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The thesis deals with elliptic partial differential equations. It is divided into two parts,

the first concerning a nonlinear elliptic equation involving the p-Laplacian and the

second focused on a nonlocal problem arising from a model for water waves.

In the first part, we study the regularity of stable solutions to the nonlinear elliptic

equation involving the p-Laplacian

−∆pu := div
(

|∇u|p−2 ∇u
)

= f (u) in Ω ⊂ Rn, (1)

where Ω is a bounded domain, p ∈ (1,+∞) and f is a C1 nonlinearity. This equation is

the nonlinear version of the widely studied semilinear elliptic equation −∆u = f (u)

in a bounded domain Ω ⊂ Rn. Stable solutions to semilinear equations have very

recently been proved to be bounded, and therefore smooth, in dimension n ≤ 9 (see

[2]). This result is optimal, since examples of unbounded stable solutions are well

known in dimension n ≥ 10. Moreover, the results in [2] give a complete answer to a

long-standing open problem about the regularity of extremal solutions to −∆u = λ f (u).

We investigate the boundedness of stable solutions to (1) up to dimension

n with n < p + 4p/(p − 1). If n ≥ p + 4p/(p − 1), examples of unbounded stable

solutions are known even in the unit ball. In the radial case or under strong

assumptions on the nonlinearity, stable solutions to (1) are proved to be bounded

for n < p + 4p/(p − 1).

In the thesis (see [7]), we prove a new L∞ a priori estimate for stable solutions

to (1), under a new condition on n and p, which is optimal in the radial case and

more restrictive in the general one. However, it improves the known results in the
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field and it is the first example of a technique providing both a result in the nonradial

case and the optimal result in the radial case. To establish this result, we extend a

technique developed by Cabré [1] for the classical case of the problem, with p = 2, to

the framework of the p-Laplacian. The strategy is based on a Hardy inequality on the

level sets of the solution and on a geometric inequality for stable solutions to (1).

We also investigate Hardy–Sobolev inequalities on hypersurfaces of Euclidean

space, all of them involving a mean-curvature term and having universal constants

independent of the hypersurface (see [3]). Our motivation comes from several

applications of these inequalities to the study of a priori estimates for stable solutions,

in both the semilinear and the nonlinear cases.

Our first Hardy inequality originates from an application to the regularity of stable

solutions for semilinear elliptic equations. We use this result in the proof of our L∞ a

priori estimate for stable solutions to (1). Our second Hardy inequality is proved using

the ‘ground-state’ substitution, a technique based on exploiting a specific positive

solution of the Euler–Lagrange equation of the energy functional associated with the

inequality. We then use a refinement of this procedure, combined with a Poincaré

inequality with weights, to obtain a Hardy–Poincaré inequality on hypersurfaces. This

seems to be the first use of the ground-state substitution on hypersurfaces of Rn+1.

In the second part of this thesis, we deal with a Dirichlet to Neumann problem

arising in a water waves model. Considering a slab of fixed heightRn × [0, 1], a smooth

bounded function u defined on Rn and a parameter a ∈ (−1, 1), we are interested in

studying the system of equations
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div(ya∇v) = 0 for x ∈ Rn, y ∈ (0, 1),

vy(x, 1) = 0 for x ∈ Rn, y = 1,

v(x, 0) = u(x) for x ∈ Rn, y = 0,

− lim
y→0

yavy = f (v) for x ∈ Rn, y = 0.

(2)

This system can also be reformulated as a nonlocal problem on the component

endowed with the Dirichlet datum (see [6]). Indeed, we can define the Dirichlet to

Neumann operator La as

Lau(x) := − lim
y→0

yavy(x, y) (3)

and study the nonlocal equation Lau = f (u) in Rn.

Problem (2) was first studied in the case a = 0 by de la Llave and Valdinoci [5].

Their main result is a Liouville theorem that yields the one-dimensional symmetry of

monotone solutions to problem (2) with a = 0 and n = 2. In the thesis (see also [4]),

we extend the Liouville theorem in [5] from a = 0 to all the fractional parameters

a ∈ (−1, 1), also considering the wider class of stable solutions to (2) instead of

monotone solutions. As a consequence, we obtain the one-dimensional symmetry of

stable solutions to (2) in dimension n = 2 for every parameter a ∈ (−1, 1).

Moreover, we consider the three-dimensional case of problem (2) with a ∈ (−1, 1),

establishing sharp energy estimates for both the energy minimisers and the monotone
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solutions to (2). These estimates lead to the one-dimensional symmetry of these

classes of solutions when n = 3 for every a ∈ (−1, 1), by an application of the Liouville

theorem mentioned above.

For this nonlocal problem, we also investigate the nature of the operator La defined

in (3) (see [8]). First, we deduce its expression as a Fourier operator for every

a ∈ (−1, 1), which was previously known only for a = 0. As a result, we show that

the Fourier symbol of La is asymptotic to that of the fractional Laplacian for high

frequencies, but similar to the symbol of the classical Laplacian for small frequencies.

This behaviour highlights the mixed nature of the operator La, which is nonlocal,

but not of purely fractional type, and structurally depends on the fractional parameter

a. We further investigate this aspect by studying the Γ-convergence of the energy

functional associated to the equationLau = W ′(u), where W is a double-well potential.

Specifically, we prove the Γ-convergence of the energy functional to a limit that

corresponds to a mere interaction energy when a ∈ (0, 1) and to the classical perimeter

when a ∈ (−1, 0]. In terms of the corresponding fractional parameter s = (1 − a)/2,

this dichotomy reflects a purely nonlocal behaviour when s ∈ (0, 1/2) and purely

classical asymptotics when s ∈ [1/2, 1). The threshold s = 1/2, as well as the Γ-limit

behaviour for the regime s ∈ [1/2, 1), is common to other nonlocal problems, but the

limit functional in the strongly nonlocal regime s ∈ (0, 1/2) appears to be new and

structurally different from already well-known nonlocal energy functionals.
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