INVARIANT MEANS ON DENSE SUBSEMIGROUPS OF TOPOLOGICAL GROUPS

ANTHONY TO-MING LAU

1. Introduction. Let S be a topological semigroup (i.e., S is a semigroup with a Hausdorff topology such that the mapping from $S \times S$ to S defined by $(s, t) \rightarrow s \cdot t$ for all s, t in S is continuous when $S \times S$ has the product topology) and C(S) be the space of bounded continuous real valued functions on S. For each f in C(S) and a in S, define $||f|| = \sup \{|f(s)|: s \in S\}$ (sup norm of f); $r_a f(s) = f(sa)$ and $l_a f(s) = f(as)$ for all s in S. If X is a sup norm closed subspace of C(S) which is translation invariant (i.e., $r_a(X) \subseteq X$ and $l_a(X) \subseteq X$ for all a in S) and contains the constant one function 1_s , then an element ϕ in X^* , the conjugate space of X, is a LIM (*left invariant mean*) if $\phi(1_s) = ||\phi|| = 1$ and $\phi(l_a f) = \phi(f)$ for all f in X and a in S. (See [2].)

A function $f \in C(S)$ is left (right) uniformly continuous if whenever $\{s_i\}$ is a net in S and s_i converges to some s in S, then $||l_{s_i}f - l_sf|| \to 0$ ($||r_{s_i}f - r_sf|| \to 0$); furthermore, f is uniformly continuous if f is left and right uniformly continuous. As known, LUC(S) and UC(S), the space of left uniformly continuous functions on S and the space of uniformly continuous functions on S respectively, are translation invariant, sup norm closed subalgebras of C(S) containing 1_S . Furthermore, if S is compact, then C(S) =LUC(S) = UC(S) (see [10, pp. 64-65]).

Let G be a topological semigroup and S be a dense subsemigroup of G. It is easy to see that

(*) if UC(S) has a LIM, then UC(G) also has a LIM.

Indeed, if ϕ is a LIM on UC(S), define $\tilde{\phi} \in UC(S)$ by $\tilde{\phi}(f) = \tilde{\phi}(f|_S)$, where $f|_S$ is the restriction of f to S; then $\tilde{\phi}$ is a LIM on UC(G) (see [9, Theorem 8)]. However, the converse of (*) is false in general even when G is compact. (Consider the following example of [9, pp. 640–641]: let S be the free semigroup on two generators with the discrete topology and $G = S \cup \{z\}$ be the one point compactification of S, where tz = zt = z for all $t \in G$. It is easy to see that C(G) has a LIM and yet UC(S) does not.)

The main purpose of this paper is to establish a partial converse of (*). Let G be a topological group and S be a dense subsemigroup of G. We show in § 3 that:

(1) If C(G) has a LIM, then UC(S) has a LIM.

(2) If LUC(G) has a LIM and S has finite intersection property for right ideals, then UC(S) has a LIM.

Received January 29, 1971 and in revised form, July 6, 1971. This work was supported by NRC Grant A-7679.

(3) If UC(G) has a LIM and S has finite intersection property for right ideals and finite intersection property for left ideals, then UC(S) has a LIM.

Unfortunately, we know of no example which shows that the condition "S has finite intersection property for right ideals" in (2) (and the corresponding condition on S in (3)) cannot be entirely dropped.

2. Extension of uniformly continuous functions on subsemigroups of topological groups. Recently, S. Wiley [12] has considered pairs S, T, where T is a topological semigroup and S is a subsemigroup of T such that each function in LUC(S) has an extension to a function in LUC(T). In this section, we consider extension properties of the similar type. Results in this section are essential tools for our main work in § 3. Proof of the early results of this section are adaptations of the proofs of [12].

For the rest of this paper, G will denote a topological group. If S is a topological semigroup and $a \in S$, then S[a] will denote the subsemigroup $\{aS \cap Sa\} \cup \{a\}$ of S.

LEMMA 2.1. Let S be a dense subsemigroup of G and $a \in S$. If $\{s_i\}$ and $\{t_j\}$ are two nets in S[a] which converge to some $g \in G$, then $\lim_i f(s_i)$ and $\lim_j f(t_j)$ exist and are equal for each $f \in UC(S)$.

Proof. Let $f \in UC(S)$ be arbitrary and fixed. We first assume that $\lim_{i} f(s_i) = L_1$, $\lim_{j} f(t_j) = L_2$ and $L_1 \neq L_2$. Let $\epsilon = |L_1 - L_2|$. For each $n \in N$, where N is the family of neighbourhoods of g, we can find elements, s_n and t_n from $\{s_i\}$ and $\{t_j\}$, respectively, with the property that

$$|f(s_n) - f(t_n)| \ge \epsilon.$$

Clearly, the nets $\{s_n: n \in N\}$ and $\{t_n: n \in N\}$ also converge to g. For each $n \in N$, pick p_n , q_n in S such that $s_n = ap_n$ and $t_n = q_n a$. Then the nets $\{p_n: n \in N\}$, $\{q_n: n \in N\}$ converge to $a^{-1}g$ and ga^{-1} , respectively. Let $\{w_k: k \in D\}$ be a net in S which converges to $w = ag^{-1}a$. Then for each $n \in N$, $k \in D$,

$$\begin{aligned} \epsilon &\leq |f(ap_n) - f(q_n a)| \\ &\leq |f(ap_n) - f(q_n w_k p_n)| + |f(q_n w_k p_n) - f(q_n a)| \\ &\leq ||l_a f - l_{q_n w_k} f|| + ||r_{w_k p_n} f - r_a f||, \end{aligned}$$

which is impossible since the nets $\{q_n w_k : (n, k) \in N \times D\}$ and $\{w_k p_n : (n, k) \in N \times D\}$ (where $N \times D$ denote the product directed set of N and D) in S converge to $a \in S$, and $f \in UC(S)$. Hence $L_1 = L_2$.

It remains to show that $\lim_i f(s_i)$ and $\lim_j f(t_j)$ exist. If $\lim_i f(s_i)$ does not exist, say, then we may find subnets $\{f(s_{i'})\}$ and $\{f(s_{i''})\}$ of the net $\{f(s_i)\}$ which converge to two distinct real numbers L_1' and L_2' in the closed interval [-||f||, ||f||]. However, the subnets $\{s_{i'}\}$ and $\{s_{i''}\}$ of the net $\{s_i\}$ also converge to g. Consequently, it follows from what we have proved that $L_1' = L_2'$, contradicting our assumption that L_1' and L_2' are distinct.

LEMMA 2.2. Let θ be a mapping from a Hausdorff space X into a metric space (Y, d). Then the following are equivalent:

(a) There exists a dense subspace T of X with the property that whenever $\{t_i\}$ is a net in T which converges to a point x in X, then $d(\theta(t_i), \theta(x))$ converges to 0.

(b) θ is continuous.

Proof. (b) \Rightarrow (a) is trivial. Conversely, if (a) holds, and θ is not continuous, then there exist $\epsilon > 0$ and a net $\{x_i : i \in D\}$ in X which converges to a point x_0 in X such that $d(\theta(x_i), \theta(x_0)) \ge \epsilon$. For each $i \in D$, let $\{t_{(i,j)} : j \in E_i\}$ be a net in T which converges to x_i . Let P be the product directed set $\times \{E_i : i \in D\}$. If $(i, h) \in D \times P$, define $t_{(i,h)} = t_{(i,h(i))}$. Then the net $\{t_{(i,h)} : (i, h) \in D \times P\}$ in T converges to $\lim_i \lim_j t_{(i,j)} = x_0$ (see [8, p. 69]). By assumption, we may choose $(i_0, h_0) \in D \times P$ such that whenever $(i, h) \ge (i_0, h_0), d(\theta(t_{(i,h)}) - \theta(x_0)) < \epsilon/2$. Furthermore, we can also choose $j_0 \in E_{i_0}$ such that $j_0 \ge h_0(i_0)$ and $d(\theta(x_{i_0}), \theta(t_{(i_0, j_0)}) < \epsilon/2$. Define $h_1 \in P$ by $h_1(i) = h_0(i)$ if $i \neq i_0$ and $h_1(i_0) = j_0$. Then $(i_0, h_1) \ge (i_0, h_0)$ and $t_{(i_0, j_0)} = t_{(i_0, h_1)}$. Consequently,

$$\begin{aligned} \epsilon &\leq d\left(\theta(x_{i_0}), \theta(x_0)\right) \\ &\leq d\left(\theta(x_{i_0}), \theta(t_{(i_0, f_0)})\right) + d\left(\theta(t_{(i_0, h_1)}, \theta(x_0))\right) \\ &< \epsilon, \end{aligned}$$

which is impossible. Hence, θ is continuous.

THEOREM 2.3. If S is a subsemigroup of G such that \overline{S} is a group, then for each $f \in UC(S)$, there exists $f \in C(G)$ such that $F|_S = f$.

Proof. Using Tietze's extension theorem, we may assume that $\overline{S} = G$. Let $a \in S$ be fixed. It is easy to see that S[a] is also dense in G. For each $g \in G$, define $F(g) = \lim_{i \to i} f(s_i)$ where $\{s_i\}$ is a net in S[a] converging to g. It follows from Lemmas 2.1 and 2.2 that F is well defined, $F \in C(G)$, and $F|_S = f$.

If G is a compact group, then UC(G) = C(G) and \overline{S} is a group for any subsemigroup of G (see, for example, [6, p. 99]). Hence we have:

COROLLARY 2.4. If G is compact and S is a subsemigroup of G, then for each $f \in UC(S)$, there exists $F \in UC(G)$ such that $F|_S = f$.

Remark 2.5. Corollary 2.4 was proved by Wiley [12, Theorem 4.6] for the case when S is abelian.

The next lemma, due to Wiley [12], follows immediately from [7, Theorem 3] and the observation that if G is a topological group, then LUC(G) is precisely the uniformly continuous bounded real valued functions on (G, R), where R is the right uniformity on G (see, for example, [6, p. 21]).

LEMMA 2.6 (Wiley [12, Lemma 3.5]). If G_0 is a subgroup of G and $f \in LUC(G_0)$, then there exists $F \in LUC(G)$ such that $F|_S = f$.

LEMMA 2.7. If S is a dense subsemigroup of G with finite intersection property for right ideals and $F \in C(G)$ such that $F|_S \in LUC(S)$, then $F \in LUC(G)$.

Proof. We first note that since S has finite intersection property for right ideals, $G_0 = SS^{-1}$ is a subgroup of G containing S (see, for example, [1, p. 36]). Let F_0 denote the restriction of F to G_0 . If we can show that $F_0 \in LUC(G_0)$, then by Lemma 2.6 there exists $\tilde{F}_0 \in LUC(G)$ which extends F_0 . Since $\tilde{F}_0(s) = F(s)$ for all $s \in S$ and S is dense in G, it follows that $F_0 = F$.

It remains to show that $F_0 \in LUC(G_0)$. If $\{s_i\}$ is a net in S converging to some $g \in G_0$, let $a, b \in S$ such that $g = ab^{-1}$. Then

$$\begin{aligned} ||l_{si}F_0 - l_gF_0|| &= ||l_b(l_{si}F_0 - l_gF_0)|| \\ &= \sup \{|F_0(s_ibt) - F_0(gbt)| : t \in S\}, \end{aligned}$$

which converges to 0 since the net $\{s_ib\}$ converges to $gb = a \in S$ and $F_0|_S \in LUC(S)$. It follows from Lemma 2.2 that the mapping $\theta: G_0 \to C(G_0)$ defined by $\theta(g) = l_g F_0$ for each $g \in G_0$ is continuous when $C(G_0)$ has the sup norm topology, i.e., $F \in LUC(G_0)$.

THEOREM 2.8. Let S be a subsemigroup of G with finite intersection property for right ideals. If \overline{S} is a group, then for each $f \in UC(S)$, there exists $F \in LUC(G)$, such that $F|_{S} = f$.

Proof. By Lemma 2.6, we may assume that $\overline{S} = G$. The theorem now follows from Theorem 2.3 and Lemma 2.7.

COROLLARV 2.9. If S is a subsemigroup of G with finite intersection property for right ideals and finite intersection property for left ideals, then for each $f \in UC(S)$ there exists $F \in UC(G)$ such that $F|_S = f$.

Proof. It follows from Theorem 2.8 that there exists $F \in LUC(G)$ such that $F|_S = f$. Furthermore, an application of Lemma 2.6 (and interchanging "left" and "right") shows that F is also right uniformly continuous.

3. Main results. We are now ready to state and prove our main results.

THEOREM 3.1. Let S be a dense subsemigroup of G.

(a) If C(G) has a LIM, then UC(S) has a LIM.

(b) If S has finite intersection property for right ideals and LUC(S) has a LIM, then UC(S) has a LIM.

(c) If S has finite intersection property for right ideals and finite intersection property for left ideals, and UC(G) has a LIM, then UC(S) has a LIM.

Proof. We will prove (a). The proofs for (b) and (c) are similar.

If ψ is a LIM on C(G), define $\tilde{\psi} \in UC(S)^*$ by $\tilde{\psi}(f) = \psi(\tilde{f})$, for each $f \in C(S)$, and \tilde{f} is the *unique* function in C(G) extending f (Theorem 2.3). It

is easy to see that $||\tilde{\psi}|| = \tilde{\psi}(1_S) = 1$. Now if $a \in S$ and $f \in C(S)$, then $l_a \tilde{f} \in C(G)$ and $l_a \tilde{f}(s) = (l_a f)(s)$ for each $s \in S$. Consequently, $l_a \tilde{f} = (l_a f)^{\sim}$. Hence $\tilde{\psi}(l_a f) = \psi(l_a f)^{\sim} = \psi(l_a \tilde{f}) = \psi(\tilde{f}) = \tilde{\psi}(f)$.

COROLLARY 3.2. If G is a locally compact group such that UC(G) has a LIM, and S is a subsemigroup of G such that \overline{S} is a group, then UC(S) has a LIM.

Proof. UC(G) has a LIM implies that $C(\overline{S})$ has a LIM (see [5,Theorem 2.3.2]), and hence UC(S) has a LIM.

COROLLARY 3.3. If G is compact, then UC(S) has a unique LIM for each subsemigroup S of G.

Proof. Since UC(G) has a LIM (see [13, p. 224]) and \overline{S} is a group [6, p. 99], it follows from Corollary 3.2 that UC(S) also has a LIM. If ϕ_1 and ϕ_2 are distinct LIM on UC(S), there exists $f_0 \in UC(S)$ such that $\phi_1(f_0) \neq \phi_2(f_0)$. For each $F \in UC(G_0)$, $G_0 = \overline{S}$, define $\phi_i(F) = \phi_i(F|_S)$, i = 1, 2. Then as is readily checked, $\phi_i(l_sF) = \phi_i(F)$ for each $s \in S$.

Since S is dense in G_0 and the mapping $s \to l_s F$, $s \in S$, is continuous, it follows that $\tilde{\phi}_1$ and $\tilde{\phi}_2$ are LIM on UC(G_0). Let $F_0 \in$ UC(G_0) such that $F_0|_S = f_0$ (Corollary 2.4), then $\tilde{\phi}_1(F_0) \neq \tilde{\phi}_2(F_0)$, which is impossible by the uniqueness of LIM on UC(G_0) (see [11]).

References

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. I (Amer. Math. Soc., Providence, 1961).
- 2. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- 3. K. Deleeuw and I. Glicksberg, Application of almost periodic compactification, Acta Math. 105 (1961), 63-97.
- 4. Dunford and Schwartz, Linear operators, Vol. I (Interscience, New York, 1968).
- F. P. Greenleaf, Invariant means on topological groups and their applications (Van Nostrand, New York, 1969).
- 6. E. Hewitt and K. Ross, *Abstract Harmonic Analysis*, Vol. I (Springer-Verlag, New York, 1963).
- M. Katetov, On real valued functions on a topological space, Fund. Math 38 (1951), 85-91 and Fund. Math. 40 (1953), 203-205.
- 8. J. L. Kelly, General topology (Van Nostrand, New York, 1963).
- 9. T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630-641.
- 10. I. Namioka, On certain actions of semi-group on L-spaces, Studia Math. 29 (1967), 63-77.
- W. G. Rosen, On invariant means over compact semigroups, Proc. Amer. Math. Soc. 7 (1956), 1076–1082.
- 12. S. Wiley, On the extension of left uniformly continuous functions on a topological semigroup, Ph.D. Thesis, Temple University, Philadelphia, 1970.
- 13. N. W. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 221–232.

University of Alberta, Edmonton, Alberta