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Abstract

In this paper, the questions about bitopological spaces proposed by S. Lai are solved and one of his
counterexamples rectified.

1980 Mathematics subject classification (Amer. Math. Soc): primary 54 E 55; secondary 54 D 30, 54 G
05, 54 G 20.

In a recent paper, Lai [1] studies the relationship among pairwise properties in a
bitopological space (X, 9, 2), equivalent topological properties in (A', 9 V 2.)
and the same properties in spaces (X, 9) and (X, 2) by means of the following
scheme:

sup-P & p-P <=± bi-P.

In this paper, we solve the two implications left without solution by Lai [1] and
we modify a wrong example from the same paper [1].

DEFINITION 1 (Saegrove [2]). A bitopological space (X, *3\ 2) is pairwise
pseudocompact if every pairwise continuous function/: (X, I3>, &)->(/?,<2l,£) is
bounded, where % = {]a, +oo[: a G R} U { 0 , R] and L = (]-oo, a[: a G K) U
{0,R}.

If we take P̂ = 2., we have the definition of pseudocompact topological space.
Lai [1], Theorem 8, proves, regarding pseudocompactness, that

sup-P s* p-P +* bi-P.
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PROPOSITION 1. Concerning pseudocompactness, we have

bi-P -t* rp-P.

PROOF. Let (R, <3\ 2) be a bitopological space, where $ = {A C R: 0 £ A] U
{0} and 2 = {A C R: 0 <2 A} U {#}. (« , <3>) and (fl, 2) are pseudocompact
spaces (Steen, Seebach [3], pages 44 and 47), but (-R,"?, 2) is not pairwise
pseudocompact because /(x) = min(x, 0) is a pairwise continuous nonbounded
function:

lfx>0,f-\]x, +oo[)= 0 e^andi fx<0 , / - ' ( ]x ,+oo[ ) = ]x,+oo[ £ 91.
If x > 0,/-'(]-oo, x[) = R £ Sand if x < 0,/-'(]-oo, x[) = ]-oo, x[ £ 2.
Then, / is a continuous function from (R,^) to (R,%) and from (/?, 2) to

(* ,£) .

DEFINITION 2 (Lai [1]). A bitopological space (X, 9, S) is pairwise extremally
disconnected if given a 'S'-open set U and a S^open set V with {/ n V — 0 , we

) n (<3>-clK)= 0 .

If we take "31 = S, we have the definition of an extremally disconnected
topological space.

Lai [1] shows, concerning extremally disconnected spaces, that

sup-P-»p-P **bi-P.

PROPOSITION 2. Concerning extremally disconnected spaces, we have
p-P -t* sup-i\

PROOF. Let (X, 9, 2,) be a bitopological space, where X = {a, b, c, d), 9 -
{ 0, X, {a, b, c)} and 2 = { 0 , X, {a}, {b, c}, {a, b,c}}.

One proves easily that (X, *3\ 2) is pairwise extremally disconnected, but
9 V 2 = 2 and (A", 2) is not extremally disconnected, because if U = {a} and
V= {b, c], wehave(2-clt/) n (2-clF) = {d} ¥= 0 .

Finally Lai [1] says that {X, 9, 2) is a bi-zero-dimensional not pairwise
zero-dimensional space, where X is the real line, 9 the topology whose base is
{[a, b[: a,b£R} and 2 the discrete topology. But (X, <3\ 2) is a pairwise
zero-dimensional space because {[a, b[: a, b £ R) is a 'JP-base of 2-closed sets and
{{x}: x £ /?} U { 0 } is a 2-base of ^-closed sets.

EXAMPLE 1. A bi-zero-dimensional space which is not pairwise zero-dimen-
sional.

Let Xbe the set of integers. Let 9 be the topology whose base is {{2n,2n + 1}:
n £ X} and let 2 be the discrete topology.
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Obviously, {2n,2n + 1} are "S'-open and 2-closed sets, therefore (X,<$,?L) is
bi-zero-dimensional, but it is not a pairwise zero-dimensional space because the
only Sybase, {{x}: x £ A'} U { 0 } is not a family of 'dP-closed sets.
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