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BIORTHOGONALITY IN THE BANACH SPACES t"(n)*

by ANTHONY J. FELTON and H. P. ROGOSINSKI

(Received 13th July 1994)

We consider the finite-dimensional Banach spaces t*(n), where p > l . On these spaces there is a unique
homogeneous semi-inner-product [.,.] consistent with the norm. If p # 2 this semi-inner product is not
symmetric. We define a pair of vectors x and y to be biorthogonal if [x, y] = [y, x] = 0. For a given non-zero x,
let T(X) be the number of elements in a maximal linearly independent set of vectors biorthogonal to x. If p = 2
it is well-known that this number is n—1. The aim of this paper is to find T(X) when p ^ 2 . Our investigation
shows that the situation differs from the Euclidean case in that the value of x(x) can be either n— 1 or n —2.
The 'exceptional' vectors x for which x(x) = n —2 are characterised.

1991 Mathematics subject classification: 46C50.

0. Introduction

The following definition is due to Lumer [2]. Let V be a real vector space. A
semi-inner-product (s.i.p.) on VxV is a map [ . , . ] : Vx V->U satisfying the following
properties: for all x, y, z e V,

(a)

(b) [Ax,y] = A[x)y]VAe!R,

(c) [x ,x]>0ifx*0,

(d) |[x)y]|2^[x,x][y,y].

We note in general [x,y]#[y,x]. A semi-inner-product is called homogeneous [1] if

[x, Ay] = A [x, y] VA e U, and for all x, y e V.

It is readily verified that ||x|| = [x,x]1/2 defines a norm on V. We note the well-known
result that in a smooth normed linear space X there exists a unique semi-inner-product
on X which is consistent with the norm on X. In fact [x,y]=(Wy)(x) where Wy is the
unique linear functional such that ||Wy|| = ||y|| and (Wy)(x) = ||y||2. [2]

Definition 0.1. Let X be a smooth normed linear space, with norm ||.|| and
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associated semi-inner-product [.,.]. Let \,yeX. We say that x is biorthogonal to y if,
and only if,

[y,x] = [x,y] = 0.

In this case, we write x + y.

In the following we consider real finite-dimensional normed linear spaces S"(n), where
l<p<oo, p#2. It is well-known that these spaces are smooth, and that the unique
consistent s.i.p. on such spaces is given by

for x,ye<fp(n) and y#0 (see e.g. [1]).
Throughout this paper p will denote a real number such that p > 1 and p # 2, Let

x=(x1,x2,...,xn)e(fp(n). We define |x|=(|x1|,|x2|,...,|xn|). Further we define xn =
(xn(1),xn(2),...,xn(n)), where neSn, and Sn is the group of permutations of {1,2,...,n}.

Definition 0.2. Let x e tp(n). Define T(X) to be the number of elements in a maximally
linearly independent set of vectors biorthogonal to x.

Our purpose is to find T(X) for each xe<fp(n).

1. Basic properties of r(x)

Proposition 1.1. Let xetp(n). For fixed keN, let ietp(n + k) be defined by
k

x=(x,0,0,...,0). Then

(i) T(AX) = T(X

(ii) T(X) = T(|X|),

(iii) T(X) = r(xn) where n e Sn,

(iv) T(x) = r(x) + fe,

(v) T(X) = n if, and only if, x = 0,

(vi) n - 2 g t ( x ) ^ « .

Proof, (i) Since

[>lx,y] = A[x,y], [y,Ax] = A[y,x],

x±y if, and only if, Ax±y, when

https://doi.org/10.1017/S001309150002304X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002304X


BIORTHOGONALITY IN THE BANACH SPACES /"(«) 327

(ii) Define <t>xJ
p(n)-+f(n) by

<^>x((>'i.>'2>-->>'n))=((sgnx1)>'1,(sgnx2)y2,...,(sgnxn)};n).

Then it is clear that the map <f>x is linear and onto, and so preserves the linear
dependence and linear independence of sets of vectors. Moreover the map <f>x preserves
the semi-inner-product on /p(n), and so

y + x if, and only if, 0x(y) + $x(x).

Since $x(x) = |x|, it follows that T(X) = T(|X|).
(iii) The proof of this follows from the identity

n n

Z x&l\yl\'-
2= £ xmym\yKV\'~\

i = i 1 = 1

where neSn, as well as from the fact that the map x-»xn preserves linear independence.
(iv) Note that {yi,...,ya+k) is biorthogonal to x in <fp(n + fc) if, and only if, (yi,...,yK)

is biorthogonal to x in C{n). If e j , . . . , e n + t are the standard basis vectors in Sp(n + k),
and if !>!,...,bl(x) is a set of T(X) linearly independent vectors biorthogonal to x, it
follows that {61,62, . . . ,Bt ( x ) ,en + 1 , . . . ,en + k} is a set of r(\) + k linearly independent
vectors biorthogonal to x in <fp(n + fc). Moreover every vector (y,...,yn+k) biorthogonal
to x is in the linear span of these T(X) + /C vectors. Indeed, since ( y i , . . . , ^ ) is
biorthogonal to x there exist scalars Xl,...,Xz(x) so that

and so

This completes the proof that T(x) = r(x) + fe.
(v) If T(X) = n then there exists a basis in ^p(n) in which each vector is biorthogonal to

x. Since the semi-inner-product in <fp(n) is left-linear, it follows that all vectors in <?p(n)
are left-orthogonal to x. In particular [x,x]=0, and so x = 0.

(vi) We need only show that t(x)^n—2 whenever xe/p(n). This is obvious when
n = 2. We proceed by induction. Fix k, with fc^2, and assume that z(x)^k — 2 whenever
X6ifp(fe). Let x = (x1,x2,...,xlk+1)e/p(fc+l). We shall show in Section 3 (Proposition
3.3(i)) that there exists a non-zero vector (bk-i,bk,bk + l) biorthogonal to (xk_1,xt,xt+1).
Let bx be the vector in f(k+ 1) given by

k-l

b 1 =(0 , . . . ,OA_iAA + i) -

Then b, is biorthogonal to x. We shall assume that fct + 1 # 0 (If bk+l = 0 then either bk-l

https://doi.org/10.1017/S001309150002304X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002304X


328 ANTHONY J. FELTON AND H. P. ROGOSINSKI

or bk must be non-zero, and it is clear how to modify the argument which follows). By
the inductive assumption there exists a set of k — 2 linearly independent vectors
biorthogonal to (x1)x2,...,xk)e^l>(fc). Let b 2 , . . . , b t _ , be the k — 2 vectors in tp(k+l)
arising from this set by the addition of a final coordinate which is equal to 0. Then each
of these 'augmented' vectors is biorthogonal to x. Moreover, since the final coordinate
of b! is non-zero, the set of vectors {b, ,b2 , . . . ,b t_1} is linearly independent, and it
follows that T(JC) ^ k — 1. This completes the proof. •

2. Biorthogonality in <?"(2)

Proposition 2.1. Let x = {a, b) e <f"(2). Then

(i) t(x) = 2 if, and only if, x = 0.
(ii) / / either a or b is equal to zero, and ifx^O, then T(X) = 1.

(Hi) If both a and b are non-zero then T(X)= 1 if, and only if, \a\ = \b\.

Proof, (i) This is covered by Proposition l.l(v).
(ii) If a = 0 then (1,0) is biorthogonal to x, and if b = 0 then (0,1) is biorthogonal to x.

Since x # 0 , it follows that T(X) = 1.
(Hi) If a = b then ( 1 , - 1 ) is biorthogonal to x, and if a= — b then (1,1) is biorthogonal

to x. In either case since x # 0 , T(X) = 1. Suppose conversely that T(X) = 1. Then there
exists a non-zero vector (c,d) biorthogonal to (a,b). Since b # 0 it follows that c # 0 . Since
the s.i.p. is homogeneous we can assume w.l.o.g. that c= 1. We then have

\ \ 2 = 0 and

The first equation implies that

whilst the second equation implies that

Substituting for \d\"~l from (2) into (1) gives

Hence |a | p ( p-2 ) = |fe|p<p~"2), and since p # 2 it follows that |a| = |fc|. •

3. Biorthogonality in /p(3)

We start with a lemma.

Lemma 3.1. Let p>\ with p#2, and let a^b^ 1. Let f be defined on ( — oo, oo) by
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Then

(i) if b>l, f has at least one zero, and f has more than one zero if, and only if,

(ii) ifb=\,f has a zero if, and only if, ap^2.
(iii) (l,x,y) is biorthogonal to (a,b, 1) in <fp(3) if, and only if, f(x)=0 and y =

Proof. We shall assume throughout that p>2. The case where l < p < 2 is treated
similarly,

(i) Let b>\. Note that

lim -f^ = b\_l-bp(l'-2)]<0.

It follows that

lim /(r) = oo and lim/(r)= — oo.
t~* — 00

Since / is continuous, the intermediate-value theorem shows that / has a zero on
(— oo, oo). By elementary calculus

f\t)=(p-\)[b\t\"-2 -bp-l\ap-1

Let

to=~b^T a n d ' ' = -

Then it is easily verified that

/'(to) = / '( t1)=:0,/ '(0>0 if t o< t<^ ,and / ' ( t )<0 otherwise.

Hence / attains a minimum value when t = t0 and a maximum value when t = tt. Since
a">bp-\ andp>2,

It is now clear that / ( f J ^ O is a necessary and sufficient condition for / to have more
than one zero. Since
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this condition is equivalent to ap^bp + 1.
(ii) Let b=\. Then, putting c = a"~\

We have

and so / ' ( t )>0 if | t |>|c + t| and f'(t)<0 if |t |<|c + l|. Hence f'(t)>0 if t<— \c and
f'(t)< 0 if t> —\c, and consequently / attains its maximum value when t = —jc. This
maximum value is given by

If ap>2 then this maximum value is negative, and so / has no zeros. Otherwise,
/(—^c)^0 whereas /(0) = a — cp~i=a —a(p~1)2^0, and by the intermediate-value
theorem, / has a zero in the closed interval [—jC,0~\.

(Hi) (l,x,y) is biorthogonal to (a,b, 1) if, and only if,

and

This is clearly the case if, and only if,

y=-la'-1+bp-1x],

and

\ \ 2 l i \ i 1x\p-2 = 0. D

Corollary 3.2. Let \ = {a,b, l)e/p(3) where a>b>\. Then there exist real numbers
a,a' with a < 0 and a '>0 such that (l,a,a') is biorthogonal to x.

Proof. Let p>2. The case 1 <p<2 is treated similarly. Let / be the function defined
in Lemma 3.1. Since b> 1, we have seen that /(t)-»oo as t-> — oo. Since

it follows that / (a)=0 for some a, with a< - (§)""^O. If a'= - [ a"" 1 +fc""1a], then
a'>0. By Lemma 3.1(iii), (l,a,a') is biorthogonal to x. •
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Proposition 33. Let p> 1, p / 2 . Let x=(a,b,c)eS"(3). Then
(i) t (x)^l ,

(ii) If a,b,c are non-zero, and if {<x,P,y} is a permutation of {a,b,c} with [a|^|/?|^|y|,
then T(X) = 2 if, and only if, \<x\p^\p\" + \y\p.

Proof. In what follows / is the function defined in Lemma 3.1.
(i) Let x = (a, b, c). We can assume that a, b, c are non-zero, since otherwise one of the

vectors (l,0,0),(0, l,0),(0,0,1) will be biorthogonal to x. By Proposition l.l(i), (ii), and
(Hi), we can assume w.l.o.g. that a^b^c=l. Moreover if b = c then (0,1,-1) is
biorthogonal to x, and so we can further assume that a^b>c=\. Lemma 3.1(i) then
shows that /(x) = 0 for some real x, and so, by Lemma 3.1 (hi), (l,x,y) is biorthogonal to
x, where y= -[ap"1+fcp"1x]. Hence T(X)S1.

(ii) Let x=(a,b,c) where a,b,c are non-zero. Again we may assume that a ^ b ^ c = l .
We consider two cases.

Case 1. Let b>\. By Proposition 2.1(iii), z(b, l)=0, and consequently there is no
non-zero vector of the form (0, x,y) biorthogonal to x. Hence T(X) = 2 if, and only if,
there are two linearly independent vectors of the form (l,x,y) biorthogonal to x.
Lemma 3.1 (Hi) shows that this happens if, and only if, the function / has more than one
zero, and so if, and only if, a"^bp+1 =b"+cp (Lemma 3.1(i)).

Case 2. Let b=\. Then x = (a, 1,1). Since T(1,1) = 1, the only vectors of the form
(0,x,y) biorthogonal to x are scalar multiples of (0,1, —1). Hence T(X) = 2 if, and only if,
there is some vector (l,x,y) biorthogonal to x. Lemma 3.1(iii) shows that this happens
if, and only if, /(x) = 0 for some x, and so if, and only if, ap^2 = b" + cp (Lemma 3.1(ii)).

D

Corollary 3.4. Let «^3. Let x = (x1)x2,...,xn)e/p(n) with x , lx 2 g . . . ^x n >0 . Then
there exists a vector y of the form (yi,y2,---,yn-i>l) which is biorthogonal to x.

Proof. By putting yl = y2 = ...=yn_3 = 0 we may assume w.l.o.g. that n = 3. Let
x=(xj,x2,x3) with x l ^ x 2 ^ x 3 > 0 . If x ,>x 2 the result follows from the facts that
T(*i>*2) = 0 (Proposition 2.1(iii)) and T(X, ,X 2 ,X 3 )^ 1 (Proposition 3.3(i)). If x t =x 2 the
result follows from the fact that T(X!,X2)=1 (Proposition 2.1(iii) and T(X1,X2,X3) = 2
(Proposition 3.3(ii)). •

4. The main theorem

The proof of the following proposition makes use of an inequality which we state in
the form of a preliminary lemma. We recall that throughout p > 1 and p ^ 2.

Lemma 4.1. / / b ̂  c ̂  1, and X > 0 then

l l)p-l^0. (1)
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Proof. Suppose that p > 2. Elementary calculus shows that (xj + x2)
p~l > x?~' + xf,~l

when X!,x2>0. With x1 = bp~\ x2 = Acp~1 this inequality reduces to
(b"'1 + Ac""1)"'1 >b{p-l)1 + A""1^"-1'2. Since b^'^^b and c^-^^c, we see that the
expression on the left-hand side of (1) is negative. A similar argument shows that this
expression is positive if 1 <p<2. •

Proposition 4.2. Let a^b^c^l. Let \ = {a,b,c, l)e<f"(4). Then for each A>0 there
exist xo(A) and zo(A) such that (l,xo(A),Axo(A),zo(A)) is biorthogonal to x. Moreover if
a > b ^ c = 1 then xo(A) is not constant on (0, oo).

Proof. Let A>0 and let y={\,t,Xt,t')etp(4). Then x is biorthogonal to y if, and
only if,

l)t\t\"-2 + ?\t'\p-2 = 0, (1)
and

Substituting (2) into (1) we obtain the equation

(3)

We have

if , -*{b + cXp~1) — (bp~1+Acp~~1)p~1, as Itl—»oo.
t\t\p 2 ' '

By Lemma 4.1 this limit is non-zero, and it then follows from the intermediate-value
theorem that equation (3) has a real root. For A>0, let xo(A) denote the least such root.

If

it is clear that (l,xo(A), Axo(A),zo(A)) is biorthogonal to x.
Let a>b^.c= 1. Suppose, for a contradiction, that for some constant K, xo(A) = K for

all positive A. Then

(4)

Since a > 1, we see from (4) that K#0. Differentiating both sides of (4) with respect to
A we obtain

(5)
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Dividing both sides of (5) by (p-l)K\K\"~2 and taking (p-2)th roots gives

K

333

(6)

and (6) implies that

K=-

Since

a(bp{p'2)-ap{p-2))
#0,

we obtain the desired contradiction. •
Proposition 4.3. Let x = (a, b, c, d) e ^p(4), where a, b, c, d are non-zero. Then T(X) = 3.

Proof. By (i), (ii), (iii) of Proposition 1.1, we can assume w.l.o.g. that a^b^.c^d=l.
We consider three cases.

Case 1. Suppose that at least two of a,b,c are equal.
Suppose first that a = b. Then z(a,b,c) = 2 by Proposition 3.3(ii). Hence there are two

linearly independent vectors in tf"{4) which are biorthogonal to (a, b, c, 1) and whose last
coordinates are 0. By Corollary 3.4 there is also a vector in *fp(4) which is biorthogonal
to (a,b,c, 1) and whose last coordinate is 1. The three vectors so obtained are linearly
independent, and hence x{a,b,c, 1) = 3.

Now suppose that b = c. Then x(b,c, 1) = 2 by Proposition 3.3(ii). Hence there are two
linearly independent vectors in ^p(4) which are biorthogonal to (a,b,c, 1) and whose first
coordinates are 0. By Proposition 4.2, there is also a vector in <f(4) which is
biorthogonal to (a,b,c, 1) whose first coordinate is 1. Again z(a,b,c, 1) = 3.

Case 2. Suppose that a>b>c> 1.
Corollary 3.2 shows that there exist vectors X = (l,0,a,a'), Y = (0,1,0, ft1),

Z=(l,y,0,y') biorthogonal to x, where a,P,y<0 and a',/?',/>0. We shall show that the
vectors X, Y, Z are linearly independent, by showing that

#0.

1

0

1

0

1

y

a

0

In fact suppose, for a contradiction, that this determinant is zero. Then
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/ > = - - • (1)

1

Since [X, x] = [Y, x] = [Z, x] = 0, we have

a.'=-(ap-i+c"-la), p'= -{b"'1 +C"1)!), y' = - (a""1 + />p~1y) (2)

and it follows from (1) and (2) that

^ = / r . ' 0)

Since y<0 and /?'>0, we see that <x'>y'.
By (1) and (3),

- yY = (0, - y, - yfi, - yfi) = (0, - y, a, a' - y'),

and since [x, — yY]=0 we have, noting that cc'>y',

-by\y\"-2 + ca|a|p-2 + (o' -y ' )""1 =0 (4)

Now [x, X] = [x, Z] = 0, and so we also have

[x ,X]- [x ,Z]=-by |y | p - 2 + ca|a|p-2 + a ' p - 1 -y ' p " 1 =0. (5)

Subtracting (5) from (4), we deduce that

If

this gives

(r - iy- ' - r ' - ' + ^O. (6)

Elementary calculus shows that, since p # 2, the expression on the left-hand side of (6) is
strictly monotonic in r, and so (6) is satisfied only when r= 1. Since

' •?>• •

we have the desired contradiction.

Case 3. Suppose that a > b > c = 1.
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If y, =(0,0,1, — 1), then yi is biorthogonal to x. Corollary 3.2 shows that there exists
a vector y2=(l,a,0,a') biorthogonal to x. By Proposition 4.2 for each A>0 there exist
x(A) and z(X) such that y3(A) is biorthogonal to x, where y3(/l) = (l,x(A),Ax(A),z(A)).
Suppose, for a contradiction, that the three vectors yi,y2,y3(i) are linearly dependent
for all A>0. Then

0 0 1

1 a 0
1 x{y)

This implies that

and so contradicts the second part of Proposition 4.2. Hence T(X) = 3. •
Proposition 4.4. Let n_4 and let x = (x1,x2,...,xn)e<f(/j) where x,#0 Vi. Then

T(X) = H - 1 . (1)

Proof. We proceed by induction. Proposition 4.3 shows that (1) holds when « = 4.
Let k^4, and suppose that (1) holds when n = k. Let x=(xl,x1,...,xk+1)ef(k+l). By
Proposition l.l(ii), (iii) we may assume without loss of generality that x ^ x ^ . . . —
xt + 1>0. Then (x1,x2,...,xt)e/p(fe), and by the inductive hypothesis there exists a
linearly independent set of k— 1 vectors in f(k) biorthogonal to (xj,x,,...,x^). By
adding a final zero coordinate to each of the vectors in this set, we obtain a linearly
independent set of k— 1 vectors yi,y2,- -»y*-i in f(k+l) biorthogonal to x. By
Corollary 3.4 there exists a vector yk with final coordinate equal to 1 which is
biorthogonal to x. The set of vectors {yi,y2.•••»y*} is then a linearly independent set of
k vectors in S"(k+1) biorthogonal to x. Since x#0, T(X) = /C. Hence (1) holds for
n = k +1, and the proof is complete. D

An application of Proposition 2.1(ii), (iii), Proposition 3.3(ii) and Proposition 4.4,
together with the properties (ii), (iii), (iv) and (v) of T(X) listed in Proposition 1.1 now
readily yield our main result.

Theorem 4.5. Let n^2, and let xe/"(«). Let k be the number of non-zero coordinates
ofx.

(i) lfk = 0thenx(x) = n.
(ii) Ifk=l or k^4thenx(x) = n-l.
(iii) If k = 2 then T(X) = n — 1 if the two non-zero coordinates have equal modulus, and

T(X) = M —2 otherwise.
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336 ANTHONY J. FELTON AND H. P. ROGOSINSKI

(iv) / / k = 3, let {a, p, y} be a permutation of the three non-zero coordinates such that
\<x\^\P\^\y\. Thenz(x) = n-l if \<x\p^\p\p + \y\p and r{x) = n-2 otherwise.
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