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Abstract We define a partial Radon transform mapping functions on R
n+l to functions on R

n which
intertwines the Laplace operator on the two spaces. As a consequence, transplantation formulae relating
the radial eigenfunctions of the Laplacian on Euclidean spaces of different dimensions are obtained. Our
formulae provide a geometric interpretation of integral formulae for Bessel functions of Abel type, which
are found useful in potential theory. The formulae portray a view of Hadamard’s method of descent
within the realm of harmonic analysis, allowing the transplant of local problems from even dimensions
to odd dimensions and unifying the techniques of several authors.
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1. Introduction

Local problems in analysis on Euclidean space often possess simpler solutions when the
underlying dimension is odd. The analytic structural reason for this is that the spherical
function takes an elementary form allowing reduction to a one-dimensional problem. A
well-known illustration of these statements lies in the solution to the Cauchy problem
for the wave equation on Rn. Let u = u(x, t). The initial-value problem of interest is

∂2
t u = ∆u, x ∈ Rn, t > 0,

IC :

{
u(x, 0) = 0,

ut(x, 0) = f(x),

⎫⎪⎪⎬⎪⎪⎭ (1.1)

where ∂t = ∂/∂t, ∆ is the Laplace operator, and f is a suitable function defined on Rn,
e.g. smooth with compact support. For simplicity of illustration, set n = 3. The spherical
means of a function g are defined by

ḡ(x)(r) =
1
4π

∫
S2

g(x + rω) dω, (1.2)

277

https://doi.org/10.1017/S0013091505000933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000933


278 W. O. Bray

and an application of the divergence theorem yields the intertwining property

(∆g)(x)(r) =
(

∂2
r +

2
r
∂r

)
ḡ(x)(r).

The simple identity
∂2

r [rh(r)] = (r−1∂r)[r2h′(r)], (1.3)

where h is a function of a real variable, then implies that u(x, t) solves (1.1) if and only
if the function

v(r, t) = rū(x)(r, t)

is the solution of the one-dimensional Cauchy problem:

∂2
t v = ∂2

rv, r, t > 0,

BC : v(0, t) = 0,

IC :

{
v(r, 0) = 0,

∂rv(r, 0) = rf̄(x)(r).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.4)

The latter may be solved using d’Alembert’s formula and u may be recovered from v to
provide the solution to (1.1) as

u(x, t) = ∂rv(0, t) = tf̄(x)(t). (1.5)

Higher dimensions can be treated similarly (see [3] for details).
An alternative perspective of this reduction is available using Fourier transforms, as

follows. The Fourier transform is defined by

Fnf(ξ) =
∫

Rn

f(x)e−i(x·ξ) dx.

Throughout this paper, we view the Fourier transform in terms of polar variables:
Fnf(ξ) = Fnf(λ, ω), where λ � 0 and ω ∈ Sn−1. In the case of radial functions, the
Fourier transform is written Fnf(λ). Again taking n = 3, we write the Fourier inversion
formula in the form

f(x) =
1

4π2

∫ ∞

0
(f � φλ)(x)λ2 dλ, (1.6)

where ‘�’ denotes convolution and φλ(x) is the spherical function on R3. The latter is the
unique radial solution of the equation ∆u + λ2u = 0 which is 1 at the origin, explicitly
in three dimensions,

φλ(x) =
sin λr

λr
,

where r = |x|. In order to obtain the desired solution formula for (1.1) we need the
identity [1]

(f � φλ)(x) = F3[f̄(x)](λ), (1.7)
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where the Fourier transform above is of the radial function y → f̄(x)(y). In this vein the
Fourier integral form of the solution of the Cauchy problem (1.1) is

u(x, t) =
1

4π2

∫ ∞

0
F3[f̄(x)](λ) sin λt λ dλ. (1.8)

Note that
φλ(x) = − 1

λ2r
∂r(cos λr).

Hence, a three-dimensional Fourier transform of a radial function g can then be computed
using integration by parts to obtain

F3g(λ) =
2π

λ2 F1h(λ),

where h(r) = ∂r(rg̃(r)) and g̃(r) = g(x). Using this in (1.8) and applying one-dimensional
Fourier inversion yields the alternative derivation of (1.5).

We will now establish notation used throughout the rest of the paper and outline the
above Fourier transform computation on R2m+1. Given a radial function g, its realization
as an even function on R is denoted by g̃(r) = g(x), where r = |x|. Let O denote the
origin in Rn. The spherical function on Rn is the unique radial solution to the equation
∆u + λ2u = 0, which takes value 1 at the origin. The spherical function is denoted φn

λ(x).
In terms of Bessel functions this is

φ̃n
λ(r) = 2σ−1/2Γ (σ + 1

2 )(λr)−(σ−1/2)Jσ−1/2(λr), (1.9)

where Jµ is a Bessel function of the first kind, of order µ, and σ = 1
2 (n − 1). The Fourier

inversion formula can be expressed as [1]

f(x) =
ωn−1

(2π)n

∫ ∞

0
(f � φn

λ)(x)λn−1 dλ

and, in analogy with (1.7), we have

(f � φn
λ)(x) = Fn[f̄(x)](λ). (1.10)

The solution of (1.1) for n = 2m + 1 as a Fourier integral is

u(x, t) =
ω2m

(2π)2m+1

∫ ∞

0
F2m+1[f̄(x)](λ) sin λt λ2m−1 dλ. (1.11)

Applying the differentiation formula for Bessel functions [7, p. 103] to the spherical
function gives a stunning formula representing a shift of two dimensions via a differential
operator:

(r−1∂r)φ̃n−2
λ (r) = −λ2

n
φ̃n

λ(r). (1.12)

If n = 2m + 1 is odd, the formula iterates to

λ2mφ̃2m+1
λ (r) =

(2m + 1)!
2mm!

(−r−1∂r)m cos λr. (1.13)
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This is a variant of a well-known formula for Bessel functions of half-integer order [7,
p. 111]. Substituting this formula into (1.11) (in the computation of the Fourier trans-
form), integrating by parts and collecting constants reduces the integral to a one-
dimensional Fourier inversion and yields

u(x, t) =
2m−1(m − 1)!

(2m − 1)!
(t−1∂t)m−1[t2m−1f̄(x)(t)]. (1.14)

This is the well-known Kirchhoff–Poisson formula; a Fourier analytic derivation in even
dimensions is given at the beginning of § 3.

The analysis in the preceding paragraphs depicts the idea of reducing problems to one
dimension, a technique which has been applied in a variety of problems and settings:
pointwise inversion of Fourier transforms [8], Paley–Wiener theorems [11] and the wave-
equation approach to Fourier inversion [9]. In its direct form, the technique works well
in odd dimensions; even dimensions require further analysis [1, 2, 8, 9]. In the case of
the Cauchy problem for the wave equation (1.1) in even dimensions, this analysis is usu-
ally carried out applying the method of descent: a principle named and used extensively
by Hadamard [4]. One perspective of the current paper is to provide a view of Hada-
mard’s method in the context of harmonic analysis. We define a partial Radon transform
mapping functions on Rn+l to functions on Rn which intertwines the respective Laplace
operators. Applied to radial functions (see § 2), this provides formulae generalizing the
reduction formula (1.12); we call such formulae transplantation formulae. When n is
even, the formulae give a direct method to lift local problems of harmonic analysis in
even dimensions to odd dimensions (see § 3). Expressed in terms of Bessel functions,
our transplantation formulae (see (2.9)) provide a geometric interpretation of Abel-type
integral formulae for Bessel functions [12, p. 45]. A natural dual transform is constructed
along with associated dual transplantation formulae. These provide a geometric interpre-
tation of a formula for Bessel functions that is important in the study of Bochner–Riesz
summability [10] and in potential theory. In § 3 we apply the transplantation formulae
to provide an alternative approach to, and extension of, results of Pinsky and Taylor [9]
on Fourier inversion at a point, and an alternative proof of Helgason’s [5] Paley–Wiener
theorem.

The idea for this paper is based on [2], in which transplantation formulae were obtained
analytically in the setting of symmetric spaces. Geometric perspectives on the latter will
appear elsewhere.

2. Transplantation formulae

Let x ∈ Rn+l, where l � 1, and write x = (x′, x′′), where x′ ∈ Rn and x′′ ∈ Rl. For
measurable functions f defined on Rn+l, define

Tlf(x′) = Tl(x′, x′′) =
∫

Rl

f(x′, x′′ + τ) dτ. (2.1)

The following key properties are readily apparent from our definition.
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(i) If f is SO(n + l)-invariant (radial), then Tlf is SO(n)-invariant.

(ii) Let ∆n denote the Laplacian on Rn. Then Tl intertwines the Laplacian on Rn+l

and Rn, i.e.
∆nTlf = Tl∆n+lf. (2.2)

Using the notation of § 1, these properties suggest a transplantation formula of the form

φn
λ = d(λ, l, n)Tlφ

n+l
λ , (2.3)

for some function d(λ, l, n) independent of x′. Before giving this result, we define a dual
transform as follows. Given a function g on Rn, its Hadamard extension is defined by
Hg(x′, x′′) = g(x′). It is immediate that∫

Rn+l

f(x)Hg(x) dx =
∫

Rn

Tlf(x′)g(x′) dx′,

a formula valid for all measurable functions f and g when either side is finite, with the
functions replaced by their absolute values. Restricting to radial functions, this formula
yields the desired duality:∫

Rn+l

f(x)T ∗
l g(x) dx =

∫
Rn

Tlf(x′)g(x′) dx′, (2.4)

where
T ∗

l g(x) =
1

ωn+l−1

∫
Sn+l−1

Hg(|x|ω) dω. (2.5)

The geometric interpretation of T ∗
l g is clear: it is the symmetrization about the origin of

the Hadamard extension of g. It follows that

∆n+lT
∗g = T ∗

l ∆ng,

and hence we should have a formula dual to (2.3):

T ∗
l φn

λ = d′(λ, l, n)φn+l
λ , (2.6)

for a suitable function d′.

Remark 2.1. Notice that the operator Tl and its dual T ∗
l also depend on n. We have

chosen not to indicate this directly in the operator symbol for clarity as the underlying
dimension should be clear from the context or by hypothesis.

We can now state and prove the main results of this section.

Theorem 2.2. Let n � 3 and 1 � l < n − 1. Then, for λ > 0, we have

φn
λ(x′) =

Γ (n/2)
2lπl/2Γ ((n + l)/2)

λl(Tlφ
n+l
λ )(x′). (2.7)
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Proof. The conditions on l and n guarantee the existence of Tlφ
n+l
λ as an absolutely

convergent integral and define a radial continuous function. We show that Tlφ
n+l
λ is a

weak solution of ∆nu + λ2u = 0. Let g ∈ C∞
c (Rn). Then∫

Rn

∆n(Tlφ
n+l
λ )(x′)g(x′) dx′ =

∫
Rn

(Tlφ
n+l
λ )(x′)∆ng(x′) dx′

=
∫

Rn+l

φn+l
λ (x)(T ∗

l ∆ng)(x) dx

=
∫

Rn+l

φn+l
λ (x)(∆n+lT

∗
l g)(x) dx

= −λ2
∫

Rn+l

φn+l
λ (x)(T ∗

l g)(x) dx

= −λ2
∫

Rn

(Tlφ
n+l
λ )(x′)g(x′) dx′.

It follows that ∆k
n[Tlφ

n+l
λ ] ∈ C(Rn) for every k = 0, 1, . . . , and hence Tlφ

n+l
λ is smooth [6].

This verifies (2.3). In order to calculate d, we express the integral defining Tl in polar
form as

Tlf(x′) = ωl−1

∫ ∞

|x′|
f̃(s)(s2 − |x′|2)l/2−1s ds. (2.8)

Note that the integral is absolutely convergent if, say, f̃(s) = O(s−p), where p > l.
Applying this to (2.3) and setting x′ = O one obtains

1 = ωl−1d(λ, l, n)2(n+l−2)/2Γ

(
n + l

2

) ∫ ∞

0
(λs)−(n+l−2)/2J(n+l−2)/2(λs)sl−1 ds

= ωl−1d(λ, l, n)2(n+l−2)/2Γ

(
n + l

2

)
λ−l

∫ ∞

0
J(n+l−2)/2(s)s−(n−l)/2 ds.

The value of the latter integral is known (see, [7, p. 142]) and is given by∫ ∞

0
J(n+l−2)/2(s)s−(n−l)/2 ds =

Γ ( 1
2 l)

2(n−l)/2Γ ( 1
2n)

.

Substituting this and the formula ωl−1 = 2πl/2/Γ ( 1
2 l) into the previous equation and

simplifying gives

d(λ, l, n) =
Γ ( 1

2n)
2lπl/2Γ ( 1

2 (n + l))
λl,

as desired. �

Two special cases of the above result are worth recording in explicit form corresponding
to l = 1 and l = 2.
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Corollary 2.3. Let λ > 0. Then, for n � 3,

φ̃n
λ(r) =

Γ ( 1
2n)

√
πΓ ( 1

2 (n + 1))
λ

∫ ∞

r

φ̃n+1
λ (s)(s2 − r2)−1/2s ds, (2.9)

φ̃n
λ(r) =

λ2

n

∫ ∞

r

φ̃n+2
λ (s)s ds. (2.10)

Remark 2.4. Notice that (2.9) holds in the case where n = 2; the integral needs to
be interpreted in a Cauchy principal-value sense. Equation (2.10) is equivalent to the
differentiation formula (1.12).

The dual to Theorem 2.2 is the following.

Theorem 2.5. Let n � 1 and let l � 1. Then

T ∗
l φn

λ = φn+l
λ . (2.11)

Proof. In a fashion similar to that above, T ∗
l φn

λ is a weak solution of ∆n+lu + λ2u = 0.
By the same argument used in the proof of Theorem 2.2, it follows that (2.6) holds. From
(2.4), or directly from (2.5),

(T̃ ∗
l g)(s) =

2
B( 1

2 l, 1
2n)sn+l−2

∫ s

0
g̃(r)(s2 − r2)(l−2)/2rn−1 dr. (2.12)

Substituting g = φn
λ, using (2.6) and setting λ = 0 yields

d′(λ, l, n) =
2

B( 1
2 l, 1

2n)sn+l−2

∫ s

0
(s2 − r2)(l−2)/2rn−1 dr.

By a change of variable, d′ = 1, concluding the proof. �

Note that this result is valid for a larger range of parameters than Theorem 2.2. In
particular, for n = 1 and l = m − 1, the result provides a geometric interpretation of the
Poisson integral representation for Bessel functions.

2.1. Relation with the Radon/Abel transforms

The Radon transform integrates functions defined on Rn over all hyperplanes;
restricted to radial functions, it is often called the Abel transform (which we denote
by An): an operator which acts on functions defined on [0,∞). For our purposes here, we
also index the transplantation operator with the dimension, i.e. Tl = Tl,n. Restricting the
operators to radial functions, it is easy to see that ˜Tn−1,nf = Anf̃ . In particular, T1,2 and
T2,3 are invertible on suitable classes of radial functions. Furthermore, T1,n−1T1,n = T2,n.
Hence, from (2.8), one can write an inversion formula for T1,n.

It should be noted that our dual transform T ∗
l is not the same as the dual Radon

transform in any case. Our dual was constructed to take advantage of the Hadamard
map and form a dual to Tl on spaces of radial functions.
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2.2. Analytic perspectives

As integral formulae for Bessel functions, (2.7) and (2.11) can be written, respectively,
as

(λr)−µJµ(λr) =
1

2α−1Γ (α)

∫ ∞

r

(λs)−(µ+α)Jµ+α(λs)(s2 − r2)α−1s ds,

(λs)−(µ+α)Jµ+α(λs) =
1

2α−1Γ (α)s2(µ+α)

∫ s

0
(λr)−µJµ(λr)(s2 − r2)α−1r2µ+1 dr,

where µ = 1
2 (n−1) and α = 1

2 l. The former is a limiting form of Sonine’s second integral
and the latter is a variant on Sonine’s first integral [12, p. 45]. The second formula can
be rewritten as

Jµ+α(s) =
sα

2α−1Γ (α)

∫ 1

0
Jµ(st)(1 − t2)α−1tµ+1 dt,

where we have set λ = 1. In this form, the formula is useful in the study of Bochner–Riesz
summability [10, p. 170]. Hence, the above theorems provide a geometric interpretation
of integral representations of Bessel functions useful in potential problems and harmonic
analysis.

It is possible to write analytic versions of the operator Tl and its dual and modify the
above techniques (intertwining properties and elliptic regularity arguments) to obtain
the above limiting cases of Sonine’s integrals for appropriate ranges of the parameters.
However, we do not need such results in our applications below.

3. Applications

A simple illustration of the utility of the transplantation formulae is the extension of
the reasoning underlying the Kirchhoff–Poisson formula (1.14) to even dimensions. The
solution of the initial-value problem (1.1) in the case n = 2m has the Fourier integral
representation

u(x, t) =
ω2m−1

(2π)2m

∫ ∞

0
F2m[f̄(x)](λ) sin λt λ2m−2 dλ,

where we assume that f is smooth with compact support. What is needed is a formula lift-
ing the above Fourier transform, F2m[f̄(x)](λ), to one on R2m+1. If g is a radial Lebesgue
integrable function with compact support, then formally using Theorem 2.2 and duality
we get

F2mg(λ) =
Γ (m)

2
√

πΓ (m + 1
2 )

λ F2m+1[T ∗
1 g](λ). (3.1)

In order to justify this, the following lemma provides integrability properties of T ∗
1 g, a

result which also finds use in the next subsection.

Lemma 3.1.

(i) Let f ∈ L1
c(R

n) be radial. Then T ∗
1 f = g1 + g2, where g1 ∈ L1

c(R
n+1) and g2 ∈

Lp(Rn+1) for any p > 1 + (1/n).

https://doi.org/10.1017/S0013091505000933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000933


Transplantation formulae and Hadamard’s method of descent 285

(ii) Let f be a radial measurable bounded compactly supported function, then T ∗
1 f ∈

Lp(Rn+1) for any p > 1 + (1/n).

Proof. For (i), take R > 0 such that f(x) = 0 for |x| > R and let R′ > R. Let
g1 = T ∗

1 f for |x| � R′ and let it be zero elsewhere, and set g2 = T ∗
1 f − g1. Let cn =

2B( 1
2 , 1

2n)−1. Then, from (2.12),

∫ R′

0
|g̃1(s)|sn ds � cn

∫ R′

0
s

∫ s

0
|f̃(r)|(s2 − r2)−1/2rn−1 dr ds

= cn

∫ R′

0
|f̃(r)|rn−1

∫ R′

r

(s2 − r2)−1/2s ds dr

� const. × ‖f‖1.

Again using (2.12), for s > R′ we have

|g̃2(s)| � cn

sn−1

∫ R

0
|f̃(r)|(s2 − r2)−1/2rn−1 dr

� cn

sn−1(s2 − R2)1/2

∫ R

0
|f̃(r)|rn−1 dr.

It follows that

|g̃2(s)|psn � const. × 1
sn(p−1)

and g2 ∈ Lp(Rn+1) if p > 1 + (1/n), as desired. The proof of (ii) is similar: we need only
show that T ∗

1 f(x) is bounded for |x| � R′. �

If m � 2, the integral defining the Fourier transform on the right-hand side of (3.1) is
absolutely convergent. Indeed, standard estimates of Bessel functions imply that φn+1

λ ∈
Lq(Rn+1) provided that q > 2 + (2/n). The Hölder conjugate index would then satisfy
p < 2(n + 1)/(n + 2). From the preceding lemma, T ∗

1 g = g1 + g2, where g1 ∈ L1
c(R

n+1)
and g2 ∈ Lp(Rn+1) for any p > 1 + (1/n). When n > 2, we may choose p to satisfy both
inequalities, verifying that F2m+1[T ∗

1 g] is defined by an absolutely convergent integral. In
the case where n = 2, T ∗

1 g is locally integrable on R3 and defines a tempered distribution.
Hence, in two dimensions (3.1) should be interpreted in the sense of distributions.

Substituting into the formula for u and simplifying the constants, we obtain

u(x′, t) =
ω2m

(2π)2m+1

∫ ∞

0
F2m+1[T ∗

1 f̄(x′)](λ) sin λt λ2m−1 dλ,

where we are using the primed variables for R2m. This should be compared with (1.11); we
are left with understanding T ∗

1 f̄(x′). As in the previous section, we write x = (x′, x2m+1) ∈
R2m+1. It is then easy to see that

T ∗
1 f̄(x′)(y′) = (Hf)(x)(y),
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where the overline on the right-hand side represents the spherical mean on R2m+1. Recall-
ing the Kirchhoff–Poisson formula (1.14), the solution to the initial-value problem (1.1)
for n = 2m takes the form

u(x′, t) =
2m−1(m − 1)!

(2m − 1)!
(t−1∂t)m−1[t2m−1(Hf)(x)(t)].

This is equivalent to the classical form (see [3]). The point of the above rather formal
computation is to indicate a direct role of Hadamard’s method of descent in Fourier
transform formulae.

Two other applications of the transplantation formulae are given in the following sub-
sections.

3.1. Fourier inversion at a point

Herein we present an alternative development of results in [9] in the Euclidean space
setting. The approach lies in applying the transplantation formulae to obtain a formula
relating the Fourier transform of radial functions on R2m+1 to that of the transplanted
function on R2m−1, i.e.

F2m+1f(λ) = F2m−1[T2f ](λ), (3.2)

and formula (3.1) representing Hadamard’s method of descent lifting computation of
Fourier transforms on R2m to a Fourier transform on R2m+1. Formula (3.2) is immediate
if f is a radial Lebesgue integrable function on the respective Euclidean space. Note
that, when m = 1, (3.2) is the well-known relation between the Fourier transform on R3

and the Abel transform. We will apply these formulae to obtain a new proof and the
extension of a result in [9] on Fourier inversion at a point.

Odd dimensions are treated first. Suppose that f ∈ C∞
c (R2m+1) and is radial. The

partial sum of the Fourier inversion integral at the origin is given by

SRf(O) =
1

(2π)2m+1

∫
|ξ|�R

F2m+1f(ξ) dξ =
ω2m

(2π)2m+1

∫ R

0
F2m+1f(λ)λ2m dλ.

Applying (3.2) iteratively, we obtain

SRf(O) =
ω2m

(2π)2m+1

∫ R

0
F2m−1[T2f ](λ)λ2m dλ

=
−ω2m

(2π)2m+1

∫ R

0
F2m−1[∆2m−1T2f ](λ)λ2m−2 dλ

=
(−1)mω2m

2(2π)2m+1

∫ R

−R

F1[∆1T2∆3T2 · · ·∆2m−1T2f ](λ) dλ.

Since
T2f(x) = 2π

∫ ∞

r

f̃(s)s ds, r = |x|,

it follows that
∆2l−1T2f = −2π(rf̃ ′(r) + (2l − 1)f̃(r)).
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Hence, the bracketed term in the formula for the partial sum has the structural form

∆1T2∆3T2 · · ·∆2m−1T2f(r) = (−1)m(2π)m

[ m∑
l=1

γm,lr
lf̃ (l−1)(r) + 1 · 3 · · · (2m − 1)f̃(r)

]
,

where the γn,m are constants. Substituting into the formula for the partial sum, inter-
changing orders of integration and simplifying the constants, we obtain

SRf(O) =
m∑

l=1

γ′
m,lF1[hl](R) +

1
π

∫ ∞

−∞
f̃(r)

sin Rr

r
dr, (3.3)

for suitable constants γ′
m,l and we have set hl(r) = rl−1f̃ (l)(r). The integral on the right-

hand side is well known in the classical theory of Fourier integrals and series (see, for
example, [13]); it converges to f̃(0) as R → ∞ under our hypothesis. The sum on the
right-hand side tends to 0 since hl ∈ L1(R) for all l. Hence, for nice functions and in odd
dimensions, Fourier inversion can be reduced to the one-dimensional case. (Extension to
other points x ∈ R2m+1 and non-radial functions follows from the discussion below.)

What is needed now is an extension of (3.3) to more general classes of functions. For
this, we introduce a variant [9] of the classical Dini condition. A function g : [0,∞) → R

is said to satisfy Dini’s condition at 0 if, for some δ > 0,∫ δ

0

|g(r) − g(0)|
r

dr < ∞. (3.4)

If a radial f ∈ Lp(R2m+1) is such that f̃ satisfies Dini’s condition at 0, it follows that the
integral on the right-hand side of (3.3) converges to f̃(0). (The proof is classical [13].)
Moreover, under this hypothesis, simple estimates show that f̃ ∈ L1(R) (note that f̃ is
an even function)∗ and hence it defines a tempered distribution on R. In this manner,
(3.3) is extended and we obtain the following result.

Proposition 3.2. Let f be a radial function in Lp(R2m+1) for some 1 � p � 2 such
that f̃ satisfies Dini’s condition at 0. Then f̃ is a tempered distribution on R, (3.3) holds
and

lim
R→∞

SRf(O) = f̃(0) ⇐⇒ lim
R→∞

m∑
l=1

γ′
m,lF1[hl](R) = 0,

where hl(r) = rl−1(d/dr)lf̃(r).

In order to extend the previous proposition to even dimensions, we use formula (3.1).
Lemma 3.1 provides a hypothesis suitable for examining good examples. A second tech-
nical lemma is needed, as follows (the proof is based on (2.12) and is left to the reader).

Lemma 3.3. Let f be a radial locally integrable function on Rn with f̃ satisfying
Dini’s condition at 0. Then T̃ ∗

1 f satisfies Dini’s condition at 0 with T̃ ∗
1 f(0) = f̃(0).

∗ More generally, one can show that if f ∈ Lp(Rn) for some 1 � p < n with f̃ satisfying Dini’s
condition at 0, then f̃ ∈ L1(R).
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With the technicalities in order, we are now able to use formula (3.1) as mentioned
above, in combination with Proposition 3.2, giving the following result.

Proposition 3.4. Let f satisfy the hypothesis of Lemma 3.1 with n = 2m with f̃

satisfying Dini’s condition at 0. Then

lim
R→∞

SRf(O) = f̃(0) ⇐⇒ lim
R→∞

m∑
l=1

γ′
m,lF1[hl](R) = 0,

where

hl(r) = rl−1
(

d
dr

)l

T̃ ∗
1 f(r).

Example 3.5. We explore Fourier inversion at the origin for the characteristic function
of the unit ball in two and three dimensions. When n = 3, (3.3) has the form

SRf(O) =
1
π

∫ ∞

−∞
f̃ ′(r) sin Rr dr +

1
π

∫ ∞

−∞
f̃(r)

sin Rr

r
dr.

In particular, for the characteristic function, f̃ ′(r) = δ(r + 1) − δ(r − 1), where δ is the
Dirac delta, and hence the partial sum becomes

SRf(O) =
2
π

sin R +
1
π

∫ 1

−1

sin Rr

r
dr,

indicating oscillatory divergence as R → ∞. In two dimensions, the partial sum operator
can be written

SRf(O) =
−i
π

F1[T̃ ∗
1 f ](R) +

1
π

∫ ∞

−∞
T̃ ∗

1 f(r)
sin Rr

r
dr.

In particular, if f is the characteristic function of the unit ball, then

T̃ ∗
1 f(s) =

{
1, if |s| < 1,

1 − (1 − (1/s2))1/2, if |s| > 1,

and hence T ∗
1 f ∈ Lp(R3) for p > 3

2 . Also note that

T̃ ∗
1 f

′
(s) =

⎧⎨⎩0, if |s| < 1,
1

s3(1 − (1/s2))1/2 , if |s| > 1,

which defines an L1(R)-function. Returning to the formula for the partial sum, the first
term on the right-hand side tends to zero by the Riemann–Lebesgue lemma and it is easily
seen that the second term tends to 1, as expected. Fourier inversion for the characteristic
function was a motivating example in [8]; other interesting examples can be found in [9].

https://doi.org/10.1017/S0013091505000933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505000933


Transplantation formulae and Hadamard’s method of descent 289

Fourier inversion at a point x ∈ Rn and for non-radial functions f can be deduced
from the above results by returning to (1.7) and expressing the Fourier inversion formula
in the form

f(x) =
ωn−1

(2π)n

∫ ∞

0
Fn[f(x)](λ)λn−1 dλ.

In this form, Fourier inversion at x is equivalent to Fourier inversion of the Fourier
transform of the spherical mean of f at the origin. For notational convenience, we set
F (y) = f(x)(y), the spherical mean of f centred at x as a function on Rn, and make the
following definition.

Definition 3.6. A measurable function f on Rn is said to satisfy Dini’s condition at x

if, for some δ > 0, ∫ δ

0

|F̃ (r) − F̃ (0)|
r

dr < ∞.

We also note that if f ∈ Lp(Rn) for some p � 1, then F ∈ Lp(Rn) for all x. The
extension of the previous results to non-radial functions can now be given; the proof is
immediate from our definitions and the radial case.

Theorem 3.7.

(i) Let f ∈ Lp(R2m+1) for some 1 � p � 2 and let it satisfy Dini’s condition at the
point x. Then

lim
R→∞

SRf(x) = F̃ (0) ⇐⇒ lim
R→∞

m∑
l=1

γ′
m,lF1[hl](R) = 0,

where

hl(r) = rl−1
(

d
dr

)l

F̃ (r).

(ii) Let f ∈ L1
c(R

2m) and let it satisfy Dini’s condition at the point x. Then

lim
R→∞

SRf(x) = F̃ (0) ⇐⇒ lim
R→∞

m∑
l=1

γ′
m,lF1[hl](R) = 0,

where

hl(r) = rl−1
(

d
dr

)l

F̃ (r).

Remark 3.8. Part (i) for p = 2 and part (ii) were obtained in [9] using an approach
based on the wave equation. The underlying idea there was the connection between
the focusing-of-singularities property of the wave equation and Fourier inversion. It is
precisely the terms in the sum on the right-hand side of the partial sum formula (3.3)
that bring about this property of the wave equation. Further results and examples can
be found in [9]. Undoubtedly, the above result can be further generalized by extending
part (i) to broader classes of functions and even certain classes of tempered distributions.
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3.2. Paley–Wiener theory

Here we provide an alternative approach to Helgason’s [5] Paley–Wiener theorem for
the Fourier transform on Rn. A similar technique works just as well for the spectral
version of this theorem found in [1]. Helgason’s theorem can be stated as follows.

Theorem 3.9. Let n � 2. A smooth function g(λ, ω)on R × Sn−1 is the Fourier
transform of some f ∈ C∞

c (Rn) with supp f ⊂ B(O, R) if and only if the function g has
an entire extension for each ω ∈ Sn−1 such that the following two conditions hold:

(i) the estimate
|g(λ, ω)| � CN (1 + |λ|)−NeR| Im λ|

is valid for each N = 0, 1, . . . ;

(ii) for each spherical harmonic Yk(ω) of degree k, the function

λ → λ−k

∫
Sn−1

g(λ, ω)Yk(ω) dω

is even and entire.

The necessity of (i) follows from standard estimates; that of (ii) follows from formulae
below. Our focus here is on the sufficiency of the conditions. Define the function f through
the Fourier inversion formula (x = rη, r > 0, η ∈ Sn−1)

f(rη) =
1

(2π)n

∫ ∞

0

∫
Sn−1

g(λ, ω)eiλr(η·ω)dωλn−1 dλ.

Once the support condition on f is proved, the fact that g = Ff follows by Fourier
inversion. A key step in Helgason’s proof of sufficiency is the reduction of the result to
the radial case via an identity due to Bochner: let Yk be a spherical harmonic of degree k

and let ω and η denote spherical variables in Sn−1. Then∫
Sn−1

eiλr(η·ω)Yk(ω) dω = ik(2π)n/2 J(n+2k−2)/2(λr)
(λr)(n−2)/2 Yk(η).

In our notation, using (1.9) this becomes∫
Sn−1

eiλr(η·ω)Yk(ω) dω =
ikπn/2

2k−1Γ ( 1
2 (n + 2k))

(λr)kφ̃n+2k
λ (r)Yk(η). (3.5)

In order to see the reduction to the radial case, let {Ykj} be a complete set of orthonor-
mal spherical harmonics. Let

g(λ, ω) =
∑
k,j

gkj(λ)Ykj(ω)

be the spherical harmonic expansion of g. From condition (ii) the function λ−kgkj(λ) is
an even entire function and, from (i), it satisfies exponential growth conditions like those
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of g. Substituting this expansion into the Fourier inversion formula, interchanging the
summation and integrals and applying (3.5) gives

f(rη) =
∑
k,j

cn,krk

[ ∫ ∞

0
λ−kgkj(λ)φ̃n+2k

λ (r)λn+2k−1 dλ

]
Yk,j(η),

where {cn,k} are constants. The support conclusion can be obtained by showing that the
bracketed terms above are 0 for r > R. Further, the integrals in the above sum are of the
form of the Fourier inversion on Rn+2k for the radial case. This is the desired reduction
to the radial case recorded in the following lemma.

Lemma 3.10. Let n � 2. A smooth even function g(λ) on R is the Fourier transform
of a radial function f ∈ C∞

c (Rn) with supp f ⊂ B(O, R) if and only if g has an entire
extension satisfying the estimates

|g(λ)| � CN (1 + |λ|)−NeR| Im λ|,

for all N = 0, 1, . . . .

Proof. From the remarks above, all we need to demonstrate is the support conclusion
for

f(x) =
ωn−1

(2π)n

∫ ∞

0
g(λ)φn

λ(x)λn−1 dλ.

In the case where n = 2m + 1 is odd, this can be reduced to the one-dimensional Paley–
Wiener theorem by using (1.13) after expressing the above equation in terms of radial
variables. The even-dimensional case, n = 2m, is lifted to the odd-dimensional case via
the transplantation formula (2.7) directly when m � 2. The case n = 2 must be handled
separately using Remark 2.4. (The integral (2.7) must be defined as a Cauchy limit in
this case; dominated convergence applies.) �

The above lemma concludes the alternative proof of Helgason’s theorem.
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