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1. Introduction

The purpose of this note is to compare various conditions related to eigenvector com-
pleteness for the right semidefinite generalized eigenvalue problem

Af = λBf, 0 �= f ∈ D(A), (1.1)

where A and B are self-adjoint operators in a (finite- or infinite-dimensional) Hilbert
space H. A complex number λ is called an eigenvalue if there exists a corresponding
eigenvector f satisfying (1.1). The problem is right semidefinite in the sense that B

is non-negative definite. We also assume that A has compact resolvent and that B is
bounded. For non-triviality we assume

N(A) ∩ N(B) = {0}, (1.2)

N denoting nullspace, since otherwise every complex number is an eigenvalue. In our
applications to differential equations, this assumption holds automatically unless B = 0.

We shall see in § 2 that the eigenvalues of (1.1) are all real, and there is at least one
real number which is not an eigenvalue. This allows us to translate the λ origin and
to produce a new equation where the corresponding A is invertible. Moreover, the set
of eigenvalues of (1.1) has no finite point of accumulation and the multiplicity of each
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eigenvalue is finite. The linear space of all eigenvectors belonging to a given eigenvalue
λ forms the corresponding (geometric) eigenspace. Its dimension is the multiplicity of λ.
We shall say that the eigenvectors are complete if the eigenspaces have dense linear span,
which in a Hilbert space setting means that there is an orthonormal basis of eigenvectors.

In the case in which B is positive definite, it is natural to discuss completeness in
the Hilbert space Hb defined as the completion of H under the inner product b[f, g] :=
(Bf, g). In the semidefinite case, b is no longer an inner product and in § 2 we shall define
an appropriate analogue of Hb, which turns out to be related to (the closure of) R(B).
In § 3 we establish some necessary and sufficient conditions for completeness in Hb, and
we also give some conditions which are sufficient but not necessary. The following simple
example shows that the eigenvectors of (1.1) are not always complete in Hb.

Example 1.1. Let H = C
2 and

A =

(
0 1
1 0

)
, B =

(
0 0
0 1

)
.

Then dimHb = dimR(B) = 1 but (1.1) has no eigenvalues.
From § 4 on, we assume that A is bounded below. This allows us to use variational

methods to give a constructive proof of eigenvalue existence, and an interpretation of
their indexing, via two parameter eigencurves. A new sufficient condition for eigenvector
completeness is established in terms of eigencurve asymptotes. It is also a necessary
condition if and only if dimHb is finite. In § 5 we discuss the role of the self-adjoint
operator Q = A−1B in the Pontryagin space Ha, which is defined via a form a[f, g] which
extends (Af, g). A standard notion of completeness in Ha concerns the root vectors of Q,
but it turns out that this neither implies nor is implied by completeness of the eigenvectors
in Hb. A related notion is completeness of the eigenvectors of Q in Ha, and this turns
out to be equivalent to the eigencurve asymptote condition of § 5, and is thus strictly
stronger than completeness in Hb.

We conclude with differential equations of the form (1.1), where B is a multiplication
operator. In the case of Sturm–Liouville equations with L1 coefficients, we show in § 6
that completeness in Hb (which we identify explicitly) is automatic. This is in sharp
contrast to the case of indefinite B, where some condition (cf. [4]) on the weight function
is necessary (cf. [15]). We also show that completeness may fail for such problems in Ha.
For further discussion of semidefinite weight Sturm–Liouville problems we refer to [10].
In § 7 we consider certain elliptic partial differential equations with L∞ coefficients, and
again completeness in Hb is automatic. This improves on a result of Allegretto [1] where
the weight function was assumed to vanish on a smooth domain.

2. Preliminaries

We start with the following elementary observation.

Lemma 2.1. Equation (1.2) forces every eigenvector f of (1.1) to satisfy Bf �= 0.
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It is clear that if (1.2) fails, then every complex number is an eigenvalue. The converse
is not difficult to establish, and in fact more is true.

Theorem 2.2. Equation (1.2) is equivalent to the condition that no real interval of
positive length consists of eigenvalues of (1.1).

Proof. Suppose such a real interval I consists of eigenvalues of (1.1). Then by the
Kato–Rellich Theorem [11, Theorem VII.3.9], there is an eigenvector u(λ), of unit norm
and analytic in λ, such that (1.1) holds with f = u(λ), for all λ ∈ I. Differentiating we
obtain Au′(λ) = Bu(λ) + λBu′(λ). Taking the inner product with u(λ) and recalling
that A and B are self-adjoint, we have (Bu(λ), u(λ)) = 0 whence u(λ) ∈ N(B). This
contradicts Lemma 2.1. The converse is immediate. �

Suppose, then, that λ0 ∈ R is not an eigenvalue. Then (1.1) can be rewritten

(A − λ0B)f = (λ − λ0)Bf, 0 �= f ∈ D(A).

Since A−λ0B has all the properties assumed of A, we may translate the λ origin to give
the following corollary.

Corollary 2.3. There is a change of eigenvalue parameter in (1.1) after which A

becomes invertible.

Below we shall assume this to have been carried out, unless otherwise stated.
We now consider the location of the eigenvalues.

Theorem 2.4. The eigenvalues of (1.1) are real, non-zero, of finite multiplicity, and
without finite accumulation.

Proof. If f is an eigenvector, then Bf �= 0 by Lemma 2.1, so (Bf, f) > 0. If the
corresponding eigenvalue is non-real, however, a standard calculation gives (Bf, f) = 0,
and we have a contradiction. Thus all eigenvalues are real. Zero cannot be an eigenvalue
since A is invertible.

Now rewrite (1.1) in the form A−1Bf = λ−1f . Then the remaining contentions follow
from compactness of A−1B. �

The next step is to construct the space Hb. The form b[f, g] := (Bf, g) is positive
semidefinite on H. We call two vectors f, g ∈ H equivalent if Bf = Bg, so the set of
equivalence classes is the quotient space H/N(B). We define Hb as the Hilbert space
completion of H/N(B) under the form b.

As stated in § 1, Hb is related to the range R(B) of B. Indeed, we have the following
lemma.

Lemma 2.5. The operator B1/2 induces (in a natural way) an isometric isomorphism
between Hb and the closure R of R(B).
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Proof. Since N(B) = N(B1/2), B1/2 maps equivalent vectors to the same vector. Let
[f ] ∈ H/N(B) be the equivalence class of f ∈ H and define J [f ] = B1/2f . If g is in the
range R(J), then g = B1/2f for some f ∈ H, and, for all h ∈ N(B), (g, h) = (f, B1/2h) =
0. This shows that R(J) ⊂ N(B)⊥ = R and therefore J : H/N(B) → R.

Since b[f, g] := (B1/2f, B1/2g), J is an isometry and thus has a continuous isomet-
ric extension J̄ : Hb → R. It remains to prove that R(J̄) = R, and this follows from
R(B) ⊂ R(B1/2) ⊂ R(J̄) ⊂ R. �

Let p be the supremum of all integers l � 0 such that there exists a linear subspace
L of H with dimL = l on which b is positive definite, that is, b[f ] := b[f, f ] > 0 for all
non-zero f ∈ L. This number p (which can be finite or infinite) agrees with the dimension
of Hb.

Let L be the linear span of all eigenvectors of (1.1). We have a natural map

E : H → Hb (2.1)

that assigns to every f ∈ H its corresponding equivalence class. We say that the eigen-
vectors of (1.1) are complete in Hb if E(L) is dense in Hb. In this case there exists an
orthonormal basis for Hb consisting of (equivalence classes of) eigenvectors.

3. Completeness of eigenvectors

Our first result on completeness relates (1.1) to the symmetric operator

S := B1/2A−1B1/2 : H → H.

Theorem 3.1. The eigenvectors of (1.1) are complete in Hb if and only if N(S) =
N(B).

Proof. Let Af = λBf , 0 �= f ∈ D(A). Then g := B1/2f �= 0 satisfies Sg = λ−1g. Con-
versely, let Sg = σg, 0 �= g ∈ H and σ �= 0. Then g = B1/2f with f := σ−1A−1B1/2g ∈
D(A) and f satisfies Af = σ−1Bf . Therefore, λ is an eigenvalue of (1.1) if and only
if σ = λ−1 is an eigenvalue of S, and B1/2 maps the eigenspace of (1.1) belonging to
the eigenvalue λ one-to-one onto the eigenspace of S belonging to the eigenvalue σ. Of
course, S may have the eigenvalue 0, which does not correspond to an eigenvalue of (1.1).

Recall that R is the closure of R(B), and that H is the orthogonal direct sum of
its subspaces N(B) and R. Both subspaces N(B) and R are invariant under S, and
S|N(B) is the null operator. Hence the operator S|R : R → R has the same non-zero
eigenvalues as S with the same eigenspaces. Since S|R is compact and self-adjoint in R,
its eigenvectors (including those belonging to the eigenvalue 0) are complete in R. Thus,
using the connection between the eigenvectors of (1.1) and S|R, the eigenvectors of (1.1)
are complete in Hb if and only if S|R is one-to-one, that is, if and only if N(S) = N(B). �

We turn now to another equivalence which will be used frequently in what follows. We
write

ZA := N(B) ∩ D(A).
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Theorem 3.2. The condition N(S) = N(B) is equivalent to

f ∈ ZA, Af ∈ R(B1/2) implies f = 0. (3.1)

Proof. Assume (3.1), and let Sg = 0. Define f := A−1B1/2g. Then f ∈ ZA and Af =
B1/2g ∈ R(B1/2). Hence, by (3.1), f = 0 and so g ∈ N(B). This proves N(S) = N(B).
Now assume that N(S) = N(B). Let f ∈ ZA and Af ∈ R(B1/2). Choose g ∈ H such
that Af = B1/2g. Then 0 = B1/2f = Sg. Hence g ∈ N(S) = N(B) and so Af = 0. This
implies f = 0. �

We now consider two further conditions, which both turn out to be sufficient for com-
pleteness:

f ∈ ZA implies Af ∈ N(B) (3.2)

and
f ∈ ZA, (Af, g) = 0 for all g ∈ N(B) implies f = 0. (3.3)

In fact we have the following result.

Theorem 3.3. Equation (3.2) implies (3.3), which in turn implies that the eigenvectors
of (1.1) are complete in Hb.

Proof. Suppose that (3.2) is satisfied. Let f ∈ ZA and (Af, g) = 0 for all g ∈ N(B).
Thus Af ∈ N(B) ∩ N(B)⊥ = {0}. Since A is invertible, f = 0 and so (3.3) also holds.

Now suppose that (3.3) is satisfied. Let f ∈ ZA and Af = B1/2h. For all g ∈ N(B),
(Af, g) = (B1/2h, g) = (h, B1/2g) = 0. Thus by (3.3), f = 0, and so (3.1) must hold. The
result now follows from Theorems 3.1 and 3.2. �

Neither of the above implications is reversible. Indeed the first fails even in finite
dimensions as follows.

Example 3.4. Let H = C
2 and

A =

(
1 1
1 0

)
, B =

(
0 0
0 1

)
.

Writing e1 and e2 for the standard basis in C
2, we see that Be1 = 0 �= BAe1, so (3.2)

fails. On the other hand, N(B) is spanned by e1 but (Ae1, e1) = 1 so (3.3) holds trivially.
In finite dimensions R(B1/2) = R so (3.1) and (3.3) are the same, but the following

shows that this is no longer true if dimH is infinite.

Example 3.5. Let H = l2 with orthonormal basis en and

Ae1 =
∞∑

n=2

n−1en, Aen = n−1e1 + nen, n > 1,

Be1 = 0, Ben = n−1en, n > 1.

Then 0 �= e1 ∈ ZA and Ae1 is orthogonal to N(B), so (3.3) fails. On the other hand,
Ae1 is not in R(B1/2), so (3.1) holds trivially again.
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4. Variational eigencurves

From now on we assume that A is bounded below. We summarize in Theorem 4.1 below
some properties of such operators and their connections with sesquilinear forms. We
recall that a form t is said to be closed if un ∈ D(t), u ∈ H, un → u in H and
t[un − um, un − um] → 0 as n, m → ∞ implies that u ∈ D(t) and t[un − u, un − u] as
n → ∞.

Theorem 4.1. There is a one-to-one correspondence between the set of all self-adjoint
operators T in H which are bounded below and the set of all densely defined, closed
symmetric forms t in H which are bounded below. For a given operator T , the corre-
sponding form t is the closure of the form (Tf, g), f, g ∈ D(T ). For a given form t, the
corresponding operator T is uniquely determined by D(T ) ⊂ D(t) and (Tf, g) = t[f, g]
for every f ∈ D(T ) and g ∈ D(t). Moreover, T has compact resolvent if and only if the
corresponding form t has the following compactness property (C).

Every bounded sequence un ∈ D(t) for which t[un, un] is bounded admits a
subsequence that converges to a vector in D(t).

For the proof, we refer to Theorems 2.1, 2.7 and Corollary 2.2 in Chapter VI of [11]
and Theorem XIII.64 of [13].

Let a : D(a) × D(a) → C be the form corresponding to A according to Theorem 4.1.
We denote the eigenvalues of A − λB in increasing order and counted according to

multiplicity by
µ1(λ) � µ2(λ) � µ3(λ) � · · · .

The ‘eigencurves’, which are the graphs of the µj : R → R, are continuous and non-
increasing. A real number λ is an eigenvalue of (1.1) if and only if there exists j such
that µj(λ) = 0. We call j an index of λ. This index might not be unique but there is at
most one eigenvalue for any given index because Theorem 2.2 implies that each µj can
have at most one zero. The multiplicity of an eigenvalue λ equals the number of indices
associated with λ.

The minimum–maximum principle states that

µj(λ) = min{max{a[u] − λb[u] : u ∈ F ∩ U} : F ⊂ D(a), dim F = j}, (4.1)

where U denotes the unit sphere of H. If the eigenvalue λj of index j exists, we obtain

λj = min
{

max
{

a[u]
b[u]

: u ∈ F ∩ U, b[u] > 0
}

: F ⊂ D(a), dim F = j

}
.

In order to decide on whether a given eigencurve µj has a zero we need the limits µj(λ)
as λ → ±∞. They can be determined as follows.

Let
Za := N(B) ∩ D(a), z := dimZa.

Then it follows that the form a restricted to Za is closed, symmetric, bounded below and
has property (C). Let Z̄a be the closure of Za in H. We now apply Theorem 4.1 to the
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form a restricted to Za considered as a form in the Hilbert space Z̄a. We obtain that
there is a unique self-adjoint operator T , bounded from below, in Z̄a with D(T ) ⊂ Za

such that
(Tf, g) = a[f, g] for all f ∈ D(T ), g ∈ Za.

This operator T has compact resolvent. We denote its eigenvalues in increasing order
counted according to multiplicity by

τ1 � τ2 � τ3 � · · · .

By the minimum–maximum principle,

τj = min{max{a[u] : u ∈ F ∩ U} : F ⊂ Za, dim F = j}.

Here j ranges over all positive integers if z = ∞ and from 1 to z if z is finite. To simplify
notation, we define τj = −∞ for j � 0 and τj = ∞ for j > z.

From [5,8] we know that

lim
λ→−∞

µj(λ) = τj , lim
λ→∞

µj(λ) = τj−p, (4.2)

where we recall that p = dimHb. Using the intermediate-value theorem we conclude the
following result.

Theorem 4.2.

(a) Let p = ∞. Then (1.1) has an infinite number of eigenvalues. The eigenvalue with
index j exists if and only if τj > 0.

(b) Let p < ∞. Then (1.1) has at most p eigenvalues counted according to multiplicity.
The eigenvalue with index j exists if and only if τj > 0 and τj−p < 0.

By (4.2), the first z eigencurves have horizontal asymptotes as λ → −∞. The condition
that no such asymptote is the λ-axis turns out to be a central one.

Theorem 4.3. The following statements are equivalent.

(i) None of the eigencurves tends to µ = 0 as λ → −∞.

(ii) Each τj �= 0.

(iii) The form a is non-degenerate on Za, i.e.

f ∈ Za, a[f, g] = 0 for all g ∈ Za implies that f = 0. (4.3)

Proof. All three statements are equivalent to injectivity of T . �

We now connect these ideas with completeness of eigenvectors.
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Theorem 4.4.

(a) The conditions of Theorem 4.3 suffice for the eigenvectors of (1.1) to be complete
in Hb.

(b) If p < ∞, then these conditions are also necessary.

Proof.

(a) It is easy to see that (4.3) implies (3.3), so the result follows from Theorem 3.3.

(b) Since dimHb = p, eigenvector completeness is equivalent to the statement that
exactly p eigencurves have zeros. By Theorem 4.2 (b), the latter statement is equiv-
alent to condition (ii) of Theorem 4.3.

�

We note that (4.3) is sufficient for completeness by Theorem 4.4 but not necessary by
Example 3.5. In fact, (4.3) is strictly stronger than (3.3) as the following example shows.

Example 4.5. Let H = L2[0, 1], D(A) = H2[0, 1]∩H1
0 [0, 1], Af = −f ′′ − 12f , D(a) =

H1
0 [0, 1]. Let h(x) = x for 0 � x � 1

2 and h(x) = 1 − x for 1
2 < x � 1. Let B be the

orthogonal projection with N(B) = spanh.

Then ZA = {0}, so (3.3) holds. On the other hand, Za = N(B) = spanh and

a[h, h] =
∫ 1

0
h′(x)2 dx − 12

∫ 1

0
h(x)2 dx = 1 − 1 = 0,

so (4.3) fails. (See [11, Chapter VI, Examples 2.16, 2.17] for a general discussion. Since
h �∈ D(A), we use the above formula to calculate a[h, h].)

5. Operators in Pontryagin spaces

In this section we discuss the relationship between (1.1) and self-adjoint operators on
Pontryagin spaces.

The linear space D(a) endowed with the (indefinite) inner product a[f, g] becomes a
Pontryagin space, which we denote by Ha (cf. [2,9]). Let Q : D(a) → D(a) be defined
by Qf = A−1Bf so that a[Qf, g] = b[f, g] for f, g ∈ D(a). Note that N(Q) = Za of § 4.

Lemma 5.1. The operator Q is self-adjoint, positive semidefinite and compact on Ha.

Proof. Only the compactness of Q requires a proof. Choose γ so large that A + γI is
(uniformly) positive definite. Then the topology of the Pontryagin space Ha is generated
by the inner product a[f, g] + γ(f, g). Since (A + γI)1/2 is a homeomorphism from Ha

onto H, compactness of Q on Ha is equivalent to compactness of

(A + γI)1/2A−1B(A + γI)−1/2 = (A + γI)−1/2(I + γA−1)B(A + γI)−1/2

on H, and this follows because (A + γI)−1/2 is compact. �
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Note that Af = λBf is equivalent to Qf = λ−1f if λ �= 0. Thus the non-zero eigen-
values of Q are all real by Theorem 2.4. Moreover, Q can also have eigenvalue 0, which
does not correspond to an eigenvalue of (1.1). We shall need the following elementary
result on the root space Lσ of Q belonging to an eigenvalue σ.

Lemma 5.2. If 0 �= σ ∈ R, then Lσ = N(Q − σI).

Proof. Suppose that a Jordan chain of length at least two exists for Q at σ, where
0 �= σ ∈ R, so Qf = σf , (Q − σ)g = f , say, with f �= 0. Then

(f, Af) = a[f, f ] = a[f, (Q − σ)g] = a[(Q − σ)f, g] = 0.

Since σAf = Bf , we obtain (f, Bf) = 0. It then follows that Bf = 0, whence f =
σ−1A−1Bf = 0, a contradiction. �

A similar argument shows that L0 = N(Q2). We shall also need a basic completeness
result of Azizov and Iohvidov (see [2, Lemma 2.14, p. 230], also [7]).

Theorem 5.3. The root vectors of Q are complete in Ha if and only if a is non-
degenerate on L0, i.e.

f ∈ L0, a[f, g] = 0 for all g ∈ L0 implies that f = 0. (5.1)

According to Lemma 5.1 and [2, Section 4.1], [9, Section VIII.6], Q obeys the Krein–
Langer spectral theorem with a critical point at 0. The non-degeneracy condition of
Theorem 5.3 can then be expressed as regularity of this critical point. For more on such
connections we cite [6,12].

Unfortunately, the conditions of Theorem 5.3 neither imply nor are implied by com-
pleteness in Hb. This can be seen from our previous examples. Indeed, Example 1.1
satisfies (5.1) since L0 = C

2 and A is invertible, but as we have already remarked,
completeness fails in Hb.

Also Example 4.5 satisfies (3.2), and hence completeness in Hb by Theorem 3.3. On the
other hand, Qg = h cannot be satisfied, so there are no Jordan chains of length greater
than one for Q at 0, i.e.

L0 = N(Q) = Za. (5.2)

Since (4.3) fails, so does (5.1), and with it root vector completeness in Ha by Theorem 5.3.
If (4.3) holds, however, then we can relate the spectral theory of Q to that of the

previous sections.

Theorem 5.4. The eigenvectors of (1.1) are complete in Ha if and only if (4.3) holds.

Proof. If the eigenvectors are complete in Ha, then (5.2) holds since each root vector
in L0 must in fact be an eigenvector. Thus (4.3) follows from Theorem 5.3.

Conversely, suppose that (4.3) holds, and that a Jordan chain of length at least two
exists for Q at 0, so Qf = 0, Qg = f , say, for f �= 0. Then, for all h ∈ N(Q),

a[f, h] = a[Qg, h] = a[g, Qh] = 0,

so f = 0 by (4.3), a contradiction. Thus (5.2) also holds and we can apply Theorem 5.3
to complete the proof. �
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We remark that Example 4.5 shows that (5.2) may not be substituted for (4.3) in
Theorem 5.4. This result also allows us to give a second proof of Theorem 4.4 (a). Con-
sider the natural map (2.1) as a mapping from the Pontryagin space Ha into the Hilbert
space Hb. This map is continuous and its range is dense. The linear span of all eigenvec-
tors of Q belonging to eigenvalues different from 0 agrees with the linear span L of all
eigenvectors of (1.1). Assuming (4.3), we conclude that the linear span of all eigenvectors
of Q is dense in Ha, and hence that E(L) is dense in Hb. This completes the proof.

6. Application to Sturm–Liouville eigenvalue problems

We consider the Sturm–Liouville eigenvalue problem

−(py′)′ + qy = λry, −∞ < a � x � b < ∞, (6.1)

subject to the boundary conditions

α0y(a) + α1(py′)(a) = 0, β0y(b) + β1(py′)(b) = 0. (6.2)

We assume that 1/p, q, r ∈ L1[a, b] are real valued with p > 0, r � 0 and

(α0, α1), (β0, β1) ∈ R
2 \ {(0, 0)}.

By means of a standard change of measure [15] we may assume that p = 1 and then
(6.1) can be written

(r + 1)−1(−y′′ + qy) = λ(r + 1)−1ry,

which can be put in the form (1.1). The underlying Hilbert space is the weighted space
H = L2

r+1[a, b] with norm given by

‖f‖2 =
∫ b

a

(r(x) + 1)|f(x)|2 dx.

The domain D(A) consists of all functions f with f, f ′ ∈ AC[a, b] that satisfy (r +
1)−1(−f ′′ + qf) ∈ H and the boundary conditions (6.2). The operators A and B are
defined by

Af = (r + 1)−1(−f ′′ + qf), Bf = (r + 1)−1rf,

and it is easily seen that they satisfy the conditions imposed in § 1, except for (1.2).
If r = 0 a.e., then λ does not even enter (1.1), so assume that r > 0 on a set S of

positive measure. If Bf = 0, then f = 0 on S so f(x) = f ′(x) = 0 for any accumulation
point x ∈ S. Thus if in addition Af = 0, then f = 0 since A is a second-order operator,
and so (1.2) holds automatically.

Lemma 6.1. Let f ∈ AC[a, b], and let M be a measurable subset of [a, b]. Assume
that f(x) = 0 for x ∈ M a.e. Then f ′(x) exists and f ′(x) = 0 for x ∈ M a.e.

https://doi.org/10.1017/S0013091502000603 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000603


Right semidefinite eigenvalue problems 571

Proof. Write M = A ∪ N , where A is a null set and f(x) = 0 for all x ∈ N . Let B be
a null set such that f ′(x) exists for x ∈ [a, b] \ B. Write the closed set N̄ as N̄ = C ∪ P ,
where C is finite or countable and P is perfect. Since f is continuous, f(x) = 0 for all
x ∈ P . Hence f ′(x) = 0 for all x ∈ P \B. Since M \ (P \B) ⊂ A∪B ∪C, we obtain that
f ′(x) = 0 for x ∈ M a.e. �

We are now ready for the completeness result in Hb.

Theorem 6.2. The eigenvectors of (6.1), (6.2) are complete in Hb.

Proof. We show that condition (3.2) is satisfied. Let f ∈ N(B)∩D(A). Then f(x) = 0
for x ∈ M a.e., where M := {x ∈ [a, b] : r(x) > 0}, and f, f ′ ∈ AC[a, b]. Applying
Lemma 6.1 twice, we obtain that f ′′(x) = 0 for x ∈ M a.e. This implies that (Af)(x) = 0
for x ∈ M a.e. and so Af ∈ N(B). �

Completeness in Ha may fail as follows.

Example 6.3. Let H and D(A) be as in Example 4.5, with Af = −f ′′ − 4π2f and
Bf(x) = 0 for x ∈ [0, 1

2 ], Bf(x) = r(x)f(x) otherwise, where 0 �= r ∈ L∞.

Then T of § 4 is the Dirichlet operator corresponding to A on [0, 1
2 ], so τ1 = 0 and by

Theorem 4.3, (4.3) fails. We note that an eigenvalue shift as in Corollary 2.3 can be used
to ensure that A is invertible.

7. Application to eigenvalue problems for elliptic partial differential
operators

Let Ω be an open, connected and bounded subset of R
k. On Ω we consider the eigenvalue

problem
−∆f + q(x)f = λr(x)f

subject to Dirichlet boundary conditions. We assume that q, r ∈ L∞(Ω) are real valued
with r(x) � 0 for all x ∈ Ω. The underlying Hilbert space is H = L2(Ω) and the operator
B is given by (Bf)(x) = r(x)f(x). The self-adjoint operator Af = −∆f + qf subject to
Dirichlet boundary conditions is defined as follows (see [3]). Let a be the Dirichlet form
defined on D(a) = H1

0 (Ω):

a[f, g] :=
k∑

j=1

(∂jf, ∂jg) + (qf, g),

where (·, ·) is the inner product in H. This form is densely defined, closed, symmetric and
bounded from below in H. The operator A is the self-adjoint operator corresponding to
this form via Theorem 4.1. By definition, a function f ∈ D(a) belongs to D(A) if there
is h ∈ H such that

a[f, g] = (h, g) for all g ∈ D(a).

Then Af := h. The self-adjoint operator A is bounded from below with compact resol-
vent.
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Note that the equation Af = g is equivalent to the statement that f is a weak solution
of −∆f + qf = g. The interior regularity result on such weak solutions [3, p. 141] leads
to the following lemma.

Lemma 7.1. Let f ∈ D(A), and let Ω0 be an open set with Ω̄0 ⊂ Ω. Then f |Ω0 lies
in H2(Ω0) and Af = −∆f + qf on Ω0.

We now argue as in § 6 and assume for non-triviality that r > 0 on a set of positive
measure. By Lemma 7.1 and a strong unique continuation property for elliptic differen-
tial equations [14, Theorem 1.2 and references] we again see that condition (1.2) holds
automatically.

In order to verify condition (3.2), we will need the following result [3, Lemma 3.7.2].

Lemma 7.2. Let f ∈ H1(Ω), and let M be a measurable subset of Ω such that
f(z) = 0 for almost all z ∈ M . Then ∂1f(z) = · · · = ∂kf(z) = 0 for almost all z ∈ M .

We can now prove the main result of this section.

Theorem 7.3. Let Af = −∆f + qf , Bf = rf be the self-adjoint operators as defined
at the beginning of this section. Then the eigenvectors of Af = λBf are complete in Hb.

Proof. We show that condition (3.2) is satisfied. Let f ∈ D(A)∩N(B). Then f(x) = 0
for x ∈ M a.e., where M := {x ∈ Ω : r(x) > 0}. Let Ω0 be an open set whose closure
is contained in Ω. By Lemma 6.1, f |Ω0 ∈ H2(Ω0). Let M0 := Ω0 ∩ M so f(x) = 0 for
x ∈ M0 a.e. Applying Lemma 7.2 several times, we obtain ∆f(x) = 0 for x ∈ M0 a.e.
This implies that Af(x) = 0 for x ∈ M0 a.e. Exhausting Ω by a sequence of open subsets
whose closure is contained in Ω, we obtain that Af(x) = 0 for x ∈ M a.e. This shows
that Af ∈ N(B), which completes the proof. �
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