Proceedings of the Edinburgh Mathematical Society (1996) 39, 325-336 ©

BIORTHOGONALITY IN THE BANACH SPACES $\ell^{p}(n)^{*}$

by ANTHONY J. FELTON and H. P. ROGOSINSKI

(Received 13th July 1994)

We consider the finite-dimensional Banach spaces $\ell^p(n)$, where p > 1. On these spaces there is a unique homogeneous semi-inner-product [.,.] consistent with the norm. If $p \neq 2$ this semi-inner product is not symmetric. We define a pair of vectors x and y to be *biorthogonal* if [x, y] = [y, x] = 0. For a given non-zero x, let $\tau(x)$ be the number of elements in a maximal linearly independent set of vectors biorthogonal to x. If p=2 it is well-known that this number n-1. The aim of this paper is to find $\tau(x)$ when $p \neq 2$. Our investigation shows that the situation differs from the Euclidean case in that the value of $\tau(x)$ can be either n-1 or n-2. The 'exceptional' vectors x for which $\tau(x) = n-2$ are characterised.

1991 Mathematics subject classification: 46C50.

0. Introduction

The following definition is due to Lumer [2]. Let V be a real vector space. A semi-inner-product (s.i.p.) on $V \times V$ is a map $[.,.]: V \times V \to \mathbb{R}$ satisfying the following properties: for all $x, y, z \in V$,

- (a) [x+y,z] = [x,z] + [y,z],
- (b) $[\lambda \mathbf{x}, \mathbf{y}] = \lambda [\mathbf{x}, \mathbf{y}] \quad \forall \lambda \in \mathbb{R},$
- (c) [x, x] > 0 if $x \neq 0$,
- (d) $|[x,y]|^2 \leq [x,x][y,y].$

We note in general $[x, y] \neq [y, x]$. A semi-inner-product is called homogeneous [1] if

$$[\mathbf{x}, \lambda \mathbf{y}] = \lambda [\mathbf{x}, \mathbf{y}] \ \forall \lambda \in \mathbb{R}, \text{ and for all } \mathbf{x}, \mathbf{y} \in V.$$

It is readily verified that $||\mathbf{x}|| = [\mathbf{x}, \mathbf{x}]^{1/2}$ defines a norm on V. We note the well-known result that in a smooth normed linear space X there exists a *unique* semi-inner-product on X which is consistent with the norm on X. In fact $[\mathbf{x}, \mathbf{y}] = (W\mathbf{y})(\mathbf{x})$ where $W\mathbf{y}$ is the unique linear functional such that $||W\mathbf{y}|| = ||\mathbf{y}||$ and $(W\mathbf{y})(\mathbf{x}) = ||\mathbf{y}||^2$. [2]

Definition 0.1. Let X be a smooth normed linear space, with norm $\|.\|$ and

*This research was funded by the University of Wales.

associated semi-inner-product [.,.]. Let $x, y \in X$. We say that x is biorthogonal to y if, and only if,

$$[y, x] = [x, y] = 0.$$

In this case, we write $x \pm y$.

In the following we consider real finite-dimensional normed linear spaces $\ell^p(n)$, where $1 , <math>p \neq 2$. It is well-known that these spaces are smooth, and that the unique consistent s.i.p. on such spaces is given by

$$[\mathbf{x}, \mathbf{y}] = \frac{1}{\|\mathbf{y}\|^{p-2}} \sum_{i=1}^{n} x_i |y_i|^{p-1} \operatorname{sgn} y_i = \frac{1}{\|\mathbf{y}\|^{p-2}} \sum_{i=1}^{n} x_i y_i |y_i|^{p-2}$$

for $\mathbf{x}, \mathbf{y} \in \ell^{p}(n)$ and $\mathbf{y} \neq \mathbf{0}$ (see e.g. [1]).

Throughout this paper p will denote a real number such that p>1 and $p\neq 2$, Let $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in \ell^p(n)$. We define $|\mathbf{x}| = (|x_1|, |x_2|, \ldots, |x_n|)$. Further we define $\mathbf{x}_n = (x_{n(1)}, x_{n(2)}, \ldots, x_{n(n)})$, where $n \in S_n$, and S_n is the group of permutations of $\{1, 2, \ldots, n\}$.

Definition 0.2. Let $x \in \ell^{p}(n)$. Define $\tau(x)$ to be the number of elements in a maximally linearly independent set of vectors biorthogonal to x.

Our purpose is to find $\tau(\mathbf{x})$ for each $\mathbf{x} \in \ell^{p}(n)$.

1. Basic properties of $\tau(x)$

Proposition 1.1. Let $\mathbf{x} \in \ell^p(n)$. For fixed $k \in \mathbb{N}$, let $\mathbf{\hat{x}} \in \ell^p(n+k)$ be defined by $\mathbf{\hat{x}} = (x, 0, 0, \dots, 0)$. Then

(i) $\tau(\lambda \mathbf{x}) = \tau(\mathbf{x}) \quad \forall \lambda \neq 0,$

(ii)
$$\tau(\mathbf{x}) = \tau(|\mathbf{x}|),$$

(iii) $\tau(\mathbf{x}) = \tau(\mathbf{x}_{\pi})$ where $\pi \in S_n$,

(iv)
$$\tau(\hat{\mathbf{x}}) = \tau(\mathbf{x}) + k$$
,

- (v) $\tau(\mathbf{x}) = n$ if, and only if, $\mathbf{x} = \mathbf{0}$,
- (vi) $n-2 \leq \tau(\mathbf{x}) \leq n$.

Proof. (i) Since

$$[\lambda \mathbf{x}, \mathbf{y}] = \lambda [\mathbf{x}, \mathbf{y}], [\mathbf{y}, \lambda \mathbf{x}] = \lambda [\mathbf{y}, \mathbf{x}],$$

 $\mathbf{x} \pm \mathbf{y}$ if, and only if, $\lambda \mathbf{x} \pm \mathbf{y}$, when $\lambda \neq 0$.

(ii) Define $\phi_x: \ell^p(n) \to \ell^p(n)$ by

$$\phi_{\mathbf{x}}((y_1, y_2, \dots, y_n)) = ((\operatorname{sgn} x_1) y_1, (\operatorname{sgn} x_2) y_2, \dots, (\operatorname{sgn} x_n) y_n).$$

Then it is clear that the map ϕ_x is linear and onto, and so preserves the linear dependence and linear independence of sets of vectors. Moreover the map ϕ_x preserves the semi-inner-product on $\ell^p(n)$, and so

 $\mathbf{y} \pm \mathbf{x}$ if, and only if, $\phi_{\mathbf{x}}(\mathbf{y}) \pm \phi_{\mathbf{x}}(\mathbf{x})$.

Since $\phi_{\mathbf{x}}(\mathbf{x}) = |\mathbf{x}|$, it follows that $\tau(\mathbf{x}) = \tau(|\mathbf{x}|)$.

(iii) The proof of this follows from the identity

$$\sum_{i=1}^{n} x_{i} y_{i} |y_{i}|^{p-2} = \sum_{i=1}^{n} x_{\pi(i)} y_{\pi(i)} |y_{\pi(i)}|^{p-2},$$

where $\pi \in S_n$, as well as from the fact that the map $x \to x_n$ preserves linear independence.

(iv) Note that (y_1, \ldots, y_{n+k}) is biorthogonal to $\hat{\mathbf{x}}$ in $\ell^p(n+k)$ if, and only if, (y_1, \ldots, y_n) is biorthogonal to \mathbf{x} in $\ell^p(n)$. If $\mathbf{e}_1, \ldots, \mathbf{e}_{n+k}$ are the standard basis vectors in $\ell^p(n+k)$, and if $\mathbf{b}_1, \ldots, \mathbf{b}_{\tau(x)}$ is a set of $\tau(\mathbf{x})$ linearly independent vectors biorthogonal to \mathbf{x} , it follows that $\{\hat{\mathbf{b}}_1, \hat{\mathbf{b}}_2, \ldots, \hat{\mathbf{b}}_{\tau(x)}, \mathbf{e}_{n+1}, \ldots, \mathbf{e}_{n+k}\}$ is a set of $\tau(\mathbf{x}) + k$ linearly independent vectors biorthogonal to $\hat{\mathbf{x}}$ in $\ell^p(n+k)$. Moreover every vector (y, \ldots, y_{n+k}) biorthogonal to $\hat{\mathbf{x}}$ is in the linear span of these $\tau(\mathbf{x}) + k$ vectors. Indeed, since (y_1, \ldots, y_n) is biorthogonal to \mathbf{x} there exist scalars $\lambda_1, \ldots, \lambda_{\tau(\mathbf{x})}$ so that

$$(y_1,\ldots,y_n) = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 + \ldots + \lambda_{\tau(\mathbf{x})} \mathbf{b}_{\tau(\mathbf{x})},$$

and so

$$(y_1,\ldots,y_{n+k}) = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 + \ldots + \lambda_{\tau(\mathbf{x})} \mathbf{b}_{\tau(\mathbf{x})} + y_{n+1} \mathbf{e}_{n+1} + \ldots + y_{n+k} \mathbf{e}_{n+k}.$$

This completes the proof that $\tau(\hat{\mathbf{x}}) = \tau(\mathbf{x}) + k$.

(v) If $\tau(\mathbf{x}) = n$ then there exists a basis in $\ell^p(n)$ in which each vector is biorthogonal to x. Since the semi-inner-product in $\ell^p(n)$ is left-linear, it follows that all vectors in $\ell^p(n)$ are left-orthogonal to x. In particular $[\mathbf{x}, \mathbf{x}] = 0$, and so $\mathbf{x} = \mathbf{0}$.

(vi) We need only show that $\tau(\mathbf{x}) \ge n-2$ whenever $\mathbf{x} \in \ell^p(n)$. This is obvious when n=2. We proceed by induction. Fix k, with $k \ge 2$, and assume that $\tau(\mathbf{x}) \ge k-2$ whenever $\mathbf{x} \in \ell^p(k)$. Let $\mathbf{x} = (x_1, x_2, \dots, x_{k+1}) \in \ell^p(k+1)$. We shall show in Section 3 (Proposition 3.3(i)) that there exists a *non-zero* vector (b_{k-1}, b_k, b_{k+1}) biorthogonal to (x_{k-1}, x_k, x_{k+1}) . Let \mathbf{b}_1 be the vector in $\ell^p(k+1)$ given by

$$\mathbf{b}_1 = \overbrace{(0, \dots, 0, b_{k-1}, b_k, b_{k+1})}^{k-2}$$

Then b_1 is biorthogonal to x. We shall assume that $b_{k+1} \neq 0$ (If $b_{k+1} = 0$ then either b_{k-1})

or b_k must be non-zero, and it is clear how to modify the argument which follows). By the inductive assumption there exists a set of k-2 linearly independent vectors biorthogonal to $(x_1, x_2, ..., x_k) \in \ell^p(k)$. Let $\mathbf{b}_2, ..., \mathbf{b}_{k-1}$ be the k-2 vectors in $\ell^p(k+1)$ arising from this set by the addition of a final coordinate which is equal to 0. Then each of these 'augmented' vectors is biorthogonal to x. Moreover, since the final coordinate of \mathbf{b}_1 is *non-zero*, the set of vectors $\{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_{k-1}\}$ is linearly independent, and it follows that $\tau(x) \ge k-1$. This completes the proof.

2. Biorthogonality in $\ell^{p}(2)$

Proposition 2.1. Let $\mathbf{x} = (a, b) \in \ell^{p}(2)$. Then

(i) $\tau(\mathbf{x}) = 2$ if, and only if, $\mathbf{x} = \mathbf{0}$.

(ii) If either a or b is equal to zero, and if $x \neq 0$, then $\tau(x) = 1$.

(iii) If both a and b are non-zero then $\tau(\mathbf{x}) = 1$ if, and only if, |a| = |b|.

Proof. (i) This is covered by Proposition 1.1(v).

(ii) If a=0 then (1,0) is biorthogonal to x, and if b=0 then (0,1) is biorthogonal to x. Since $x \neq 0$, it follows that $\tau(x) = 1$.

(iii) If a=b then (1, -1) is biorthogonal to x, and if a=-b then (1, 1) is biorthogonal to x. In either case since $x \neq 0$, $\tau(x) = 1$. Suppose conversely that $\tau(x) = 1$. Then there exists a *non-zero* vector (c, d) biorthogonal to (a, b). Since $b \neq 0$ it follows that $c \neq 0$. Since the s.i.p. is homogeneous we can assume w.l.o.g. that c=1. We then have

$$a|a|^{p-2} + db|b|^{p-2} = 0$$
 and $a + bd|d|^{p-2} = 0$.

The first equation implies that

$$|a|^{p-1} = |d| |b|^{p-1}, (1)$$

whilst the second equation implies that

$$|a| = |b| |d|^{p-1}.$$
 (2)

Substituting for $|d|^{p-1}$ from (2) into (1) gives

$$|a|^{(p-1)^2} = \frac{|a|}{|b|} |b|^{(p-1)^2}$$

Hence $|a|^{p(p-2)} = |b|^{p(p-2)}$, and since $p \neq 2$ it follows that |a| = |b|.

3. Biorthogonality in $\ell^{p}(3)$

We start with a lemma.

Lemma 3.1. Let p > 1 with $p \neq 2$, and let $a \ge b \ge 1$. Let f be defined on $(-\infty, \infty)$ by

328

329

$$f(t) = a + bt |t|^{p-2} - [a^{p-1} + b^{p-1}t] |a^{p-1} + b^{p-1}t|^{p-2}.$$

Then

(i) if b > 1, f has at least one zero, and f has more than one zero if, and only if, $a^p \leq b^p + 1$;

(ii) if b=1, f has a zero if, and only if, $a^p \leq 2$.

(iii) (1, x, y) is biorthogonal to (a, b, 1) in $\ell^{p}(3)$ if, and only if, f(x)=0 and $y=-[a^{p-1}+b^{p-1}x]$.

Proof. We shall assume throughout that p>2. The case where 1 is treated similarly.

(i) Let b > 1. Note that

$$\lim_{|t|\to\infty} \frac{f(t)}{t|t|^{p-2}} = b[1-b^{p(p-2)}] < 0.$$

It follows that

$$\lim_{t \to -\infty} f(t) = \infty \quad \text{and} \quad \lim_{t \to \infty} f(t) = -\infty.$$

Since f is continuous, the intermediate-value theorem shows that f has a zero on $(-\infty, \infty)$. By elementary calculus

$$f'(t) = (p-1)[b|t|^{p-2} - b^{p-1}|a^{p-1} + b^{p-1}t|^{p-2}].$$

Let

$$t_0 = \frac{-a^{p-1}b}{b^p-1}$$
 and $t_1 = \frac{-a^{p-1}b}{b^p+1}$.

Then it is easily verified that

 $f'(t_0) = f'(t_1) = 0, f'(t) > 0$ if $t_0 < t < t_1$, and f'(t) < 0 otherwise.

Hence f attains a minimum value when $t = t_0$ and a maximum value when $t = t_1$. Since $a^p > b^p - 1$ and p > 2,

$$f(t_0) = \frac{a}{(b^p - 1)^{p-2}} [(b^p - 1)^{p-2} - a^{p(p-2)}] < 0.$$

It is now clear that $f(t_1) \ge 0$ is a necessary and sufficient condition for f to have more than one zero. Since

$$f(t_1) = \frac{a}{(b^p+1)^{p-2}} [(b^p+1)^{p-2} - a^{p(p-2)}],$$

this condition is equivalent to $a^p \leq b^p + 1$.

(ii) Let b = 1. Then, putting $c = a^{p-1}$,

$$f(t) = a + t |t|^{p-2} - (c+t)|c+t|^{p-2}.$$

We have

$$f'(t) = (p-1)[|t|^{p-2} - |c+t|^{p-2}],$$

and so f'(t) > 0 if |t| > |c+t| and f'(t) < 0 if |t| < |c+t|. Hence f'(t) > 0 if $t < -\frac{1}{2}c$ and f'(t) < 0 if $t > -\frac{1}{2}c$, and consequently f attains its maximum value when $t = -\frac{1}{2}c$. This maximum value is given by

$$f\left(-\frac{1}{2}c\right) = a - \frac{c^{p-1}}{2^{p-2}} = \frac{a}{2^{p-2}}(2^{p-2} - a^{p(p-2)}).$$

If $a^p > 2$ then this maximum value is negative, and so f has no zeros. Otherwise, $f(-\frac{1}{2}c) \ge 0$ whereas $f(0) = a - c^{p-1} = a - a^{(p-1)^2} \le 0$, and by the intermediate-value theorem, f has a zero in the closed interval $[-\frac{1}{2}c, 0]$.

(iii) (1, x, y) is biorthogonal to (a, b, 1) if, and only if,

$$a+bx|x|^{p-2}+y|y|^{p-2}=0,$$

and

$$a^{p-1} + b^{p-1}x + y = 0.$$

This is clearly the case if, and only if,

$$y = -[a^{p-1} + b^{p-1}x],$$

and

$$f(x) = a + bx |x|^{p-2} - [a^{p-1} + b^{p-1}x] |a^{p-1} + b^{p-1}x|^{p-2} = 0.$$

Corollary 3.2. Let $\mathbf{x} = (a, b, 1) \in \ell^p(3)$ where a > b > 1. Then there exist real numbers α, α' with $\alpha < 0$ and $\alpha' > 0$ such that $(1, \alpha, \alpha')$ is biorthogonal to \mathbf{x} .

Proof. Let p>2. The case 1 is treated similarly. Let f be the function defined in Lemma 3.1. Since <math>b>1, we have seen that $f(t) \rightarrow \infty$ as $t \rightarrow -\infty$. Since

$$f\left(-\left(\frac{a}{b}\right)^{p-1}\right) = \frac{a}{b^{p(p-2)}} \left[b^{p(p-2)} - a^{p(p-2)}\right] < 0.$$

it follows that $f(\alpha) = 0$ for some α , with $\alpha < -(\frac{a}{b})^{p-1} < 0$. If $\alpha' = -[a^{p-1} + b^{p-1}\alpha]$, then $\alpha' > 0$. By Lemma 3.1(iii), $(1, \alpha, \alpha')$ is biorthogonal to **x**.

Proposition 3.3. Let p > 1, $p \neq 2$. Let $\mathbf{x} = (a, b, c) \in \ell^p(3)$. Then

(i) $\tau(\mathbf{x}) \geq 1$,

(ii) If a, b, c are non-zero, and if $\{\alpha, \beta, \gamma\}$ is a permutation of $\{a, b, c\}$ with $|\alpha| \ge |\beta| \ge |\gamma|$, then $\tau(\mathbf{x}) = 2$ if, and only if, $|\alpha|^p \le |\beta|^p + |\gamma|^p$.

Proof. In what follows f is the function defined in Lemma 3.1.

(i) Let $\mathbf{x} = (a, b, c)$. We can assume that a, b, c are non-zero, since otherwise one of the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) will be biorthogonal to \mathbf{x} . By Proposition 1.1(i), (ii), and (iii), we can assume w.l.o.g. that $a \ge b \ge c = 1$. Moreover if b = c then (0, 1, -1) is biorthogonal to \mathbf{x} , and so we can further assume that $a \ge b > c = 1$. Lemma 3.1(i) then shows that f(x) = 0 for some real x, and so, by Lemma 3.1(ii), (1, x, y) is biorthogonal to \mathbf{x} , where $y = -[a^{p-1}+b^{p-1}x]$. Hence $\tau(\mathbf{x}) \ge 1$.

(ii) Let $\mathbf{x} = (a, b, c)$ where a, b, c are non-zero. Again we may assume that $a \ge b \ge c = 1$. We consider two cases.

Case 1. Let b > 1. By Proposition 2.1(iii), $\tau(b, 1) = 0$, and consequently there is no non-zero vector of the form (0, x, y) biorthogonal to x. Hence $\tau(x) = 2$ if, and only if, there are two linearly independent vectors of the form (1, x, y) biorthogonal to x. Lemma 3.1(iii) shows that this happens if, and only if, the function f has more than one zero, and so if, and only if, $a^p \le b^p + 1 = b^p + c^p$ (Lemma 3.1(i)).

Case 2. Let b=1. Then $\mathbf{x} = (a, 1, 1)$. Since $\tau(1, 1) = 1$, the only vectors of the form (0, x, y) biorthogonal to \mathbf{x} are scalar multiples of (0, 1, -1). Hence $\tau(\mathbf{x}) = 2$ if, and only if, there is some vector (1, x, y) biorthogonal to \mathbf{x} . Lemma 3.1(iii) shows that this happens if, and only if, f(x) = 0 for some x, and so if, and only if, $a^p \leq 2 = b^p + c^p$ (Lemma 3.1(ii)).

Corollary 3.4. Let $n \ge 3$. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \ell^p(n)$ with $x_1 \ge x_2 \ge \dots \ge x_n > 0$. Then there exists a vector \mathbf{y} of the form $(y_1, y_2, \dots, y_{n-1}, 1)$ which is biorthogonal to \mathbf{x} .

Proof. By putting $y_1 = y_2 = \ldots = y_{n-3} = 0$ we may assume w.l.o.g. that n=3. Let $\mathbf{x} = (x_1, x_2, x_3)$ with $x_1 \ge x_2 \ge x_3 > 0$. If $x_1 > x_2$ the result follows from the facts that $\tau(x_1, x_2) = 0$ (Proposition 2.1(iii)) and $\tau(x_1, x_2, x_3) \ge 1$ (Proposition 3.3(i)). If $x_1 = x_2$ the result follows from the fact that $\tau(x_1, x_2) = 1$ (Proposition 2.1(iii) and $\tau(x_1, x_2, x_3) \ge 2$ (Proposition 3.3(ii)).

4. The main theorem

The proof of the following proposition makes use of an inequality which we state in the form of a preliminary lemma. We recall that throughout p > 1 and $p \neq 2$.

Lemma 4.1. If $b \ge c \ge 1$, and $\lambda > 0$ then

$$(b+c\lambda^{p-1})-(b^{p-1}+\lambda c^{p-1})^{p-1}\neq 0.$$
 (1)

Proof. Suppose that p > 2. Elementary calculus shows that $(x_1 + x_2)^{p-1} > x_1^{p-1} + x_2^{p-1}$ when $x_1, x_2 > 0$. With $x_1 = b^{p-1}$, $x_2 = \lambda c^{p-1}$ this inequality reduces to $(b^{p-1} + \lambda c^{p-1})^{p-1} > b^{(p-1)^2} + \lambda^{p-1} c^{(p-1)^2}$. Since $b^{(p-1)^2} \ge b$ and $c^{(p-1)^2} \ge c$, we see that the expression on the left-hand side of (1) is negative. A similar argument shows that this expression is positive if 1 .

Proposition 4.2. Let $a \ge b \ge c \ge 1$. Let $\mathbf{x} = (a, b, c, 1) \in \ell^p(4)$. Then for each $\lambda > 0$ there exist $x_0(\lambda)$ and $z_0(\lambda)$ such that $(1, x_0(\lambda), \lambda x_0(\lambda), z_0(\lambda))$ is biorthogonal to \mathbf{x} . Moreover if $a > b \ge c = 1$ then $x_0(\lambda)$ is not constant on $(0, \infty)$.

Proof. Let $\lambda > 0$ and let $y = (1, t, \lambda t, t') \in \ell^p(4)$. Then x is biorthogonal to y if, and only if,

$$a + (b + c\lambda^{p-1})t|t|^{p-2} + t'|t'|^{p-2} = 0,$$
(1)

and

332

$$a^{p-1} + (b^{p-1} + \lambda c^{p-1})t + t' = 0.$$
⁽²⁾

Substituting (2) into (1) we obtain the equation

$$f_{\lambda}(t) = a + (b + c\lambda^{p-1})t |t|^{p-2} - (a^{p-1} + (b^{p-1} + \lambda c^{p-1})t) |a^{p-1} + (b^{p-1} + \lambda c^{p-1})t|^{p-2} = 0.$$
(3)

We have

$$\frac{f_{\lambda}(t)}{t|t|^{p-2}} \rightarrow (b+c\lambda^{p-1}) - (b^{p-1}+\lambda c^{p-1})^{p-1}, \quad as \ |t| \rightarrow \infty.$$

By Lemma 4.1 this limit is non-zero, and it then follows from the intermediate-value theorem that equation (3) has a real root. For $\lambda > 0$, let $x_0(\lambda)$ denote the least such root. If

$$z_0(\lambda) = -[a^{p-1} + (b^{p-1} + \lambda c^{p-1})x_0(\lambda)],$$

it is clear that $(1, x_0(\lambda), \lambda x_0(\lambda), z_0(\lambda))$ is biorthogonal to x.

Let $a > b \ge c = 1$. Suppose, for a contradiction, that for some constant K, $x_0(\lambda) = K$ for all positive λ . Then

$$f_{\lambda}(K) = a + (b + \lambda^{p-1})K |K|^{p-2} - (a^{p-1} + (b^{p-1} + \lambda)K) |a^{p-1} + (b^{p-1} + \lambda)K|^{p-2} = 0 \quad \forall \lambda > 0.$$
(4)

Since a > 1, we see from (4) that $K \neq 0$. Differentiating both sides of (4) with respect to λ we obtain

$$(p-1)\lambda^{p-2}K|K|^{p-2} - |a^{p-1} + (b^{p-1} + \lambda)K)|^{p-2}(p-1)K = 0 \,\,\forall \lambda > 0.$$
(5)

Dividing both sides of (5) by $(p-1)K|K|^{p-2}$ and taking $(p-2)^{th}$ roots gives

$$\lambda = \left| \frac{a^{p-1}}{K} + b^{p-1} + \lambda \right| \, \forall \lambda > 0, \tag{6}$$

and (6) implies that

$$K = -\frac{a^{p-1}}{b^{p-1}}.$$

Since

$$f_{\lambda}\left(\frac{-a^{p-1}}{b^{p-1}}\right) = \frac{a(b^{p(p-2)}-a^{p(p-2)})}{b^{p(p-2)}} \neq 0,$$

we obtain the desired contradiction.

Proposition 4.3. Let $\mathbf{x} = (a, b, c, d) \in \ell^{p}(4)$, where a, b, c, d are non-zero. Then $\tau(\mathbf{x}) = 3$.

Proof. By (i), (ii), (iii) of Proposition 1.1, we can assume w.l.o.g. that $a \ge b \ge c \ge d = 1$. We consider three cases.

Case 1. Suppose that at least two of a, b, c are equal.

Suppose first that a=b. Then $\tau(a, b, c)=2$ by Proposition 3.3(ii). Hence there are two linearly independent vectors in $\ell^{p}(4)$ which are biorthogonal to (a, b, c, 1) and whose last coordinates are 0. By Corollary 3.4 there is also a vector in $\ell^{p}(4)$ which is biorthogonal to (a, b, c, 1) and whose last coordinate is 1. The three vectors so obtained are linearly independent, and hence $\tau(a, b, c, 1)=3$.

Now suppose that b=c. Then $\tau(b,c,1)=2$ by Proposition 3.3(ii). Hence there are two linearly independent vectors in $\ell^{p}(4)$ which are biorthogonal to (a, b, c, 1) and whose first coordinates are 0. By Proposition 4.2, there is also a vector in $\ell^{p}(4)$ which is biorthogonal to (a, b, c, 1) whose first coordinate is 1. Again $\tau(a, b, c, 1)=3$.

Case 2. Suppose that a > b > c > 1.

Corollary 3.2 shows that there exist vectors $\mathbf{X} = (1, 0, \alpha, \alpha')$, $\mathbf{Y} = (0, 1, \beta, \beta')$, $\mathbf{Z} = (1, \gamma, 0, \gamma')$ biorthogonal to x, where $\alpha, \beta, \gamma < 0$ and $\alpha', \beta', \gamma' > 0$. We shall show that the vectors X, Y, Z are linearly independent, by showing that

$$\begin{vmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \\ 1 & \gamma & 0 \end{vmatrix} \neq 0.$$

In fact suppose, for a contradiction, that this determinant is zero. Then

$$\beta = -\frac{\alpha}{\gamma}.$$
 (1)

Since [X, x] = [Y, x] = [Z, x] = 0, we have

$$\alpha' = -(a^{p-1} + c^{p-1}\alpha), \quad \beta' = -(b^{p-1} + c^{p-1}\beta), \quad \gamma' = -(a^{p-1} + b^{p-1}\gamma)$$
(2)

and it follows from (1) and (2) that

$$\frac{\gamma' - \alpha'}{\gamma} = \beta'. \tag{3}$$

Since $\gamma < 0$ and $\beta' > 0$, we see that $\alpha' > \gamma'$. By (1) and (3),

$$-\gamma \mathbf{Y} = (\mathbf{0}, -\gamma, -\gamma\beta, -\gamma\beta') = (\mathbf{0}, -\gamma, \alpha, \alpha' - \gamma'),$$

and since $[\mathbf{x}, -\gamma \mathbf{Y}] = 0$ we have, noting that $\alpha' > \gamma'$,

$$-b\gamma|\gamma|^{p-2} + c\alpha|\alpha|^{p-2} + (\alpha' - \gamma')^{p-1} = 0$$
(4)

Now $[\mathbf{x}, \mathbf{X}] = [\mathbf{x}, \mathbf{Z}] = 0$, and so we also have

$$[\mathbf{x},\mathbf{X}] - [\mathbf{x},\mathbf{Z}] = -b\gamma|\gamma|^{p-2} + c\alpha|\alpha|^{p-2} + \alpha'^{p-1} - \gamma'^{p-1} = 0.$$
(5)

Subtracting (5) from (4), we deduce that

$$(\alpha' - \gamma')^{p-1} - \alpha'^{p-1} + \gamma'^{p-1} = 0.$$

If

 $r=\frac{\alpha'}{\gamma'},$

this gives

$$(r-1)^{p-1} - r^{p-1} + 1 = 0. (6)$$

Elementary calculus shows that, since $p \neq 2$, the expression on the left-hand side of (6) is strictly monotonic in r, and so (6) is satisfied only when r = 1. Since

$$r=\frac{\alpha'}{\gamma'}>1,$$

we have the desired contradiction.

Case 3. Suppose that a > b > c = 1.

If $y_1 = (0, 0, 1, -1)$, then y_1 is biorthogonal to x. Corollary 3.2 shows that there exists a vector $y_2 = (1, \alpha, 0, \alpha')$ biorthogonal to x. By Proposition 4.2 for each $\lambda > 0$ there exist $x(\lambda)$ and $z(\lambda)$ such that $y_3(\lambda)$ is biorthogonal to x, where $y_3(\lambda) = (1, x(\lambda), \lambda x(\lambda), z(\lambda))$. Suppose, for a contradiction, that the three vectors $y_1, y_2, y_3(\lambda)$ are linearly dependent for all $\lambda > 0$. Then

$$\begin{vmatrix} 0 & 0 & 1 \\ 1 & \alpha & 0 \\ 1 & x(\gamma) & \lambda x(\lambda) \end{vmatrix} \neq 0.$$

This implies that

$$x(\lambda) = \alpha \ \forall \lambda > 0$$

and so contradicts the second part of Proposition 4.2. Hence $\tau(\mathbf{x}) = 3$.

Proposition 4.4. Let $n \ge 4$ and let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \ell^p(n)$ where $x_i \ne 0 \forall i$. Then

$$\tau(\mathbf{x}) = n - 1. \tag{1}$$

Proof. We proceed by induction. Proposition 4.3 shows that (1) holds when n=4. Let $k \ge 4$, and suppose that (1) holds when n=k. Let $\mathbf{x} = (x_1, x_1, \dots, x_{k+1}) \in \ell^p(k+1)$. By Proposition 1.1(ii), (iii) we may assume without loss of generality that $x_1 \ge x_2 \ge \dots \ge x_{k+1} > 0$. Then $(x_1, x_2, \dots, x_k) \in \ell^p(k)$, and by the inductive hypothesis there exists a linearly independent set of k-1 vectors in $\ell^p(k)$ biorthogonal to (x_1, x_1, \dots, x_k) . By adding a final zero coordinate to each of the vectors in this set, we obtain a linearly independent set of k-1 vectors $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{k-1}$ in $\ell^p(k+1)$ biorthogonal to \mathbf{x} . By Corollary 3.4 there exists a vector \mathbf{y}_k with final coordinate equal to 1 which is biorthogonal to \mathbf{x} . The set of vectors $\{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k\}$ is then a linearly independent set of k vectors in $\ell^p(k+1)$ biorthogonal to \mathbf{x} . Since $\mathbf{x} \neq \mathbf{0}$, $\tau(\mathbf{x}) = k$. Hence (1) holds for n = k+1, and the proof is complete.

An application of Proposition 2.1(ii), (iii), Proposition 3.3(ii) and Proposition 4.4, together with the properties (ii), (iii), (iv) and (v) of $\tau(\mathbf{x})$ listed in Proposition 1.1 now readily yield our main result.

Theorem 4.5. Let $n \ge 2$, and let $\mathbf{x} \in \ell^p(n)$. Let k be the number of non-zero coordinates of \mathbf{x} .

(i) If k = 0 then $\tau(\mathbf{x}) = n$.

(ii) If k = 1 or $k \ge 4$ then $\tau(\mathbf{x}) = n - 1$.

(iii) If k=2 then $\tau(\mathbf{x})=n-1$ if the two non-zero coordinates have equal modulus, and $\tau(\mathbf{x})=n-2$ otherwise.

ANTHONY J. FELTON AND H. P. ROGOSINSKI

(iv) If k = 3, let $\{\alpha, \beta, \gamma\}$ be a permutation of the three non-zero coordinates such that $|\alpha| \ge |\beta| \ge |\gamma|$. Then $\tau(\mathbf{x}) = n-1$ if $|\alpha|^p \le |\beta|^p + |\gamma|^p$ and $\tau(\mathbf{x}) = n-2$ otherwise.

Acknowledgement. We would like to thank the referee for his helpful comments concerning the presentation of this paper.

REFERENCES

1. J. R. GILES, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.

2. G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF WALES, SWANSEA SINGLETON PARK SWANSEA SA2 8PP WALES