ON VARIOUS TYPES OF BARRELLEDNESS AND THE HEREDITARY PROPERTY OF (*DF*)-SPACES

by T. HUSAIN† and YAU-CHUEN WONG

(Received 1 April, 1975; revised 20 October, 1975)

1. Introduction. Recently, Levin and Saxon [5], De Wilde and Houet [2] defined the σ -barrelledness while Husain [3] defined the countable barrelledness and countable quasibarrelledness. It is well-known that barrelled spaces are countably barrelled, and countably barrelled spaces are σ -barrelled. It is natural to ask whether there is some condition for σ -barrelled (resp. countably barrelled) spaces to be countably barrelled (resp. barrelled). Using the concept of S-absorbent sequences of sets, we are able to give such conditions in Theorem 2.5 and Corollaries 2.6 and 2.7.

Valdivia [9], Saxon and Levin [8] have shown that every vector subspace with countable codimension of a barrelled space is barrelled. Also Levin and Saxon showed in [5] that this hereditary property is true for σ -barrelled spaces. In §3, we show that this hereditary property is also true for countably barrelled spaces as well as for σ -barrelled (*DF*)-spaces, which is a generalization of Valdivia [10, Theorem 3].

The final section is devoted to some properties of S-absorbent sequences of sets which extend some results of Valdivia [9], De Wilde and Houet [2].

2. The relationship between various types of barrelledness. Let (E, T) be a Hausdorff locally convex space whose topological dual is denoted by E'. If B is a subset of E (resp. E'), then the polar of B, taken in E' (resp. E), is denoted by B^0 . By a topologizing family (t. family, for short) for E' (resp. E) we mean a family S consisting of (convex circled) $\sigma(E, E')$ -bounded subsets of E (resp. $\sigma(E', E)$ -bounded subsets of E') such that $\cup \{B: B \in S\} = E$ (resp. E'). For a t. family S for E' (resp. E), the topology on E' (resp. E) of uniform convergence on S is denoted by T_S .

Let S be a t. family for E'. We denote by S^b the family of all T_S -bounded subsets of E'. Clearly S^b is again a t. family for E. The topology on E of uniform convergence on S^b is denoted by T_S^b , therefore we have $T_S^b = T_{S^b}$. Similarly we can define S^{nb} and T_S^{nb} , where $S^{nb} = S^{bb...b}$ and $T_S^{nb} = T_S^{bb...b}$, the superscript b being repeated n times in each case; consequently we have $T_S^{nb} = T_{S^{nb}}$ for all $n \ge 1$.

If S is a t. family for E', let us say temporarily that S^b (resp. S^{bb}) is the bounded-polar (resp. bounded-bipolar) family of S, and that T_S^b (resp. T_S^{bb}) is the bounded-polar (resp. bounded-bipolar) topology of T_S . It is clear that $\{S^0: S \in S^b\}$ forms a neighbourhood base at 0 for the bounded-polar topology T_S^b , and that $\{B^0: B \in S^{bb}\}$ forms a neighbourhood base at 0 for the bounded-bipolar topology T_S^{bb} . If S_1 and S_2 are two t. families for E' with $S_1 \subset S_2$, then $S_2^b \subset S_1^b$.

LEMMA 2.1. For a t. family S for E', we have: (a) $S \subset S^{bb}$;

† This research was supported by an N.R.C. grant.

(b) $T_{S} \leq T_{S}^{bb}$; (c) $S^{b} = S^{3b}$ and $T_{S}^{b} = T_{S}^{3b}$.

The proof is straightforward and will be omitted. We shall see that the inclusion in (a) may be strict.

In the sequel we denote by $\beta(E, E')$ the strong topology on E, i.e., the topology of uniform convergence on all $\sigma(E', E)$ -bounded subsets of E', and by $\beta^*(E, E')$ the topology of uniform convergence on all $\beta(E', E)$ -bounded subsets of E'. As usual, $\tau(E, E')$ denotes the Mackey topology on E. Clearly,

$$\tau(E, E') \leq \beta^*(E, E') \leq \beta(E, E')$$

and

$$\tau(E', E) \leq \beta^*(E', E) \leq \beta(E', E).$$

It is not hard to see that each $\sigma(E, E')$ -bounded subset of E is $\beta^*(E, E')$ -bounded, and that dually each $\sigma(E', E)$ -bounded subset of E' is $\beta^*(E', E)$ -bounded.

EXAMPLES. (1) If S_f is the family of all finite subsets of E, then we have that $T_{S_f} = \sigma(E', E)$; $T_{S_f}^b = \beta(E, E')$; $T_{S_f}^{bb} = \beta^*(E', E)$. Therefore we conclude that $S_f \neq S_f^{bb}$ and $T_{S_f} \neq T_{S_f}^{bb}$, in general.

(2) If S_{β} is the family of all $\beta(E, E')$ -bounded subsets of E, then we have $T_{S_{\beta}} = \beta^*(E', E)$, S_{β}^b is the family of all $\sigma(E', E)$ -bounded subsets of E' and $T_{S_{\beta}}^b = \beta(E, E')$. Therefore we conclude that $S_{\beta} = S_{\beta}^{bb}$ and $T_{S_{\beta}} = T_{S_{\beta}}^{bb}$.

(3) If S_{σ} is the family of all $\sigma(E, E')$ -bounded subsets of E, then we have $T_{S_{\sigma}} = \beta(E', E)$, $T_{S_{\sigma}}^{b} = \beta^{*}(E, E')$ and S_{σ}^{bb} is the family of all $\sigma(E, E')$ -bounded subsets of E.

(4) Let S_c be the family of all *T*-compact convex circled subsets of *E* and let c(E', E) be the topology on *E'* of uniform convergence on S_c . Then $\sigma(E', E) \leq c(E', E) \leq \tau(E', E)$; furthermore we have $T_{S_c} = c(E', E)$, $T_{S_c}^b = \beta(E, E')$ and $T_{S_c}^{bb} = \beta^*(E', E)$.

DEFINITION 2.2. Let (E, T) be a locally convex space and S a t. family for E'. Then E is said to be

(1) S-barrelled if each member in S^b is T-equicontinuous;

(2) countably S-barrelled if each member of S^b which is the countable union of T-equicontinuous subsets of E is T-equicontinuous;

(3) σ -S-barrelled if each member in S^b which is a countable set is T-equicontinuous.

If S is the family of all finite subsets of E, then E is S-barrelled (resp. countably S-barrelled, σ -S-barrelled) if and only if it is barrelled (resp. countably barrelled, σ -barrelled) under the usual terminology of [4] and [6] (resp. [3], [2]). σ -barrelled spaces are also called ω -barrelled by Levin and Saxon [5]. Clearly each $\beta(E', E)$ -bounded set is in S^b for any t. family for E'. Hence E is quasibarrelled (or countably quasibarrelled or σ -evaluable) if E is S-barrelled (or countably S-barrelled).

If S is the family of all $\sigma(E, E')$ -bounded subsets of E, then E is S-barrelled (resp. countably S-barrelled, σ -S-barrelled) if and only if E is quasibarrelled (resp. countably

quasibarrelled, σ -evaluable) under the usual terminology of [4] [6] (resp. [3], [2]). Here we call σ -evaluable spaces σ -infrabarrelled.

If (E, T) is a locally convex Riesz space and if S is the family of all order-bounded subsets of E, then E is S-barrelled if and only if it is order-infrabarrelled under the usual definition of [11].

As a consequence of Lemma 2.1, we have the following result.

LEMMA 2.3. Let S be a t. family for E'. E is S-barrelled (resp. countably S-barrelled, σ -S-barrelled) if and only if E is S^{bb}-barrelled (resp. countably S^{bb}-barrelled, σ -S^{bb}-barrelled).

In particular, (E, T) is barrelled if and only if each $\sigma(E, E')$ -closed convex circled subset of E which absorbs all $\beta(E, E')$ -bounded subsets of E is a T-neighbourhood of 0.

Using a standard argument, for instance, see Schaefer [6] and Köthe [4, p. 396], it is easily seen that E is S-barrelled if and only if each closed convex circled subset of E which absorbs all members of S is a T-neighbourhood of 0, and that E is countably S-barrelled if and

only if for any sequence (V_n) of closed convex circled *T*-neighbourhoods of 0, if $V = \bigcap_{n=1}^{\infty} V_n$ absorbs all members in *S* then *V* is a *T*-neighbourhood of 0.

In order to give a dual characterization of the σ -S-barrelledness, we require the following terminology. Let S be a t. family for E'. By an S-absorbent sequence (of closed sets) in E we mean a sequence $\{V_n : n \ge 1\}$ of (closed) convex circled sets in E for which the following two conditions are satisfied:

(i) $V_n \subset V_{n+1}$ for all $n \ge 1$;

(ii) each member in S is absorbed by some V_n .

If S is the family of all finite subsets of E, then $\{V_n: n \ge 1\}$ is an S-absorbent sequence if and only if it is an absorbent sequence in E in the sense of [2]; and if S is the family of all $\sigma(E, E')$ -bounded subsets of E, then $\{V_n: n \ge 1\}$ is a σ -absorbent sequence if and only if it is a bounded-absorbent sequence in the sense of [2].

PROPOSITION 2.4. Let S be a t. family for E'. Then E is σ -S-barrelled if and only if for any S-absorbent sequence $\{V_n : n \ge 1\}$ in E, the sequence $\{f_n : n \ge 1\}$ is equicontinuous, where $f_n \in V_n^0$ for all $n \ge 1$.

Proof. Necessity. For any $S \in S$ there exists $\lambda > 0$ and $n_0 > 1$ such that $S \subset \lambda V_n$ for all $n \ge n_0$. For each $n \ge 1$, let $f_n \in V_n^0$. Then $|f_n(x)| \le \lambda$ for all $x \in S$ and $n \ge n_0$. Since S is $\sigma(E, E')$ -bounded, there exists $\mu > 0$ with $|f_n(x)| \le \mu$ for all $x \in S$ and $n = 1, ..., n_0 - 1$. Thus sup $\{|f_n(x)| : x \in S, n \ge 1\} \le \max(\lambda, \mu) < \infty$ and so $\{f_n : n \ge 1\} \in S^b$. Hence by hypothesis $\{f_n : n \ge 1\}$ is equicontinuous.

Sufficiency. Let $\{h_n : n \ge 1\}$ be a T_s -bounded sequence in E'. For each $k \ge 1$, we define

$$V_k = \{ x \in E \colon |h_n(x)| \le 1 \text{ for all } n \ge k \}.$$

Then $\{V_n : n \ge 1\}$ is an S-absorbent sequence in E. As $h_k \in V_k^0$ for all $k \ge 1$, we conclude from the hypothesis that $\{h_k : k \ge 1\}$ is equicontinuous. This shows that E is σ -S-barrelled.

If S_1 and S_2 are two t. families for E' such that $S_1 \subset S_2$, then the following implications hold:

Therefore it is natural to ask under what conditions on E (or E') the corresponding converse implications hold. We have the following result.

THEOREM 2.5. Let S_1 and S_2 be two t. families for E' such that $S_1 \subset S_2$. Then (E, T) is σ - S_1 -barrelled (resp. countably S_1 -barrelled, S_1 -barrelled) if and only if the following two conditions hold:

- (i) E is σ -S₂-barrelled (resp. countably S₂-barrelled, S₂-barrelled);
- (ii) each S_1 -absorbent sequence of closed sets in E is S_2 -absorbent.

Proof. Suppose that E is σ - S_1 -barrelled and that $\{V_n : n \ge 1\}$ is an S_1 -absorbent sequence of closed sets in E which is not S_2 -absorbent. Then there exists $B \in S_2$ such that $B \subset nV_n$ is false for all natural numbers $n \ge 1$. For each $n \ge 1$, let x_n , in B, be such that $x_n \notin nV_n$. As V_n is closed convex and circled, the bipolar theorem ensures that there exists $f_n \in V_n^0$ such that

$$\left|f_{n}(x_{n})\right| > n. \tag{1}$$

As E is σ -S₁-barrelled and $\{V_n : n \ge 1\}$ is an S₁-absorbent sequence of closed sets in E, it follows from Proposition 2.4 that $\{f_n : n \ge 1\}$ is a T-equicontinuous sequence, and hence that $\{f_n : n \ge 1\}$ is T_{S_2} -bounded; consequently $\{f_n : n \ge 1\}$ must be absorbed by B^0 , contrary to the inequality (1). Therefore the conditions are necessary. We show that the conditions are also sufficient.

Let $\{f_n: n \ge 1\}$ be a T_{S_1} -bounded sequence in E'. For each $k \ge 1$, let

$$V_k = \{ x \in E \colon |f_n(x)| \le 1 \text{ for all } n \ge k \}.$$

The T_{S_1} -boundedness of $\{f_n: n \ge 1\}$ ensures that $\{V_n: n \ge 1\}$ is an S_1 -absorbent sequence of closed sets in E, and hence $\{V_n: n \ge 1\}$ is S_2 -absorbent by the hypotheses. On the other hand, since E is assumed to be σ - S_2 -barrelled and since $f_n \in V_n^0$ for all $n \ge 1$, it follows from Proposition 2.4 that $\{f_n: n \ge 1\}$ is T-equicontinuous, and hence that E is σ - S_1 -barrelled.

The necessity part of the proof for countably S_1 -barrelled and S_1 -barrelled spaces is similar and so is omitted. The sufficiency part for all cases can be handled as follows. Observe that $S_1^b \supset S_2^b$. To show that (ii) implies $S_1^b = S_2^b$, let $A \in S_1^b$ and $A \notin S_2^b$. Then there is $B \in S_2$, a sequence $\{x_n\} \subset B$ and a sequence $\{f_n\} \subset A$ such that $|f_n(x_n)| > n$ for all $n \ge 1$. Since $V_n = \{x \in E : |f_m(x)| \le 1 \text{ for } m \ge n\}$ is an S_1 -absorbent sequence of closed sets in E, it follows by (ii) that it is also S_2 -absorbent. Hence there exist n and λ such that $B \subset \lambda V_n$, a contradiction.

REMARK. E is σ -barrelled (resp. countably barrelled, barrelled) if and only if it is σ -infrabarrelled (resp. countably quasibarrelled, infrabarrelled) and each absorbent sequence of closed sets in E is bounded-absorbent.

COROLLARY 2.6. Let S_1 and S_2 be two t. families for E' such that $S_1 \subset S_2$. Then:

(a) E is countably S_1 -barrelled if and only if it is countably S_2 -barrelled as well as σ - S_1 -barrelled;

(b) E is S_1 -barrelled if and only if it is σ - S_1 -barrelled as well as S_2 -barrelled.

Proof. If E is countably S_1 -barrelled, then it is obvious that E is countably S_2 -barrelled as well as σ - S_1 -barrelled. Conversely, if E is countably S_2 -barrelled and if E is σ - S_1 -barrelled, then by Theorem 2.5, each S_1 -absorbent sequence of closed sets in E is S_2 -absorbent. We conclude from Theorem 2.5 again that E is countably S_1 -barrelled. This proves the assertion (a). The proof of (b) is similar.

REMARK. E is countably barrelled if and only if it is σ -barrelled and countably quasibarrelled $\cdot E$ is barrelled if and only if it is countably barrelled and quasibarrelled.

COROLLARY 2.7. Let S_1 and S_2 be two t. families for E' such that $S_1 \subset S_2$. Then the following assertions hold.

(a) Let E be countably S_2 -barrelled. Then E is countably S_1 -barrelled if and only if each S_1 -absorbent sequence of closed sets in E is S_2 -absorbent.

(b) Let E be S_2 -barrelled. Then E is S_1 -barrelled if and only if E is σ - S_1 -barrelled, and this is the case if and only if each S_1 -absorbent sequence of closed sets in E is S_2 -absorbent.

Proof. (a) follows from Theorem 2.5 and Corollary 2.6 (a), while (b) follows from Corollary 2.6 (b) and the assertion (a) of this corollary.

Let E be a locally convex space. A convex circled $\sigma(E, E')$ -bounded subset B of E is said to be *infracomplete* if the normed space $E(B) = \bigcup_{n \in D} nB$ equipped with the norm $|| \cdot ||_B$ defined by

$$||x||_{B} = \inf \{\lambda \ge 0 : x \in \lambda B\} \quad (x \in E(B))$$

is complete. It is clear that every convex circled $\sigma(E, E')$ -bounded and $\tau(E, E')$ -sequentially complete subset of E is infracomplete. By the Banach-Mackey theorem, we see that every infracomplete subset B of E is $\beta(E, E')$ -bounded (see [4, §20, 11(3)]).

Levin and Saxon [5] say that a locally convex space E has the property (C) (resp. the property (S)) if every $\sigma(E', E)$ -bounded subset of E' is $\sigma(E', E)$ -relatively countably compact (resp. E' is $\sigma(E', E)$ -sequentially complete). As a consequence of the result mentioned above ([4, §20, 11(3)]), we obtain the following result which gives a connection between σ -barrelledness and the property (S).

PROPOSITION 2.8. For a σ -infrabarrelled locally convex space E, the following statements are equivalent:

(a) E is σ -barrelled;

- (b) E has the property (C);
- (c) E has the property (S);
- (d) each $\sigma(E', E)$ -bounded, $\sigma(E', E)$ -closed subset of E' is $\sigma(E', E)$ -sequentially complete.

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) are obvious. Finally, if the statement (d) holds, then by the Banach-Mackey theorem each $\sigma(E', E)$ -bounded subset of E' is $\beta(E', E)$ -bounded, and thus the implication (d) \Rightarrow (a) follows.

Consider the vector space *m* of all bounded sequences with the Mackey topology $\tau(m, l_1)$. Levin and Saxon have shown in [5, Proposition 6] that $(m, \tau(m, l_1))$ is a Mackey space with the property (S) but not property (C). According to this result and Proposition 2.8, we conclude that Mackey spaces are, in general, not σ -infrabarrelled spaces.

As another consequence of the Banach-Mackey theorem, we have the following result.

PROPOSITION 2.9. Let E be a locally convex space for which every $\sigma(E', E)$ -bounded closed set is $\sigma(E', E)$ -sequentially complete (equivalently, E has the property (S)). Then the following assertions hold.

(1) If E is infrabarrelled (in particular, bornological) then it is barrelled.

(2) If E is countably infrabarrelled then it is countably barrelled.

Proof. According to the Banach-Mackey theorem each $\sigma(E', E)$ -bounded subset of E' is $\beta(E', E)$ -bounded, and the result follows.

Since metrizable locally convex spaces are infrabarrelled, part (1) of the preceding result is a generalization of Saxon [7, Theorem 2.7]. The following corollary is now immediate.

COROLLARY 2.10. Let E be a locally convex space in which every $\sigma(E, E')$ -bounded closed set is $\tau(E, E')$ -sequentially complete (in particular, E is either $\tau(E, E')$ -sequentially complete or quasi-complete). Then the following assertions hold.

(1) If E is σ -infrabarrelled then E is σ -barrelled and a fortiori has the property (S).

(2) If E is countably infrabarrelled (resp. barrelled) then it is countably barrelled (resp. barrelled).

3. The hereditary property. Saxon, Levin [8] and Valdivia [9] have shown independently that a vector subspace with countable codimension of a barrelled space is barrelled. Also Saxon and Levin [5] have shown that a vector subspace with countable codimension of a σ -barrelled space is σ -barrelled. The same is true for countably barrelled spaces as shown by Webb [12]. We give a different and direct proof of this fact.

THEOREM 3.1. Let M be a countable codimensional vector subspace of a countably barrelled space E. Then M is countably barrelled when furnished with the relative topology.

Proof. In our proof we consider three cases.

(a) *M* is dense in *E*. In this case, the topological dual *M'* of *M* can be canonically identified with *E'*. Let *S* be a $\sigma(M', M)$ -bounded subset of *M'* and let $\{S_n : n \ge 1\}$ be a sequence of equicontinuous subsets of *M'* for which $S = \bigcup_{n=1}^{\infty} S_n$. Since *M* is dense in *E*, it follows from [5, Lemma 2] that *S* is $\sigma(E', E)$ -bounded. Further we show that each S_n is an equicontinuous subset of *E'*.

139

In fact, let S_n^0 denote the polar of S_n taken in E. Since S_n is an equicontinuous subset of M', $S_n^0 \cap M$ is a 0-neighbourhood in M; then there exists an open 0-neighbourhood U_n in Esuch that $U_n \cap M \subset S_n^0 \cap M \subset S_n^0$. The density of M ensures that $U_n \subset \overline{U_n \cap M} \subset S_n^0$, and hence S_n is an equicontinuous subset of E'.

Now the countable barrelledness of E implies that S is an equicontinuous subset of E' and surely an equicontinuous subset of M'. This shows that M is countably barrelled.

(b) *M* is closed in *E*. Let *N* be any algebraic complement to *M* in *E*. Since countably barrelled spaces are σ -barrelled, it follows from [7, Theorem 1.1] that *N* is a topological complement and has the strongest locally convex topology. Hence *N* is closed in *E*, *M* and E/N are topologically isomorphic. Since *E* is countably barrelled, by [3, Corollary 14], E/N is countably barrelled and therefore *M* must be countably barrelled.

(c) General case. Since \overline{M} is a closed vector subspace of E with countable codimension, it follows from (b) that \overline{M} is countably barrelled. As M is dense in \overline{M} , we conclude from (a) that M is countably barrelled. This completes the proof of the theorem.

COROLLARY 3.2. Let E be a σ -barrelled (DF)-space. Then any vector subspace M of E with countable codimension is a countably barrelled (DF)-space.

Proof. By Corollary 2.6, E is a countably barrelled (DF)-space, and hence M is a countably barrelled space by the preceding theorem. Since E has a countable fundamental system of bounded sets, and since M is a subspace, it follows that M contains a countable fundamental system of bounded subsets of M. Therefore M is a countably barrelled (DF)-space.

The preceding result was proved by Valdivia [10, Theorem 3] in the special case when E is barrelled.

4. Various types of absorbent sequences. Let E be a vector space. By an increasing sequence of sets in E we mean a sequence $\{V_n : n \ge 1\}$ of convex circled subsets of E such that $V_n \subset V_{n+1}$ for all $n \ge 1$. Let $\{V_n : n \ge 1\}$ be an increasing sequence of sets in E. It is clear that $\{nV_n : n \ge 1\}$ is an increasing sequence of sets in E, and that if E is a locally convex space then $\{\overline{V_n} : n \ge 1\}$ is also an increasing sequence of sets in E, where $\overline{V_n}$ is the closure of V_n . An increasing sequence $\{V_n : n \ge 1\}$ of sets in E is called an increasing sequence of closed (resp. complete, compact, metrizable etc.) sets in E if each V_n is closed (resp. complete, complete, closed).

It is known from §2 that the concept of S-absorbent sequences is useful for studying the relationship between various types of barrelledness. It is not hard to give an example of an increasing sequence of sets in E which is not S-absorbent. Therefore it is interesting to find some sufficient and necessary condition to ensure that increasing sequences are S-absorbent.

PROPOSITION 4.1. Let S be a t. family for E' and suppose that $\{V_n : n \ge 1\}$ is an increasing sequence of closed sets in E. Then it is an S-absorbent sequence if and only if for any $f_n \in V_n^0$ $(n \ge 1)$, the sequence $\{f_n : n \ge 1\}$ is T_s -bounded.

Proof. Suppose that $\{V_n : n \ge 1\}$ is S-absorbent and that $\{f_n : n \ge 1\}$ is not T_S -bounded for some $f_n \in V_n^0$ $(n \ge 1)$. Then there exists $B \in S$ such that $\{f_n : n \ge 1\} \subset k^2 B^0$ is false for all natural numbers $k \ge 1$. For each $k \ge 1$, there exists n_k such that $f_{n_k} \notin k^2 B^0$. On the other hand, since $\{V_n : n \ge 1\}$ is S-absorbent, there exists $\lambda > 0$ and $n_0 \ge 1$ such that

$$V_n^0 \subset V_{n_0}^0 \subset \lambda B^0$$
 for all $n \ge n_0$,

it then follows that $f_n \in \lambda B^0$ for all $n \ge n_0$, which contradicts the fact that $f_{nk} \notin k^2 B^0$. Therefore the condition is necessary.

Conversely, if $\{V_n : n \ge 1\}$ is not an S-absorbent sequence, then there exists $B \in S$ such that $B \subset nV_n$ is false for all natural numbers $n \ge 1$. For each n, let $x_n \in B \setminus (nV_n)$ and let f_n , in V_n^0 , be such that $|f_n(x_n)| > n$. Then the sequence $\{f_n : n \ge 1\}$ is not T_s -bounded. This completes the proof.

In the sequel we always assume that E is a locally convex space and that S is a topologizing family for E'. If S_1 is another topologizing family for E' such that $S \subset S_1$, then each S_1 -absorbent sequence in E must be S-absorbent. The converse is true for $S_1 = S^{bb}$ as the following result shows.

COROLLARY 4.2. $\{V_n : n \ge 1\}$ is an S-absorbent sequence of closed sets in E if and only if it is an S^{bb}-absorbent sequence.

Proof. This follows from Proposition 4.1 and Lemma 2.1.

The preceding result was proved by De Wilde and Houet [2, Theorem 1] in the case when S is the family of all finite subsets of E.

COROLLARY 4.3. Let S_1 and S_2 be two t. families for E' such that $S_1 \subset S_2$. Then the following statements are equivalent:

(i) each T_{S1}-bounded subset of E' is T_{S2}-bounded;
(ii) each S₁-absorbent sequence of closed sets in E is S₂-absorbent.

Proof. The implication (i) \Rightarrow (ii) follows from Proposition 4.1, while the implication (ii) \Rightarrow (i) has been observed in Theorem 2.5.

When S_1 is the family of all finite subsets of E and S_2 is the family of all $\sigma(E, E')$ -bounded subsets of E, then the implication (i) \Rightarrow (ii) in the preceding result was proved by Valdivia [9, Theorem 6] in the case when E is barrelled, and was proved by De Wilde and Houet [2, Corollary 1] in the case when E is σ -barrelled.

By making use of Theorem 2.5, for a σ -barrelled space E, each $\sigma(E', E)$ -bounded subset of E' is $\beta(E', E)$ -bounded.

COROLLARY 4.4. Let S_1 and S_2 be two t. families for E' such that $S_1 \subset S_2$, and let E satisfy one of the equivalent conditions (i) and (ii) of Corollary 4.3. If S_2 has a sequence $\{B_n: n \ge 1\}$ such that each member of S_1 is absorbed by some B_n , then the saturated hull ([6], p. 81) of S_2 contains a countable fundamental subfamily.

Proof. For each *n*, let V_n be the closed convex circled hull of $\bigcup_{i=1}^n B_i$. Then V_n is in the saturated hull of S_2 , and $\{V_n : n \ge 1\}$ is an S_1 -absorbent sequence of closed sets in E, so by к

the hypothesis, $\{V_n:n \ge 1\}$ is S_2 -absorbent. Consequently $\{nV_n:n \ge 1\}$ is a countable fundamental subfamily of the saturated hull of S_2 because a member of the saturated hull of S_2 is either a subset, scalar multiple or an absolute convex hull of a finite number of elements of S_2 .

REMARK. If E is a countably barrelled space with a sequence $\{B_n : n \ge 1\}$ of bounded sets such that $\bigcup_{n=1}^{\infty} B_n$ is absorbing, then E is a (DF)-space.

Corollary 4.4 was proved by Valdivia [9, Corollary 2.6] in the case when E is barrelled.

A trivial modification of De Wilde and Houet's argument in [2] yields the following more general result, but for completeness we shall give the entire proof.

THEOREM 4.5. Let E be a σ -S-barrelled space and $\{V_n : n \ge 1\}$ an S-absorbent sequence in E. Then

$$\bigcup_{m}^{\infty} V_{m} \subset (1+\varepsilon) \bigcup_{m}^{\infty} \overline{V}_{m} \text{ for all } \varepsilon > 0.$$

Proof. If $x \notin (1+\varepsilon) \bigcup_{m}^{\infty} \overline{V}_{m}$ for some $\varepsilon > 0$, then $x \notin (1+\varepsilon) \overline{V}_{m}$ for all $m \ge 1$, and thus, for any $m \ge 1$, there exists $f_m \in V_m^0$ such that $f_m(x) > 1+\varepsilon$. Since E is σ -S-barrelled, by Proposition 2.4, $\{f_m : m \ge 1\}$ has a $\sigma(E', E)$ -cluster point f, say, in E'; hence $f(x) \ge 1+\varepsilon$. On the other hand, since V_n is increasing and $f_n \in V_n^0$, it follows that $f \in V_n^0$ for all $n \ge 1$ or, equivalently $f \in \bigcap_{n \ge 1} V_n^0 = \left(\bigcup_{n \ge 1} V_n\right)^0$. However the inequality $f(x) \ge 1+\varepsilon$ shows that $x \notin \bigcup_{m}^{\infty} V_m$.

This completes the proof.

REMARKS. (1) As De Wilde in [1, p. 212] pointed out, the condition in Theorem 4.5 that E be σ -S-barrelled can be replaced by the following condition: $\{V_n : n \ge 1\}$ is an S-absorbent sequence in E such that for each $f_n \in V_n^0$ $(n \ge 1)$, the sequence $\{f_n : n \ge 1\}$ is equicontinuous.

(2) According to the preceding theorem, Corollaries 2.a-2.d in [2] hold for a σ -S-barrelled space.

ACKNOWLEDGEMENT. The authors are grateful to the referee for many helpful comments.

REFERENCES

1. M. De Wilde, *Summer school on topological vector spaces*, Lecture Notes in Mathematics, No. 331 (Springer-Verlag, 1973).

2. M. De Wilde and C. Houet, On increasing sequences of absolutely convex sets in locally convex spaces, Math. Ann. 192 (1971), 257-261.

3. T. Husain, Two new classes of locally convex spaces, Math. Ann. 166 (1966), 289-299.

4. G. Köthe, Topological vector spaces I (Springer-Verlag, 1969).

5. M. Levin and S. Saxon, A note on the inheritance of properties of locally convex spaces by subspaces of countable codimension, *Proc. Amer. Math. Soc.* 29 (1971), 97–102.

6. H. H. Schaefer, Topological vector spaces (Springer-Verlag, 1971).

7. S. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, *Math. Ann.* 197 (1972), 87-106.

142

8. S. Saxon and M. Levin, Every countable-codimensional subspace of a barrelled space is barrelled, *Proc. Amer. Math. Soc.* 29 (1971), 91-96.

9. M. Valdivia, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier Grenoble 21 (2) (1971), 3-13.

10. M. Valdivia, On DF-spaces, Math. Ann. 191 (1971), 38-43.

11. Yau-Chuen Wong, Order-infrabarrelled Riesz spaces, Math. Ann. 183 (1969), 17-32.

12. J. H. Webb, Countable-codimensional subspaces of locally convex spaces, Proc. Edinburgh Math. Soc. 18 (1973), 167-172.

Prof. T. Husain Department of Mathematics McMaster University Hamilton, Ontario Canada Dr. Yau-Chuen Wong Department of Mathematics United College Chinese University of Hong Kong Hong Kong