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Abstract

Inspired by a statement of W. Luh asserting the existence of entire functions having together with all
their derivatives and antiderivatives some kind of additive universality or multiplicative universality on
certain compact subsets of the complex plane or of, respectively, the punctured complex plane, we
introduce in this paper the new concept of U-operators, which are defined on the space of entire functions.
Concrete examples, including differential and antidifferential operators, composition, multiplication and
shift operators, are studied. A result due to Luh, Martirosian and Miiller about the existence of universal
entire functions with gap power series is also strengthened.

2000 Mathematics subject classification: primary 30E10; secondary 47A16, 47B33, 47B38, 47E05,
47G10.
Keywords and phrases: universal function, gap series, composition operator, differential operator, integral
operator, Taylor shift, U-operator.

1. Introduction

Let us denote by N the set of positive integers, by Z the set of all integers, by No

the set N U {0}, by C the complex plane, by H(G) the Frechet space of all complex

holomorphic functions on a domain C c C , endowed with the compact-open topology,

and by A(K) the set of all functions which are continuous on K and holomorphic

in its interior K°, where K c C is a compact set. Introducing the maximum norm

| | / \\K := maXjeK \f (z)\, the space A (AT) becomes a Banach space.

Since Birkhoff proved in 1929 [12] the existence of an entire function / which is

universal in the sense that the sequence of its additive translates [f (z + n) : n e M} is

dense in the space of entire functions £ := H (C), a great number of papers have been
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written about these topics, yielding in many cases unexpected results. An excellent
survey (updated till 1998) for the concepts, history and results about the subject of
universality and the related one of hypercyclicity is [18].

In 1941 Seidel and Walsh [35] extended Birkhoff's theorem to non-Euclidean
translates on the unit disk D = {|z| < 1}. In 1988 Zappa [37] also established
an analogous result to that of Birkhoff, this time for the punctured complex plane
C* := C \ {0}. He proved the existence of a holomorphic function / on C* with
the property that for any compact set ^ c C , whose complement is connected, the
set of the multiplicative translates [f (cz) : c e C*} is dense in A(K). In this line
of research, Montes and the first author [11] (compare also [23]) have characterized
the sequences (<pn) c Aut(G) := {automorphisms of G}, where G C C is a domain
for which there exist functions / e H(G) such that the sequence (f o <pn) has the
analogous universal property for compact subsets of G. We recall this characterization
in Theorem 1.1 below, but some terminology is first needed. By JXf{G) we denote the
family of all compact subsets of G, while ^(G) will stand for the family

{K e X{G) : C \ K is connected} = [K e JfT{G) : G\Kisconnected}.

A sequence (<pn) c Aut(G) is said to be run-away whenever it acts properly discon-
tinuously on G, that is, given K e JXf{G), there is n e M such that K n <pn(K) — 0.

THEOREM 1.1. Let (<pn) C Aut(G). Then the following conditions are equiva-
lent:

(a) The sequence ((pn) is run-away.
(b) There exists a function f e H(G) such that (f o <pn) is dense in A(K) for all

K € JK(G).
(c) There exists a residual set of functions f e H(G) such that (f o <pn) is dense in

A{K)forallK e Jt(G).

We point out that in parts (b)-(c) the density of (f o <pn) can occur in H(G) itself
whenever G is not isomorphic to C*. Taking into account that | z i - > z + n : n e N j ,
{z H> nz '• n 6 N} and (z i-> (n - 1 - nz)/((n — l)z — n) : n e N} are run-away
sequences of automorphisms of C, C* and ED respectively, Theorem 1.1 extends and
unifies Birkhoff-Seidel-Walsh-Zappa's theorems. It should be pointed out that several
authors, including Luh, Duyos-Ruis, Blair, Rubel, Grosse-Erdmann, Gethner, Shapiro
and Godefroy, had earlier extended Birkhoff's theorem in some direction, see [18] for
a complete list of references.

We now focus our attention on a recent result of Luh that improves Birkhoff-Zappa's
theorems, but this time following another point of view. In i t / { i ) denotes as usual the
derivative of / ofordery if y e No, and if j e N the symbol f(~J) denotes the unique
antiderivative F of ordery satisfying F<k)(0) = 0 for all k e {0, 1, . . . J - 1}. His
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statement (see [24, Theorem]) is proved constructively and, after adapting notations,
reads as follows.

THEOREM 1.2. Let be (an) C C a given sequence with an —> oo. Then there exists
an entire function f with the following properties:

(a) For any fixed j € 1, the sequence of 'additive translates' {/(/)U + ««) : « € N}
is dense in A(K) for all K € JZ{C).
(b) For any fixed j € 2, the sequence of 'multiplicative translates' {f^){anz) '• n e

N) is dense in A (K)for all K e

As a matter of fact, in [24, Theorem] the sequence (an) is just assumed to be
unbounded, but the formulation is equivalent because a subsequence tending to infinity
can be taken out. Luh's theorem also asserted a further property for / , namely, the
sequence of derivatives [f([Mn : n e N} is dense in A(K) for all K <E ^(Q ([x]
denotes the integer part of *) . We will not consider this property because it is of a
different nature and, in addition, it can be derived by using Baire-category methods
together with the fact that the differentiation operator on £ is densely hereditarily
hypercyclic—see [18] for concepts, results and references—which in turn is a strong
generalization of MacLane's theorem [29] about the existence of an entire function
whose sequence of derivatives is dense in S. Theorem 1.2 provides two novelties if
it is compared to Birkhoff-Zappa's theorem. First, the function / can be replaced by
the result of the action on / of the operators of differentiation and antidifferentiation,
and secondly, the universal function / can be chosen to be entire, even in the case in
which the domain (C*, this time) is not the whole plane C. In [36, Kapitel 4] some
extensions of Theorem 1.2 are shown by replacing (z + an), (anz) to certain sequences
(Sn(z)), not necessarily holomorphic, denned on some subsets of C.

The two novelties described in the last paragraph motivate the introduction of the
new concept of 'U-operators', that will be developed in the subsequent sections of this
paper. Concrete examples of this new kind of operators as well as sufficient conditions
will be given, and Theorem 1.2 will be strongly improved. It should be pointed out
that, by following a different point of view, several other kinds of operators have
been recently introduced regarding the 'wild' behaviour near the boundary that they
produce when acting on certain holomorphic functions in a domain of C. The starting
point of this related theory is, in turn, a strong result also due to Luh [22] about the
existence of holomorphic 'monsters', see [1,2,6-10,14,22,25,26,28,34].

Finally, in the last part of Section 6 we will strengthen a recent deep result due to
Luh, Martirosian and Miiller [27, Theorem 1], who proved constructively the existence
of an entire function with lacunary power series expansion having dense additive and
multiplicative translates. An improved version of their result is established in [28,
Theorem 2]. Such a version reads as follows.
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THEOREM 1.3. Let Q C No with upper density A ( 0 = 1 and let (an) be a
complex sequence with an -»• oo as n -» oo. Then there exists an entire function f
with lacunary power series f (z) = Yl™=o c"z" w*tn c« = ®for n $• Q satisfying the
following properties:

(a) The sequence {f (z + an) : n e N} is dense inA(K)for all K e J?(Q.
(b) The sequence {f (anz) : n e M} is dense inA(K)for all K e Jt{C).

As in Theorem 1.2, the sequence (an) can be just assumed to be unbounded. Several
notions of density of a subset of Mo will be recalled in Section 6.

2. U-operators: sufficient criteria and first examples

Observe first that in Theorem 1.2 both sequences (z + an) and (anz) tend to in-
finity uniformly on compact subsets, respectively in C and C*. Hence, in order that
everything works well with the new kind of operators to be introduced, the domains
G to be considered must be unbounded, because otherwise every entire function
would be bounded on G, which would prevent the desired density of any sequence of
'G-translates' of it. Specifically, we assume that the set

co(G) := | (<pn) C Aut(G) : <pn ""*"> oo uniformly on compacta in G\

be nonempty, in which case we say that G is an co-domain. It is clear that if (<pn) e
o>(G), then (<pn) is run-away. Note that the sequences given at the beginning of this
section are respectively in co(<C) and a>(C*), so C and €* are a>-domains. In fact, it is
not difficult to see that

— \(an + bnz) '• bn ^ 0 for all n G N and an - ^ > oo, -^ - ^ 5 - oo
b

and

co(€*) = j(anz) : an £ 0 for all n e N and an - ^ - oo j .

As for an essentially different example, the upper halfplane {Imz > 0} is also an co-
domain; indeed, take f(z) = ( 2 z - l ) / ( 2 - z ) (e Aut(O)), ^rn = f o • • • o \j/ (n-fold),
h{z) — (z - i)/(z + i) and <pn = / r 1 o fn o h (n e N); then (</>„) e co{{\mz > 0}).
It should be warned that not every unbounded domain is an co-domain. For instance,
if G has finite connectivity > 3 then by Heins' theorem [20] the group Aut(G) is
finite, hence no sequence in Aut(G) can be run-away and, consequently, co(G) = 0.
Finally, an unbounded infinite-connected domain may not be an co-domain: just take
G = C \ [{1/n : n e M} U {0}]; a simple application of the Casorati-Weierstrass
theorem and of the Open Mapping Theorem for holomorphic functions shows that
Aut(G) reduces to the identity on G.
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Next, we give the definition of U-operators. Observe that in it the condition on G
of being an ^-domain is in fact not strictly necessary, but we keep it because otherwise
the property would become vacuous. By operator we mean a (not necessarily linear)
continuous selfmapping on some space, mainly on S'.

DEFINITION 2.1. We say that an operator T : S -* S is a V-operator whenever the
following property is satisfied:

Given an &>-domain G c C and a sequence (cpn) e co(G), there exists a dense
subset of entire functions/ such that the sequence {((Tf)o<pn)\K : n e N} is
dense in A{K) for every K e

For the sake of convenience, we rewrite the last definition in the language of
universality. Recall that if X, Y are topological spaces then a sequence Tn : X —> Y
(n e N) of continuous selfmappings is said to be universal whenever there is some
element x e X, also called universal (for (Tn)), whose orbit {Tnx : n e N} is dense in
Y. And (Tn) is said to be densely universal if the set tf/((Tn)) of universal elements
for (Tn) is dense in X. If X, Y are linear topological spaces and the mappings Tn

are also linear then the word 'universal' is frequently replaced by 'hypercyclic'. The
condition given in Definition 2.1 tells us that, for given G, K e ^(G) and (<p,,), the
sequence

(1) Tn:f e<?^ ((Tf)o<pn)\KeA(K) (n e N)

is densely universal.
We need to reformulate Definition 2.1 in a more comfortable way. This will be

done in Theorem 2.2, but for this the following topological lemma is necessary. Its
content can be found in [11, Lemma 2.9] (see [24, Lemma 3] for the special case
G = C*).

LEMMA 2.1. For every domain G C C there exists a sequence (Km) C M(G) such
that for every K 6 JM(G) there is a positive integer m0 with K C K." .

We remark that while in Definition 2.1 the universal function / does not depend
on the compact set K, in part (b) of the next result it is allowed to depend on K. As
usual, B{a, r) (B(a, r)) will stand for the open (closed, respectively) ball with center
a and radius r (a e C, r > 0).

THEOREM 2.2. Assume that T is an operator on S. Then the following properties
are equivalent:

(a) T is a U-operator.
(b) Given an a)-domain G C C a sequence (<pn) e co(G) and a compact set

K e jft(G), the sequence (Tn) defined by (I) is densely universal.
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(c) Given an co-domain G C C, a = (<pn) e co(G), K e M{G), e > 0 and
g € A(K), the set

(2) A(T, G, K, a, s, g) : = {/ e g : 3n e N with \\(Tf)o <pn - g\\K < e}

is dense in g.
(d) Given an co-domain G C C, a = (<pn) € co(G), K e J((G), s > 0, r > 0,

g e A(K) and h e g, the set

(3) U(T, G, K, a, e, r, g, h) := [f e S : | | / - h\\^r) < e

and In € N such that ||(Tf) o cpn — g\\ K < e}

is nonempty.

PROOF. It is straightforward that (c) and (d) are equivalent because the family of
sets D(h, e, r) (h e g, s > 0, r > 0) given by

D{h,e,r) = [f e £ : \\f - h\\BlQ.r) < e)

is a basis for the topology of &, and

U(J, G, K,a,e,r,g,h) = A(T, G, K,a, e, g) n D{h, s, r).

On the other hand, it is trivial that (a) implies (b). Assume now that (b) holds.
Then (c) is satisfied since W((Tn)) = C\[A(T, G, K, a, e, g) : e > 0, g e A(K)}.

Finally, our goal is to prove that T is a U-operator by starting from (c). Observe
first that each set defined by (2) can be written as

A(T,G, K, a, e,g) = \J TH-l(BK(g, e)),

where BK(g, e) is the open ball {h e A(K) : \\h — g\\K < £} in A(K). Therefore the
continuity of each Tn shows that A(T, G, K, a, e, g) is an open subset of S'. But note
that if (gj) is any fixed denumerable dense subset of A (K) (for instance, (gj) may be
the set of restrictions to K of polynomials whose coefficients have rational real and
imaginary parts) then ^((T n )) = f|7,t€N

 A ( r - G- * . a' xlk< Sj)- Hence W((Tn)) is
a countable intersection of dense subsets in the Baire space S'. At this point it is
convenient to write Tn = 7n

<Ar), with the emphasis in the fact that for given G, a the
sequence (Tn) depends on K. In order to see that T is a U-operator it must be shown
that the set Sf (7\ G, a) := f| W<Tn

( /°)) : K e J((G)\ is dense in g. But if (Km)
is the sequence of compact sets furnished by Lemma 2.1 then

(4) i f ( 7 , G,a) =
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Indeed, given K e J((G) there exists m0 e N with K c Kma. Iff e
then for each fixed polynomial P(z) there is a sequence [nx < • • • < tij < • • •} c N
such that (Tf)(<pnj(z)) -*• P(z) (j -> oo) uniformly on Kmo, hence on K. Now
Mergelyan's theorem [33, Chapter 20] implies that the set of polynomials is dense
inA(K), therefore the sequence {((Tf) ocpn) | K : n e N} is also dense in A (K), which
proves (4). Thus, ££(T, G, cr) is a countable intersection of residual subsets in S'.
Then -S?(7\ G, a) is residual itself, so dense, and this finishes the proof. •

From the proof it is clear that in parts (c)-(d) it can be supposed that g is just a
polynomial.

Our next task should be, obviously, to identify some U-operator. It happens that
the simplest operator does the job.

THEOREM 2.3. The identity operator I on £ is a U-operator.

PROOF. Let us try to apply condition (d) in Theorem 2.2. Fix G, o = (<pn), K,s,r, g
asin that theorem and consider the set U := U(T = /, G, K, a, e, r, g, h) given by (3).
We want to show that U ^ 0, that is, there is an entire function / and some n e N
w i t h | | / — h\\g(Or) < s a n d \\f o<pn — g\\K < s. S i n c e (pn(z) —>• oo(n - > o o ) u n i f o r m l y

on K, there exists n with \cpn(z)\ > r for all z e K. Then 5(0, r) n <pn(K) = 0. In
addition, <pn(K) is a compact subset of G with connected complement because <pn is
an isomorphism on G. Therefore the set L := B(0, r) U (pn(K) is a compact subset
of C with connected complement. Consider the function F : L —>• C defined by

\ ( ; \ ) ) ifze<pn(K).

We have F 6 A(L) , so by Mergelyan's theorem there exists a polynomial / with

| | / - F\\L < E. This implies that \\f - h\\B(0,r) < £ and \\f -go cp;] | | M / O < e. But

the last inequality is the same as \\f o (pn — g\\K < e, which finishes the proof. •

We can now produce a big family of U-operators via composition of operators.

THEOREM 2.4. Suppose that T, S are operators on S in such a way that T is a
U-operator and S is linear and onto. Then TS is a U-operator.

PROOF. If we follow the notations in the proof of Theorem 2.2 one must demonstrate
that for fixed w-domain G and sequence a e o>(G) the set 3?{TS, G, o) is dense
in S. For this, observe that i f (TS, G, a) = S~\&{T, G, or)), hence j&f(7\S, G, a)
is dense because Jf(T, G, a) is dense and the Open Mapping Theorem (recall that S
is an F-space) guarantees that if V C £ is a nonempty open set then S( V) is also a
nonempty open set. •

https://doi.org/10.1017/S1446788700015561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015561


66 L. Bernal-Gonzalez and J. A. Prado-Tendero [8]

The last theorem carries an important consequence, namely, every differentiation
operator Dj (j > 0) is a U-operator. Here, as usual, D° = I and Djf =f(J)(j e N).
But much more can be obtained. Recall that an entire function <J>(z) = J^JLo aiz' x%

called of exponential type whenever there exist positive constants A, B such that

|<f>(z)|<Aexp(fl|z|) (zeC).

In such a case the series <t>(D) = Ylp=o ai & defines an operator on £'. Hence, it is
a kind of infinite order differentiation operator with constant coefficients. Consider
the translation operators xa (a e Q defined as xj (z) = f (z + a) (z e C, / e £).
It happens that a linear operator S on £ commutes with the translation operators xa if
and only if it commutes with the differentiation operator D if and only if 5 = <J>(D)
for some <t> e £ with exponential type if and only if there is a complex Borel measure
JX on C with compact support such that 5 / (z) — f f (z + w) dii(w) for all z e C and
all / e £, see for instance [17, Section 5].

THEOREM 2.5. (a) / / S is an onto linear operator on £ then S is a U-operator.
(b) If S is a linear operator on £ that commutes with translations then S is a

U-operator.

PROOF. AS for part (a), combine Theorems 2.3-2.4. Now part (b) is a consequence
of the Malgrange-Ehrenpreis theorem that asserts that every differentiation operator
<S>(D) is surjective on £, see [16,30]. •

One might believe that having dense range and being a U-operator are equivalent.
Nevertheless, this is false. Indeed, each antidifferentiation operator D~N(N e N)
given by D~N (f) = / <~W) is a U-operator (see Section 4) but evidently it has not dense
range. We want to pose here the following question (compare with Theorem 2.5 (a)):

Is a U-operator any operator on £ with dense range!

An answer to this question is unknown to us to this date.
We now focus our attention on the search of workable conditions under which an

operator T on £ is a U-operator. For this, let us introduce two new concepts. We say
that T has co-dense range whenever there is R > 0 such that the restriction mapping

TM:f e £ ^ (Tf)\MeA(M)

has dense range for any M € JM(\\Z\ > /?})• Any operator on £ with dense range
has, obviously, aj-dense range. We say that T is co-stable whenever the following
property is satisfied: For every r > 0 there is R > 0 such that for each / e £, each
e > 0 and each M e Jt(\\z\ > R}) there exists 8 > 0 and S e JH\\z\ > r\) such
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that if g e S and | | / — g\\s < S then || Tf - Tg\M < s. This property has obviously
an easier formulation if T is linear.

For instance, by using Malgrange-Ehrenpreis' theorem together with Mergelyan's
theorem, it is easy to see that every nonzero differential operator <&(£>) has &>-dense
range. Also the antidifferential operator D~N has <y-dense range; indeed, an adequate
application of Mergelyan's theorem yields that the polynomials with a zero of order
> N at the origin are dense in A(M) whenever M e ^#(C) with 0 ^ M, and these
polynomials are clearly in the range of D~N. On the other hand, from Cauchy's integral
formula for derivatives, it is not difficult to realize that 3>(D) is a>-stable whenever
<I> is of subexponential type. Recall that <t> is of subexponential type whenever given
e > 0 there is a constant K = K(s) > 0 such that |O(z)| < Kem for all z e C;
equivalently, n\an\

l/" -> 0 (n -> oo) if *(z) — J27=oa"z"- Every entire function of
subexponential type is, trivially, of exponential type.

A combination of codenseness and ai-stability will give a positive result.

THEOREM 2.6. Assume that T is an operator on £ such that for every r > 0
there is R > 0 satisfying that for each M 6 ^K({\z\ > R}) the following properties
hold:

(i) The restriction mapping TM has dense range.
(ii) For every f e S and every s > 0 there exist S > 0 and S € ^{{\z\ > r\)

such that if<p e £ and | | / — <p\\s < <$ then || Tf — T<p\\M < s.

Then T is a b'-operator.

PROOF. Fix an w-domain G c C, a = (cpn) e co(G), K e J((G), e > 0, r > 0,
g 6 A{K), h e £, and the corresponding set U(T, G, K, a, s, r, g, h) =: U given
by (3). Our goal is to prove that U / 0.

Since a e co(G) there exists m e M with (pm(K) C [\z\ > R}, where R > 0 is the
number associated to r given by hypothesis. Observe that cpm( K) e ^ ( G ) ( c ^#(C))
because <pn is a homeomorphism from G into itself. Therefore, by (i) and the fact that
g o <p~l e A(<pm(K)), there exists an entire function f\ such that

(5) l l 7 y , - « o ^

Now, by (ii) there exist S > 0 and S e ^ # ( C ) with S c {\z\ > r) such that for all

<p e (?

(6) \\<p-Ms<S implies that ||7> - r/,||fa(Jf) < e/2.

Note that the complement of the compact set L := B (0, r) U S is connected because
5 and fl(0, r) share this property and they are disjoint. Hence Runge's approximation
theorem together with the fact that F is holomorphic on an open subset containing L
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allows to select a polynomial/ ( s o / e <?) satisfying | | / — F\\L < min{<5, e}, where
F : L —> C is the function belonging to A(L) given by

Thus, we obtain | | / — /z||B(o,r> < £ and, in addition, | | / —/ills < <5. Due to (6),
the last inequality yields \\Tf — Tf\\\Vm{K) < e/2. Now, this together with (5) and
the triangle inequality gives \\Tf — go <p~l \\Vm(K) < £, which is clearly equivalent to
\\(Tf)o<pm — g\\K<£. Summarizing,/ is an entire function satisfying | | / — h\\g^r)<s
and || ( 7 / ) o <pm — g\\ K < e for some m e N. In other words, ( 7 ^ 0 . •

COROLLARY 2.7. Suppose that T is an operator on § which is co-stable and has
a)-dense range. Then T is a U-operator.

The remarks about <I> (D) just before Theorem 2.6 together with Corollary 2.7 yield
again that, at least for entire functions <J> of subexponential type, <t> (D) is a U-operator.
Observe that this time the proof does not depend on the fact that / is a U-operator,
compare the proof of Theorem 2.5.

3. Composition and multiplication operators

In this section we investigate conditions for the composition and multiplication op-
erators to be U-operators. Recall that if <p € £ then its associated right-composition
operator Q , left-composition (or superposition) operator L9 and multiplication oper-
ator Mv are defined on S as Cv(f) = / o <p, Lv(f) = <p of, Mv(f) = / <p. Observe
that Q, and Mv are linear but Lv is not, except for trivial cases.

As for right-composition operators we suspect that only the similarities on the
plane, that is, the polynomials <p(z) — az + b of degree one or, equivalently, the auto-
morphisms of C (which in turn are the unique one-to-one entire functions), generate
U-operators. Although we have not been able to give a complete characterization, we
have obtained the following result.

THEOREM 3.1. Assume that (p is an entire function. We have:

(a) / / C,f is a U-operator then <p is a polynomial.
(b) Ifcp is a similarity then Cv is a U-operator.
(c) lf<p(z) = P((z — a)N) for some a e. C, some positive integer N > 2 and some

polynomial P then Q is not a U-operator.
(d) Ifcp is a polynomial with degree(ip) = 2 then Cv is not a U-operator.

https://doi.org/10.1017/S1446788700015561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015561


[11] U-operators 69

PROOF. Fix any value a e C. If <p were not a polynomial then the point of
infinity would be an essential singularity for <p, whence by Casorati-Weierstrass'
theorem a sequence (zn) C C with zn —*• oo(n —> oo) could be found in such a
way that (p(zn) -» a(n —> oo). Consider the &>-domain G := C, the sequence
a := (<pn(z) = z + zn) e co(€) and the compact set K := {0} e Jt(O>. Assume that
/ satisfies the property of Definition 2.1 for T := Cv. Then for g = 0 we would get
an increasing sequence (n,) C N with/ (<p{(pnj (z))) —> g(z) (j -*• oo) on A(K), that
is, / (<p(znj)) ->• 00' - • oo). But (/ (<o(zny-))) tends to / (a), hence / ( a ) = 0 for all
a € C, that i s , / = 0, which is clearly impossible. This proves (a). On the other hand,
if (p is a similarity then, clearly, Q, is linear, onto (so it has dense range) and a>-stable.
Therefore part (b) is a consequence of either Theorem 2.5 (a) or Corollary 2.7. As
for (d), observe that any polynomial <p{z) = az2 + bz + c of degree two can be written
in the form <p(z) = P((z - a)2), where a = -b/2a and P(z) — az - c - (b2/4a).
Hence (d) follows from (c).

Finally, let us prove (c). Assume that <p(z) = P((z — a)N) with a, N, P as in
the hypothesis, and consider the a>-domain G := C \ {a}, the sequence (<pn(z) :=
a + n(z - a)) e co(C \ [a]) and the circle arc K := {a + exp(/7) : 0 < t < 2n/N},
which is in ^ ( C \ [a}) because N > 2. Suppose, by the way of contradiction,
that C,f is a U-operator. Then we would obtain an entire function / such that one
can associate to the function g(z) := l/(z — a) e A(K) an adequate increasing
sequence (n,) c N satisfying (Cvf)(<pnj(z)) -> g(z)O ~^ °°) uniformly on K, that
is, / (P(n"(z — a)N)) -> l/(z — a) (j -> oo) uniformly on A'. Therefore, after
taking N -powers,

lim sup
J°°

f(P(n?(z-a)N))N-
1

(z-a)
= 0.

Consider the circle arcs Kv = a + cov(K — a) (v e {0, 1, . . . , /V — 1}), where
a>v = exp(2nv/N). Of course, /^0 = K. Denote by 5 the circle with center a and
radius 1. Then 5 = Ko U AT, U • • • U KN_U Given z e S there is v e {0, 1, . . . , /V - 1}
w i t h z e ^ , , s o a + (o~\z —a)eK. But also

(Pi.nl(a + <'(z - a) - a)N)f -

f(P(n»(z-a)N))N-

1
-a) -a)N

(z -
because co" = 1. Hence the lim^oo supz€5 of the last expression equals zero. In other
words,

1

(z -
(j
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uniformly on S. Then there exists j 0 € N such that

-<*)"))"--+
(z - a)N < 1 (z € 5),

so \[(z - a)f (P(nfo(z - a)N))]N - 1| < 1 for all z e 5. But, due to the Maximum
Modulus Principle, the last inequality holds for all z in the open ball of center a and
radius 1, in particular for z = a, that is, 1 < 1. This is absurd, so the theorem is
proved. •

Next, we show a characterization of the property of U-operator for Lv in terms of
existence of an 'approximate right inverse' for <p, see [9, Section 3]. The characteri-
zation in terms only of (p remains as an open question.

THEOREM 3.2. Assume that <p is an entire function. Then the following properties
are equivalent:

(a) The superposition operator Lv is a U-operator.
(b) There is a sequence (/„) C £ such that (cp o fn) tends to the identity function

locally uniformly in C.

PROOF. Let us suppose that (a) holds. Then by taking T = L9, G = C, <pn(z) =
z + n (n e N) in Definition 2.1 one obtains the existence of at least one entire
function / such that, for every closed ball B, {Lvf){(pn{z)) -»• z (n -> oo) in
A(B). Equivalently, <p(f (z + n)) —*• z as n —> oo uniformly on B. Therefore (b)
is satisfied if we just take fn(z) = f (z + n)(n e N). Conversely, assume that (b)
holds. From the continuity of cp it is easy to see that Lv is always <y-stable. On
the other hand, if we fix a set M e ^#(C) and g 6 S then we have that g{M)
is compact, whence sup.£J!(M) \<p(fn(z)) — z\ ->• 0 (n -> oo) or, that is the same,
supzeW \<P(fn(g(z))) - g(z)\ -»• 0 (n -+ oo). This tells us that

Lv(f,og)^g in

hence the restriction mapping (LV)M : / 6 § —*• (Lvf)\M e A(M) has dense range
due to Mergelyan's theorem. Consequently, Lv has w-dense range and the result is
completely proved after an application of Corollary 2.7. •

We point out here that, in order that (b) is satisfied, the injectivity of <p is sufficient
but not necessary (in fact, any entire universal function in the sense of Birkhoff—see
Section 1—satisfies (b)), and its surjectivity is necessary but not sufficient, see [9,
Section 3].

We finish this section by characterizing the multiplication U-operators.
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THEOREM 3.3. Let be given an entire function <p. Then the following properties are
equivalent:

(a) For all operator T on £ that is co-stable and has co-dense range, Mv T is a
U-operator.
(b) The multiplication operator Mv is a U-operator.
(c) There exists an operator T on £ such that Mv T is a U-operator.
(d) The set Z(<p) of zeros of<p is finite.

PROOF. Because the identity operator is co-stable and has w-dense range (so it is a
U-operator), it is trivial that (a) implies (b) and that (b) implies (c).

Assume now that (c) holds, that is, Mv T is a U-operator for some operator T
on £. Let us suppose, by a way of contradiction, that (d) is false, so there are
points zn (n e N) tending to infinity with <p(zn) = 0 for all n. If G = C and
(<pn(z) '•= z + zn) € co(G) then there must be an entire function / such that the
sequence (<p o (pn)((Tf) o (pn) is dense in A(K := {0}) = {the constants}, which
is absurd because <p(<pn(0))(Tf)(<pn(0)) = 0 for all n. Therefore the zero set of <p
is finite. Finally, we start from the fact that Z(<p) is finite. Our aim is to prove
(a), hence let us fix an o>-stable operator T on £ with o>-dense range. From the
continuity of <p, it is immediate that Mv T is also w-stable. On the other hand, there is
R > 0 such that the restriction mapping TM : f €<?—>• (Tf)\M € A(M) has dense
range for any M e M(\\z\ > /?})• We can suppose without loss of generality that
R > max{|z| : z e Z(<p)}. Let us fix e > 0, M e Jt(\\z\ > R\) and g e A(M).
Then g/<p e A(M), therefore there exis t s / e £ with \\Tf - (g/<p)\\M < e/\\<p\\M.
Hence \\(MvT)f — g\\M < e and MVT also as a>-dense range. Now Corollary 2.7
anew finishes the proof. •

4. Integral operators

In this section we discover some classes of integral operators defined on the space S,
including the antidifferentiation operator D~N, which are U-operators.

The symbol <p will denote an entire function <p : C x C '—> C of two complex
variables. The Volterra operator of the first kind associated to cp is defined by

V9:f e£^ VJ e£, (VJ)(z) = f f (t)<p(z, t)dt (z e C),
Jo

where the integral is taken along any rectifiable arc joining the origin to z. We will
prove in due course that, under adequate conditions on the kernel <p, the Volterra
operator V9 with or without a perturbation by a differential operator is a U-operator.
In particular, our results also include Volterra operators of the second class A/ + Vv.
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Now, we recall the notion of (generally infinite order) antidifferential operators with
constant coefficients, see [4, Section 2]. Let *(z) = YlTLo ciz' be a f o r m a l complex
power series. By taking into account that

D-'f (z)= I f (t) * ~ ' , dt (j € N, / e <?, z e C)
Jo (J - 1)!

it is not difficult to see that if we assume in addition that limy_0O \q \l/J/j = 0 then
the series * ( D ~ ' ) = X)Jlo ci ^ ' defines an operator on S'. Indeed, if we set

<P(Z, t) —

>-.

then #> is entire in both variables and 4*(D~') = col + Vv. Of course, Volterra
operators and operators ^ ( D " 1 ) include the operators D'N (N e N).

The following lemmas will reveal useful in order to find integral U-operators. But
a little further notation is needed. By 9 A we mean the boundary of any set A c C. If
K is a compact set and a e K then Aa{K) will denote the subspace of all functions
of A(K) with a zero at a, endowed with the same norm || • H*. In order to avoid
problems with integration along arcs we will consider the class n of closed Jordan
regions L whose boundary dL is a polygonal closed curve which consists of finitely
many segments that are parallel to the axes. Observe that each integral fa F(t) dt
makes sense and is unambiguously defined for each F e A (L) and each pair of points
a, b e L whenever L e FI. Indeed, the complement of L is connected and a, b can
be joined by a piecewise continuously differentiable arc lying in L.

LEMMA 4.1. Let S be an operator on £ and (p : C x C -*• C an entire function
of two variables. Assume that there exists an R > 0 such that for each r > R and
each M 6 ^?{{\z\ > /"}) there are L 6 ^({\z\ > r)) D Yl with M C L and a point
a e dL\M such that

(a) the operator S extends continuously to a mapping S\ : A(L) —> A(M),
(b) the mapping Q : Aa(L) -> A(M) defined by

Of (z) = SJ (z) + I f(t)<p(z,t)dt (zeM)

has dense range.

Then S + Vv is a U-operator.

PROOF. Fix a set U - U(T - S + VV,G, K,a = (<?„), e, r, g, h) as in (3).
According Theorem 2.2, we should show that U ^ 0. We may suppose r > R
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without loss of generality. Since AT is a compact subset of G and a e a>(G), there
is n € N such that <pn{K) n 5(0, r) = 0. Then M := <pn(K) e JC{\\z\ > r})
because <pn is automorphism of G. By hypothesis, there exists L € ̂ {{\z\ > r})nU
with M c L and a point a e dL such that (a) and (b) are satisfied. It is clear that
we can find a rectifiable Jordan arc y joining the origin to a with y D L — {a} and
such that the compact set 5(0, r) U y U L has connected complement. By using a
suitable parametrization of the arc y, it is not difficult to construct a function f\ that is
continuous on B(0, r)Uy, agrees with h on 5(0, r) and satisfies f\(a) = 0. Consider
the mapping 52 : A(y) —>• A (A/) given by

(7) = g(<p;l(z)) - ffOMz, t)dt (z € M).
Jy

It is well defined because g e A (AT), K c G, M = <pn(K) and cp'1 e H(G). It
follows from (b) that there exists a function f2 6 Aa(L) such that

(8) \Qf2(z)-S2fl(z)\<e (zeM).

On the other hand, the mapping 5, : A(L) -» A (A/) is continuous (by (a)). Also the
mappings & and

53 : A(L) -> A(M), S3f (z) = f f (t)<p(z, t)dt (z € M)

are obviously continuous. Therefore, by (7) and (8), there exists 8 > 0 such that if
/ e £ satisfies

(9) \f(z) - / i ( z ) | < 5 (z 6 y) and |/(z) - / 2 ( z ) | < S (z e L)

then

(10) | 5 , / (z) + 53/ (z) - 5^/ (z)| < s (z e M).

Consider the function f3:L0^-C defined as

where Lo := 5(0, r) U y U L. From the fact / i ( a ) = 0 = fi{a) one obtains that
/ 3 e A(L0). But the compact set Lo has connected complement. Consequently,
it follows from Mergelyan's theorem that there exists a polynomial / satisfying
11/ —/3|U0 < min{M). Hence, \\f - h\\B(0,r) < s and (9) holds. T h e n / also
satisfies (10), which can be rewritten as \Tf (z) — g(<p~l(z))\ < s (z e M). But this
is equivalent to | | (7 / ) o <pn — g\\K < s. Summarizing,/ e U, so U ̂  0. D
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We remark that if the operator S is linear then, due to the density of £ in A(L),
condition (a) is equivalent to the following: For every £ > 0, there is a 5 > 0 such
that if/ € S and | | / \\L < S then \\Sf \\M < e.

LEMMA 4.2. For every L e Ft and every a e L, there exists a finite positive constant
B = B(L,a) satisfying the following property: To each z 6 L we can associate a
piecewise continuously differentiate arc yz : [0, 1] —> L joining a to z and a finite
subset Fz C [0, 1] such that \y'7(u)\ < B\z - a\ for all u € [0, 1] \ Fz.

PROOF. Let us fix L, a as in the statement. From the shape of L it is evident that a
number R e (0, +oo) can be chosen in such a way that B(a, R) n L is starlike with
respect to a. If z 6 B(a, R) D L then we simply define yz as the segment joining a to
z, that is, yz(u) = a + (z -a)u (0 < u < 1), hence \yz(u)\ = | z - a | for alia e (0, 1).
Assume now that z e L\B(a, R). Let N be the number of segments of 3L. Then it is
clear that one can pick a polygonal arc yz c L joining a to z consisting of m = m(z)
segments which are parallel to the axes, with m < N. Now if we parametrize
such segments in the obvious way on [0, 1/m], [l/m, 2/m], . . . , {(m — l ) /m, 1]
then |y.'(w)| is not greater than mdiam(Z-) in the interior of each one. Therefore
\yz'(u){< Ndiam(L) for all u e [0, 1] \ Fz, where Fz = {0, l/m,2/m,..., 1).
Hence \yz(u)\ < N diam(L)|z — a\/R for such values of u whenever^ e L\B(a,R).
Thus, the constant B := maxjl, N diam(L)//?} does the job. •

LEMMA 4.3. If L e U, a 6 L, (p is an entire function of two variables and a is an
entire function witha(z) ^ Ofor all z e L, then the operator Qatp : An{L) -> Aa(L)
given by QaJ (z) = a(z)f (z) + /„' / (t)v(z, t) dt (z 6 L) is onto.

PROOF. Observe first that Qa,vf is well defined because Qa,vf (a) = 0 for all
/ e AB(L). Since a(z) / 0 for all z e L , the statement is derived from the fact that
the operator I — K : Aa(L) -> Aa(L) is invertible (so onto), where K is the operator

Kf(z)= I f{t)Vl{z,t)dt ( z e L)
J a

and <p\(z, t) = — (p(z, t)/a(z). If the spectrum o{K) reduces to {0} one would have
a(I — K) = {1}, hence 0 £ a(I — K), so obtaining the invertibility of / — K.
Therefore, according to Gelfand's formula for the spectral radius, it must be shown
that limn^oo||A:"||1/" = 0, where || K \\ = sup{||AT/ ||L : | | / | | L < 1}, the norm in the
space L{Aa{L)) of linear operators on Aa{L). Take a constant B e (0, +oo) and
the family of arcs [yz : z € L) joining a to z as Lemma 4.2 asserts. Therefore, the
length of each partial arc yz\\o.u\ from a up to y{u) is not greater that Bu\z — a\ and,
in particular, \yz{u) - a\ < Bu\z — a\ (u e [0, 1]).
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Let us fix/ € Aa(L) with \\f \\L < 1 and denote C = sup{|^i(z, f)| : z, t e L).
From the definition of the operator K we obtain, for all z e L,

\Kf(z)\ = I f(Yz(u))<pdz,Yz(t))y^u)du
Jo

< /
Jo

Then

\K2f(z)\= f
Jyz

(Kf)(t)<pdz,t)dt f
Jo

<J lKf(yt(.it))\C\r;(i<)\du<C'p[

By induction we are led to the following inequality, which holds for every n e N:

(z € L).
n\ n\

Whence

and we are done. •
Recall that Z(f) denotes the subset of G consisting of the zeros of a function

/ : G —>• C. We are now ready to establish our theorem.

THEOREM 4.4. Assume that N e Mo and that an(z) (n = 0, . . . , N) are entire
functions, in such a way that aN(z) has finitely many zeros. Assume also that P is
a polynomial and that <t> is an entire function of subexponential type. Let ^ (z ) =
]Cy°lo

 ciz' be a formal power series with l i m ^ ^ d c , \l/J /j) = 0. We have:

(A) The operator T on g defined by Tf (z) = J2?=o "i (z)f 0)(z) + V9(z) (f e S,
z e G) is a U-operator.
(B) / / P is non-zero then P(D) + Vv is a U-operator. If P is nonconstant then
P(D) + * ( D " ' ) is a U-operator. IfX e C \ {0} then the Volterra operator of the
second kind XI + Vv is a U-operator.

(C) If for some N e No the entire function w i->- (dN<p/dzN)(w, w) has finitely
many zeros and each function w i-> (d"<p/dz")(u), w) (n = 0, . . . , N — 1) vanishes
identically then V^ is a U-operator.

(D) Ifty is non-zero then ^(D^1) is a U-operator. In particular, if P is non-zero
then P(D~l) is a U-operator.
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(E) If<£> is nonconstant then 4>(£>) + P(D~l) is a U-operator.

PROOF. It is evident that (B) is a consequence of (A). Furthermore, (D) is derived
from (C). Indeed, for the case c0 = 0, let N = min(/ € No : Cy+i ^ 0}. Then
* ( D " ' ) = Vv with <p(z, t) = J:JLN cj+l(z - ty/j!, hence

dNcp dn<p
• — (w, w) = cN+l ^ 0 = j-j(w, w) in = 0, . . . , N - 1)

for all w 6 C and (C) applies. The case c0 ^ 0 follows in a similar way from (B).
Thus, our goal is to prove (A), (C) and (E). As for (A), let us check that the hypothe-

ses (a)-(b) of Lemma 4.1 are fulfilled when 5 is defined as Sf = £ ,-= 0 aj {-)iy f.
Clearly, (a) holds for every pair of sets M, L e JH(<L) with M c L O n the other

hand, choose R = l + max{|z| : z € Z(aN)} and fix r > RandM e JC({\z\ > r}). It
is not difficult to realize that a connected compact set L c {|z| > r] can be constructed
in such a way that M c L°, C \ L is connected, and dL consists of finitely many
segments which are parallel to the axes, that is, L 6 M{{\z\ > r}) n FI. Hence,
condition (b) of Lemma 4.1 will be satisfied as soon as we show that the operator
Q : A?(L) -»• A(M) defined by

Qr(z) = ^ ^ ( z ) / W ) ( z ) + / f(t)<p(z,t)dt (zeM)
7=0 Ja

has dense range, where a is any fixed point in dL (so a e L \ M) and A^(L) is the
subspaceof Aa(L) consisting of all functions/ € A{L) that are N -times continuously
differentiable in L with / <n)(a) = 0 for n = 0, . . . , N.

For this, consider any entire function i/f(z, t) of two complex variables such that
for each z e C the function t e C \-> if(z, t) e C is an N-antiderivative of <p(z, •) (of
course, f = <p if Â  = 0) in such a way that (dj ifr/dtj )(z, a) = 0 for; = 0, . . . , N -1.
After integration by parts (TV times) we obtain, for/ e A^(L),

f
Ja

z

f(u)(p(z, u)du

n=0

(-D" f
J a

n=0
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Hence

Of (z) = aN(z)fm(z) + J^bn(z)f{n)(z) + (-1)" / f(N)(t)f{z,t)dt

for certain entire functions bn (n = 0, . . . , N — 1).
Bu t / ( n ) = D;N+nfm (n = 0, . . . , JV - 1) fo r / € A?(L), where £H/z denotes

the unique 7-antideri vati ve / / of ordery of h such that //(A) (a) = 0(k = 0, . . . ,j'— 1).
Therefore, £ ^ ' *>„(z)/M(z) - E l "o *»(z)(Da-

w+"/(Af))fe)- Then our mapping 2
can be written as

Qf(z) = aN(z)DNf(z) + f (DNf(t))Mz,t)dt,
Ja

where yfr\ is an entire function of two variables; specifically,

. 0 = (-l)V(z. 0 + f̂j""*

Next, let us consider the operator j2aA,,^ : Afl(L) -> A0(L), where Ga«.^i is defined
as in Lemma 4.3; it should be observed that aN(z) ^ 0 for all z € L because
L C {\z\ > r). Then, by Lemma 4.3, Qa/tii,t : Aa(L) -> Aa(L) is onto. But
Aa(L) is dense in A(M)\ indeed, if g e A (A/) then the function g(z)/(z — a) also
belongs to A(M) because a £ M, so given e > 0 Mergelyan's theorem furnishes
a polynomial P with \P(z) — (g(z)/(z — a))\ < e/diam(L) (z 6 M). Hence the
function Px (z) := (z — a) P(z) is in Aa(L) and satisfies \\P\- g\\\f < s. Consequently,
Qa,v,Vi : Aa(L) -» A{M) has dense range. Hence Q has also dense range because
Q = QaN,^ o DN and the mapping DN : AN

a{L) -*• Aa(L) is, trivially, onto. This
completes the proof of (A).

Let us prove (C). We will again try to apply Lemma 4.1. Condition (a) is trivially sat-
isfied for S = 0. Letfl = max{|z| : z € Z( / )}andf ix r > RandM e Jt({\z\ > r}).
As before, choose any compact set L e Fl with L C {\z\ > r] and M c L°. Fix any
a e dL, so a e L \ M. We should verify condition (b) of Lemma 4.1.

By hypothesis

dNw dn<p
(11) —^-(w,w)^0=~-(w,w) (w eL, n = 0, ...,N- 1).

dz oz"

Consider the mapping Q : Aa(L) ->• A(M) given by Qf (z) - f* f (t)<p(z, t)dt.
Our goal is to show that it has dense range. By using an application of Mergelyan's
theorem which is similar to that used in the proof of part (A) we obtain that the linear
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combinations of (z — a)m (m > N + 2) are dense in A (M). Hence Q will have dense
range as soon as we find for a fixed m > N + 2 a function / e Aa(L) such that

(12) f(z) = (z-a)m (zeL).

Due to (11) and to Leibniz's rule, the function Qf is (N + l)-times continuously
differentiable on L with

(13) Dn{Qf){w) = j f(t)j^{w,t)dt (« = 0 N)

and
N + \ ^ w , w) + J f(t)j^(w, t)dt

for all in e L. Now, the not-equal part of (11) and Lemma 4.3 for a(w) :=
(d"<p/dzN)(w, w) and <p changed to dN+i(p/dzN+1 imply that Dw + 1 o Q : Aa{L) -»
Aa(L) is onto, whence there exists a function / e Aa(L) with Dw+1((Q/')(i<;) =
m\(w - a)m-N-x /(w - N - 1)! for all w e L. Then DN+x[Qf - h] = 0 o n L , where
h(z) := ( z - a ) m . B u t D"[Qf -h](a) = 0(« = 0 , . . . , AO by (13), hence Qf -h = 0
on L, which proves (12) and (C).

Finally, we prove (E). Let 4>(D) = Y17=oa"z" ^ e a n e n t i r e function of subexpo-
nential type, M e ^ ( C ) , L eU with L° D M and a e 3L. Since (nllaj)17" -> 0
(n -»• cx)) we get \an\ < (dist(M, 3L)/2)"/«! for n large enough. From this and
from Cauchy's inequalities one obtains easily that given e > 0 there is a 8 > 0 such
that if / e S and | | / ||L < S then ||4>(D)/ ||M < s. In other words, the condition
given just after Lemma 4.1 is satisfied for the linear operator 5 = $>{D), hence con-
dition (a) in that lemma is fulfilled. The extension of <£(£)) to a continuous mapping
A{L) —*• A(M) will be also denoted by ^ ( D ) , and similarly for related operators.
Therefore, our final task is to verify condition (b) of Lemma 4.1, that is, we should
check that the mapping Q : Aa(L) -> A{M) given by Qf = O ( D ) / + P ( D " ' ) /
has dense range. By Mergelyan's theorem it suffices to show that given an s > 0 and
a polynomial g there exists / e Aa(L) such that \\Qf — g\\M < e.

For this, assume that P(z) = poZN + P\ZN~] + ••• + PN and define the new
entire function <t>i of subexponential type by <t>i(z) = zN<£>(z) + YLn=oP"Zn- Then
Q = * , ( O ) o J o D~N, where D;N : Aa(L) - • A?(L), J : A»(L) -»• A(AT)
and O^D) : A(/r) —> A(M). Here AT is a member in n that has been selected
to satisfy M C K° C K c L° (so a <£ K), and J is the inclusion J(f) = f.
Note that <t>i(D) : A(K) ->• A(M) is well defined by the same reasoning as that in
the beginning of the proof of this part. Since 4>i ^ 0 (because <t> is nonconstant)
Malgrange-Ehrenpreis' theorem guarantees that <t>i(D) : £ -> S is onto, hence
<t>i(D) : A(K) -> A(M) has dense range because § is dense in A{M) due to
Mergelyan's theorem. Again by an adequate application of Mergelyan's theorem (the
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fact a £ K is crucial) we have that J has dense range. But D~N is clearly onto, so it
has dense range. Consequently, Q also has dense range and we are done. •

We stress here that not every Volterra operator is a U-operator. For instance, set
cp(z, t) := sin(7rz), G := C, (<pn(z) := z + n) e co{G) and K := {0}, and f ix / eS.
Then

((VJ) o Vn) (Z) = 0 - ^ 0 for all z e K,

so ((V^/) o <pn) is not dense in A{K) = {constants} and Vv cannot be a U-operator.

5. Large linear manifolds of entire functions with universal translates

Before continuing our research of further classes of U-operators we take a break
in this section in order to establish the promised improvement of Theorem 1.2, see
Theorem 5.2 below. It will be shown that the family of entire functions which are
universal in the sense of the former theorem is very large in both topological and
algebraic senses.

The following statement can be found in [8] and it will be needed in Theorem 5.2.
It furnishes a sufficient condition for the existence of large linear manifolds of vectors
which are simultaneously hypercyclic with respect to each member of a countable
family of sequences of linear mappings. It is in turn an extension of an assertion due
to the first author, see [5, Theorem 2]. It should be noted that in [8] the final spaces
Yk were all the same, but a glance to the proof reveals that they can be different.

LEMMA 5.1. Let X and Yk (k e N) be metrizable topological vector spaces such
that X is Baire and separable. Assume that, for each k £ N, T^k) : X -> Kt (n e N) /j
a sequence of continuous linear mappings satisfying that (T^k)) is densely hypercyclic
for every sequence [n\ < «2 < • • • < «y < • • •} C N. Then there is a dense linear
submanifold M C X such that M \ {0} C (~)keN W((Tn

(k))).

THEOREM 5.2. Suppose that (Sj) is a countable family of U-operators on & and
that (Gt) is a countable family of co-domains in C. For each k, assume that {<pn k :
n 6 N} € o»(Gt). Then we have:

(a) There exists a residual subset of entire functions f such that each sequence
{((Sjf) o #>*,n)|/r '• n e hi) is dense in A(K) for every K 6 jft{Gk), every k and
every j .
(b) If every Sj is linear then there exists a dense linear manifold M d £ such that

each non-zero function f e M satisfies the same density property given in (a).
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PROOF. With the notation of Section 2 we have that for each j , it and each K e
the sequence of mappings

SjZ • f e S H+ ((Sjf)o <pKn)\K e A{K) (n e N)

is densely hypercyclic. Since <f is a Baire space and A(K) is second-countable the
set ^((SJ*',,)) of hypercyclic vectors for that sequence is a dense Gj-subset of £,
see [18, Theorem 1]. Now for given k let us select a sequence (Kkm) C M{Gk) as
that given in Lemma 2.1. Denote by A the subset of functions f e £ satisfying the
property stated in (a). Then

j.k.K j,k,m

where the second equality is derived as in the proof of Theorem 2.2. Then A is a
countable intersection of dense Gj-subsetsof <f, therefore A is itself a dense Gj-subset,
hence a residual subset of £. This proves (a).

As for (b) choose X := £, YKm := A(Kk,m) and T^*"1' := SJ^f in Lemma 5.1 (a
trivial variant of it has been used by employing double and triple indexes) and take into
account that each subsequence (7^ t m >) of (T^-k'm)) is densely hypercyclic because
each Sj is a U-operator and a subsequence of a member of co(Gk) also belongs to
o>(Gi). This concludes the proof. •

COROLLARY 5.3. Let be given a countable family (G*) of co-domains in C and, for
each k e N, a sequence {(pk,n '• n 6 N} 6 co(Gk). Then there exists a residual set
A c £ and a dense linear manifold M C £ satisfying the following:

(a) For any fixed f e A, j e Z and k e N the sequence of 'Gk-translates'

{fU)(<PkAz)) • n e N} is dense inA(K)forall K 6 JK(Gk).
(b) The inclusion M \ {0} C A holds.

PROOF. Differentiation and antidifferentiation operators Dj (j e 2) are U-oper-
ators. •

6. Taylor shifts and gap series

In this final section a kind of operators is considered on £ when it is regarded as
the space of complex sequences (an) with |an|1/n —> 0 (n -*• oo). In this setting
and in connection with universality, the weighted backward shifts have been studied
in [3,17,19,31]. Recall that if w = {wn : n e No} is a complex sequence then the
weighted backward shift associated to w is the mapping defined on £ as

n=0 n=0
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It is easy to see that if the sequence {|wn|
1/n : n e N} is bounded then Bw defines

actually an operator on S'. Observe that the differentiation operator D is the special
case D = Bw with weight sequence wn = n + 1. In [3] the first author introduced a
more general notion which is closed under composition, namely, the Taylor shifts (in
[19] they are called 'pseudo-shifts', and they are considered in a more general setting).
An operator T : £ -> S it said to be a Taylor shift if and only if there are a complex
sequence w = {wn : n £ No) and a one-to-one selfmapping <p : No -» No such that
Tf (z) = Er=o Wna«n)Zn whenever / (z) = £n°°=0 anz

n (f e S, z e C). Equivalently,
T is linear and, for every n e No,

T( «) _ \w">zm i f n =
~ [0 ifn<£

Then we will denote T = TWilf>. We remark that Bw = Twip with <p(n) = n + 1.
Clearly, TWt<p is not one-to-one if <p is not onto.

The following theorem provides with a sufficient criterium for a Taylor shift to be
a U-operator. It covers the case of differentiation operators DN (N e No), which of
course are already known to be U-operators as particular instances of operators <£>(D).

THEOREM 6.1. Let be given a complex sequence {wn : n e No} and a one-to-one

selfmapping cp : No -> Mo satisfying the following properties:

(a) 0 < infneN \wn\
l/n < supneN \wn\

1/n < +00 and w0 ^ 0,
(b) 0 < liminf^oo cp(n)/n < supn€N <p(n)/n < +00.

Then the Taylor shift Tw<p is a U-operator.

PROOF. AS seen in [3, Theorem 3.2], the last inequality in (a) together with the first
inequality in (b) guarantees that T := TWiV is a well-defined operator on S. Recall
that T is linear. According to Corollary 2.7 (a), it is enough to show that T is onto.
For this, fix an entire function g(z) = ]C^=o ^«z"- Let us define

if « e <p(N0);

otherwise.

Observe that wj ^ 0 for all j . Consider the power series / (z) — YlT=o anZn- It
is clear that, formally, Tf = g. Hence it suffices to check that / e £, that is,
linv^ooKI1/" = 0 . We have

'/"
= (iV'w

1
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Now observe that |u>(P-i(,l)|
1/*' <n) is bounded away from zero by the first inequality

of (a), that <p~l(n)/n is asymptotically bounded away from zero by the last inequality
of (b) and that |^-i(n)|

I /*'~1(") -*• 0 as n -> oo because g is entire. Therefore,

lim |an|1/n = lim
l/n

= 0,

as required. •

It is natural to ask whether non-onto Taylor shifts U-operators can exist. They
exist indeed, even with <p = the identity on No. Specifically, we next study the Euler
differential operator, see its definition below. It is related to certain lacunary power
series, which will be also dealt with in the final part of this section.

Assume that <t>(z) = Yl™=o c"z" *s a n entire function of subexponencial type.
Consider the operator E : § -> S given by Ef(z) = zf'iz). Then the Euler
differential operator 4>(£) associated to <t> is defined as

n=0

It happens that <t>(E) is in fact a linear well-defined operator on S, and that
* ( E ) / ( z ) = £ ~ o *(«)a»z" whenever f (z) = YZ* <***•"* s e e [21, pages 46-54].
Hence <t>(E) = TWi<e with wn = <!>(«), <p(n) = n (n 6 No).

In order to establish the desired property for <!>(£) we need two auxiliary lemmas.
The first one is classic and can be found in [13, Theorem 9.1.4]. The second one is a
recent lacunary result and may be seen in [26, Lemma] and [28, Lemma], see also [27,
Lemma 2]. A little further terminology is in order. Recall that if Q c No and v(A)
denotes the number of elements of a finite set A then the upper (lower, respectively)
density A(Q) ( A X 0 , respectively) of Q and the maximal (minimal, respectively)
density Arrm,(Q) ( A m i n ( 0 , respectively) of Q in the sense of Polya [32] are defined
as

A(Q) = hmsup , A.(Q) = hminf
n <x

.(Q)

. i n , ,. / . . v(Qn[0,r])-y(Qn[0,ar])\
A m u x (0 = lim hmsup ,

o-i- \ r̂ oo (1 -d)r )

A ,™ . (v • f WQn[0 , r ] ) -v( (2n[0 ,a / - ] )^
A m i n ( 0 = hm hminf .

o-*i- \ <-»<» (1 — a)r J

The density A( Q) of Q is defined as

v(<2n[0,«])
A(Q) = hm
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if such a limit exists, that is, if A ( 0 = A / 0 . In addition, we denote by S'Q the
subspace of £ consisting of all entire functions with null Taylor nth-coefficient at the
origin for every n g Q. Therefore, £Q is a space of gap series. Note that <£(£)/ e <fe
if Q = No \ $ " ' (0). Moreover, for A C C and for a 6 [0, n) we set

Aa :={zeie :zeA, |0| < a}.

LEMMA 6.2. If$> is a non-zero entire function of subexponential type then

LEMMA 6.3. Let K e JK(C) with 0 e K° and assume that Q is a subset of No

satisfying at least one of the following two conditions:

(a) The component of K containing the origin is starlike with respect to 0 and

(b). The minimal density satisfies Amjn(0 = 5 £ (0, 1] and there exists a Jordan
arc y connecting oo with the boundary of the maximal disk with center 0 which is
contained in K° and having the property >Vd_j) H K = 0.

Suppose that s > 0 and that f is holomorphic on some open set containing K
such that f has a power series representation around the origin of the form f (z) =
Yl7=o a"z" witn an = 0/OA" n £ Q. Then there exists a polynomial P 6 SQ such that
\f(z)-P(z)\ <sforallze K.

The proof of the following result is inspired by that of [15, Theorem 4.6].

THEOREM 6.4. / / <f> is a non-zero entire function of subexponential type then the
Euler differential operator <t>(E) is a U-operator.

PROOF. According to Corollary 2.7, we would be done as soon as we prove that
4>(£) has w-dense range and is w-stable.

Fix any R > 0, any M e ^({\z\ > R}) and any g e A(M). By Mergelyan's
theorem, there exists a polynomial Pt such that

(14) \g(z)~ Pi(z)\<e/2 (zeM).

Consider Q := B(0, R) U {|z| > R], K := 5(0, R/2) U M and Q := No \ *- ' (0) .
Then, by Lemma 6.2, A(Q) = 1. But K e JK{£), 0 e K° and Q. is an open
set containing K, therefore from Lemma 6.3 (under condition (a)) there is some
polynomial P e SQ such that

(15) \f(z)-P(z)\<s/2 (zeK),
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where / : £2 —> C is defined as

[26]

(16)

By(14)-(16)weget

(17)

/ (z) :=
P,(z) if \z\ > R\

0 if < R.

\g{z) - P(z)\ <s (ze M ) .

Now, we define the polynomial h as follows. Assume that P(z) = X^een(0 i AT) anz"-
Then h(z) := £n£en|o,i N]{an/<&{n))zn. Trivially, h e <? and *(£)A = P. Thus,
by (17), \($>(E)h)(z) — g(z)\ < s for all z € M. This shows that the restriction
mapping 4>(£)M : <f -> A(M) has dense range, so <$>(E) has co-dense range. As for
aj-stability, fix r > 0 and select /? := r. Given e > 0 and M e M{{\z\ > r}) we
have to find 5 > 0 and S e J?({\z\ > r}) such that | |O(£)/ |U < £ whenever/
is an entire function with | |/ | |s < <5. We can choose a compact set 5 e n (see
the notation just before Lemma 4.1) such that M c S° C S C {|z| > A-}, SO
S e Jt{\\z\ > r}). Set a := inf{|f - z\ : t e T, z € M} > 0, where T = 3S. Let
us denote £ := max{|?| : t £ T), hence fi e (0, +oo). Since *(z) := ^ ~ 0 cnz" has
subexponential type, there exists a constant C e (0, +oo) such that

Define 8 := £jra/(Clength(r)) and fix / e ^ with | | / | | s < 5. According to [21,
pages 46-54], we have

where Pn(z, t) is a polynomial of two variables z, t satisfying \Pn(z, 01 < n*P" for
all z e M and t e V. In fact, Pn does not depend on / . Finally, for every z € M we
obtain

E'
n=0

; length(r) ^ 1

n=0

as required. •
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There are other non-onto Taylor shift U-operators TWiip with <p(n) = n(n e N)
which are essentially different from Euler differential operators, but also related to
gap Taylor series. Our result is contained in Theorem 6.5 (see below) and strengthens
Theorem 1.3. On the other hand, the condition A ( 0 = 1 is 'essentially' necessary
in order that the property of density in A(K) (K e ^(C*)) can be satisfied for some
/ e SQ. Indeed, it is shown in [27, Theorem 2] that Amax(Q) = 1.

We now consider the 'gap operator' IQ : S -» § given by

oo

(IQ/KZ) = J2 a»zn> where /(*> = ] £ a»z"
neg n=0

and 2 C No is fixed. Observe that IQ = Tw<<p with <p(n) = n for all n and

f 1 if n 6 Q\

(0 if n i Q.

Note that the next theorem is not contained in Theorem 6.4 because, given Q c No

with A ( 0 = 1 and Q ^ No, there exists no entire function <I> of subexponential type
satisfying <t>(n) = I for n 6 Q and <&(«) = 0 for n £ Q. Indeed, if such a function
exists then <&i(z) '•= <&(z) —1 would also be of subexponential type; but <t>j~'(O) = (2,
so A(N0 \ <t>7'(0)) = A.(N0 \ Q) = 0 ^ 1, hence <J>, = 0 by Lemma 6.2. Therefore
<t> = 1, which is absurd.

THEOREM 6.5. Suppose that Q is a subset o/N0 with A( Q) = 1. We /?ave:

(a) The gap operator IQ is a U-operator.
(b) Let be given a countable family (G*) of co-domains in C. For eac/z &, assume that

{(Pk,n '• n e N] e co(Gk)- Then there exists an infinite-dimensional linear manifold
M c £Q such that for every F € M \ {0} f/ie sequence {(F o <Pk,n)\K '• n e N} is dense
in A(K)for every K G jft{Gk) and every k.

PROOF, (a) Assume that a set U := U(T = lQ, , G, K,a = (<?„), e, r, g, h) as in
part (d) of Theorem 2.2 is fixed. As remarked after Theorem 2.2, it can be supposed
without loss of generality that g is a polynomial. It has to be shown that U is
nonempty. Since a e a>(G), there exists n e N with B(0, r) n (pn{K) — 0. Consider
the set L := B(0, r) U <pn(K). Then L e JK{£) because K e JK(<t) and cpn is a
homeomorphism from G into itself. In addition, 0 e L° and the component of L
containing 0 (= B(0, r)) is starlike with respect to 0. Let us consider the function

i f z e f l ( 0 , r ) ;

if ze<pn(K).
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Observe that F is holomorphic on some open set containing L. Indeed, IQh is
entire and g o <p~l e H(G). On the other hand, F has, obviously, a power series
representation around the origin with gaps at the indexes belonging to No \ Q. By
Lemma 6.3 (a), there is a polynomial P e §Q such that |F(z) — P(z)\ < e (z € L).
In particular, \\IQh — P\\a(o,r) < s a n d IIP ° <Pn — g\\tc < s. Now define

f :=P + lNoXQh.

It is clear that/ 6 § and IQJ = P. Hence

11/ - h\\B(o,r) = \\P + K\Qh - lQh - WQ^I IBOU) < £

and ||(Iof) o<pn — g\\K < e. Consequently, / e U and we are done.
(b) Let us suppose that (Gt) and [<pkn : n e N} (k e N) are as in the hypothesis.

If we apply part (b) of Theorem 5.2 on the constant sequence Sj — IQ then we
obtain a dense linear manifold M C & such that, for all / e M \ {0}, each sequence
{((lof) °<Pk,n)\K '• n e N} is dense in A(K) for every K e JZ{Gk) and every k e N.
Define M := IQ(M). Then M is a linear manifold in £Q. Moreover, if F e M \ {0},
then F = IQJ for some / e M \ (0), so the approximation property of the statement
holds. Finally, M is dense in IQ(£) = &Q, hence M must be infinite-dimensional. •

To finish, we would like to say something in the case of the weaker condition
A m m ( 0 > 0 for the subset Q C No. In such a case, Luh, Martirosian and Miiller
were able to prove (see [26, Theorem 1]) that for a given sequence (an) C C tending
to oo (again, the statement is equivalent to '(an) is unbounded') there exists a function
/ e £Q such that the sequence of translates {/ (z + an) : n e N} is dense in A(K)
for all K € ^ ( C ) . In our next (and final) theorem we obtain a strong improvement
with a different proof. We remark that by Mergelyan's theorem density in § implies
density in every A(K) with K e

THEOREM 6.6. Let be given a subset Q C No with Am\n(Q) > 0 and a sequence
(<pn) e co(<C). Then there exists an infinite-dimensional linear manifold M c <?Q such
that for every F € M \ {0} the sequence [F o <pn : n € N} is dense in the space S.

PROOF. We have that <pn(z) = an + bnz (n e N) for some complex sequences (an),
(bn) with bn ^ 0 for all n and an —*• oo, an/bn -> oo as n —> oo. For given s > 0,
r > 0, R > 0 and polynomials g, h we can select as in the proof of Theorem 6.5 a
positive integer n with 5(0, r) n (pn(B(0, /?)) = 0. Consider also the corresponding
function F defined on L := fi(0, r) U <pn(B(O, /?)) given by

((V0(z) if ze 5(0,/-);

\g(<P;](z)) if z e <pH(B(0, R)).

https://doi.org/10.1017/S1446788700015561 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015561


[29] U-operators 87

Now, n can be chosen in such a way that there exists a Jordan arc y connecting oc
with the boundary of B (0, r) such that

(18) )/„(,_,, f lL = 0,

where <5 := A^n(Q) (this will be shown at the end of the proof)- Therefore
Lemma 6.3(b) applies, yielding a polynomial P e £Q such that || P — F\\L < s. Then
as in the proof of Theorem 6.5 we obtain a function / e £ with | | / — h\\g(Qr) < e
and || (/&/") o <?„ - g\\B(o,R) < £• Let us define

G(g, R, £ ) : = { / € <? : | | ( Q , / e ) / - s | | f ( M ) < £ for some neH}.

Then we have just proved that each G(g, R, s) is a dense subset of £. On the other
hand, it is not difficult to realize that every G(g, R, s) is open and that

j.k.leN

where (gj) is an enumeration of polynomials whose coefficients have rational real
and imaginary parts. By Baire's theorem, ^ ( ( C ^ / g ) ) is dense. In other words, the
sequence CVJQ : £ -» £ (n e N) is densely hypercyclic. But the same holds for
every subsequence (C9n. IQ) («I < n2 < • • •) because, trivially, ((pnj) also belongs
to o)(C). From Lemma 5.1 as applied on X := £ —: Yk for all k (or from [5,
Theorem 2]), there is a dense linear manifold M c £ with M \ {0} C ^ ( ( Q / e ) ) . If
now we define M := IQ(M) then we can conclude as in the proof of Theorem 6.5 (b).

Thus, we would be done if (18) is obtained for some suitable Jordan arc y. Recall
that L = B(0, r) U <pn(B(0, R)) where n is such that the union is disjoint. Observe
that^n(fi(O, /?)) = B(an, R\bn\). If an = \an\e

l0\ consider the angle

S(n) = {z e C \ {0} : 0H - nS < argz <9n + JTS).

Since lim,,-^ bn/an = 0, we can choose our integer n in such a way that \bn/an\ <
sin(7T<5), so B(an, R\bn\) C S(n). Let us define the Jordan arc y := \-te'e" : t > r).
Then / connects oo with the point — r of the boundary of Z?(0, r). In addition,
yn(i-S) n fi(0, r) = 0 and Y*(\-S) c C \ 5(n), whence (18) holds. D
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