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ON THE COHOMOLOGY OF EXTENSIONS B Y A
HEISENBERG LIE ALGEBRA

HANNES POUSEELE

This article describes the cohomology spaces of any Lie algebra containing a Lie
algebra of Heisenberg type (whose cohomology was studied by Santharoubane) as an
ideal of codimension 1. For instance, the twisted standard filiform Lie algebras are
of this kind. We give an explicit formula for the Betti numbers of this Lie algebra,
and use this to describe new families of algebras whose Betti numbers do not behave
unimodally.

1. INTRODUCTION

Although defined in linear algebra terms, the cohomology of a Lie algebra remains
difficult to describe. Even in determining the Betti numbers 0% = i / ' (gn ,R) of the Lie
algebras in a family {fln}n, one meets serious combinatorial problems (see for instance
[2, 3 , 7]). To handle these, we use spectral sequence type arguments, thus relating the
cohomology of the Lie algebra we are interested in, to a Lie algebra whose cohomology
has already been studied.

Let hn be a (real) Heisenberg Lie algebra with a basis {x\, ...,xn,yi,... yn, w} and
corresponding Lie bracket

(1) [xi,yi] = w

for all 1 ^ z < n. The following theorem is the central result of this article.

THEOREM. (With notations as above.) Let g be an extension of the one-dimensional

Lie algebra (z) by hn, for some n,

1 • h n • g • {z) • 0
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such that g acts trivially on the centre 3 = (w) of hn. Let f = g/3. Then

&(fl) =

for p = 0 or p = 1,

for 2 < p < n,

for n + 2 < p < 2n,

for p = 2n + 1 or p = 2n + 2.

The condition that z acts trivially on the centre of hn is equivalent to the condition
that g is unimodular. In case g is nilpotent, the action of g on w is automatically trivial.
In general, this need not be the case; an easy counterexample is the extension of rji by
(z) determined by

[z,x\] = Xi, and [z, w]=w.

Picking an extension of (z) by hn corresponds to choosing a derivation of hn; any deriva-
tion of hn has a matrix representation with respect to the basis given in (1) of the form

f
A

C

{ 01 • • • an

B

al- A1

b! . . . bn

•

0

0

;

0

a )

where A,B,C€ Rnxn with B and C symmetric; I is the identity matrix of dimension n.
In the setting of the main theorem, the parameter a equals zero.

We apply our theory to two families of Lie algebras. First of all, we have a look at
the algebras bn with a basis {xi , . . . , xm j / i , . . . yn, w, z} and Lie bracket

for all 1 ^ i < n. We compute its Betti numbers in terms of the Betti numbers of the
algebra a,, determined by

[2, Xi] = yt

with respect to a basis {x! , . . . ,xn , j / i , . . . , yn, z}. The Betti numbers of the algebras a,,
have been studied in [2]. An elementary analysis shows that, for any n > 5, the Betti
numbers of bn do not behave unimodally (that is, 0i(bn) ^ Pi+i(bn) for all 0 ^ i < n), in
contrast to, for instance, Lie algebras containing an Abelian ideal of codimension 1 (see

[I])-
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The second type of Lie algebras we study, is the family of the twisted standard

filiform Lie algebras gn given by

(2)

[z, Xi] = xi+i, for all 1 ^ i ^ 2n - 1

[z,x2n] =w,

[ii, x2n_i+1] = (-!)'«;, for all 1 < i < n

with respect to a basis {xi , . . . X2n, u>, z). Again, examples indicate that the Betti numbers
of these algebras do not follow a unimodal distribution. The heart of the proof of this
fact would involve studying a special type of partitions of integers, which is in itself an
interesting problem, but is beyond the scope of this article.

2. COHOMOLOGY OF EXTENSIONS BY THE ONE-DIMENSIONAL LIE ALGEBRA

Let g be any finite dimensional Lie algebra with a basis {x j , . . . , xn}, and suppose xn

is central. Let pr : g —y f = g/(xn) be the projection (also denoted by ~). Then pr induces
a map pr, : (A*g, dg) -¥ (A*f, df) of differential graded algebras, with A*~1(ii,..., xn_i)
A xn = A*~'f as kernel. Applying the Hom(—,R)-functor to the short exact sequence of
differential graded algebras

0 A*f 0

and taking cohomology, induces a long exact sequence,

(3)

LEMMA 1 . (With notations as above.) Let u 6 A2f such that i2(u) = d\x*n. Then

the connecting homomorphism dp : i/p(f) -> ifp+2(f) is given by

PROOF: First of all, note that j2(dl
gx'n)(xi) = d\x*n{xi A xn) = 0, such that dlx'n

is contained in the image of i2, and u does exist. The connecting homomorphism dp is
induced on cohomology by following the dotted arrows in the diagram

Ap + 1g* -A p + 1 f

iP+2 t

Ap+2f , ;. A p + V
iP+2

Ap+1f.
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Let / 6 Apf* such that dj7 = 0. Then / lifts to an element J € Ap + 1g' by defining

l(x- A A x ) - l f(xn*---Axh) i f i p + i = « .;i«,,A...Aiw)-|0 otherwise

for any 1 ̂  i\ < • • • < ip+\ ^ n. In other words, / = ip(f) A x ' . Therefore,

E X A M P L E . Let gi be the twisted standard filiform Lie algebra of dimension 4 (see (2)
for the description of a basis and its corresponding Lie brackets). We compute the
cohomology of 0i in terms of the cohomology of f2 = Qi/(w), the standard filiform Lie
algebra of dimension 3 given by

[z,xi] = x2.

To do this, we need to compute the connecting homomorphisms d° and d1. Since, for
any c € #°(f2) = K, we have d°c = c(z* A x\ — x\ A zj), d° is injective. In degree 1, a
class [cxz* + c2xj] G Hl{fo) maps to &l{[c\z' + c2xj]) = [-(c2 + cx)z* AxJ Axj], so d1 is
surjective. Now we know the connecting homomorphisms in the long exact sequence (3)
relating the cohomology of jjx to the cohomology of f2, we know that

It turns out this injectivity or surjectivity of the connecting homomorphisms in the

long exact sequence (3) is typical for an extension of the one-dimensional Lie algebra by

a Heisenberg Lie algebra f)n.

3. COHOMOLOGY OF EXTENSIONS BY A HEISENBERG LIE ALGEBRA

Let g be an extension of (z) by the Heisenberg Lie algebra hn,

0 • l j B • 0 * (z) • 0

such that the adjoined action of z on the centre (w) of hn is trivial (see (1) for the
description of the basis we use and its related bracket structure). Then w is central in
0. Write f = 0/(iu) for the quotient algebra. The long exact sequence (3) relates the
cohomology of 0 to the cohomology of f. In this long exact sequence, the connecting
homomorphism dp is given by the wedge product with

for some z' e f. Since there is no confusion here about the fact that we are working in

the quotient algebra f, we do not mention the projections explicitly.
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PROPOSITION 2 . (With notations as above.) For each p, the connecting ho-

momorphism dp has maxima/ rank, that is, dp is injective for all p ^ n — 1, and dp is

surjective for all n ^ p.

We first of all use this proposition to prove the main theorem of this paper, post-

poning the proof of the proposition itself to the following section.

P R O O F O F THE M A I N T H E O R E M : First of all, since the five-term sequence

rfP-2 jP

coming from (3), is exact, we know that

dim H"(Q) = dim Im ip + dim Im f = /?p(f) - dim Im dp~2 + dim ker dp~l.

Now let p ^ n. Then both dp~2 and dp~x are injective, so

dimiF(g)=/3p(f)-/?p_2(f).

For p ^ n + 2, both dp~2 and dp-1 are surjective, so

In case p = n + 1 we know that d""1 is injective and dn surjective, so

1(0) = ^ + 1 ( f ) - A._1(f) + A.(f) - /3n+2(f)

by Poincare duality.

4. A PROOF OF PROPOSITION 2

In this section, we show that the map dp = dp : Hp{\) —> /fp+2(f) on the cohomology
of f, induced by the wedge product with

t=i

has maximal rank.

Let a be the Abelian ideal of f generated by x\,..., xn,yi,..., yn. Then, according
to [4], the cohomology of f fits into a long exact sequence

. . . • Hp-l(a) — IF-^a) - ^ — Hp{\)

ip 6"

where the connecting homomorphism 6P : Hp(a) —t Hp(a) is induced by the adjoined

action of z on a. D
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LEMMA 3 . (With notations as above.) Let d* : Hp(a) ->• Hp+2(a) be the map
induced by the wedge product with

Then the diagram

jP

dP-i dp - l

,P+2APT" ,rr*

— H"+l(a) — #p+2(fn-i)

d?(4)

is commutative.

Although the lemma below is well-known (see for instance [8]), we include a proof
of this result for completeness.

LEMMA 4 . Let o,, be tie 2n-dimensional Abelian Lie algebra generated by
n

xi, . . . , ! „ , j / i , . . . , yn- Let u = 53 ij A y{. Then, for any p ^ 0, the map

has maximal rank, that is, dp is injective for all 0 ^ p ^ n — 1, and surjective for all
n - 1 < p ^ 2n.

From these two lemmas, proposition 2 follows at once. For p ^ n — 2, both dj"1 and
dj are injective, so the Five Lemma (see [5]) applied to the diagram (4) assures that also
dp is injective. For p > n — 1, both dp-1 and dp are surjective, and therefore, according
to the Five Lemma again, dp is also surjective.

PROOF OF LEMMA 3. First of all, we show that dp+1 ip = ip+2 dp. Let / 6 Apo*.
Then

dpi"(f) = i"(f) A z* A z" + i"(f) iA Vi.

But ip(/)(xil A . . . A xu A yh A . . . A yjp_.+l) = 0 for all s < p + 1, 1 ^ ix < • • • < i, < n
and 1 ^ ji < • • • < jp-,+i ^ n. Therefore,

Now

i"{f) A 2* A z'* = 0.

dpip(/) = ip(/) A (f^x! A yA = iP+»(/ A «) = ip+2dp/.
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Next, we show that j p + 2 dp = dp j p . Let / be a representative of a cohomology class
in Hp(^n-i). Since j * just means restricting the domain to A*a, we have

jp+2dp(f) = jp+2(f A u) = ff A j2u = -f Av = -dpff.

Finally, we show that Sp+2 dp = dp 5". Let / € Apo*. Since Sp is nothing but the
action induced by the adjoined action of z (see [4]), we have

Sp+2dp(f) = z • ( / A v) = dp+25pf + fA(z-v).

But zv = 0, and therefore Sp+2dp = dp+26p. D

4.1. P R O O F OF LEMMA 4. We prove lemma 4 by induction on the dimension of a,,.

For n = 1, the image of 1 € A°aJ under d° is just x\ A y{, so d° is injective. Clearly,

since A3ai = A4ai = 0, d} and dj are surjective.

Now suppose this lemma has been proved for even dimensional Abelian Lie algebras

up to dimension 2(n - 1). Fix p. When decomposing Apa^ as

(5) x\ A A ' - X - i + y\ A A " " 1 ^ - ! + xj A y{ A A ' - ^ - i +

we see that

(6) dp
n(x{ A / ) = x\ A dpZ\f for / e AT

(7) dp(y{ A / ) = y\ A dp
nZ\f for / € A'

(8) dp
n(x\ A y\ Af)=x\A y\ A dp~_\f for / G A'

(9)

Therefore, dp is injective (or surjective) if and only if both d^l\ and

are. Note that a? is injective (or surjective) in case both d^_j and d^I2, are.

For p ^ n — 2, the induction hypothesis implies that d£lj, d^I, and dP
l_1 all are

injective, so dp is as well. Analogously, for p > n, we know from the induction hypothesis

that d^J2,, d^I1! and dp
l_1 are surjective, so dp is too. D

For p = n — 1, the induction hypothesis states that the maps djjlj and d"Z? are

injective, whereas d"l} is surjective. To settle this last case, we need to show that a""1

is injective (or, equivalently, surjective). This is done by showing that

k e r d ^ n l m d ; ; : } =0 .

In fact, we prove slightly more than this in
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LEMMA 5 . (With notations as above.) For each 2 ^ k < n, let

D* = dn+*~2 dn~*+2

Then Im d£-fc n ker D* = 0.

Since the proof of lemma 4 for a Lie algebra of dimension 2n only needs lemma 5
for a Lie algebra of dimension 2(n — 1), we may safely use lemma 4 for Lie algebras of
dimension 2n while proving lemma 5 for algebras of dimension 2n.

PROOF OF LEMMA 5: We proceed by induction on n. For n = 2 we only need to
check the case k = 2. In this case

Im d° = (xi Ayi+x2A y2)

while
d2(ii A j/i + x2 A y2) = -2a?i A x2 A j/i A y2 # 0.

Now suppose the lemma has been proven for Abelian Lie algebras up to dimension 2(n-l) .
Let 2 ^ k ^n. We decompose An~* and An~*+2 again as in (5), and use the expressions
(6), (7), (8) and (9) for d£ with respect to these decompositions.

Any element of Im dj|~* is of the form

*l A d £ i ~ 7 i + V'i A <C?-x/2 + *\ A Vi A {h + <Z\-2h) + <£li/4,

where fu f2 € A"-*"1^-!, f3 G A""*"2^-! and /4 £ A""*^-!. For the map D* we find

D* (x{ A 9l) = x\ A (d«t*-3. . . dn
n-_1+19i) = x\ A D*_l 5 l

for any g^ G A""*"1"1^-!, and analogously

DJIM A 52) = yi A (d^i*-3... dS:*+15j) = yj A D*_lSa

for any g2 € An~*+10n_i. For £)* applied to the last two parts in the decomposition of
An~*+20n one proves easily that

D*(xt A y{ A g3 + g<) = x\ A y{ A ((fc - l )D£k« + D*lld^f53) + d^*-2I?*:|54

for any 53 G A""*^-! and any g4 G An~*+20n_i.
Now suppose g — x\ A gi + y\ A g2 + x\ A y\ A 53 + 54 is contained in Im dj|~* n ker D*.

Then we have

(10) D*_lfll = 0,

(11) D*_l52 = 0,

( 1 2 ) ( f c * 1 j 1 j

(13)

https://doi.org/10.1017/S0004972700038466 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038466


[9] Cohomology of extensions 467

and there exists a / = x\ A / i + y{ A f2 + x\ A y\ A / 3 + /4 € An/2~2On such that

(14) <Cf~7i = 5i,

(15) drn-_\-xh = 92,

(16) f4+dn
nZ

k
1-

2h = 93,

(17) dZlif* = 54-

The induction hypothesis implies that the systems of equations (10), (14) and (11), (15)
do not have a solution except the trivial one. From equations (12) and (17) it follows
that

Stated otherwise, dJJI*((A; - l ) / 4 +53) € ker£)*l}. The induction hypothesis now states
that d^Zi{{k - l ) / 4 + g3) = 0, and thus g3 = -(k - l ) / 4 by the injectivity of d£lf.
Substituting g3 in (16) yields

<C?-2/3 = kf4

while (17) combined with (13) gives

The induction hypothesis again yields / 4 = 0, and therefore #3 = <jr4 = 0. D

5. EXAMPLES

5.1. A FAMILY OF THREE-STEP NILPOTENT LlE ALGEBRAS. Let n ^ 1 and bn the Lie
algebra of dimension 2n + 2 with a basis

{xu...,xn,yu...yn,w,z}

and Lie bracket

[z,Xi) = yi, [xuyi] = w

for all 1 < i < n. Then bn is an extension of (z) by the Heisenberg Lie algebra hn. The
Betti numbers of the quotient algebra fn = bn/(w) are given by

n + 1

where [x\ denotes the integer part of x (see [2]). The main theorem allows us to compute

the Betti numbers of bn in terms of the cohomology of fn.
The table below lists the Betti numbers (or, at least, half of them) up to dimension

26.
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1
1
1
1
1
1
1
1
1
1
1

2
3
4
5
6
7

s
s
10
11
12

2
5
11
IS
29
41
55
71
89
109
131

e
14
35
69
119
188
279
395
539
714

12
40
120
273
532
936
1530

2365

3498

40
125
399
980

2064

3915

6875

11374

H.

100
385
1372

3696

8460

17325

32670

Pouseele

350
1274

4704

13320

32175

69575

980
4116

16380

49500

127050

3528

14112

57420
179085

10584

47124
202554

38808

165528

[10]

13 155 923 4992 17940 57772 138424 291005 479765 665379 722007 566280 453024

As illustrated in the figure below (showing the distribution of the Betti numbers of
0n for n — 3,4,5,6,10 and 40), these Betti numbers do not have a unimodal distribution.
It is easy to prove that

n!(nn\(n +1)1 in \
(n/2)l(n/2 + l)!(n/2-H)l(n/2 + 2)! (2 " V ^ B eVen'

n - 1 for n odd.

The sign of this difference is determined by a linear polynomial; for n = 1 or n = 4
we see that /?n(bn) = /3n+i(bn), for n = 2 we have /3n(bn) < /3n+i(bn) and for n = 3 or
n ^ 5 w e have /?n(bn) > Ai+i(bn), thus implying non-unimodality. An analysis along the
same lines allows us to determine exactly the number p such that /3p_i(bn) < /9p(bn) but

5 .2 . COHOMOLOGY OF THE TWISTED STANDARD FILIFORM LIE ALGEBRAS. Let fln

be the twisted standard filiform Lie algebra of dimension n + 2 given in (2). Then gn is
an extension of (z) by the Heisenberg algebra hn, and gn/{w) is just the standard filiform
Lie algebra fn of dimension n +1. According to [3], the Betti numbers of this Lie algebra
are given by the formula

where

«P = # (ai,-->aP) € < ap < n and

Again, the main theorem tells us how to compute the Betti numbers of gn in terms of
the Betti numbers of fn. For the Betti numbers (at least, half of them) of the algebras
0n up to dimension 26 we find
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04

00
88

010

012
014

Olfl

018

030

022
024

026

2
2

2

2
2
2
2
2

2

2

2

2
2

3

5
6
7
8
9
10
11
12

2
4

13
19
26
34
43
53
64
76

4

22
41
68
105
152
211
284
371

23
61
129
240
406
643
970
1405

20
59
177
414
839
1541

2636
4267

50
163
530
1342

2929

5773

10553

134
466
1630

4410
10252

21474

376
1388

5129
14657

35980

1100

4243

16430
49232

3320

13278 10260

53456 42307

Again, we see that the Betti numbers of these low-dimensional examples follow a
non-unimodal distribution. The figure below shows the distribution of the Betti numbers
of gn for n = 3,4,7,10 and 12. However, a proof of this fact would probably involve
partition functions and, in particular, the way their coefficients grow with respect to one
another, which is far beyond the scope of this text.
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