A NOTE ON A PAPER BY S. LAL

A. GUTIERREZ
(Received 5 November 1981)
Communicated by J. H. Rubinstein

Abstract

In this paper, the questions about bitopological spaces proposed by S. Lal are solved and one of his counterexamples rectified.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 E 55; secondary 54 D 30,54 G 05, 54 G 20.

In a recent paper, Lal [1] studies the relationship among pairwise properties in a bitopological space ($X, \mathscr{P}, \mathcal{Q}$), equivalent topological properties in ($X, \mathscr{P} \vee \mathcal{Q}$) and the same properties in spaces (X, \mathscr{P}) and $(X, \mathscr{2})$ by means of the following scheme:

$$
\sup -P \nLeftarrow \mathrm{p}-P \nLeftarrow \mathrm{bi}-P
$$

In this paper, we solve the two implications left without solution by Lal [1] and we modify a wrong example from the same paper [1].

Definition 1 (Saegrove [2]). A bitopological space ($X, \mathscr{P}, \mathscr{Q}$) is pairwise pseudocompact if every pairwise continuous function $f:(X, \mathscr{P}, \mathscr{Q}) \rightarrow(R, \mathscr{Q}, \mathfrak{L})$ is bounded, where $\mathscr{Q}=\{] a,+\infty[: a \in R\} \cup\{\varnothing, R\}$ and $L=\{]-\infty, \mathrm{a}[: a \in R\} \cup$ $\{\varnothing, R\}$.

If we take $\mathscr{P}=\mathcal{Q}$, we have the definition of pseudocompact topological space.
Lal [1], Theorem 8, proves, regarding pseudocompactness, that

$$
\sup -P \nRightarrow \mathrm{p}-P \nrightarrow \mathrm{bi}-P .
$$

[^0]Proposition 1. Concerning pseudocompactness, we have

$$
\mathrm{bi}-P \nrightarrow r \mathrm{p}-P
$$

Proof. Let $(R, \mathscr{P}, \mathscr{Q})$ be a bitopological space, where $\mathscr{P}=\{A \subset R: 0 \in A\} \cup$ $\{\varnothing\}$ and $\mathscr{Q}=\{A \subset R: 0 \notin A\} \cup\{R\} .(R, \mathscr{P})$ and (R, \mathscr{Q}) are pseudocompact spaces (Steen, Seebach [3], pages 44 and 47), but ($R, \mathscr{P}, 2$) is not pairwise pseudocompact because $f(x)=\min (x, 0)$ is a pairwise continuous nonbounded function:

If $x \geqslant 0, f^{-1}(] x,+\infty[)=\varnothing \in \mathscr{P}$ and if $\left.x<0, f^{-1}(] x,+\infty[)=\right] x,+\infty[\in \mathscr{P}$.
If $x>0, f^{-1}(]-\infty, x[)=R \in \mathscr{2}$ and if $\left.x \leqslant 0, f^{-1}(]-\infty, x[)=\right]-\infty, x[\in \mathcal{2}$.
Then, f is a continuous function from (R, \mathscr{P}) to (R, \mathscr{Q}) and from $(R, 2)$ to (R, \mathfrak{L}).

Definition 2 (Lal [1]). A bitopological space ($X, \mathscr{P}, 2$) is pairwise extremally disconnected if given a \mathscr{P}-open set U and a 2 -open set V with $U \cap V=\varnothing$, we have $(2-\mathrm{cl} U) \cap(\mathscr{P}-\mathrm{cl} V)=\varnothing$.

If we take $\mathscr{P}=\mathscr{2}$, we have the definition of an extremally disconnected topological space.

Lal [1] shows, concerning extremally disconnected spaces, that

$$
\sup -P \leftrightarrow \mathrm{p}-P \not \mathrm{bi}-P
$$

Proposition 2. Concerning extremally disconnected spaces, we have

$$
\mathrm{p}-P \nrightarrow \sup -P .
$$

Proof. Let ($X, \mathscr{P}, \mathcal{Q}$) be a bitopological space, where $X=\{a, b, c, d\}, \mathscr{P}=$ $\{\varnothing, X,\{a, b, c\}\}$ and $\mathcal{Q}=\{\varnothing, X,\{a\},\{b, c\},\{a, b, c\}\}$.

One proves easily that $(X, \mathscr{P}, \mathscr{2})$ is pairwise extremally disconnected, but $\mathscr{P} \vee \mathcal{Q}=\mathscr{2}$ and $(X, \mathscr{2})$ is not extremally disconnected, because if $U=\{a\}$ and $V=\{b, c\}$, we have $(2-\mathrm{cl} U) \cap(2-\mathrm{cl} V)=\{d\} \neq \varnothing$.

Finally Lal [1] says that $(X, \mathscr{P}, \mathscr{2})$ is a bi-zero-dimensional not pairwise zero-dimensional space, where X is the real line, \mathscr{P} the topology whose base is $\{[a, b[: a, b \in R\}$ and $\mathscr{2}$ the discrete topology. But $(X, \mathscr{P}, \mathscr{2})$ is a pairwise zero-dimensional space because $\{[a, b[: a, b \in R\}$ is a \mathscr{P}-base of $\mathscr{2}$-closed sets and $\{\{x\}: x \in R\} \cup\{\varnothing\}$ is a 2 -base of \mathscr{P}-closed sets.

Example 1. A bi-zero-dimensional space which is not pairwise zero-dimensional.

Let X be the set of integers. Let \mathscr{P} be the topology whose base is $\{\{2 n, 2 n+1\}$: $n \in X\}$ and let 2 be the discrete topology.

Obviously, $\{2 n, 2 n+1\}$ are \mathscr{P}-open and \mathscr{Q}-closed sets, therefore $(X, \mathscr{P}, \mathscr{Q})$ is bi-zero-dimensional, but it is not a pairwise zero-dimensional space because the only $\mathscr{2}$-base, $\{\{x\}: x \in X\} \cup\{\varnothing\}$ is not a family of \mathscr{P}-closed sets.

References

[1] S. Lal, 'Pairwise concepts in bitopological spaces,' J. Austral. Math. Soc. Ser. A 26 (1978), 241-250.
[2] M. J. Saegrove, 'Pairwise complete regularity and compactification in bitopological spaces,' J. London Math. Soc. 7 (1973), 286-290.
[3] L. A. Steen and J. A. Seebach, Counterexamples in Topology (Springer-Verlag, New York, 1978).

Departamento de Matemáticas
E. U. de Formación del Profesorado Alcalde Reig 8
Valencia - 13
Spain

[^0]: The author thanks S. Romaguera for his suggestions on the writing of this paper.
 © 1983 Australian Mathematical Society 0263-6115/83\$A2.00 +0.00

