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SYMMETRY AND SEPARATION OF VARIABLES FOR THE
HELMHOLTZ AND LAPLACE EQUATIONS

C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

Introduction.

This paper is one of a series relating the symmetry groups of the
principal linear partial differential equations of mathematical physics and
the coordinate systems in which variables separate for these equations.
In particular, we mention [1] and paper [2] which is a survey of and
introduction to the series. Here we apply group-theoretic methods to
study the separable coordinate systems for the Helmholtz equation.

(AS + wZ)w‘(x) =0 ) X = (xl, Ly xa) ’

0.1)
ASZall+622+aSS’ (D>0,

and the Laplace equation
0.2) 4¥(x) =0.

It is well-known that (0.1) separates in eleven coordinate systems,
see [3], Chapter 5, and references contained therein. Moreover, in [4]
it is shown that these systems correspond to commuting pairs of second
order symmetric operators in the enveloping algebra of &(3), the sym-
metry algebra of (0.1). However, we show here for the first time how
one can systematically make use of the representation theory of the
Euclidean symmetry group E(3) of the Helmholtz equation to derive
identities relating the different separable solutions. As we will point
out, some of these identities are new.

It is also known that there are 17 types of cyclidic coordinate systems
which permit R-separation of variables in the Laplace equation and these
appear to be the only such separable systems for (0.2), [6]. (An R-
separable coordinate system {u,v,w} for (0.2) is a coordinate system
which permits a family of solutions
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0.3) v, .x) = R(u,v,w)U, )V, ()W, (w)

where 2, 1 are the separation constants and R is a fixed factor such that
either R =1 (pure separation) or R = 1 and R cannot be written in the
form R = R,(w)R,(v)R,(w).) In Sections 1 and 6 we will list all of these
systems together with the R-separable solutions and show for the first
time that each system corresponds to a commuting pair of second-order
symmetric operators in the enveloping algebra of the conformal symmetry
algebra so(4,1) of (0.2). Furthermore, we will demonstrate how to use
the local representation theory of the conformal group to derive identi-
ties relating the various separable solutions of the Laplace equation.

In order to make this paper more useful for the reader interested
in applications of the representation-theoretic characterization of sepa-
ration of variables to other problems we have listed the separation
equations and separated solutions in some detail.

Finally, we point out that this work is very much in the spirit of
the books of Harry Bateman, [6],[7], who earlier showed the great im-
portance of separation of variables for the derivation of physically
significant special function identities.

Section 1. The symmetry groups of the Helmholtz and Laplace equations.

A symmetry operator for (0.1) is a linear differential operator
3
(1.1) L= Zl ay(x)3; + b(x)
&=

where a;, b are analytic functions of z,,x,,#; in some domain 2 in R®
such that Ly is a solution of the Helmholtz equation in 2 for any an-
alytic solution 4 of (0.1) in 2, [2]. It is easy to show that the set of
all such symmetry operators is a Lie algebra under the operations of
scalar multiplication and commutator bracket [L,, L,] = L,L, — L,L,. In
particular, apart from the trivial symmetry E = 1, the symmetry algebra
of (0.1) is six-dimensional with basis

Pj':aj, j=1,233,

(1.2) Ji = 00, — 2,05, Iy = 2,05 — 30,5 J3 = 2,0, — %0,

and commutation relations
[Je;Jm]=Zezann, [JhPm]:ZeemnPn
[P,,Pm]ZO, E,m,n=1,2,3,

1.3)
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where ¢,,, is the completely skew-symmetric tensor such that e,, = +1.
We take the real Lie algebra &£(3) with basis (1.2) as the symmetry
algebra of (0.1). In terms of the P-operators the Helmholtz equation
reads

1.4) (P + P; + P = —ao™y

and each element of £(3) commutes with >33_, P’.

As is well-known, &(3) is isomorphic to the Lie algebra of the
Euclidean group in three-space E(3) and the subalgebra so(3) with basis
{J1, J5 5} is isomorphic to the Lie algebra of the proper rotation group
SO(3), [8]. Indeed, consider the well-known realization of SO(3) as the
group of real 3 X 3 matrices A such that A’A = F, and detA = +1.
(Here, E, is the 8 x 3 identity matrix.) The Lie algebra of SO(3) in
this realization is the space of 3 X 3 skew symmetric matrices .,
(' = —f). A basis for this Lie algebra is provided by the matrices

00 O 001 0 —-10
1.5) Fi=(00 —1), 4= 000}, =1 00
01 0 —-100 0 00
with commutation relations [ #}, 2,] = > . emaf, in agreement with (1.3).

A convenient parametrization of SO(8) is that in terms of Euler angles

(SD; 0, ‘I’) .

A(p, 0,y) = exp (¢.f3) exp (0,77 exp (y.73) ,

(1.6)
0<op<2r 0<0<L7, 0Ky <2r,

see [8] for details.
The Euclidean group in three-space E(3) can be realized as a group
of 4 X 4 real matrices

i0
) AeSO0@3
@1 9(A,a) = 0 €50

a= (afl’ Qs a3) eER ’

with group product given by matrix multiplication:
1.8) 9A,)9(A’,a) = g(AA’,aA’ + a) .

Now E(8) acts as a transformation group in three-space R®. The group
element g(4,a) maps the point x e R® to the point
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1.9 xg =xA 4+ acR.

It follows easily from this definition that x(gg’) = (xg)g’ for all xc R?,
dg,9’ € E(3) and that xg(F,;,0) = x. Geometrically, g corresponds to a
rotation A about the origin O e R® followed by a translation a.

A Dbasis for the Lie algebra of the matrix group E(8) is given by
the matrices

( |0
A
j = ol = 1; 2» 3,
0000
(1.10) | | |
0 0 ( 0
0 0 0 0 0 0
P = ol P, = ol Py = 0l
1000 0100 0010

with commutation relations identical to (1.3). This shows that the Lie
algebra &£(3) with basis (1.2) is isomorphic to the Lie algebra of E(3).
The explicit relation between the Lie algebra generators (1.10) and the
group elements (1.7) is

g(SD, o, \P', a) = g(A(SD, 09 "!’): a)

(1.1
= Alp, 0, V) exp (0,2, + 0,2, + a,P;)

where A is given by (1.6).

Using standard Lie theory methods we can extend the action of
£(3) by Lie derivatives (1.2) on the space & of analytic functions defined
on some open connected set 2 C R® to a local representation T of E(8)
on &, [9]. We find

T(9)P(x) = {exp (¢];) exp (67 exp (YJ5)

(1.12) X exp (@P; + &,P, + a,P)}d(x) = O(xg)

where xg is defined by (1.9). Here,

exp (aL) = i a"L™n!

n=

and @ ¢ #. By construction

(1.13) I(99") = T(T), 9,9'€¢E@®),
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and the operators T(g) map solutions of the Helmholtz equation to
solutions.

In a manner analogous to the construction of the first-order symmetry
operators L, (1.1), we can also determine the possible second-order
differential operators S which map solutions of (0.1) into solutions. Let
& be the vector space of all such operators. Among the elements of &
are the trivial symmetries 0Q, deF, Q = 3%, P2 + o’. (Clearly 0Q is
a symmetry operator since it maps every solution of (0.1) to the zero
solution.) Factoring out the subspace 2 of trivial symmetries, one can
show by a tedious computation that &/2 is forty-one dimensional with
a basis consisting of the identity operator E, the six first-order operators -
J, P, and thirty-four purely second-order symmetrized operators. The
space &(3)° of second-order symmetrized operators is spanned by the
elements {J,,J.}, {Ji Pn}y {Ps Pn} Where

{A,B} = AB + BA ,

and these elements are subject only to the relations

il
I

0,
(1.14)
2

I

J-P= S J.Py
k=1
PP=3P = —ao,

k=1
the latter relation holding only on the solution space of (0.1), [4].

Since (0.1) is an equation in three variables, two separation con-
stants are associated with each separable coordinate system. Based on
the general program relating symmetry to separation of variables, [2],
we expect the separated solutions for orthogonal coordinate systems to
be characterized as common eigenfunctions of a pair of commuting sym-
metry operators in £(3)2. This was shown to be the case already
in [4]. (In addition one can find a number of rather trivial non-
orthogonal separable coordinate systems which correspond to the diago-
nalization of first-order operators.) The authors of this work showed
that each of the eleven orthogonal separable systems corresponds to a
pair of independent commuting operators S, S, in &(3)* such that the
associated separable solutions + = Uw)V(@)W(w) are characterized by the
eigenvalue equations

(1.15) s + =0, Sy =oly, Spf = o}

https://doi.org/10.1017/50027763000017165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017165

40 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

where o}, w? are the separation constants. (It can be shown that there
are no non-trivial R-separable solutions.)

Put another way, a separable system is associated with a two-
dimensional subspace of commuting operators in &(B)° and S, S; is a
basis (non-unique) for the subspace. The group E(3) acts on the set of
all two-dimensional subspaces of commuting operators in &(8)* via the
adjoint representation (S — T(g)ST(g9™Y), g € E(3)), and decomposes this set
into orbits of equivalent subspaces. One regards separable coordinates
associated with equivalent subspaces as equivalent, since one can obtain
any such system from any other by a Euclidean coordinates transforma-
tion. As proved in [4] there are eleven types of distinct orbits and they
match exactly the eleven types of orthogonal separable coordinates. Re-
presentative operators from each orbit and the associated coordinate
systems are listed in Table 1.

TABLE 1. Operators and separable coordinates
for the Helmholtz equation.

Commuting
operators S,, S, Coordinates
1. P, P: Cartesian z,y, 2
2. Ji, P} Cylindrical
X =1rcosp, Yy=1rsing, 2=2=2
3. {Js Py}, P} Parabolic cylindrical

x:%(fz_ﬂz)’ ?/=$7], 2=z
4. J: -+ d*PLP,d >0 Elliptic eylindrical
x=dcosacosf, y=dsinhasing, z==2

5. J.J,J} Spherical
x=psingcosg, y=psinfdsing, z = pcosd
6. J-J— a¥(P: + P, Prolate spheroidal
J3a >0 2 = a sinhysinacosp, ¥ = asinhysinasing,
Z = 0,cOS7)CoS &
7. J-J 4+ o¥(P: + PY, Oblate spheroidal
Ja>0 2 = acoshysinacosyp, ¥ = acoshysinasing,

z = a sinhycos &
8. {J, P} — {J, P}, J3 Parabolic
x = £ncosep, Y = &psing, z = & — )
9. Ji— cPi+ c({/, Py} Paraboloidal
+ {J» P}, 2 = 2c¢ cosh « cos 8 sinh 7,
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¢(P} — P) + {J,P}  y=2csinhasinBcoshy,

— {J, Pi} z = ¢ (cosh 2a + cos 28 — cosh 2y)/2
10. P 4 aP: 4+ (o + 1)P2  Ellipsoidal
+ JJ, z = [((x — a)v — a)(p — a))/(a(a — 1)
Ji + a(Ji + P, y=[—-DD—-Dp—a)/d - a)]”
a>1 2 = [pp/a]?
11. J.-J,J% + bJ3, Conical
1>b6>0 x = r[((by — 1)(by — 1))/ — b)I'?,

Yy =71l — D —1)/0 — D]~
2z = r[bpw]"*

Before embarking on a detailed study of these systems we present
the analogous results for the Laplace equation (0.2). It is straight-
forward to check that, apart from the trivial symmetry E, the symmetry
algebra of this equation is ten-dimensional. In addition to the six
symmetries (1.2) which generate the subalgebra &(3) we have the generators

D= -G+ %0, + .0, + x:05)

K, =2 + (@} — 23 — 239, + 20,20, + 22,20,
K, =2, + (@} — 2 — 23)3, + 22,20, + 22,2,0,
K; = oy + (@} — @} — 29)0; + 22,2,0, + 22,2,0, .

1.16)

Here D is the generator of dilatations and the K; are generators of
special conformal transformations to be discussed below. Only the ele-
ments of the £(3) subalgebra actually commute with the Laplace operator
4,. The remaining elements of the Lie algebra merely leave the solution
space of (0.2) invariant.

The real symmetry algebra generated by these elements is isomorphic
to so(4,1), the Lie algebra of all real 5 X 5 matrices « such that «/G*!
+ G¥'/® = 0 where

1 0
1
G4 = 1 = 2,85 — 6 .

1 =
0 —1J

Here &;; is the 5 X 5 matrix with the entry 1 in row %, column 7, and
0 everywhere else.

https://doi.org/10.1017/5S0027763000017165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017165

42 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.
J

Suy=1|...1...|t

A basis for so(4,1) is provided by the ten elements

Fab=éaab_éaba,:—rba,, 1Sa,b£4

.17
Fa(i:éaas'l'éaf)a':rm

where

[Fam ch] = abcra,d + Badrbc + 5cardb + 5dbpca,
(1'18) [Fa,m ch] = 6a,cpd5 - 5ad[’c5
[Fa,mpbb] = Fad .

One can verify that the correct commutation relations for the operators
(1.2), (1.16) result if the following identifications are made:

J1=F43,J22F24’J3=P3z: D=P15
1.19) Pi=Ty+ Ty Po=Ty+ Iy, Py=Ty+ 'y
Klzrlz_rzm K2=[’13——f'35, K3=F14—'r45-

The symmetry group of (0.2), the conformal group, is thus locally
isomorphic to SO(4, 1), the group of all real 5 X 5 matrices A such that

(1.20) AGHIAY = G

The identity component of this group consists of those matrices satisfy-
ing (1.20), det A =1 and A,; > 1. The Lie algebra of SO4,1) is so(4, 1).

Exponentiating the operators (1.2),(1.16) we can obtain the local
action of SO(4,1) as a transformation group of symmetry operators. In
particular, the momentum and angular momentum operators generate the
subgroup of symmetries (1.12) isomorphic to E(3), the dilatation operator
generates

(1.21) exp ADYW(x) = e ¥ (e *x) , A€R,
and the K, generate the special conformal transformations

exp (@-K)W(x) =1 —2x-a + (a-a)x-x]"*

(1.22) ) x — a(x-x)
W( 1-— 2(a-x)(x-x)) )
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In addition, we shall consider the inversion and space reflection sym-
metries of the Laplace equation:

1
Vx-x
R¥(x) = ¥ (—x,, 2,5, @) ,
I=1I" , R=R™.

I (x) =

U(x/x-x),
(1.23)

These are well-known symmetries of (0.2) which are not generated by
the infinitesimal operators (1.2),(1.16), [7], page 31. It follows from the
definitions of these operators that

1.24) IP, 7' = —K,;, IDI"' = —D, IJ,I'=J, .

The second-order symmetry operators of (0.2) can also be computed
in a straightforward but tedious manner. One finds that modulo the
trivial symmetries @4,, ® ¢ #, the space of truely second-order sym-
metries is fifteen-dimensional. It is obvious that any operator of the
form {L,, L)}, L;eso4,1), is a second-order symmetry and the space of
such symmetric second-order elements in the enveloping algebra of so(4, 1)
is thirty-five dimensional. However, there are twenty linearly independ-
ent relations between these operators which hold on the solution
space of (0.2). Thus, only fifteen of these operators can be regarded as
independent on the solution space. For example we have the relations

i) PP=K-K=P-J=0
i) JJ=1—D
iii) I+ Ty —I'y=%+ 1'%
iv) {P, K} + {P, K;} + {P;, K3} = 2 + 4D*,

(1.25)

most of which are valid only when applied to solutions of (0.2), not in
general.

We will see that all known R-separable orthogonal coordinate systems
for (0.2) are characterized by a pair of commuting second-order sym-
metry operators in the enveloping algebra of so(4,1). Here two coordi-
nate systems will be regarded as equivalent if one can be obtained from
the other by a transformation from the connected component of the
identity of the conformal group, augmented by the discrete symmetries
(1.23).
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Section 2. Separation of variables for the Helmholtz equation.

We briefly study each of the eleven coordinate systems listed in
Table 1 to determine the form of the separated solutions and the signi-
ficance of the eigenvalues of the commuting symmetry operators. It is
obvious that each of these systems also leads to variable separation in
the Laplace equation (set v = 0), so we can simultaneously present the
results for this equation.

We Dbegin by considering solutions ¥ of the Helmholtz equation
which are eigenfunctions of the operator P,:

PY =q¥, U(x) = e*d(x,y) .

In this case we can separate the variable z in (0.1) and reduce this
equation to

@.1) 4, + o — 2)0(x,9) =0,

the Helmholtz equation in two variables. As is well-known, [3], equa-
tion (2.1) separates in four coordinate systems.
For Cartesian coordinates 1] the separated equations are

X' +EBX=0,Y 4+ @ —-2—-)Y =0

@2) O(xz,y) = X(@)Y(y) = exp (Gkx) exp (ive® — & — K2 y) .

The corresponding separated solutions of (0.1) are characterized by the
equations

2.3 PY =q¥, PY = ik¥ .

The associated Laplace equation solutions are obtained by setting o =0
in 2.1),(2.2).
For cylindrical coordinates 2] the separated equations are, (& = OR):

2.4) 0" +me=0, r*R"” + rR’ + [r(@w® — ) — m IR =0
with solutions
6@ = et™ R(r) = J, (W — 27)

where J,(2) is a Bessel function. Here, the separated solutions ¥ are
characterized by the equations

(2.5) PY =¥, W =m¥ .
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For the Laplace equation («* = 0) the results are the same.
For parabolic cylindrical coordinates 3] the separated equations are

C" + [—K + (@ — DEIC =0

N” 4 [F + (@ — DFIN =0

0 = CONG) = Diy (= 08)D_g, . 07)
o= T — BN, K= 2 = F .

2.6)

Here D (2) is a parabolic cylinder function. The separated solutions are
characterized by the eigenvalue equations

2.7 PYU =¥, {Js PY¥ = KU .

The corresponding results for the Laplace equation are obtained by setting
o =0 in (2.6).
For elliptic cylinder coordinates the separated equations are

A" + [d¥(w? — ) cosh’a + K]A =0

B” — [d{w® — 2 cos’*B + k]IB =0

Ce.(a, @Q)ce,(8, Q) , n=20,1,...
Se.(a, @)se.(8, Q) , n=12,...
q = d¥(w* — 219)/4 .

2.8)
? = A(@B(P) = {

The separated equations are forms of Mathieu’s equation. For 2 real,
o > || one obtains single-valued solutions in all of three-space if and
only if % is one of a discrete set of eigenvalues k,. The corresponding
solutions are expressed in terms of Mathieu functions ce,(f), se,(p) and
associated Mathieu functions Ce,(«), Se,(e), see [10]. For other values
of 1 similar comments hold. The eigenvalue equations are

2.9 PY =¥, J3 + dPHY = KV .

Again the results for the Laplace equation follow essentially from (2.8)
by setting o = 0.
Next we consider solutions ¥ of (0.1) which are eigenfunctions of J;:

Wy, = m¥, U(x,y,2) = e™d(r,z) .

Here 7, 9,2 are cylindrical coordinates 2] and J, = —3,. We now split
off the variable ¢ so that (0.1) reduces to
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2.10) (an + 10 - ™ Lo+ wz)@ ~0.
r r

This reduced equation separates in five coordinate systems corresponding
to systems 2], 5], 6],7],8] on Table 1.
For spherical coordinates 5] the separated equations in p,6 are

) P+ 2P (o= LED)p o
o P

b) 6 +cotd8 + (Wt +H— 2 Jo =0
sin’ 4

o= P(p)@(ﬂ) = P—llzJi(e+1/2)((UP)Pzim(COS ()]

(2.11)

Here J,(2) is a Bessel function and P7(cosd) is an associated Legendre
function, [11]. The eigenvalue equations characterizing the spherical
system are

2.12) U =m¥, JIU=—4(+ DT .

The separated equations for the Laplace equation are obtained from
(2.11) by setting o = 0. The © solution is unchanged but a basis for a)
becomes P(p) = p%, p~*".

For prolate spheroidal coordinates 6] the separated equations in 7,
a are

2
H” + coth pH’ (—z % sinh? y — " )H:O
+ coth pid’ + + a’w® sinh* 7 Sinh 7

(2.13)

A’ + cot A’ + (1 + a*e?sin’ o — ‘m: )A =0
sin® o

J-J— (P + PYW = =¥, W0 =m¥ .

Equations (2.13) are two forms of the spheroidal wave equation, [10].
The corresponding solutions of (1.1) which are bounded and single valued
in R® are of the form

¥ = H(pA(ax)ei™ = Sp®(cosh 3, aw)Ps)"'(cos a, a’w’)e'™?

2.14
( ) n=0,1,2,--, m=nn—1,.-.,—n,

where St®, Psm(z,r) are spheroidal wave functions. The discrete eigenvalues
Am(a’w?) are analytic functions of a*w? and A™(0) = n(n + 1). The coordi-
nates vary in the range 0 <o <2z, 0 <5, 0<¢ <2z. For the Laplace
equation the separated equations are (2.13) with v = 0 and the separated
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solutions take the form

(2.15) ¥ = Pi™(cosh n)P:™(cos a)e'™ .
For oblate spheroidal coordinates 7] the separated equations in 7,
are
H” 4 tanh yH’ + (-—2 + d’e’ cosh’y + m’ )H =0
cosh?y
(2.16) A" + cotad’ + (2 — gl sin* o — — )A =0
sin® @

J-J + o (P} + PYW = -7, W0 =ml .

Again these equations are forms of the spheroidal wave equation. The
corresponding solutions 7 which are bounded and single-valued in R®
take the form

2.17) Sm®(—4 sinh 7, iaw)Psi™ (cos a, —a’w®)e™?

with eigenvalues 2/™(—a%?. For the Laplace equation the eigenfunctions
are of the form

(2.18) Pr™(—1 sinh p)P:™(cos a)e™? .
For parabolic coordinates 8] the separated equations in &,7 are
g4+ Lgy (aﬁsz _m 2)5 =0
& &
2.19) Y+ L (a7 )H 0
7 7
(I Py} — {J,, PO = 2T, W = m¥
and the separated solutions ¥ = 5(§)H(p)e'™ take the form

( —12 i m+ 1 )
B©) = gmern FY| 4w 2 | Fiog|,
(2.20) om+l
H(@p) = p™e*n2 F|| 4o 2 Fioy'| .
m+1

In the case w = 0 (Laplace equation) the separated solutions are

(2.21) J (W 28 @V A Det™e .

The above eight systems are the only ones for the Helmholtz equa-
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tion whose separated solutions are eigenfunctions of a second-order
operator which is the square of a first-order symmetry operator. The
remaining three systems are somewhat less tractible.

For paraboloidal coordinates 9] the separated equations in «, 8,7 are

” . . (0262 _
AV + q zccosh2a+—.2——cosh4aeA_0

(2.22) B” + (q + Accos 28 — ‘”—;cz- cos 4,B)B =0

[’”-l—(—q-l—ZCCOSth—I—%COShQ’)F“—:O, qQ=py— co

where
(3 — P} + cfJy, P} + o], PYY = —F
(CPZ - CP% + {JZ’PI} - {J1,P2})w. - Z?F .

Each of the equations (2.22) can be transformed to the Whittaker-Hill
equation

(2.23) %;% + (;z + —‘-;i + wp cos 26 — %2 cos 40)9 =0
whose even and odd solutions which are periodic with period 2z in 4 are
denoted gc,(@, v, p), 95.(6, », p), respectively. The subscript n (the number
of zeros in the interval [0,2z]) labels the discrete eigenvalues y = yy.
See [12] for a complete discussion. Single-valued separable solutions ¥
of (0.1) take the form

¥ = ABI" = ge,(ia, 2¢co, [ 20)gc.(B; 2¢0, 1| 20)

2.24
@24) X gealiy + 7)2,200,2/20), 1 =0,1,2, -

or the same form with ge¢, replaced by g¢s,. Corresponding to the
Laplace equation (w = 0) the separated solutions are Mathieu functions
of the form

Ce,(a, —ic/2)ce (B, —2¢/2)Ce,(y + ix /2, —2c/2) ,

(2.25) Se,(ar, —2¢/2)sen (B, —Ac/2)Se,(r + in /2, —2c/2) .

For ellipsoidal coordinates 10] where 0 < p <1<y <a<pu< oo for
single-valued coordinates, the separation equations all take the form

2.26) (4 h(e)%«/k’(?)gg + 28+ zszeZ)E(s) =0
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h(S):(E—a)(S_l)‘fy EZ#,U,‘O,
where

J-J+ P+ aP} + (o + DPYY =27,

2 4 aJ? + aPHV = T .

For computational purposes it is more convenient to introduce equivalent
separable coordinates «, 3,7 defined by

(2.27) o=s8n¥e, k), v=snwpB k), p=snirk), k=a?

where sn(z,k) is a Jacobi elliptic function, [10]. The relationship be-
tween «, 3,7 and z,y,z is
7 k
T = dnadnpdny , = —_ chacnfecny ,
2.28) Tk panr,  ¥=-p peny

z = ksnasnfsny

where cna, dne are elliptic functions and %' = +/1 — k*. To obtain real
values for z,¥y,z we choose « real, g complex such that Repg= K and
y complex such that Imy = K’ where K(k) is the modulus of elliptic
functions and K’ = K(¥’). To cover all real values of z,¥,z once it is
sufficient to allow ae[—K,K], pelK — iK', K + iK’], parallel to the
imaginary axis, and ye[—K + iK'/, K + ¢K’], parallel to the real axis.
In the new variables the separation equations become the ellipsoidal
wave equation

2

2.29) {% I+ BASUE + K| B@ =0, E=apr,

see [10].

From the periodicity properties of elliptic functions it follows that
if ¢ is replaced by & + 4Kn 4+ 4iK'm in (2.28) where m and n are integers
and ¢ is any one of «,8,7, then #,y,z remain unchanged. Thus only
those solutions E(¢) of (2.29) which are double-periodic and single-valued
in & with real period 4K and imaginary period 4iK’ are single-valued
functions of z,¥,2. These solutions are called ellipsoidal wave functions
and are denoted by the generic symbol el(¢) in Arscott’s notation, [10],
Chapter X. There are eight types of such functions, each expressable
in the form

snrzenszdntzF (sn?z) , r,8,t=20,1
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where F' is a convergent power series in its argument. The eigenvalues
2, A, are countable and discrete.

Corresponding to the Laplace equation (w = 0), (2.29) reduces to the
Lamé equation and the single-valued solutions in R® are products of
three Lamé polynomials, see [10], page 228.

For conical coordinates », g, v, 11] it is convenient to set y = sn’(a, k),
v = sn*(B, k), where k= b""2>0. Then
irk

7 chacenf , 2 = rksnasnf

(2.30) x = _I%dnadn‘g , Y=

and the variables have the range 0 <r, e ¢ [—2K,2K], peclK,K + 2iK'],
see [10], page 24. The separation equations are

R//+ER/+ w: — Z(ﬁ—[-l) R=0
r r?

(2.31) A" + A — 44 + DE*'sn’a)A =0
B” + 2 — 4(¢ + DFsn’f)B =0
JJU = —4(¢ + VDT, 34+ bJDY =27 .

The first equation has solutions of the form R(r) = r 2], 4.15(wr). The
next two equations are examples of the Lamé equation. If « or g is
increased by integral multiples of 4K or 4¢K’ it follows from (2.30) that
z,y and z are unchanged. Thus only those solutions A(a), B(8) of (2.31)
which are doubly-periodic and single-valued in «, 8 lead to single-valued
functions of z,y,z. It is known that double-periodic solutions of Lamé’s
equation exist only in the cases £=0,1,2, ..., [10]l. Furthermore, for
such ¢ there exist exactly 2¢ + 1 solutions corresponding to 24 + 1
distinet eigenvalues 2. The solutions, one for each pair of eigenvalues
A, 4 can be expressed as finite series called Lamé polynomials. There
are eight types of these polynomials, each expressible in the form

sneacn’adntaF »(sn’a) , a,b,c=0,1,

(2.32)
a+b+4+c+2P=1/¢

where Fp(z) is a polynomial of order P in z.

Corresponding to the Laplace equation (w = 0) the above discussion
is unchanged except that a basis of solutions for the first equation (2.31)
becomes 74, r~¢-!, In this case the solutions ¥ are called ellipsoidal
harmonics.
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Section 3. A Hilbert space model.

In analogy with the methods discussed in [2] we can introduce a
Hilbert space structure on the solution space of (0.1) in such a way that
the separated solutions can be interpreted as eigenfunctions of self-adjoint
operators in the enveloping algebra of £(3). We proceed by expanding
solutions of the Helmholtz equation in plane waves. One can easily show
that ¥(x) is a solution of (0.1) if it can be represented in the form

3.1) U(x) = L exp (lwx-k)h(k)d2(k) = I(R) , k= (k,ky,ky) .

Here k is a unit vector (k-k = 1) which runs over the unit sphere
Sy kP 4+ Kk 4+ k=1, d2 is the usual solid angle measure on the sphere
and % is a complex-valued measurable function on S, (with respect to df)
such that

f IhPdQ < oo .

Sa

The set L,(S,) of such functions % is a Hilbert space with inner product
3.2) Ky = [ @R A0 |

where in terms of spherical coordinates on S,

k = (sin @ cos ¢, sin @ sin ¢, cos )

3.3
(8.8) 0<6<n, — <<z, dRk) =sinddide .

The elements g(A, a) of E(3) act on solutions of (0.1) via the operators
T(g9), (1.9),(1.12). Using (3.1) we find

(3.4) ¥ = I(h) = T(9¥ = I(T(9)h)
where the operators T(g) on L,(S, are defined by

T(h(k) = exp [iva-(kA)Ih(kA)

©:5) g=(A,a), AcSO®), ack .

Thus the T(9) acting on ¥ induce operators (which we also call T(g))
acting on k. Moreover, it is well-known that the T'(g) on L,(S,) define
a unitary irreducible representation of E(3), [8].

The Lie algebra representation of &£(3) on LS, induced by the
generators (1.2) on the solution space is determined by

https://doi.org/10.1017/50027763000017165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017165

52 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

P, = iwk, = iwsinfcos ¢ , P, = iwk, = iw sinf sin ¢
P, = iwk, = iw cos @ , Jy = k0, — kd, = —0,
J, = k0, — k.9, = sin ¢, + cos ¢ cot 49,

J; = k03 — k30, = —cos ¢d, + sin ¢ cot 69, .

(3.6)

These Lie algebra operators are related to the operators T(g), (3.5), by
(1.12). Furthermore, the operators (3.6) are skew-Hermitian on the dense
subspace 2 of L,(S,) consisting of C~ functions on S,. The correspond-
ing elements of &£(3)* are easily seen to be symmetric on 2 and we shall
show explicitly that their domains can be extended to define self-adjoint
operators on dense subspaces of L,(S,). Corresponding to each pair of
commuting operators listed in Table 1 we shall find a pair of commut-
ing self-adjoint operators S, S’ on L,(S,) and determine the spectral resolu-
tion of this pair. These results can then be used to obtain information
about the space 5 = I(L,(S,). Here s is a Hilbert space with inner
product

3.7 @,7) = <hu hz> ’ gFj = I(h'j) .

(It is not hard to show that no nonzero & e L,(S,) can be mapped by I
to the zero solution of (0.1).) It follows that I is a unitary transfor-
mation from LS, to s# and the operators T(g9), (1.9),(1.12), on S# are
unitary.

We can also interpret each ¥ € ## as an inner product

¥(x) = I(h) = <h,H(x, -)>

(3.8) H(x, k) = exp [—iwx-k] € L,(S,) ,

see [13].

The existence of the unitary mapping I allows us to transform
problems involving s to problems involving L,(S,). In particular, if S,
S’ are a pair of commuting operators from Table 1 we can interpret
them as a pair of commuting self-adjoint operators on L,(S,) and com-
pute a bagis for L,(S,) consisting of (generalised) eigenfunctions

3.9 Sfay = A » Sfow= o> {fapJrwy =0Q—)o(p — ).

Then the functions ¥,,(x) = I(f,) will form a corresponding basis in #
for the operators S,S’ constructed from the generators (1.2):

(3.10) Sw‘l.“ = zw‘xy ’ S/wh‘ = #w']/, .
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These last expressions enable us to evaluate the integral I(f,), for they
guarantee that ¥,, is solution of (0.1) which is separable in the coordi-
nates associated with S,S’. Furthermore, if ¥ = I(h) for some % e L,(S,)
we have the expansion

(.11 T@¥ () = 2 <T@, [3,)73,(%)

which converges both pointwise and in the Hilbert space sense.

Since the spherical coordinate system 5] is treated in detail in many
textbooks, e.g., [8],[9], we shall here list only the most important facts
concerning this system, omitting all proofs.

The unitary irreducible representations of SO(3) are denoted D,, ¢
=0,1,2, ... where dimD,=2¢+ 1. If {J,/, J;} are the operators on
the representation space V, of D, which correspond to the Lie algebra
generators (1.5) then there is an orthonormal basis {f¥:m = ¢,¢ — 1,
-+, —4} for V, such that

LSS =mf, TP =16 £ m+ D¢ F m))-f,

8.12) . .
J=E= FJ, + i/, , J' =1, .

The matrix elements of the group operators T(4), A € SO(8), with respect
to this basis are the Wigner D-functions, [8],[9]. It follows from (3.12)
that on V,, J.J= —4(¢ + 1).

Now consider the representation T of E(3) on L,(S,) defined by (3.5).
The restriction of 7' to the subgroup SO(8) breaks up into the direct sum

ﬂw®zg@m, M&zgm

where dimV, = 2¢ + 1 and the action of the operators T'(A) on the in-
variant subspace V, is equivalent to D,. The elements » of V, are cha-
racterized as the solutions of J-Jh = —4(¢4 + 1)h or

(3.13) (a,, + cot6d, + sirllz ; a,,,,)h(a, o) = — U + D, 0)

in terms of coordinates (8.3). Here, J-J is known as the Laplace operator
on the sphere S,. It follows from these facts that the self-adjoint ex-
tension of this operator (which we also call J-J) has discrete spectrum
—4¢ +1), £=0,1,2,..., each eigenvalue occuring with multiplicity
26 + 1.
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There exists a basis for V, consisting of eigenfunctions f{¥(4,¢) of
the symmetry operator J° which satisfy relations (3.12) where

(3.14) J* = e**(+0d, + ¢ cot 63,) , JO= —19

¢ *

Indeed from the recurrence relations (3.12) and the differential equation
(8.13) one finds

(3.15) S0, 0) = Y70, , Y YP) = 000mm
where

- _[@¢+ DU —m! 5. o
(3.16) Y70, ¢) = [ it ] Pr(cos f)eims

is a spherical harmonic.
Furthermore, it is straightforward to show that the action of the
operators P, on the basis is

PO — —co[ G+ m+ D —m+ 1)]1/2 (e+1)
" (2¢ + 3)2¢ + 1) "
— m[ (4 + m)(& — m) ]1/2 (4-1)

24 + 1)(2¢ — 1) "
Prro — w[(e +m A+ D+ m+ 2) ]1/2 (@+1)
" 2¢+324+ 1) m
T =—mE—m—= DT

“’[ @f+ D@2 —1) ] m+1

P-f® = _w[ —m+2)4—m-+1) ]1/2 (4+1)
™ 24 +8)2¢ + 1) m
E+mE+m-—1)T~ (-1
+ “’[ @0+ D2l —1) ] m-l

3.17)

where
(8.18) P'=4P,= —wcosf, P* = P, + iP, = —we*¥*sind ,

e.g., [14].

Applying the integral transformation I to our basis {f{} we obtain
an orthonormal basis {TP = I(f?)} for s which satisfies the eigenvalue
equations

3.12) JJUO = — 46 + DFD ,  {JTO = myT®

These eigenfunctions separate in the spherical coordinate system 5] and
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are explicitly given by

87:3 1/2 .
3.19) TO(0,0,0) = ( g ) T (0 Y0, 0) .

These (standing) spherical waves necessarily satisfy the recurrence rela-
tions (3.12),(3.17) where now the operators J;, P, are given by (1.2).
Furthermore, the well-known matrix elements of the operators T(g) in
the {f{¥} basis can be used to expand the function T(9)7{ in terms of
the spherical wave basis, [14]. It is easy to show that the recurrence
relations (8.12), (8.17) are also satisfied by the non-Hilbert space solutions

8n?

wp

T, 0,¢) = ( )1’2157_5_1,2((0,,)17;"(0, %)
so the same matrix elements can be used to expand T(g)¥%® in terms of
the functions 7.

Next we compute the spectral resolutions of the operators corres-
ponding to systems 1]-4] on Table 1, via our L,(S,) model. These systems
are characterized by the fact that P, is diagonal. From (3.6) it follows

that the self-adjoint operator 7P, = —wcosf has continuous spectrum
covering the interval [—w, ] with multiplicity one. The complete results
are:

1] Cartesian system.
The eigenvalue equations

(3.20)  iPf® = —wcos 7 fD iP,f® = — sin y sin af®,

3J a,r a,r
lead to eigenfunctions
o — )o@ — 7)
LG, ) = - , —r<a<lnr, 0L<yr<n~m
@an To0? Jsiny 7
8 > = dla — a)or — 1) .

The corresponding solutions of the Helmholtz equation are the plane
waves

o) = I1(73)

3.22 A .
6.22) = 4/sin 7 exp [iw(x, sin y cos « + z, siny sin a + ;5 cos )] .

2] Cylindrical system.
The eigenvalue equations are
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(3.23) iPf® = —weosrfL, i fE =nf®

and the basis of eigenfunctions is

"23(y — 6)
00,0 = L2,
(8.24) i V2z siny

I 00 = Oundy — 1) .

%=0,i1,"',0STS7f,

Furthermore,
(3.25) TA(x) = "v/2x sin yJ 4 (@ sin 77) exp [i(np + wz cos )] .

These are cylindrical wave solutions of the Helmholtz equation.

3] Parabolic eylindrical system.
The eigenvalue equations are

(3.26) PO = —wcosyfY,, {Jo PSR, =2uwsinfO

BT

and the basis of eigenfunctions is

v 27r1sin 7 (1 + cos )~#"V4(1 — cos p)**"MF O — 1) ,

ffl,r(e’?): 0<¢<7r
(3:27) 0, —r<p<0
L?z,r(e’w):f;ﬁl)-,r(07—¢)y — 0 <ﬂ<00, 0_<_T£7r’

S s Ly =0 — oG — 1) 5 i [i¥e>=0.

The corresponding solutions of (0.1) are

e

(3.28) X [Dip—1/2(0'5)D-ip-1/2(07}) + Di/z—l/Z('—a&)D—i,u—lﬂ(—o‘v)]

T® (&n,2) =0 (& —92) .
o= e"*/20psiny .

(x) = J Si; T sec (iux) exp (iwz cos 7)

4] Elliptic cylindrical system.
The eigenvalue equation.s are

3.29)  iPfY, = —wcosyfW,, 3+ EPDSY, = AufP,, t=sc,

and the basis of eigenfunctions is

cen(§D9 Q)30 — T) ’ n=0,1,2,-

(4 — 1
f ne, 7(6’ 90) "/

zsing
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(3.30) @

ns,r(ﬁ, §0) = Sen(SD, q)5(t9 - 7) ’ n = 19 2’ cc

1
vz singe
q = d*o*sin’*y /4, 0<r<nr.

The eigenvalues 1,, are discrete, of multiplicity one, and related to the

eigenvalues o of Mathieu’s equations, [10], by @ = —2 — id**sin*y. The
eigenvectors form a basis for L,(S,) satisfying
(331) <f7(z4:),r9 ;2’,7’> = ann'att'a(r - TI) ’ t, = s, ¢,

and the corresponding solutions of (0.1) are
T® (x) = Cpv/siny Ceyla, @)ce, (8, q) exp ((wz cos y)
n:0,1,2,--- ’

T (x) = S,v/siny Seq(a, @)se (8, q) exp (iwz cos )
n = ]_, 2’ ey,

(3.32)

where Se,, Ce, are associated Mathieu functions and S,, C, are constants
to be determined from the integral equation ¥'$, = I(f{,).

6] Prolate spheroidal system.
The eigenvalue equations are

(3.33) T =P} — &PYfO = =80y WSS =mfD,
and the basis of eigenfunctions is

@n+ D — m)!
dn(n + [m))!

@30 06,9 =| | "Psivitcos 6, aerns

(The first eigenvalue equation (8.33) takes the place of the second equation
(2.13).) Heren =0,1,2,.-., m =n,n — 1, ---, —n and the discrete eigen-
values are denoted 7(d’0®). We have (f®,,f%,.)> = OnnOnm. The
spheroidal wave functions are frequently defined by their expansions in
terms of associated Legendre functions:

(3.35) Psim(z,d’e®) = 3, (—Dal%(a’o®)Prh(x) ,

2k2|m|~-n

see [10], page 169. Indeed, substituting (3.25) into the spheroidal wave
equation one can derive a recurrence formula for the coefficients a)%,.
The corresponding basis of solutions for (0.1) is

(3.36) Tre.(x) = cr(a’0)Sr®(cosh z, aw)Psi™(cos a, a’w?)e*™?
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where c™(a’»?) is a constant to be determined from the integral equation.
This result is easily obtained from the fact that ¥, must be separable
in prolate spheroidal coordinates.

71 Oblate spheroidal system.
The eigenvalue equations are

B30 T+ P+ CPDI D= — A, S0 = mF

and the orthonormal basis of eigenfunctions is

om0, 0) = [ (2n4+(13 )n(LnI;zle! ]mP syl(cos 0, —aw’)etme
74 .

n=0,1,2,---, m=nn~—1,.-.,—n.

(3.38)

The discrete eigenvalues are ™' (—a?w?). The corresponding solutions of
the Helmholtz equation are

3.39) TP.(x») = cp(d’0?)SyP(—1 sinh , iaw)Ps)™'(cos a, —a’w?)e™*
where c™(a’0?) is a constant to be determined from the integral equation.

8] Parabolic system.
The eigenvalue equations are

(3.40) Ao P} — {0 PN = 200f 0, Wufn =mf50 s

see [13]. Here {J,, P,} — {/J,, P} = 2iw(cos § 4 sin #3,) is first-order and
has a unique self-adjoint extension. The eigenfunctions are

[tan (8/2)]% eime
sin 2r

L By T8> = 04 — X)omme -

, m=0,+1,.-.-,—c0o <1< 0,

(8.41) fﬁ?in(ﬂ, ©) =

The corresponding solutions of (0.1) are

ro @ = V2 r( 1—m iZ)F( 1—m _ _ﬂ_)
(8.42) 20 2 2 2
v/{iz/z,—m/z(e_iwwéz/ﬁ)jiz/z,—m/z(eimwﬂz/\/—2—)3“"""

where

+mi2g-2/2 A+ w/2—a
‘///“(z):i___F( ‘—z .
o ra+m "™\ 14p
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9] Paraboloidal system.
The eigenvalue equations are

(J; — Py + of ]y, P} + {Jy, PSR = — s SS
(P} — oP + {J5, P} — {J,, PDS: = 20418,

and the basis of eigenfunctions is

tan 4/2)* (icw g¢. (o, 2cw, 2)
20,0 = (tan ex cosﬁcos2)><{ npy 200,
@4 Tl =G P ) 7 gsalo, 20, 2)

t=c¢s, n=012..., —c0o<21< 0,

(3.43)

where gc¢, and gs, are the even and odd nonpolynomial solutions of the
Whittaker-Hill equation, [12]. We have

<f1(L9t),11 7(32',1’ = 6nn" 5;315(2 - 2’) .
The corresponding solutions of (0.1) are

TR (x) = Ki(we, Dgt.(8, 2co, DYt,(ix, 2¢0, D9t (iy + 7/2,2¢0,2) ,

3.45
( ) t=s,c¢,

where the constants K! are to be determined from the integral equation
r®,=1(f3). This equation appears to be a new result.

10] Ellipsoidal system.
Here we adopt elliptic coordinates (s,t) on S,:
(3.46) F, = [ s—a)t—a) ]1/2 e [ (s— 1)t —1) ]1/2 b — [-it_—]l/z
! a(a — 1) o 1—a > a
0<t<1<s<a.

Then the eigenvalue equations

Sf=1f, Sf=uf

3.47)

S=P +aP;+ (a+ DP;+J-J, S =J; + aJi + aP3
become

[ 2 0u+ 00—+ D -+ 0)]r =27
(3.48) [ . i t (taa“ + Sapﬂ) . G)zst]f — ‘Llf

% = [l@ — 9)(s — DsI”3,,, 8, = [(t — o)t — D]V, .

We can find solutions of these equations in the form f(x,t) = E,(S)E,(t)
where
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49,, — &’ + 's + WE(s) =0, r=—-o1l+a)—2,

3.49
(6:49) (49,5 + 0t — Xt — WE@®) =0 .

Expressions (8.49) are algebraic forms of the ellipsoidal wave equation
so the E; are ellipsoidal functions. Furthermore, if we set s = sn’(y, k),
t = sn’(yr, k) where k = a"'? then the separated equations take the
Jacobian form

(3.50) (9 — Ku — KXswe + Ko*sw'®E, &) =0, t=nv, j=12

of the ellipsoidal wave equation (2.29). The new coordinates 7, also
have the property that they allow us to parametrize the entire sphere
S, rather than just the first octant. Indeed,

(3.51) k= k- 'dnpdny ,  k, = ikE engeny , ks = ksnpsna

and these coordinates cover S, exactly once if e [—2K,2K], v e [K,K +
2iK’].

Since k,, k,, k, remain unchanged when integral multiples of 4K and
4iK’ are added to » or ¢, we are interested only in those single-valued
solutions E; of (3.50) which are also fixed under these substitutions:
E (¢ + 4K, + 4iK'm) = E (&), n, m integers. As we noted in Section 2, these
doubly-periodic functions are the ellipsoidal wave functions. They have
been studied in detail by Arscott, [10]. The spectrum of S and S’ is
discrete, each pair of eigenvalues denoted Aum,g.n. The corresponding
ellipsoidal wave functions are ef™(¢), & = 5,4 and the eigenfunctions of
S and S’ are denoted

(3.52) oo, W) = eLpy(n, ) = ely(pely(y)

where n = 0,1,2, --- and the integer m runs over 2n + 1 values. We
assume that the basis {e/pr} is normalized so that

lelpr, eLpry = dnndmm: -
Note that
dQ(k) = ik (sn’p — sn*)dydyr .

In general these functions are rather intractible and very little is known
about their explicit construction.

The corresponding solutions of the Helmholtz equation 7{%(x) =
I(f5) are
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(3.53) Uin (x) = Ed(e, B, 1) = Ko, kel (a)elr(Bely(r)

where the constant K™(w, k) is to be evaluated from the integral equation.
Moreover, the equation reads

1
kklz

Eer(e, B,7) = WI exp [a)(
Sa

(3.54) K
+ klZ

X eLp(y, ¥)(sn'y — sn*p)dndyr ,

dnadnfdnydnydn)

cnacnpenyenneny + ikzsnasnﬁsnysnx[r)]

which appears to be a new result. We were able to evaluate the integral
(8.54) to within a constant multiple because we knew in advance that it
was separable in «, 8, 7.

11] Conical system.

Only for the conical and spherical systems does the eigenvalue
problem become finite-dimensional. For f e L,(S,) the eigenvalue problem
associated with system 11] is

(3.55) JIJf=—¢¢+1Df, J1+bJDf=2f, 1>b>0.

From (3.13) the eigenvalue problem reduces to computing the eigenvalues
of J} 4+ bJ: on the (24 4+ 1)-dimensional space V,, (3.12). This problem
is solved in [15] and [16] where the relationship between the spherical and
conical bases is derived. However, equation (5.16) in [16] is in error
and will be corrected in [17].

Section 4. Expansion formulas for solutions of the Helmholtz equation.

From (8.11) it is evident that if we wish to expand a solution
T(@¥? of (0.1) in terms of eigenfunctions {¥'"} we can do so by com-
puting the expansion coefficients <T'(9)f, f> in the L,(S,) model:

4.1 TV (x) = 2KTQSP, [P ) .

Here we list some of the more tractible expansion coefficients in the
case where T(g) is the identity operator.

The overlap functions {f{’, f&> relating any system {f(k)} with
the Cartesian system (3.21) are trivial:

4.2) P, fOS = 4/sinyf{(sin 7 cos a, sin 7 sin a, cos 7) .
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Moreover, the overlaps relating the eigenfunctions for systems 1]-4] on
Table 1 can easily be obtained from the corresponding overlaps for

solutions of the Helmholtz equation (4, 4+ o®)y = 0 listed in [2].

the results take the form

“® I 190 = 3 — PXIP 1

Indeed

where (¢, f»"> is the corresponding overlap in [2] with the L,[—=,x]

model.

The overlaps between the spherical and parabolic bases were com-

puted in [13]:

) (8) _ (_1)(m+lml)/2 (24 + 1)(5 + |mD|
CIls Fined = O (m|1) [ 4z(4 — |m)!

4.4 x (Bt imld (it ml+ 1

2
(|m[ — 4, \m| + £+ 1,362 + |m| + 1)/2|1) ,
[m|+ 1, [m| + 1

m=0,+1,.--

, 4.

The overlaps between the spherical and prolate spheroidal bases are

5 ,(___]_)(Zm+l—n)/2[ n—m''¢E+m! 2n +1
" n+m!(—m! 2¢+1

X 07 (0°0) ,

(4'5) <f(l) (6) > —

enp] 0+ m)! 2n 41 m
O (—1)f )/[(n—— m)! 2e+1] o

where the coefficients a)%, are defined by (3.35).

n é~n

m >0

m <0

The overlaps between the cylindrical and prolate spheroidal bases are

(4.6) <f;6)m, (2) > = [(1’14 — IMI)' 2n + 1 gin 7’]1/2P8’I:nl(cos 7 0w)8

®+mp!t 2

and the overlaps between the parabolic cylindrical and prolate spheroidal

bases are

/2

o e _[@®w—|mp! @Cn+ 1)
<f() SE > = [(n S mp ® sin r]

X Psip(cos 1, ) S, 18

4.7

where the overlap {(f, f&> in L,[—=,z] is computed in [2] and [18].
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The overlaps between the elliptic cylindrical and prolate spheroidal bases
are

4.8) (fO,,f9 5= [M)_‘(zm + 1) sin r]mPsl:’”(cos I, G0’ A
’ "~ (n + |mp!

where the Fourier coefficient A™ is defined in terms of the Mathieu

functions pe,(p,qQ), » = s,¢, by

(4.9) Pelp, @) = > Ametns.

m=—o0

The corresponding overlaps for oblate spheroidal coordinates can be
obtained from the prolate overlaps (4.5)-(4.8) by making the replacement
a’w® — —a’e® in the speroidal wave function.

The overlaps between the spherical and conical bases are computed
in [15],[16] and those between the ellipsoidal and conical bases are dis-
cussed in [10], page 247.

The remaining overlaps are more complicated than those we have
listed.

It is easy to construct a Dbilinear generating function for all basis
sets of solutions of (0.1) listed here. Let {f,.(k)} be one of the eleven
bases for L,(S,) constructed above and let {¥,(x)} be the corresponding
basis for the solution space of (0.1). Then

Vi) = I(f3) = {fa Hx, -))

where H(x, -) e L,(S,), (3.8), for each xec R®.. An explicit computation
yields

@.10) (Hx, ), H, )> = 4n§%R)~ , R=@x—x)&—x).
Q.

On the other hand

{H(x,:),H(x', -)> = > <H(x, ), [0S0 HX', +))

4.11) be
= ,;_‘] v,x)7,(x)

and comparison of (4.10),(4.11) shows that 4z sin (wR)/wR is a bilinear
generating function for each of our bases.

Finally, as shown in [8] and [13], each of our eleven bases {7}
considered as functions of v, 0 < w < co, can be used to expand arbitrary
functions f e L,(R®.

https://doi.org/10.1017/50027763000017165 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017165

64 C. P. BOYER, E. G. KALNINS, AND W, MILLER, JR.

Section 5. Non-Hilbert space models.

Obviously, many separable solutions of (0.1) are not representable
in the form I(h), (2.1), for ke L,(S,). We shall investigate a few group-
theoretic methods for obtaining such solutions and relating different
types of separable non-Hilbert space solutions. These methods are less
elegant but more flexible than the techniques discussed earlier.

We begin by considering transforms (2.1) where the domain of in-
tegration is a complex two-dimensional Riemann surface rather than the
real sphere S,. In particular we set

GD k= oyl k) = (— 2 — t"WIF B L — tWIF 7,9)
where ¢ and g range over complex values, and write

T(x) = f ) dﬁ%h(ﬁ, ) exp [—%x(t +tYWIF R

5.2
+ L — VT F P - wﬁz] = 1) .

We assume that the integration surface S and the analytic function &
are such that I(h) converges absolutely and arbitrary differentiation
with respect to z,¥,z is permitted under the integral sign. Since k-k
=1 even for arbitrary complex B,¢ (t+# 0), it follows that ¥(x) is a
solution of (0.1).

Integrating by parts, we find that the operators P;,J; (1.2), acting
on the solution space of (0.1) correspond to the operators

Jt = it“(i Vit Fa, + W%ac)
J'=13,, P*=owVl+ Bt*, P'= —iop

(5.3

acting on the analytic functions h(B,%), provided S and % are chosen
such that the boundary terms vanish:

J*U = I(J*h) , P=¥ = I(P*h) ,

etc. Here J* = FJ, + iJ,, J*=1iJ;, P* = FP, + iP,, P* = iP,.
For our first example we set h = (22%)~2 and integrate over the
contours C, and C, in the g and ¢ planes, respectively.
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i ag/I+F=0,
BeC;

T -1 ' L
A
. f-plane

+—1 —i t-plane

Figure 1

In this case h satisfies the equations J-Jh = 0, J°%% = 0 and it is straight-
forward to verify that ¥'(x) = I(h) satisfies the same equations for z>0.
Thus, ¥ is independent of the spherical coordinates 6,¢ and is a linear
combination of the Bessel functions (2.11) for ¢ = 0. To determine the
correct linear combination we evaluate (5.2) in the special case x = y =
0. The integral is elementary and we find

70,0, =i 2 E7, >0,
T w?
S0
(5.4) U(x) = —(wp)""H{}}(wp)

whose H®(2) is a Hankel function of the first kind, [11]. Solution (5.4)
is a (traveling) spherical wave.
More generally we set

h= 7@ = [ (254::(41)3 12)?"” ]WP m(—p)(— )™

£=01,---, m=46,6—1,---,—4.

It is straightforward to verify that these functions and the operators
(5.3) satisfy the recurrence formulas (3.12),(3.17). Thus, the solutions
To(x) = I(f¥) also satisfy these relations. We have already computed
T™(x), and using these recurrence relation, we can obtain

(5.6) U0, 0,90) = —@)(0p) " "HR1p(0p) Y70, ¢) -

Next we consider the cylindrical system corresponding to the operators
5.3):

6.7 PrY =dorfR,, IR, =mfP,, 28,8 =588—ptr.
Using the contours C,,C, we find
(5.8) rd (r,0,2) = " (—1D)™2a)] n(ory1 + yHeimi-or

(5.5)
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for ye C,. Here we are using cylindrical coordinates 2]. From (5.5),

(5.7 and the corresponding integral representations ¥ = I(f) there
follows easily the expansion

69 Toem = (o[- ELE VWL pragwe,mas,

More generally, if ¥ is subjected to a translation T(g) = exp (a-P) we
obtain

T(@UP(x) = [ (2E4;:'(€1)i€7;) '7')?,)' ]1/2 n;\?w . (—1)r+m(jg-te)

X P w(way' 1 + e atT®, (x)dp ,
2+ a,>0,a, + ta, = ae**,a >0 .

(5.10)

Similar techniques can be used to expand traveling spherical waves in
other bases. In each case one derives the expansion for the complex
sphere model and then attempts to map the results to the solution space
of the Helmholtz equation via the transformation (5.2). Some important
cases are worked out (by another method) in [19], Section 16.

Other more complicated examples following this approach are worked
out in [18] and [13] where bases corresponding to the parabolic eylindrical
and the parabolic coordinates are constructed. The basis functions are
expressable as products of Hermite polynomials and associated Laguerre
polynomials, respectively, and our method allows the simple derivation
of addition theorems for these solutions under the action of E(3).

Next we consider identities for solutions of (0.1) which are derivable
by Weisner’s method, [20], [14]. The natural setting for this method is
the complex Helmholtz equation obtained by allowing all variables in
(0.1) to assume complex values. To treat this equation systematically
we should determine all complex analytic coordinate systems in which
variables separate in (0.1). However, here we consider only a few systems
of particular importance.

Of greatest practical importance is the spherical system (3.12)’. We
now study solutions of the complex equation (0.1) which satisfy (3.12)
for general ¢,meC. In terms of the complex sphere model (5.3) and
new complex coordinates z,p

(6.11) T= t“/l + ‘BZ ’ 0= "'_Zﬂ ’
the operators assume the form
J* = —10,,J” = (1 — p%d, — 2p70,),J° = 70,

5.12
( ) Pt =wr,P- =0l — ), PP =wp .
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Let

S, 0) = (6 —m)! I'(m + HCER(0) 2™

5.13
613 m=14,0—1,6—2,---

where C:(2) is a Gegenbauer polynomial and ¢eC such that ¢ + } is
not an integer. From the known recurrence relations obeyed by the
C:(2), [11], and (5.12) it is easy to verify

DO =mfP,JfP = (£m — Of P
JJf9 = —0(6 + 1) f$

5.14 POFO — @ o(¢ + m)(4 — m) (-1
(5.14) S 5 ﬂ f + 57 + 1 S
if([) — +o (“—},) _ a)(ﬁ + m)(ﬂ Fm — 1) f(é__l) .
20 4+1°™ 20 +1 et

These relations determine the action of &(3) on the basis {f{¥} where
=1Lyl x1,0,+2,---,m=14,4—1,4—2,... and 2/, is not an integer.
It is well-known that any entire function of x# can be expanded uniquely
in a series of Gegenbauer polynomials C:(x),n = 0,1,2, ..., (2v # integer),
uniformly convergent in compact subsets of C, [23], page 238. Thus,
one can exponentiate the P and J operators and compute the matrix
elements of these operators in a {f{¥} basis. The rather complicated
results are presented in [24]. One simple example is

(G.15) e rw — (%)“Wr(z 2) > CAn+1/2) p @ feEm

n!

where I,(2) is a modified Bessel function, [11].

Now we consider the relationship between these results and solutions
of the complex equation (0.1) in the spherical basis. Instead of the
complex spherical coordinates 7,8, ¢, 5], it is more convenient to use the
equivalent separable coordinates

(5.16) p= —cosf,r = —e¥sind,s = ir.

In terms of these coordinates the symmetry operators for the Helmholtz
equation are

Jt = —2d J- = (A — )3, — 2008,  J° =19,

p?
P+=fas——ﬁap—r—zar’
S S
GID  p-_ A=)y =5 | @D,
T ST S
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— 2
P = pd, + _(1____3)_5” — PT5. .
s 8

We search for a set of solutions {¥'{(x)} of (0.1) which satisfy relations
(5.14) when acted upon by symmetry operators (5.17). It is easily seen
that

T2(x) = S8R0, 7)

where S® gatisfies the recurrence formulas

_@_ —_ ﬁ @ = (¢+1) i ¢+ 1\ow — (6-1
(ds S)S () = wS(s) , (ds ¢ 1 )S () = wS(s) .

with independent solutions
It+1/2(ws)
S®(s) = (ws)—llz{
I —4-1/2((03) .
Choosing the upper solution we obtain the basis

(5.18) T2(s,0,7) = (6 — M) I'(m + $)(@8)™],,1(@8)CT3"(0)(20)™ .

It follows that the matrix elements giving the E(3) group action which
were computed for the {f{} basis are also valid for the {¥¥} basis. For
example, (5.15) leads to the addition theorem of Gegenbauer:

1,1 (88)@8) " = I'(4 + 1/2) Z (6 +n+ 1/2)],,n.10(8)
Ly (DCH () = (1 + r*/s* + 2rp/9)V* .

The complex sphere model can also be used to derive operational
identities relating solutions of (0.1). For example, from (5.12), (5.13)
we obtain the virtually trivial identity

¢ —m)! Cp (o' P)fiP = 2, {—m=0,1,.-..

(5.19)

However, for the model (5.17), (5.18) this identity assumes the non-trivial
form

2 I (s) 1
5.20 ’”*1/2( 05 a-—e) 0 — p’m) may2\S) L1z Cmrss
(5.20) 00 + s e s Vs ) ) -
Many other operational identities and addition theorems can be found
in [24].
We present one example to show how Weisner’s method in its general
form can be used to derive expansions of solutions of the complex equa-
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tion (0.1) in terms of spherical waves. Consider the Laguerre polynomial
solutions corresponding to the parabolic system 8]:

({Jl’ Pz} - {Jzy Px})f = -—221(1)f ’ ZJsf = mf .

Expressing these solutions in the coordinates (5.16) and expanding in
the spherical basis we find

e L (—s( + p))L(s(L — p)tm
= 3 S ™ (T, k= 0,1,2, - .

n=0

(56.21)

The coefficients a, can be determined by setting p = «/s and letting
s = 0 to obtain

1 & aa®
2m+1/21"(m _) a@ L(m) —_ 2 — n .
MY A Sl My y rrrrarag vy
Use of the transformation formula for the ,F, allows one to explicitly
compute the coefficient of «” on the left-hand side of this equation, with
the result

2m1%(m 4+ n 4+ 1/2)'(m + 1/2)I'(m + k + DI'(m + k + n + 1)
EYLm + DI + n + 1)

-k, —m —n, —n
N L E
Xs \m+1,—m—k—mn

A, =

For k = 0 this expression reduces to (5.15).

Section 6. R-Separable solutions of the Laplace equation.

In addition to the eleven coordinate systems which separate for both
the Helmholtz and Laplace equations there are other systems which R-
separate for the Laplace equation (0.2) alone. The existence of these
additional systems is related to the conformal symmetry of (0.2). All
known systems for which (0.2) separates or R-separates have the property
that the coordinate surfaces are orthogonal families of confocal cyclides
or their degenerate limits. These surfaces, together with the correspond-
ing Laplace separated equations, are described in detail in the classic
book of Bodcher, [5]. Our primary aim is to provide a Lie algebraic
characterization of the systems listed by Bocher.

Each R-separable coordinate system {g,v,p} with corresponding
separated solutions
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6.1) U(x) = R"u, v, ) A(WBE)C(p)

is associated with a two-dimensional subspace of commuting operators
in so(4,1)®. If S,,S, is a basis for this subspace, the separated solu-
tions are characterized by the equations

(6.2) 4¥ = 0,8S¥ =¥, S¥ =¥ .

Two systems are considered equivalent if one can be mapped to the
other by a transformation of the conformal group. A list of the six
R-separable systems is given in Table 2.

TABLE 2. R-separable systems for the Laplace equation.

Commuting operators S,, S, Separable coordinates
+ O D@ 1 Ky y= B[ oo~ D]
I 1— D, + K 2= | —(al)_(vlibl)_(pl)_ 1) T2
+ T3+ DT+ i, E=1+[£22]",

Sz = %(Pz + Kz)z + %(Pl + Kl)z

+ “Tb(g + K’

oy @+ D) _ o[ (e =D — D — D"
18] 8 =207t + 2D ip, k) z=R [ TR ]
B(p:_ g o — p-1|_—wo he
+2Pi-kp+ LP.K} =R 2]
+ L - py 2= R
_a P _ —i(p— ) — @) — a) |
Si=2(PuK}+ EPi-K)  R=2Re| e = |
+ (& + B2 a=>b=a+ipa,p real,
14] S, = J2 x=Rcosg

48, = (P; + K))* — a(P; — Ky) y =R 'sing

c= g ]
a
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R — [(;z— )@ — p) ]"2

a(a — 1)
3 [ (x — DA — p) ]m
a—1 ’
15] S, = J3 x=R"coso
48, = —4aD? — (P, — K,)* y=R'sing
sm o= 0G =0 ]"
ala — 1)
R — [_&]"2 n [(ﬂ — D -1 ]‘/2
a ala — 1) ’
16] S, =J3, 2 =R1cosgp
28, = afP;, K} + BK: — P2) y=R'sing
c= g )"
ab
R =2Re [ i(p — a)(p — a) ]"”
ale — b)
a=b=a+1p
171 S, =J2, 2 = R 'sinh écos p
S, = (P, + K,)* ¥y = R™'sinh &sin g

z2=R'lcos¥
R =coshé + sin¥

More specifically, for system 12] the parameters vary over the range
0<p<1<py<b<pu<a and each factor in the separated solution
satisfies

{W—ggx/?@—% - (—31—562— + —i}—e + %)}A(s) =0,

f(E) = (5 — a)(E - b)(&"" 1)$’§ = V0 .

This is the standard form of an equation with five elementary singu-
larities, but very little is known about the solutions. For system 13]
the parameters vary in the range —oo <p<0<p <1<y <oco and the
separated equations are (6.3) with a = b = « + 8.

For system 14] the parameters vary in the range y>a > 1, p <0,
0 < ¢ <2z and the solutions of (0.2) have the form ¥ = R™'E,(p)E,(o)e*™
where

6.3

(4vp® v + (7 —m)e— B =0
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(6-4) j=1’2’ $=#,P, P(§)=($_'a)(‘$'—1)$a
U3w.=mw., Szw.-—:-zw..

If we set g = sn’(a, k), p = sn*(B, k) where a = 1/k* then we find

x=R7'cosp, y=R'sing, 2z=kR'snasnp

6.5
€5 p_ kK 'dnadng + icnacnB, U = RVAR_, (e, K) A2 _1 (B, K)etm

where A2(z,k) is a solution of the Lamé equation

d’A

e + (k2 — n(n + Dk*sn¥(z, k)4 =0 .

The parameters «, range over the intervals a € [(K',iK’ + 2K], Be 2K
— iK’,2K + iK'].

For system 15] the parameters vary in the range 1 <p<a < g < oo,
0 <¢<2r and the separation equations are (6.4). Making the same
elliptic function substitutions as in the previous case, we find

x=R1'cosp, y=R7'sing, 2= R'kkdnadnp

6.6
(6.6) R = ksnasnf + kk'“‘chasnp , ¥ = R A% _, . (a, k)42 _, (B, k)et™

where o e [iK',iK’' + 2K], BelK,K + 2iK'].
For system 16] the parameters satisfy > 0,p<0,0 < ¢ <2z and
the separation equations are (6.4) with

P =¢—-a)¢—-b&, a=b=a+ip.
Setting ¢ = sn¥(a,t), p = sn’(B,t) where t = (s + is')(s — 18)7!, §* = (la]

— Rea)/2|al, we obtain solutions

U= R”ZA%_W(CY, t)A?n,—l/z(.B, t)e'lmga ’

6.7
6D ae[—iK',iK'], Bel2K — iK',2K + iK'] .

Finally, for system 17], toroidal coordinates, the eigenfunctions have
the form

¥ = (cosh & + sin &) 2E(&)et¢T+me
W =m¥, P, + KU = —2i4¥

[ simet + (3 -6 - ) |E@ = 0.

(6.8)

The associated Legendre functions P7,,(cosh¢), Q7. (cosh &) provide a
basis of solutions for this last equation.
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Systems 12]-16] are relatively intractible and only the toroidal system
17] has been widely used. The toroidal and spherical systems have much
in common. Indeed, for the complex Laplace equation these two systems
become equivalent under the complex conformal group. Bipolar coord-
inates, [7], page 108, are frequently used in connection with separation
of variables for (0.2) but these coordinates are conformally equivalent to
spherical coordinates. They are, however, inequivalent to spherical
coordinates with respect to the more physical scale-Euclidean group,
generated by E(3) and dilatations.

Nine of the seventeen R-separable systems for (0.2) correspond to
diagonalization of the operator J,: 2], 5]-8],14]-17]. These special systems
have the property that their eigenfunctions take the form ¥'(x) = @ei™e,
W ¥ = m¥, where @ is a function of the remaining two variables: If we
substitute ¥ into (0.2) and factor out e‘™ we obtain a differential equa-
tion for @ which in cylindrical coordinates is

(6°9) (arr + 7.—187 — r7'm? + azz)Q(’r’ Z) =0.

Equation (6.9) for fixed m > 0 is the equation of generalized axial-sym-
metric potential theory (GASPT). Its real symmetry algebra is isomorphic
to s¢(2, R). Indeed, a basis is provided by the operators K,, P,, D, (1.2),
(1.16), with commutation relations

(6'10) [D, P3] = Ps ) [D’ Ks] = —Ks ) [Ks, P3] = 2D y
and from (1.25), iii), (6.9) can be written as
(6.11) @GP+ 3K, — DY = (1 + mHD .

It is shown in [25] that the space of symmetric second-order symmetry
operators in the enveloping algebra of s4(2,R), modulo the Casimir
operaor P + K: — 2D?, decomposes into exactly nine orbit-types under
the adjoint action of SL(2,R). It is straightforward to check that the
nine separable systems for (6.9) correspond exactly to these nine orbit-
types.

Section 7. Identities for solutions of the Laplace equation.

Although it is not possible to find a Hilbert space model for solu-
tions of (0.2) which leads to a unitary representation of the conformal
group, we can still use Weisner’s method and also construct non-Hilbert
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space models in a manner analogous to that in Section 5. Consider the
expression

vw = ap[ Pnptexn[ Lt + 1)

(7.1)
+ %(t ity — ﬂz] = 1) ,

where h is analytic on a domain in C X C which contains the integration
contours C, X C, and is chosen such that I(h) converges absolutely and
arbitrary differentiation with respect to x,¥,z is permitted under the
integral sign. It is easy to verify that for each such 7,¥ = I(h) is a
solution of the Laplace equation (0.2). Moreover, integrating by parts
we find that the operators (1.2), (1.16) acting on the solution space of
(0.2) correspond to the operators

Pt = —Bt,P- = —pt,P" = —i,D = po, + %

J* = itpo, — it%d,,J~ = —pt=0, — 13, J° = td,

K* = tp~(Ba, — t9,)(Bo, — to, — 1), K~ = (t~)(B0, + t0,)(Bo, + t3, — 1)

K° = ig7'((t3,)* — (B3, ,

where J* = FJ, + i/, = iJ,;, K* = FK, + 1K, K’ = iK,, etc. Here we

are assuming to C,,C, and & are chosen such that the boundary terms

vanish for each integration by parts: P*¥ = I(P*h),J*¥ = I(J*h), etc.
For our first example we choose C,,C, as unit circles in the g and

t-plane, respectively, with centers at the origin and oriented in the

counter-clockwise direction. Then for

(7.2)

@D kY =D, JO = 3 att, £=0,12,

we can evaluate the p-integral by residues to obtain

—2r

(7.4) U(x) = I(h) = i

27
‘[ [tz cos o + 1y sin o — 2)%(e*)de .
0

From (7.3), 1 is an eigenfunction of D with eigenvalue —¢ — 1, so by
(1.25), J-J¥ = —4(¢ + 1)¥. Furthermore, ¥ is a solution of (0.2) which
is a homogeneous polynomial in z,y,z of order ¢. In particular for
j@ =t", —4 <m < ¢4, we have JU = m¥ so ¥ must be a multiple of
the solid harmonic p‘Y7(4, ¢), (spherical coordinates). Evaluating the con-
stant in the special case § = 0 we find
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1673(—1)%+14m p’
Var@2e + D6 — m)! (6 + m)!

(7.5) Uy =11 = Y70,0) .

Another example is provided by the contour C, in the Z-plane and
the contour C; which goes from f =0 to +oco along the positive real
axis in the g-plane, and the analytic function (g, t) = g™, ¢ =0,1,2, .- -,
m=4,¢6—1,..-.,—¢. Here ¥’ = I'(h) satisfies DV’ = (4 + PV, J-J¥' =
—4(¢ + DYV, JU" = m¥’ and it is easy to verify that

I
=10 = 20 [ eos 0 — isind cos (p — @] emeda
0
qem g1 1674 — m)! (£ + M) !]WY
= P09 »
R e 70,0

(7.6)

where p, 8, are spherical coordinates and 0 < 6 < =/2.
Now consider the equations

1.7 {Jy, P} — {J5 PDS =4S, Jf =mf

for the parabolic system 8]. In terms of model (7.2) the eigenfunctions
are

(7.8 J&.B, ) = e~ ¥*pH™ |

Setting 7 = £, in (7.1) and choosing contours C,, C, we find

re, =18 = —2x f" Jol(—22{z — ix cos @ — ty sin a})*le!™*da
0

= —A4xJ u(—iVAE)T (v 2p)eime

(7.9

in terms of parabolic coordinates &,7,¢. As usual, the fact that variables
separate enables us to compute the double integral. Using the contours
C., C, we similarly obtain
e, =18
— 271"1:7”“6“"" Im Jm(ﬁr)e—bz—z/zp g@_
0
(7.10) B

=21 JZR K [v22vz — iz cos a — 1y sin alet™ da
0
= iKW (VIO LG A)em™ , 2> 0,2 > |5

where K,(2) is a Macdonald function, [11]. The second and third equalities
are obtained by performing only one of the integrations. Note that the
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second equality yields the expansion of our solution in terms of cylin-
drical waves. Similarly, performing the ¢-integration in (7.6) first, we
find the expansion

(7.6) Ym = 2pim+igine f " Ta(Bre-rgdp, 2> 0
0

of a solid spherical harmonic in terms of cylindrical waves.
Applying the transformation I (with contours C,,C,) to both sides
of the identity

S&B, ) =tm ,ZZ.:, (:éj)‘ﬂ;l!—l

one can easily obtain an expansion of the solutions ¥®,, (7.9), in terms
of solid harmonics 7'7.

Corresponding to the oblate spheroidal system 71, the eigenvalue equa-
tions

I+ a’Pt+ aP)f = —2f, Jf=mf
in model (7.2) yield the eigenfunctions
(7.11) an(Bs 1) = BTV (aP)t™, V=24 1.

Choosing the case where m is a positive integer and v = ¢ + 4,4 > —1,
and applying the transformation I’ (contours Cj,C,) we find

T = IO
= 2aimviens [ Jm(ﬁT)J,(aﬁ)e‘ﬁ’f/_%

_ 2mi™ T (m 4 £ + 1)

7.12
(7.12) va cosh 7

e'™*P;™(cos a) Pl (tanh »)

0<a<%,0<0

where «, 7, ¢ are oblate spheroidal coordinates. The second equality gives
the expansion of our solution in terms of cylindrical waves. Again the
integrals are rather easy to evaluate because one knows in advance that
variables separate. In the case where v=¢+1,4=0,1,..., we can
expand (7.11) as a power series in 8 and apply I term-by-term to obtain
an expansion of (7.12) in solid spherical harmonics.

For the toroidal system 17] the eigenvalue equations
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P+ KO f =2¢f, Sf =mf
in model (7.2) yield the eigenfunctions

(@13 JRED = e HGonF(, " |2if),  m=—t—m— L.

We choose n,m = 0,1,2, --- and apply I’ (contours C;, C,) to obtain
ran(x) = I(f0
— 2mimtigine f o e‘ﬂz‘iﬁJm(rﬂ)ﬁm‘Fl(zﬂ;Z 1\22’,8)01,3
(7.14)

- n(—%)m(—l)"@m) | Y2 Cosh € + 2
exp [z(m;o + 4 + %)]P;_"{,z(cosh 8.
An explicit computation yields

exp (@P) [0 = 3. a5, .ot

(7.15) (e — Gy
nam = _— F1<_n,m—s ) _1)
o w_mi Y \omyq @Y
SO
(7.16) exp (aP )T {7 (x) = Z“j a8 TP (x)

s§=m

is the expansion of this toroidal system solution in solid spherical har-
monics. (The term-by-term integration used to derive (7.16) can easily
be justified by the Lebesgue dominated convergence theorem.)

As the above examples indicate, our non-Hilbert space model permits
us to derive integral representations and expansion formulas for the
Laplace separable systems. The analysis for systems related to the Lamé
and Whittaker-Hill equations proceeds in analogy with that in [16]. Of
course, the number of examples can be greatly multiplied by choosing
other contours in the f and ¢-planes. In addition, the Hilbert space
expansions for solutions of the wave equation (0,, — 4)¥% = 0 and the
EPD equation can be re-interpreted as Laplace equation expansions by
replacing ¢t with 4z for z > 0, [26], [27].

The most useful functions for application of Weisner’s method are
those associated with the spherical system. These functions are char-
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acterized as eigenfunctions of D and J°. It is easy to check that in the
model (7.2) the functions g¢ = ¢ -™p%™, ¢, m e C satisfy the recurrence

relations
Jr9R = (=6 £ Mg,  J'9Q0 = mg?
0gh — _ g+D | Pxg® = F gt:D
.17 g9 95y,
Dy = (¢ + D92, K'gp = (£ — m)gp™>

K29 = £(L F m)(4 F m — Dg¥P .

From these relations one can compute the matrix elements of a con-
formal transformation in the {9} basis. In the case where ¢ — m =
0,1,2, -.. one can check that the corresponding basis of solutions for
(0.2) which satisfies (7.17) is

TP w,t,0) = (£ —m)! r(m + é)C}"f,i’?(w)(Zt)m(P/i)"“ ,
(7.18) )
’W=COS¢9=%, t:w, p=[xi+x§+x§]1/2.
P P

Indeed, the relations (7.17) correspond to the known differential recur-
rence relations obeyed by the Gegenbauer polynomials C:(z). See [28]
for derivations of addition theorems for the eigenfunctions (7.18) based
on relations (7.17).

The general Weisner method for (0.2) leads to expansions of the
form

(7.19) T(w,t,0) = 3 am,gC;"_‘;;/Z(w)tm{p‘_l_l}
m,é 0

where ¥ is an analytic solution of (0.2). If JU = m¥ then ¥ satisfies
(6.9) and the double sum (7.19) reduces to a single sum on 4. A very
detailed discussion of possible Gegenbauer expansions in this special case
is given by Viswanathan [29].
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