The Statistics and Galactic Properties of the Methanol Multibeam Survey

J. A. Green1,∗, J. L. Caswell1, G. A. Fuller2, A. Avison2, S. L. Breen1,3, K. Brooks1, M. G. Burton4, A. Chrysostomou5, J. Cox6, P. J. Diamond2, S. P. Ellingsen9, M. D. Gray2, M. G. Hoare7, M. R. W. Masheder8, N. M. McClure-Griffiths1, M. Pestalozzi5,11, C. Phillips1, L. Quinn2, M. A. Thompson5, M. A. Voronkov1, A. Walsh9, D. Ward-Thompson6, D. Wong-McSweeney2, J. A. Yates10 and R. J. Cohen2,∗

1Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 2121, Australia, E-mail:S.vironment@csiro.au; 2Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL, UK; 3School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001, Australia; 4School of Physics, University of New South Wales, Sydney, NSW 2052, Australia; 5Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK; 6Department of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3YB, UK; 7School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3YB, UK; 8School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK; 9Astrophysics Group, Department of Physics, Bristol University, Tyndall Avenue, Bristol, BS8 1TL, UK; 10School of Maths, Physics and IT, James Cook University, Townsville, QLD 4811, Australia; 11University College London, Department of Physics and Astronomy, Gower Street, London, WC1E 6BT, UK; 12Göteborgs Universitet Inkvissituationen för Fysik, Göteborg, Sweden

Abstract. The methanol multi-beam (MMB) survey has produced the largest and most complete catalogue of Galactic 6.7-GHz methanol masers to date. 6.7-GHz methanol masers are exclusively associated with high-mass star formation, and as such provide invaluable insight into the Galactic distribution and properties of high-mass star formation regions. I present the statistical properties of the MMB catalogue and, through the calculation of kinematic distances, investigate the resolution of distance ambiguities and explore the Galactic distribution.

Keywords. stars: formation, Masers, Surveys

6.7-GHz methanol masers provide an incredible tool to study both the properties of high-mass star formation regions and the structure of our Galaxy. The Methanol Multi-beam (MMB) survey has recently completed its southern hemisphere observing with the Parkes Radio Telescope, covering over 60% of the Galactic plane and detecting in excess of 900 sources throughout the Galaxy. Factoring for the completeness of the survey gives a total population estimate of ~1200 masers, in line with modelling of previous inhomogeneous surveys. The MMB sources have a narrow latitude distribution, peaking in longitude around ±20-30°, and have a flux density distribution peaking at around 1-2 Jy. Analysis of the distribution in longitude-velocity space shows 45 sources associated with the near and far 3-kpc arms. Kinematic distances to the MMB sources have been determined and the Galactic distribution analysed. Preliminary results suggest an overall galactocentric peak at 5-6 kpc with individual peaks at the positions tangential to the spiral arms.

∗ Deceased 2006 November 1.