( � )
b2

n( � ) exp (� �0 an(s)
bn(s) ds) d û . (I) maximum number of limit

cycles, taking into account their multiplicity. (II) multiplicity of the solution r þ 0.

PROOF. Using Corollary 5, to study the limit cycles of (1), it is sufficient to consider
equation (4). From the hypotheses, we have that set K is not like the curve in (j) of
Figure 2. Therefore, from Proposition 7, there exists some � such that all periodic orbits
of (4) cut a connected subset of Dù , I and, furthermore, 0 � Ī.

If we define H(x) ú h(x) 	 x, where h(x) is the Poincaré return map associated with
(4) and with � , we have the following properties for H:

(i) H 
 
 
 (x) � 0, for all x � I (Proposition 9(iii) and Lemma 10(iv))
(ii) H 
 (0) ú ec 	 1, and H 
 
 (0) ú ecd (Proposition 9 and Lemma 11(i))

Note that x ú 0 corresponds to solution r þ 0, and the fixed points of H correspond
with the periodic orbits of (4). Therefore, using (i) and (ii) and arguing as in the proof of
[9,Theorem A], we obtain Table I.

PROOF OF THEOREM C. From Proposition 4(iii), if (1) has some limit cycle, it sur-
rounds the origin.
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CASE a). K is not a simple closed curve.
From Proposition 7 we have that all periodic orbits cut the same connected component

D� of C� . From Proposition 18, the third derivative of the return map, h, when it is
defined, is positive. Therefore, by Rolle’s Theorem, the sum of the multiplicities of the
limit cycles is, at most, three.

CASE b). K is a simple closed curve.
Since in this case bn(� ) does not vanish, the result is that A( � ) does not change sign

and we can apply Remark 22. So, in fact, there is, at most, one limit cycle.

REMARK 24. The proofs of Theorems A, B and C have been essentially based on
two different methods. On the one hand, we considered the function H (� ) given in (7)
and, on the other, we calculated the third derivative of the function S(r, � ) defined in (4).
Here, we are going to prove that there is a relationship between both of them.

Fixed � , set S(r) 
 S(r, � ). Remember that given ri ��� , i 
 1, . . . , n, we can define
inductively the divided differences of S, as:

S[ri, ri+1, . . . , ri+j+1] 
 S[ri+1, . . . , ri+j+1] � S[ri, . . . , ri+j]
ri+j+1 � ri

,

where S[ri] 
 S(ri), see [11, Chapter 6]. It turns out that S[ ] is a symmetric function of
its variables. As usual, we call it Si,...,i+j+1 for short. Then, with this notation, and using
S(0) 
 0,

H ( � ) 
 S1,2 � S1,3 � S2,0 + S3,0 
 (S2,1,3 � S2,0,3)(r2 � r3) 
 S0,1,2,3(r2 � r3)r1.

At the same time, it is well known that S0,1,2,3,...,n 
 S(n)(� )
n! , where � ��� r0, r1, . . . , rn � .

Therefore, we have that

H (� ) 
 1
3!

r1(� ) � r2(� ) � r3( � )� ∂3S(r, � )
∂r3 ���� r��� ( � ,r1(� ),r2(� ),r3(� )).

When bn( � ) � 0 or A( � ) � 0, it is possible to have more precise information about
the limit cycles. And we go on to deal with this below.

When bn(� ) � 0 and bm(� ) �� 0 (in the case bn(� ) � bm( � ) � 0, system (3) has
the solution ��
 constant, for all � ), or A(� ) � 0, we can integrate system (3). Hence,
in these cases, we can know exactly the trajectories of all closed solutions. Their initial
conditions are given in the following lemma.

LEMMA 25. In system (3) we assume bn(� ) � 0, d1 
 � T0 am(� )
bm(� ) d � , and d2 
� T0 an(� )

bm( � ) exp ( �!� �0 am(s)
bm(s) ds) d � . Thus, the following hold.

(i) If d1 
 d2 
 0, all trajectories of (3), in a neighbourhood of r � 0, are closed.
(ii) If " d1 " + " d2 "#�
 0, system (3) has at most two closed solutions. Furthermore, these

solutions are the ones with initial conditions

r(0) 
 0� (0) 
 0

$
, and r(0) 
 d2ed1

1% ed1� (0) 
 0

$
.
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PROOF. The proof follows by direct calculations.

PROPOSITION 26. In system (3), assuming A(& ) ' 0,
(i) If F( & ) ' 0 and bm( & ) (' 0, then system (3) has no limit cycles. Moreover, if

c )+* T0 an( , )
bn( , ) d &-) 0, then the origin is a center for system (3).

(ii) If F(& ) (' 0 and bm(& ) ' 0, then system (3) has, at most, one limit cycle. More-
over, if d ) * T0 . F( , )

b2
n(, ) exp (* ,0 an(s)

bn(s) ds) d & , and c is the value given in (i), the fol-
lowing holds:

(a) If d ) c ) 0, all trajectories of (3), in a neighbourhood of r ' 0, are
closed.

(b) If / c / + / d /0() 0, system (3) has, at most, two closed solutions with initial
conditions

r(0) ) 0& (0) ) 0 1 , and
r(0) ) (1. ec )

d& (0) ) 0 1 .

(iii) Assume F(& ) ' bm(& ) ' 0. If bn(& ) ' 0, then all straight lines through the
origin are invariant and if bn( & ) (' 0 and am( & ) ' 0, then the origin is a center.

PROOF. If F(& ) ' 0 and assuming bm( & ) (' 0, we have that system (3) is equivalent
to dr

d , ) am(, )
bm(, )r. With the condition F(& ) ' 0 and integrating this equation we obtain the

solutions

r( & ) ) r(0) 2 exp 354 ,
0

an(s)
bn(s)

ds6 .

Then (i) follows.
If bm(& ) ' 0, system (3) becomes

ṙ ) an( & )r + am(& )r2,

˙&7) bn(& ),

or, equivalently, dr
d , ) an( , )

bn( , ) r + am( , )
bn(, ) r2, and the solutions, r(& ), of this Riccati equation

are

r( & ) ) exp (* ,0 an(s)
bn(s) ds)8 * ,0 am(s)

bn(s) exp (* s0 an(9 )
bn(9 ) d: ) ds + r. 1(0)

.

From this expression, (ii) follows. The proof of (iii) is trivial.

The natural generalization of the example given in [10, Proposition 6.3]

ẋ ) apx + ; yp < q 8 (a= 2pq + ; x2q. 1yp < q)(px + y2p. 1 = p+q. 2pq),

ẏ ) aqy 8 (a= 2pq + ; x2q. 1yp < q)(qy 8 x2q. 1 = p+q. 2pq),

where =�) 2pq
>

px2q + qy2p, is a system of type (1). For some values of a, ; , p, and q,
this system has one or two limit cycles and it is in accordance with the hypotheses of
Theorem A and B. Therefore, it shows that the results of Theorem A and B cannot be
improved. We also present some different examples for which the above theorems apply.
We stress that they have not homogeneous nonlinearities. Consider

(ẋ, ẏ) )@? 8 y2p. 1 + Pm(x, y), x2q. 1 + Qm(x, y)A ,
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where Pm and Qm are (p, q)-quasihomogeneous polynomials of degrees m + 2pq B
(q + 1) and m + 2pq B (p + 1) respectively. For these systems F(x, y) CBED x2qF 1Pm(x, y) + y2pF 1Qm(x, y)G , and A(x, y) C F(x, y) D pxQm(x, y) B qyPm(x, y)G . For
instance, for system

(ẋ, ẏ) C ( B y + ax3 + bxy, x3 + cx4 + dx2y),

with (b + c)2 B 4ad H 0, we get F(x, y) C ax6 + (b + c)x4y + dx2y2 and taking y C�I x2,
we can prove that F does not change sign. On the other hand, consider

(ẋ, ẏ) C ( B y + ax5 + bx2y, x5 + cx7 + dx4y + 3bxy2),

where b C b(a, c, d) C B a(3aF d)3+c2(3aF d)2+dc2(3aF d)
3c3+c(3aF d)2 . For this system we have

F(x, y) C x D cx3 + (d B 3a)yG ( J y2 + K x3y + L x6), and A(x, y) C x6 D cx3 + (d B 3a)yG 2 M
( J y2 + K x3y+ L x6), where J , K and L are real values depending on a, c and d. If we assume
that ∆ C ∆(a, c, d) C (d+3bI )2 B 12b(3bI 2 +dI +b+c) H 0, where I+C c

3aF d , then it can
be proved that J y2 + K x3y + L x6 does not change sign. So, Theorem B can be applied to
the above system under condition ∆ H 0. We observe that this last condition is not empty
because, for instance, ∆(a, 3a B d, d) C d2 B 6ad B 3a2. In fact, when an( N ) O 0 and
bn(N ) O 1, Theorem B can be improved by using Propositions 4 and 19, and Remark 14,
because in this case P!C 0 is a periodic orbit of multiplicity two of system (8), and then
system (3) has at most one limit cycle. So the above example has at most one limit cycle.

Before ending we give, for some family of systems of type (1), a compact expression
of functions F and A in complex coordinates (z C x + iy). Consider system

ẋ CQI x B y + Pm(x, y),

ẏ C x + I y + Qm(x, y),

where Pm and Qm are real homogeneous polynomials of degree m on x and y. It also
writes as ż C (i + I )z + Hm(z, z̄), where Hm(z, z̄) is a complex homogeneous polynomial
of degree m on z and z̄. In this setting, the functions F and A, that appear in (5), are
F C (1 B m) Re D (1 + I i)Hm(z, z̄)z̄G and A C (1 B m) Re D (1 + I i)Hm(z, z̄)z̄G Im D Hm(z, z̄)z̄G ,
evaluated at z C ei R , z̄ C eF iR .

Appendix 1. Generalized Polar Coordinates. Following Lyapunov [14], we intro-
duce the (p, q)-trigonometric functions z(N ) C Sn(N ) and w( N ) C Cs(N ), as the solutions
of the Cauchy problem:

ż CSB w2pF 1,

(A1) ẇ C z2qF 1,

z(0) C 2q T UUV 1
p

, w(0) C 0,

where p and q, are positive integers. Observe that we do not explicitly put the dependence
of Sn(N ) and Cs(N ) with respect to p and q. Also note that for p C q C 1, Sn(N ) C sin(N )
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and Cs(W ) X cos( W ). Therefore, it is natural to say that the argument of the functions
Sn( W ) and Cs(W ) is an angle.

We define Tn(W ), Ctn(W ), Sec( W ), Csc(W ), by

Tn(W ) X Snp(W )
Csq(W )

, Ctn( W ) X Csq( W )
Snp( W )

,

Sec(W ) X 1
Csq(W )

, and Csc( W ) X 1
Snp(W )

.

From these definitions, direct calculations give the following lemma.

LEMMA A1. The functions defined above satisfy the following properties
(i) p Cs2q( W ) + q Sn2p(W ) X 1,

(ii) p + q Tn2(W ) X Sec2(W ),
(iii) p Ctn2(W ) + q X Csc2( W ),
(iv) d Sn(Y )

d Y X Cs2qZ 1( W ),

(v) d Cs(Y )
d Y X�[ Sn2pZ 1(W ),

(vi) d Tn( Y )
d Y X Snp \ 1(Y )

Csq+1( Y ) ,

(vii) d Csc( Y )
d Y X7[ p Cs2q \ 1(Y )

Snp+1(Y ) ,

(viii) d Sec(Y )
d Y X q Sn2p \ 1(Y )

Csq+1(Y ) ,

(ix) d Ctn(Y )
d Y X�[ Csq \ 1( Y )

Snp+1( Y ) .

LEMMA A2. Sn(W ) and Cs( W ) are T-periodic functions (whose period is T) and T
is given by

T X 2p
\ 1
2q q
\ 1
2p ] 1

0
(1 [ t)

(1 \ 2p)
2p t

(1 \ 2q)
2q dt X 2p

\ 1
2q q
\ 1
2p

Γ( 1
2p ) ^ Γ( 1

2q )

Γ( 1
2p + 1

2q )
.

PROOF. Since f (z, w) X qw2p + pz2q, is a first integral for system (A1), there exists
T _ 0 such that Sn( W ) and Cs(W ) are T-periodic functions.

From Lemma A1:

d Sn(W )
d W X 2q ` aaab c 1 [ qSn2p(W )

p d 2qZ 1

,

so
d Sn( Y )

d Y
2q

e f
1Z qSn2p( Y )

p g 2qZ 1
X 1, or

d
d W c ] Sn(Y )

0

2q
h

p2qZ 1

2q
h

(1 [ qx2p)2qZ 1
dxd X 1,

hence ] Sn(Y )
0

2q
h

p2qZ 1

2q
h

(1 [ qx2p)2qZ 1
dx X�W + k,
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where k i 0, because Sn(0) i 0, (from the initial conditions of the Cauchy problem
(A1)). Otherwise, j is the parameter of derivation in (A1), so the period T is given by:

T i 4 k Sn( T
4 )

0

2q
l

p2qm 1

2q
l

(1 n qx2p)2qm 1
dx i 4 k 2p

l
1
q

0

2q
l

p2qm 1

2q
l

(1 n qx2p)2qm 1
dx,

where we have used Lemma A1(i). Integrating this last expression we obtain the desired
result.

More properties of Sn(j ) and Cs( j ), are listed in the next lemma.

LEMMA A3. Functions Sn( j ) and Cs( j ), satisfy the following relations:
(i) Cs( noj ) i Cs(j ),

(ii) Sn( noj ) i�n Sn( j ),
(iii) Cs( T

2 n+j ) iSn Cs(j ),
(iv) Sn( T

2 n+j ) i Sn(j ),
(v) Cs( T

2 + j ) iSn Cs(j ),
(vi) Sn( T

2 + j ) iSn Sn( j ).

PROOF. The relations are obtained from the invariance of system (A1) under the
transformations: (z, w, t) p (z, n w, n t), (z, w, t) p ( n z, w, n t) and (z, w, t) p
( n z, n w, t).

Given a point (x, y) qi (0, 0) rts 2, we can associate the positive real number r i
2pq
l

px2q + qy2p, with it. Hence, j7r7svu [0, T] and r give the so-called (p, q)-polar coor-
dinates of s 2. In other words,

x i rp Cs( j ), y i rq Sn(j ).

Using these coordinates and a new time variable, given by dt
ds i rp+qm 2pq, the system

ẋ i P(x, y), ẏ i Q(x, y),

is transformed into

ṙ i rp+q+1m 4pq[x2qm 1 ẋ + y2pm 1 ẏ],

˙jSi rm 2pq[pẏx n qyẋ].

Appendix 2. (p, q)-Poincaré compactification. In order to study the behaviour of
the orbits in a neighbourhood of infinity we follow a generalization of the approach to
the usual Poincaré compactification, [17], explained in [3].

Let X i (P, Q) be a polynomial vector field of usual degree n w 1. Set M i�x (i, j) rx 0, 1, . . . , n y 2 z 0 { i + j { n y , and

P(x, y) i}|
(i,j)~ M aijx

iyj, Q(x, y) i�|
(i,j)~ M bijx

iyj.
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Fixed p, q �+� , p � q, we define the following subset of � , A ��� ip + jq + 1 � p � (i, j) �
M ����� ip + jq + 1 � q � (i, j) � M � . Observe that the smallest element of A is 1 � p and
the biggest one is np + 1 � q. Given that k ��� and r ��� p, q � , consider the subset of M,
Lr

k ��� (i, j) � M � ip + jq + 1 � r � k � . Define the vector field:

Xk ��� Pk(� ), Qk(� )�������
(i,j)� Lp

k

aijxiyj, �
(i,j)� Lq

k

bijxiyj � .
It is clear that Xk is a (p, q)-homogeneous function of degree k. Thus X �@� k � A Xk, is the
decomposition of X in (p, q)-quasi-homogeneous vector fields.

The expression of (ẋ, ẏ) � X(x, y) in the (p, q)-polar coordinates (see Appendix 1) is:

ṙ � rp+q� 2pq �
k � A fk(� )rk+1,

˙�7� rp+q� 2pq �
k � A gk( � )rk,

where

fk( � ) � Cs2q� 1( � )Pk � Cs(� ), Sn( � )� + Sn2p� 1Qk � Cs( � ), Sn(� )� , and

gk( � ) � p Cs( � )Qk � Cs( � ), Sn( � )� � q Sn( � )Pk � Cs( � ), Sn( � )� .
Putting ��� r� 1, and replacing the old time t by a new one t1, given by the relation
dt1
dt � r(n+1� 2q)p+1, we get

˙�!� �
k � A fk(� )� np+2� q� k ,

˙�-� �
k � A gk( � )� np+1� q� k .

This last expression gives the (p, q)-Poincaré compactification of the vector field X. Ob-
serve that ��� 0 (the equator) is invariant and the infinite critical points of X are the
points with ��� 0 and � satisfying gnp+1� q(� ) � 0.

Finally, we would like to point out that when p � q � 1, this procedure gives the
usual Poincaré compactification.

Appendix 3. Characterization of the polynomial differential equations given by
the sum of two quasi-homogeneous vector fields. In this appendix we characterize
vector fields defined by the sum of two quasi-homogeneous vector fields. This method
is based on the Newton diagram, see for instance [2, Chapter 7].

Given a polynomial vector field X � (P, Q), where

P(x, y) � n�
i+j� 0

aijx
iyj, Q(x, y) � n�

i+j� 0
bijx

iyj,

we define its support, SX, as the following subset of � 2:

SX ��� (i + 1, j) � bij �� 0 � �¡� (i, j + 1) � aij �� 0 � .
The next lemma follows from direct computations.
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LEMMA A4. Let X be a polynomial vector field, and let p and q be natural numbers
with (p, q) ¢ 1.

Then, X is given by the sum of two (p, q)-quasi-homogeneous vector fields of degrees
k1 + 1 £ (p + q) and k2 + 1 £ (p + q) respectively, if and only if there are two straight lines,
li ¢�¤ (x, y) ¥§¦ 2 ¨ px + qy ¢ ki © for i ¢ 1, 2, such that SX ª l1 « l2.

Furthermore, SXi ª li, for i ¢ 1, 2.

Observe that, from the above lemma, in order to know if X is given by the sum of
two (p, q)-quasi-homogeneous vector fields, for some p and q, it is sufficient to plot its
support SX in ¦ 2 and to check if it is contained in the union of two parallel straight lines.

EXAMPLE. The vector field

(A2) X ¢ (y8 + x3y6 + x6y4 + y11 + x3y9 + x6y7, x8y3 + x11y + x8y6 + x11y4 + x14y2 + x17),

can be decomposed as the sum of two (2, 3)-quasi-homogeneous vector fields of degrees
23 and 32. See Figure A1

y

0
x

Figure A1. Support of the vector field (A2).
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