
J. Functional Programming 7 (5): 541–547, September 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

541

More haste, less speed:

lazy versus eager evaluation

RICHARD BIRD, GERAINT JONES and OEGE DE MOOR
Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

Nicholas Pippenger has recently given a problem that, under two simple restrictions, can be

solved in linear time by an impure Lisp program, but requires Ω (n log n) steps to be solved

by any eager pure Lisp program. By showing how to solve the problem in linear time with a

lazy functional program, we demonstrate that – for some problems at least – lazy evaluators

are strictly more powerful than eager ones.

Capsule Review

This paper extends a result of Pippenger that shows that programs using mutation can

(under certain conditions) perform some computations more efficiently that programs not

using mutation. Pippenger’s programs all employ eager evaluation, and this present paper

show that the the blame may be laid at that door as well, by showing that the computations

Pippenger describes can be performed efficiently by programs using lazy evaluation but no

mutation. Of course lazy evaluation is usually implemented by using mutation behind the

scenes in the form of ‘memoization’ to avoid redundant re-evaluations. Thus, this paper raises

the interesting question as to the extent to which this restricted form of mutation can achieve

the efficiencies obtainable with general mutation.

1 Introduction

In a recent paper, Pippenger (1997) proves that impure Lisp – with mutable variables

and assignment statements – is strictly more powerful than pure Lisp. He exhibits a

task that can be done in constant amortised time with an impure Lisp program, but

which requires Ω (n log n) steps in one written without using explicit assignments.

His proof of the lower bound makes use of the eagerness of pure Lisp evaluators;

in this note we show that a lazy functional program can solve the problem with the

same efficiency as an impure Lisp program.

In outline, Pippenger’s example program is required to apply a given permutation

repeatedly to groups of symbols drawn from a potentially infinite sequence of inputs.

The heart of the computation is the application of a function doperms , which might

be defined by:

doperms :: Int → [Int]→ [a]→ [a]

doperms n ps = concat · map (perm ps) · group n.

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


542 R. Bird, G. Jones and O. de Moor

The list ps is an encoding of a permutation on n-tuples, and perm ps applies that

permutation to a single n-tuple represented as a list of length n, so for example

perm [2, 3, 1, 0] “abcd” = “cdba”.

The function group n divides a potentially infinite list into a list of n-tuples, each

represented by a list of length n, so for example

group 4 “abcdefghijklmnop” = [“abcd”, “efgh”, “ijkl”, “mnop”]

doperms 4 [2, 3, 1, 0] “abcdefghijklmnop”

= “cdbaghfekljiopnm”.

These and other standard functions used in this paper are defined in Figure 1.

The functions concat and group n each take time linear in the length of the input

consumed. It is easy to see that perm ps takes O(n2) reduction steps, where n is

the length of ps . A more sophisticated implementation of perm could bring the

time down to O(n log n) steps, however the precise running time of perm will be

unimportant so long as it is no greater than quadratic.

Throughout this paper, purely for clarity of expression, we use the type Int for

integers and write arithmetic operations as though they were the familiar constant-

cost operations on fixed-sized integers usually provided by real implementations.

However, they should be read as though they are the corresponding operations on

(unbounded) unary numbers; so for example calculating 2× n from the value of n

takes O(n) steps in the calculation.

This is different from restricting ourselves to data constructed with constructors

that have bounded arity, and constant-time access to the components of those

constructors. Were we allowed arrays of unbounded size with constant time access

to the elements Pippenger’s result would not apply.

2 The problem to be solved

To distinguish the contribution of assignment to the time complexity of programs,

Pippenger imposes two constraints: that the computation be both on line and

symbolic.

That a computation be on line means that for each m, the m-th output should

be capable of being produced by the computation before the (m + 1)-th input

is available. In the context of lazy functional programming this means that the

program, say machine, should be a function [a]→ [a], for which each initial segment

of the result depends only on the initial segment of the argument of the same length,

take m · machine = take m · machine · (++ undefined ) · take m

for all m.

As defined above, doperms n ps could not be on line for all arguments ps , in

particular if ps represents the reverse permutation, the first element of a reversed

n-tuple cannot be output until all n of the components have been read. To guarantee

that an on-line solution is possible machine is defined to interleave inputting with

outputting, adding a copy of each significant symbol of its input to the output, and

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


More haste, less speed 543

perm :: [Int]→ [a]→ [a]

perm ps = zipwith index ps · repeat

where repeat x = xs where xs = x : xs

group :: Int → [a]→ [[a]]

group n = unfold (not · null ) (take n) (drop n)

concat :: [[a]]→ [a]

concat = foldr (++) [ ]

index :: Int → [a]→ a

index n = head · drop n

take, drop :: Int → [a]→ [a]

take 0 xs = [ ]

take (n+ 1) [ ] = [ ]

take (n+ 1) (x: xs) = x: take n xs

drop 0 xs = xs

drop (n+ 1) [ ] = [ ]

drop (n+ 1) (x: xs) = drop n xs

takewhile, dropwhile :: (a→ Bool )→ [a]→ [a]

takewhile p [ ] = [ ]

takewhile p (x: xs) = x: takewhile p xs , if p x

= [ ], otherwise

dropwhile p [ ] = [ ]

dropwhile p (x: xs) = dropwhile p xs , if p x

= x: xs , otherwise

foldr :: (a→ b→ b)→ b→ [a]→ b

foldr f z [ ] = z

foldr f z (x: xs) = f x (foldr f z xs)

unfold :: (a→ Bool )→ (a→ b)→ (a→ a)→ (a→ [b])

unfold p h t = map h · takewhile p · iterate t

where iterate f x = x: iterate f (f x)

map :: (a→ b)→ ([a]→ [b])

map f [ ] = [ ]

map f (x: xs) = f x: map f xs

zipwith :: (a→ b→ c)→ ([a]→ [b]→ [c])

zipwith f [ ] ys = [ ]

zipwith f (x: xs) [ ] = [ ]

zipwith f (x: xs) (y: ys) = f x y: zipwith f xs ys

null :: [a]→ Bool

null [ ] = True

null (x: xs) = False

head :: [a]→ a

head (x: xs) = x

tail :: [a]→ [a]

tail (x: xs) = xs

const :: a→ b→ a

const x y = x

Fig. 1. Functions used in the programs in the text.

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


544 R. Bird, G. Jones and O. de Moor

dually reading and ignoring a dummy symbol of input for each significant symbol

of the output. These extra transactions are immaterial to the real computation being

performed, and are present only to ‘clock’ the computation.

To accommodate these extra transactions doperms is modified to be:

doperms ′ n ps = concat · map (perm ′ n ps) · group (2× n)
where perm ′ n ps = echo (perm ps) · take n

echo f xs = xs ++ f xs

so that, for example,

doperms 4 [2, 3, 1, 0] “abcdefghijklmnop” = “abcdcdbaijlkklji”.

Note that, although this function doperms ′ is on line, it is does not run in constant

amortised time, which is to say that it cannot produce m items of output within a

constant number of times m steps. To see this, observe that an output of length

m requires O(m/n) applications of perm , and so takes O(mn) steps if perm takes

O(n2) steps. Even if an O(n log n) implementation of perm were substituted, the

computation would still require O(m log n) steps.

That a computation be symbolic means essentially that the function being com-

puted should be fully polymorphic in the type of the list being processed, excepting

only that list elements may be compared for equality. In a language with type classes

this means that the function machine should have type Eq a⇒ [a]→ [a].

The function used as a touchstone in Pippenger’s paper is made symbolic by its

reading of a prologue which encodes the permutation to be applied. In Pippenger’s

presentation, the prologue consists of True and False symbols – we choose to pass

the constant symbols used for these as parameters to our implementation. The

prologue uses these symbols to represent natural numbers, each encoded in unary

notation as a run of True symbols followed by a False. The prologue consists of a

representation of the length n of the permutation, followed by a sequence of n unary

numbers which represent the permutation, and so is O(n2) symbols long.

Thereafter, the computation proceeds in the phases described by doperms ′, with

each phase consisting of reading n additional symbols from the input while echoing

them to the output, and then producing the corresponding permutation as specified

in the prologue while discarding n further dummy inputs.

machine :: Eq a⇒ (a, a)→ [a]→ [a]

machine (t, f) xs = head numbers ++ concat (take n (tail numbers)) ++

doperms ′ n ps (index (n+ 1) prologue)

where n = head ns

ps = take n (tail ns)

ns = map unary prologue

numbers = map number prologue

prologue = iterate after xs

number xs = takewhile (= t) xs ++ [stop xs]

unary = length · takewhile (= t)

stop = head · dropwhile (= t)

after = tail · dropwhile (= t)

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


More haste, less speed 545

For example, with spacing added to emphasize the structure,

machine (‘a’, ‘b’) “aaaab aab aaab ab b 0123 xxxx 4567 xxxx”

= “aaaab aab aaab ab b 0123 2310 4567 6754”.

In this example, the prologue describes the permutation [2, 3, 1, 0], and there are two

phases: [0, 1, 2, 3]→ [2, 3, 1, 0] and [4, 5, 6, 7]→ [6, 7, 5, 4].

Pippenger shows that machine can be implemented on line in constant amortised

time in impure Lisp, that is to say he shows how to construct a program which

produces the first m elements of machine (a, b) xs in O(m) steps for all m, indepen-

dently of n. However he also shows that there is no constant amortised on-line

symbolic pure Lisp program which does this: indeed no on-line pure Lisp program

can produce the first m elements of the corresponding output in less than Ω (m log n)

steps. We will now construct a lazy functional program that can implement machine

on line in constant amortised time.

3 A constant amortised time on-line lazy implementation

Crucial to the fast lazy program is the observation that instead of repeatedly

applying a permutation to groups of n symbols, the same result can be obtained

by one application of the permutation to a group of n sequences of symbols. The

sequence of lists which are to be permuted is transposed, the transposed list of

sequences is permuted once, and the permuted list of sequences is transposed back

again. More precisely, this follows from the observation that for any sufficiently

well-behaved polymorphic function f :: [a]→ [a],

map f · trans = trans · f,

where trans is the function which transposes a list of lists, and so provided that all

the lists of lists considered as arguments are ‘rectangular’,

map f = map f · trans · trans

= trans · f · trans .

The term perm ′ n ps applied to lists of length 2n has just this property so the

definition of doperms ′ given above can be replaced by

doperms ′ n ps = concat · trans · perm ′ n ps · trans · group (2× n).

With care, the function trans can be implemented to make a machine using this

function work on line in constant amortised time on arbitrarily long arguments.

The leftmost occurrence of trans in the definition of doperms ′ has to turn a

2n-tuple of potentially infinite lists into a infinite list of 2n-tuples, producing the

whole of each 2n-tuple before inspecting the tail of any component. The rightmost

occurrence of trans has to have the complementary property when turning an infinite

list of 2n-tuples into a 2n-tuple of infinite lists. Both of these requirements are met

by defining

trans :: [[a]]→ [[a]]

trans = foldr (zipwith ′ (:)) (repeat [ ])

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


546 R. Bird, G. Jones and O. de Moor

where the function zipwith ′ is defined by

zipwith ′ :: (a→ b→ c)→ ([a]→ [b]→ [c])

zipwith ′ f [ ] ys = [ ]

zipwith ′ f (x: xs) ys = f x (head ys): zipwith ′ f xs (tail ys)

to agree with zipwith where they are both defined, but also to be non-strict in the

second list argument.

zipwith ′ f xs = zipwith f xs · unstrictlist

where unstrictlist = unfold (const True) head tail .

Were this not the case, the transposition of an infinite list would in general be

undefined.

This revised implementation of doperms ′ can compute outputs of length 2nk in

O(t(n) + 2nk) steps for all k ≥ 1, where t(n) is the cost of one application of perm ps

with a permutation ps of length n. The effect of the double transposition is that

perm is applied only once, and the application of the permutation is evaluated fully

during the first phase, when the first 2n elements of the output are computed.

Although this might at first sight seem to fall short of constant amortised time

behaviour, since there must be more than O(n) steps involved in computing the first

2n post-prologue outputs of machine, this does not matter: provided that t(n) is no

greater than O(n2) the extra time needed can be attributed to the O(n2) symbols

read and written during the prologue. Thus with this doperms ′ component the lazy

implementation of machine produces outputs of length m in time O(m), independent

of the size n of the permutation.

4 Lazy versus normal-order

It is well known that normal-order reduction can be simulated in an eager language

by systematic translation. Eager evaluation of the resulting program corresponds to

normal-order reduction of the original program. The translation might be applied

to the program for machine to yield an on-line eager program which consumes and

generates streams.

This does not contradict Pippenger’s result since the translation does not preserve

time complexity. More specifically: if the original program is not syntactically linear,

the normal-order translation executed by an eager evaluator may execute the same

sub-computation more than once. For example, the second list argument appears

twice in

zipwith ′ f (x : xs) ys = f x (head ys): zipwith ′ f xs (tail ys)

which is essentially not linear. Hence trans is not linear and a normal-order evalua-

tion of our solution would re-evaluate the permutation (and everything involved in

building the structure to be permuted) for each of the 2n-tuples of the output.

It might appear that the non-linearity in the definition of trans could be eliminated

by defining zipwith ′ in terms of zipwith and unstrictlist , but unstrictlist uses iterate

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827


More haste, less speed 547

and the standard definition of iterate,

iterate f x = x : iterate f (f x)

is clearly not linear. This particular non-linearity can be eliminated by transforming

the definition into

iterate f x = fix ((x:) · map f) where fix f = y where y = f y

but now this is not linear unless the equation y = f y is implemented by the

construction of a circular data-object y.

The inefficiency of normal-order evaluation of non-linear programs is exactly

what is eliminated in a lazy evaluator: whenever an identified – and possibly shared

– expression is evaluated, the closure for that expression is replaced by its value.

Pippenger’s result shows that in order to eliminate this inefficiency there must be

some mechanism added to an eager evaluator which he excludes from his model of

a pure Lisp evaluator. Such mechanisms are the definition of circular data-objects of

unbounded size; assignment; memoization of the results of function application; or

of course the overwriting of a closure by its value. This last is essentially a restricted

memoization.

Epilogue

We have shown that in applying the function machine, just those assignments

necessary to implement a lazy evaluator are sufficient to reduce the lower-bound

complexity of one particular on-line program. Pippenger observes that our strategy

could be applied by an eager evaluator if he were to relax the on-line constraint;

thus the delaying of evaluation necessary to implement a lazy evaluator is sufficient

to bring a batch program on line.

Note that we do not, and cannot, claim that a lazy implementation can solve all

problems with the same efficiency as an impure Lisp solution. We have, however,

shown that without assignments or circular data structures there is no complexity-

preserving translation into an eager language of arbitrary programs written in a lazy

one.

We are grateful for the assistance of a number of referees and for particularly

insightful comments from Chris Okasaki.

References

Pippenger, N. (1997) Pure versus Impure Lisp. ACM TOPLAS, 19(2), March, 223–238. (This

is an extended version of a paper in 23rd ACM Sigplan-Sigact conference on the Principles

of Programming Languages (POPL’96), pp. 104–109. ACM Press.)

https://doi.org/10.1017/S0956796897002827 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002827

