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Abstract. We present the results of a study performed with the goal to
investigate whether low-mass pre-main sequence binary stars are formed
by multiple fragmentation or via stellar capture. If binaries form prefer-
entially by fragmentation, we expect their disks to be co-planar. On the
other hand, the capture scenario will lead to a random distribution of disk
orientations. We performed near-infrared polarization measurements of
49 young visual binary stars in the K band with SOFI at the NTT. The
near-infrared excess radiation of the targets mostly point to the presence
of disks. For a major fraction of the sample, evidence for disks is also
obvious from other features (outflows, jets, Herbig-Haro 'objects). We de-
rived the disk orientation from the orientation of the polarization vector
of both components of each binary. This statistical study allows to test
which hypothesis (co-planarity, random orientation) is consistent with the
observed distribution of polarimetric position angles. We find evidence
that the disks are preferentially aligned.

1. Introduction

During recent years, near-infrared (NIR) imaging and high-resolution observa-
tions yielded conclusive evidence that most (if not all) low-mass stars are born
in binary and multiple stellar systems (Simon et al. 1995, Ghez et al. 1997,
Leinert et al. 1997, Kohler & Leinert 1998). This finding suggests that binary
formation is the rule and the birth of single stars the exception. However, the
formation and survival of binary systems obviously depend upon environmental
conditions (Bouvier et al. 1997). Up to now, it is not known at which stage
the binary/multiple star formation mode becomes dominant. Numerical studies
suggest that this occurs at early stages as the result of multiple fragmentation
of molecular cloud cores (Bonnell & Bate 1994, Burkert et al. 1997, Boss 1997,
Klessen et al. 1998, Bate 2000). However, other scenarios (e.g. stellar capture
via close encounters, Turner et al. 1995) might lead to binary formation as well.
In addition, the fragmentation process may proceed with the coalescence of the
fragments.

The fact that circumstellar disks are an inevitable means to form stars
implies that the individual disks surrounding the binary components represent
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tracers of the binary formation mechanism. The scattering of emergent light
from the star at disk surfaces and in the lobes of disk envelopes leads to a net
polarization (Bastien & Menard 1990, Whitney & Hartmann 1992, Fischer et
al. 1996). The position angle of the polarization vector is indicative for the disk
orientation. The formation of binaries by fission of a fragment will result in
co-planar individual disks (or a circumbinary disk) because of the conservation
of angular momentum. Thus, the orientation of the polarization vector for both
components will be parallel. Otherwise, if binaries form by capture, the disks
will have a random orientation. Another interesting scenario is the interaction
of protostellar disks which would probably lead to hierarchical fragmentation
where in each cascade the number of disks is approximately doubled (Watkins
et al. 1998).

When addressing this question, we have to take into account that only the
projection of the disk onto the tangential plane can be measured. Therefore, in
the case of an individual binary, we cannot rule out that the disks have indeed
different inclinations relative to the line of sight although the position angles
of the polarization of two components are similar. However, a statistical study
allows to test which hypothesis (co-planarity, random orientation) is consistent
with the observed distribution of polarimetric position angles (see Sect. 2.3.).

First attempts to address the issue of pre-main-sequence binary polarization
have been made (e.g., T Tau by Kobayashi et al. 1997, Ageorges et al. 1997,
Fischer et al. 1998, Monin et al. 1998, Jensen et al. 2000). We 'briefly mention
the results on Z CMa obtained by speckle polarimetry (Fischer et al. 1998). In
this case, the K band linear polarization of the infrared primary amounts to 1\ ==
4.2 %± 2.0 %, 'Y == 173± 34° ('Y - polarization angle) while the secondary (optical
component) has 1\ == 8.1 %± 4.5 %, 'Y == 102° ± 45°. This investigation revealed
that the spatial orientation of the individual disks is only marginally different,
thus supporting the view of a common origin. Monin et al. (1998) found four
sources where the rotation axes of both components are preferentially parallel
but also one system where the axes are clearly not parallel. In a sample of 18 T
Tauri binaries investigated by Jensen et al. (2000) in the K band, approximately
70 % of the binaries have polarization angles being within 30° of each other.

We used the polarimetric mode of SOFI at the New Technology Telescope
of ESO to test two different scenarios of binary star formation. For this purpose,
a sample comprising 49 objects was selected from the binary surveys of Reipurth
& Zinnecker (1993) and Ghez et al. (1997).

The near-infrared excesses of the targets mostly point to the presence of
disks (e.g., Kenyon et al. 1996). For a major fraction of the sample, evidence for
disks is also obvious from other features (outflows, jets, Herbig-Haro objects).

The targets have angular separations 0.5" ~ p ~ 5.3". Generally, the choice
of the optimum wavelength for such an investigation will represent a compromise
since a large net polarization is expected at shorter wavelengths (due to the high
scattering efficiency) but many of the targets are considerably reddened.
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2. The Method
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2.1. The General Idea

The principal method that we apply in our investigation has been firstly de-
scribed by Monin et al. (1998). It is based on the assumption that PMS stars
are surrounded by an optically thick disk being embedded in an optically thin
dust envelope. In the general case, the light emerging from such a configuration
is polarized whereby the degree of linear polarization 11 is strongly wavelength
and inclination dependent and amounts to several percent in the K band. While
PI is a function of many parameters (dust density distribution in the disk, wave-
length, orientation of the disk, etc.; see, e.g., Fischer et al. 1996), the polarization
angle , is only a function of the orientation of the disk. In the case of an opti-
cally thick disk and an optically thin circumstellar envelope, it is identical with
the orientation of the long semi-axis of the ellipse which is the projection of the
disk on the plane of the sky (in the case of a disk seen face-on, , is not defined
because the net polarization is zero). The inclination of two circumstellar disks
of a PMS binary projected on the plane of the sky is therefore a function of the
difference of the respective polarization angles. The influence of the projection
effect is described in Sect. 2.3..

2.2. Polarization Mechanisms

It is now well established that the optical and near-infrared polarization of light
arising from young stellar objects (YSO) is caused by light scattering on dust
grains. Assuming a centro-symmetric dust density configuration around an il-
luminating star, the net polarization arising from scattering by spherical dust
grains (see, e.g., Bastien & Menard 1990, Whitney & Hartmann 1992, Fischer
et al. 1996) or - in a more realistic scenario - by randomly oriented non-spherical
grains (see Wolf et al. 2000), is equal to zero. The polarization pattern is centro-
symmetric. If the star is surrounded by an optically thick disk the net polariza-
tion will have a certain value:

1. The disk partially "obscures" the optically thin shell resp. the centro-
symmetric polarization pattern. The net polarization of the light arising
from scattering in the shell is therefore not zero.

2. If the disk is not seen face-on, the scattering of light on the surface of the
disk results in a non-centro-symmetric polarization pattern - the resulting
net polarization is not zero.

The correlation between the polarization angle, and the orientation of the
disk is valid only under the following assumptions:

1. The disk is optically thick at the wavelength of observation. Then the
assumption of the obscuration effect is fulfilled.

2. The star + disk system is embedded in an optically thin shell. The light
scattering by dust grains causes the polarization of light and backscattering
on the disk. The latter results in a polarization angle being parallel to the
long semi-axis of the projection of the disk surface on the plane of sky.

https://doi.org/10.1017/S0074180900225345 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900225345


298 s. Wolt: B. Stecklum, and Th. Henning

Figure 1. [A] Dust density distribution in the model of the circum-
stellar disk. [B] Histogram of the K band net polarization arising from
the YSO configuration. [C] Intensity maps with overlayed polariza-
tion pattern of the disk for different inclinations in the K band. The
polarization scale in the lower right edges of the images symbolizes a
polarization degree of 100%.
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Our binary sample was built using these constraints (see Sect. 3.1.).
In Fig. 1 polarization maps and the resulting probability distribution of

the observable net polarization in the K band for a model of a low-mass YSO
being surrounded by a circumstellar disk are shown. The spatial density struc-
ture (see Fig. 1[A]) and initial temperature distribution of the circumstellar disk
(M == 2.3 · 10-3 M0) results from hydrodynamical simulations performed by
Yorke (1999, priv. comm.). The hydrodynamic code solves the standard equa-
tions of hydrodynamics with radiation transport and the Poisson equation for
the gravitational potential (Black & Bodenheimer 1975). The two-dimensional
hydrodynamic code of Rozyczka (1985) with second-order accurate advection
is employed. Shocks are treated by including artificial viscosity. Physical vis-
cosity is not included and angular momentum transport during the collapse is
assumed to be negligible. To derive the polarization Ii (i) of this system as a
function of the inclination i perpendicular to the plane of sky, we simulated the
radiative transfer (RT) with a three-dimensional continuum RT code which is
based on the Monte-Carlo method (see, e.g., Wolf et al. 1999). In addition to
the results from the hydrodynamical simulations, we introduce the following RT
parameters: spherical dust grains consisting of "astronomical" silicates (opti-
cal data from Draine & Lee 1984, radius 0.12 Mm); star: effective temperature
Teff == 6000 K, L == 2 L0; wavelength range for the simulation of the radiative
transfer: 0.03 ... 2000 usc:

2.3. Inclination of Disks - Projection Effect

One has always to take into account that only the orientation of the disk resp.
the orientation of its spin axis projected onto the plane of the sky can be derived
from the linear polarization orientation angle 'Y. If the spin axis is rotated in
the plane of the sky, the polarization angle 'Y rotates accordingly and the net
polarization remains unchanged. In contrast to this, the polarization angle 'Y
remains unchanged if the spin axis is rotated perpendicular to the plane of the
sky. In the second case the net polarization Fi changes. Because the dust
density structure of the individual disks is unknown, the inclination of a disk
perpendicular to the plane of sky cannot be derived from Ii. As a consequence
of this situation, the real angle between the spin axes of two disks a cannot be
derived with this technique. For example, a measured position angle difference
~'Y == 0° is not a reliable indicator for parallel spin axes (see Fig. 2).

However, this problem can be solved considering a large binary sample. If
in each binary the disks are randomly oriented, the probability rr(~'Y) for a pair
of disks to have an inclination projected on the plane of sky amounting to ~'Y

is constant. Even if the correct inclinations (which cannot be measured with
this technique) differ from the measured inclinations in the plane of the sky,
the probability distribution rr(~'Y) - based on measurement of the polarization
angles of the binary components - is not modified in the case of randomly oriented
disks. This comes from the fact that for every orientation of the disk in the plane
of the sky (represented by the polarization angle ,) the probability for the disk
to be inclined by a certain angle perpendicular to the plane of the sky is constant.

In Fig. 3 the correlation between the real inclination a of the disks and
the position angle difference ~'Y is shown for different probability distribution
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Figure 2. Explanation of the projection effect. In the upper left part
of the figure two flared disks (seen edge-on, black) embedded in an
optically thin circumstellar shell (grey) are shown. The y-axis of the
cartesian coordinate systems [(Xl, YI,ZI);(X2, Y2,Z2)] is oriented perpen-
dicular to the x-z plane pointing into the paper plane. If the plane of
the sky is the Xl - Zl (resp. the X2 - Z2) plane, the real inclination of
the disks against each other can be measured (Observer A; see lower
left table). If the YI - Zl (resp. the Y2 - Z2) plane is the plane of the sky
(Observer B), the polarization angle, of both disks is parallel to the
according y-axis. Therefore - due to the projection effect -, these disks
would be assumed to be co-planar. Only on the basis of a large binary
sample, a decision whether the individual disks of the binary compo-
nents are in general co-planar or oriented randomly can be made (see
Sect. 2.3.).

Figure 3. Correlation between [A] the distribution of the real incli-
nations II(a) of the disks and [B] the distribution of the corresponding
position angle differences II(~,) (see Sect. 2.3.). (a): perfect random
orientation of the disks; (b) ... (d): increasing alignment of the disks.
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Figure 4. Probability distribution function II(il,) for randomly ori-
ented disks as a function of the degree of linear polarization of the ISM
1l,IsM. The decrease of II(~,) steepens with increasing polarization
1l,IsM' Fi,ISM= 0.1, 0.2, 0.4, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 %.
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functions II (0: )
1 . For perfectly randomly oriented disks (II (0: ) ==const. ), we find

II(il,)=const.. An alignment of disks - being characterized by a decrease of the
probability distribution function II(o:) for increasing 0: - results in a decrease
of the measured distribution II(~,). One has also to be aware, that even in
the case of strongly - but not perfectly - aligned disks for which II(a)==O for
a > ao (ao > 0; see Fig. 3, distribution d), there is still a probability to measure
position angle differences il, > ao.

2.4. Influence of the Interstellar Polarization

As discovered by Hiltner (1949), the interaction of light of distant stars with
the interstellar medium (ISM) leads to a significant linear polarization. Because
this additional "polarizer" (polarization degree Fl,ISM, orientation angle ')'ISM)
influences the observed light of both binary components, the observed position
angle difference il, may be reduced. Thus, even in the case of perfectly randomly
oriented disks, this may lead to an apparent alignment of the disks because the
probability distribution function rr(~1') would increase towards decreasing ~1'.

To estimate the influence of the interstellar polarization (ISP) on our results,
we derived the K-band polarization of the model of a low-mass YSO described
in Sect. 2.2.. The second step was to combine two of these disk under the
assumption of random pairing (II(a)=const.). Finally, the measurable apparent
inclination of these disks ~, in the plane of sky was determined taking into

1These results are based on Monte-Carlo simulations. Each distribution II( /).,) was determined
based on the projection of 107 pairs of disks - following the distribution II(a) - onto the plane
of the sky.
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account the additional polarization by the ISM. Based on 107 pairs of disks, the
resulting distribution function II(~T) as a function of Pl,ISM is shown in Fig. 4.
The decrease of the distribution II(~T) towards increasing ~T is strengthened
by the increase of .F\,ISM.

3. Observations

3.1. The Sample

As pointed out in Sect. 2.2., we have to consider PMS stars in an evolutionary
stage in which they are still surrounded by an optically thick disk being embed-
ded in an optically thin shell. The objects fulfilling these criteria are classical
T Tauri stars. Therefore our sample consists of 49 close binaries (separations:
0.5"...5.3") from the surveys of Reipurth & Zinnecker (1993), Ghez et al. (1997),
and Prato & Simon (1997).

3.2. The Observing Strategy

The polarization data were obtained in 1999 March 2-4 and May 28-30 at the
European Southern Observatory (ESO). The images were taken using SOFI in
imaging polarization mode at the New Technology Telescope (NTT). The pixel
scale in this mode is 0.292" per pixel.

With SOFI, polarimetry is peformed by inserting in the parallel beam a
Wollaston prism which splits the increasing light rays into 2 .orthogonally polar-
ized beams separated by 48". For the derivation of the Stokes vector components
Qand U, the objects were observed at two different orientations of the Wollaston
prism differing by 45 degrees.

To increase the signal-to-noise ratio (SNR) and for a sufficient badpixel
and background subtraction we observed each object at each orientation of the
Wollaston prism 5 times (offset: 25").

4. Results

The histograms of the linear polarizations and the position angle differences ~'Y

based on 34 binaries are shown in Fig. 5. The remaining objects were excluded
because the error of polarization and therefore the error of the orientation angle
T (for the formalism of error estimation see, e.g., Wardle & Kronberg 1974, di
Serego Alighieri 1998) of at least one component of the binary system was too
large (l1/a{.F\) < 3). Thus, preferentially those binaries in which at least one
component shows a very low linear polarization (~ 1%), were excluded. This
can also be seen in the histogram for Fi which is otherwise (for 11 > 1%) in
very good agreement with the simulated histogram (see Sect. 2.4., .Fig. l[B]).
The distribution (N (~'Y)) shows a strong decrease towards large angles ~T.

Assuming the ISP to cause this behaviour, the degree of linear polarization had
to exceed 1% (for comparison see Fig. 4[B]). In contrast to this, the mean degree
of linear polarization caused by the ISM in the K band was found to be well
below 1 % in average (see, e.g., Nagata 1990). Thus, the distribution II(Ll,)
reflects the intrinsic polarization of the binary components and therefore the
alignment of their disks.
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Figure 5. [A] Histogram of the polarization measured for 2x34 bi-
nary components. The dark grey region markes the ranges in which we
found a local maximum of the linear polarization in out model simu-
lations (for comparison see Fig. l[B]). [B] Distribution of the position
angle differences t:::.., of the disks in 34 binaries. For comparison see
Fig. 3 and Fig. 4.

5. Conclusions

303

Based on K band observations of 49 classical T Tauri binary stars, we found
intrinsic linear polarization for both components in 34 "binary systems. The
polarization can be explained by light scattering on spherical dust grains under
the assumption of the presence of a circumstellar disk. We performed self-
consistent RT simulations for a low-mass YSO surrounded by a circumstellar disk
with a structure resulting from hydrodynamical simulations. The probability
distribution of the polarization degree fits very well to the observed distribution
derived from the polarization of all binary components.

We showed that real inclinations of the circumstellar disks in single binary
systems cannot be measured using the position angle difference D.,. But it
turned out that, based on a large binary sample, one can decide if there exists an
alignment mechanism. The measured probability distribution function rr(~,)

shows a steep decrease towards large inclinations ~'Y. Based on RT simulations
we showed that this behaviour cannot be explained by the influence of the ISP.

We can therefore conclude that the disks in our sample are preferentially
aligned. Thus, if stellar capture plays a role during the binary formation pro-
cess, it must be followed by disk alignment processes on a timescale much smaller
than the lifetime of the circumstellar disks. Otherwise, fragmentation as the ba-
sic binary formation process could explain the observed inclination distribution
without any assumptions. The tail towards large inclinations can be explained
by the projection effect (see Sect. 2.3.). Moreover, turbulence in the molecular
cloud during the fragmentation process might lead to misaligned fragments as
well (R. Klein, priv. comm.).
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star formation". It is based on observations collected at the European Southern
Observatory. -
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