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Abstract
This is a foundation for algebraic geometry, developed internal to the Zariski topos, building on the work
of Kock and Blechschmidt (Kock (2006) [I.12], Blechschmidt (2017)). The Zariski topos consists of sheaves
on the site opposite to the category of finitely presented algebras over a fixed ring, with the Zariski topology,
that is, generating covers are given by localization maps for finitely many elements f1, . . . , fn that generate
the ideal (1)=A⊆A. We use homotopy-type theory together with three axioms as the internal language
of a (higher) Zariski topos. One of our main contributions is the use of higher types – in the homotopical
sense – to define and reason about cohomology. Actually computing cohomology groups seems to need a
principle along the lines of our “Zariski local choice” axiom, which we justify as well as the other axioms
using a cubical model of homotopy-type theory.
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Introduction
Algebraic geometry is the study of solutions of polynomial equations using methods from geom-
etry. The central geometric objects in algebraic geometry are called schemes. Their basic building
blocks are called affine schemes, where, informally, an affine scheme corresponds to a solution sets
of polynomial equations. While this correspondence is clearly visible in the functorial approach to
algebraic geometry and our synthetic approach, it is somewhat obfuscated in the most commonly
used, topological approach.

In recent years, computer formalization of the intricate notion of affine schemes received some
attention as a benchmark problem – this is, however, not a problem addressed by this work.
Instead, we use a synthetic approach to algebraic geometry, very much alike to that of synthetic
differential geometry. This means, while a scheme in classical algebraic geometry is a complicated
compound datum, we work in a setting, based on homotopy type theory, where schemes are types,
with an additional property that can be defined within our synthetic theory.

Following ideas of Ingo Blechschmidt and Anders Kock (Blechschmidt (2017); Kock
(2006)[I.12]), we use a base ring R, which is local and satisfies an axiom reminiscent of the
Kock–Lawvere axiom. This more general axiom is called synthetic quasi coherence (SQC) by
Blechschmidt and a version quantifying over external algebras is called the comprehensive axiom1

by Kock. The exact concise form of the SQC axiom we use was noted by David Jaz Myers in 2018
and communicated to the first author.
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Before we state the SQC axiom, let us take a step back and look at the basic objects of study in
algebraic geometry, solutions of polynomial equations. Given a system of polynomial equations

p1(X1, . . . , Xn)= 0,
...

pm(X1, . . . , Xn)= 0,
the solution set { x : Rn | ∀i. pi(x1, . . . , xn)= 0 } is in canonical bijection to the set of R-algebra
homomorphisms

HomR-Alg(R[X1, . . . , Xn]/(p1, . . . , pm), R)
by identifying a solution (x1, . . . , xn) with the homomorphism thatmaps eachXi to xi. Conversely,
for any R-algebra A which is merely of the form R[X1, . . . , Xn]/(p1, . . . , pm), we define the
spectrum of A to be

SpecA :≡ HomR-Alg(A, R).
In contrast to classical, nonsynthetic algebraic geometry, where this set needs to be equipped with
additional structure, we postulate axioms that will ensure that SpecA has the expected geomet-
ric properties. Namely, SQC is the statement that, for all finitely presented2 R-algebras A, the
canonical map

A ∼−→ (SpecA→ R)
a �→ (ϕ �→ ϕ(a))

is an equivalence. A prime example of a spectrum is A1 :≡ Spec R[X], which turns out to be
the underlying set of R. With the SQC axiom, any function f :A1 →A

1 is given as a polyno-
mial with coefficients in R. In fact, all functions between affine schemes are given by polynomials.
Furthermore, for any affine scheme SpecA, the axiom ensures that the algebra A can be recon-
structed as the algebra of functions SpecA→ R, therefore establishing a duality between affine
schemes and algebras.

The Kock–Lawvere axiom used in synthetic differential geometry might be stated as the SQC
axiom restricted to (external) Weil-algebras, whose spectra correspond to pointed infinitesimal
spaces. These spaces can be used in both synthetic differential and algebraic geometry in very
much the same way.

In the accompanying formalization Cherubini and Hutzler (3) of some basic results, we use
a setup which was already proposed by David Jaz Myers in a conference talk (Myers (2019b,a)).
On top of Myers’ ideas, we were able to define schemes, develop some topological properties of
schemes, and construct projective space.

An important, not yet formalized result is the construction of cohomology groups. This is
where the homotopy type theory provides a considerable advantage – instead of the usual approach
to cohomology based on homological algebra, we develop the theory using higher types, for exam-
ple, the n-th Eilenberg–MacLane space K(R, n) of the group (R,+). As an analog of classical
cohomology with values in the structure sheaf, we then define cohomology with coefficients in
the base ring as

Hn(X, R) :≡ ‖X→K(R, n)‖0.
This definition is very convenient for proving abstract properties of cohomology. For concrete
calculations, we make use of another axiom, which we call Zariski-local choice. While this axiom
was conceived of for exactly these kind of calculations, it turned out to settle numerous questions
with no apparent connection to cohomology. One example is the equivalence of two notions of
open subspace. A pointwise definition of openness was suggested to us by Ingo Blechschmidt and
is very convenient to work with. However, classically, basic open subsets of an affine scheme are
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given by functions on the scheme and the corresponding open is morally the collection of points
where the function does not vanish. With Zariski-local choice, we were able to show that these
notions of openness agree in our setup.

Apart from SQC, locality of the base ring R, which will coincide with the usual affine line
A
1, and Zariski-local choice, we only use homotopy type theory, including univalent universes,

truncations and some very basic higher inductive types. Roughly, Zariski-local choice states that
any surjection into an affine scheme merely has sections on a Zariski-cover.3 The latter, internal,
notion of cover corresponds quite directly to the covers in the site of the Zariski topos, which we
use to construct a model of homotopy type theory with our axioms.

More precisely, we can use the Zariski topos over any base ring. Toposes built using other
Grothendieck topologies, like for example the étale topology, are not compatible with Zariski-
local choice. We did not explore whether an analogous setup can be used for derived algebraic
geometry4 – meaning that the 0-truncated rings we used are replaced by higher rings. This is
only because for a derived approach, we would have to work with higher monoids, which is cur-
rently infeasible – we are not aware of any obstructions for, say, an SQC axiom holding in derived
algebraic geometry.

In total, the scope of our theory so far includes quasi-compact, quasi-separated schemes of
finite presentation over an arbitrary ring. These are all finiteness assumptions that were chosen
for convenience and include examples like closed subspaces of projective space, which we want
to study in future work, as example applications. So far, we know that basic internal construc-
tions, like affine schemes, correspond to the correct classical external constructions. This can be
expanded using our model, which is of course also important to ensure the consistency of our
setup.

Formalization
There is a related formalization project, which, at the time of writing, contains the construction of
projective n-space Pn as a scheme. The code may be found here:

https://github.com/felixwellen/synthetic-geometry
It makes extensive use of the algebra part of the cubical-agda library:
https://github.com/agda/cubical
– which contains many contributions, in particular, on finitely presented algebras and related

concepts, which where made in the scope of that project.
In December 2022, there was a mini-workshop in Augsburg, which helped with the develop-

ment of this work. We thank Jonas Höfer, Lukas Stoll, and Fabian Endres for spotting a couple of
small errors.

1. Preliminaries
1.1 Subtypes and logic
We use the notation ∃x:XP(x) :≡ ‖∑x:X P(x)‖. We use+ for the coproduct of types and for types
A, B we write

A∨ B :≡ ‖A+ B‖.
We will use subtypes extensively.

Remark 1.1.1. We use the word “merely” throughout this article in the same sense it is used in
the HoTT-Book (The Univalent Foundations Program (2013)). We do not use the work “merely”
in any other sense.
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Definition 1.1.2. Let X be a type. A subtype of X is a function U : X→ Prop to the type of propo-
sitions. We write U ⊆ X to indicate that U is as above. If X is a set, a subtype may be called subset
for emphasis. For subtypes A, B⊆ X, we write A⊆ B as a shorthand for pointwise implication.

We will freely switch between subtypes U : X→ Prop and the corresponding embeddings
∑

x:X U(x) X .

In particular, if we write x :U for a subtype U : X→ Prop, we mean that x :∑x:X U(x) – but
we might silently project x to X.

Definition 1.1.3. Let I and X be types and Ui : X→ Prop a subtype for any i : I.

(a) The union
⋃

i:I Ui is the subtype (x : X) �→ ∃i:IUi(x).
(b) The intersection

⋂
i:I Ui is the subtype (x : X) �→∏

i:I Ui(x).

We will use common notation for finite unions and intersections. The following formula hold:

Lemma 1.1.4. Let I, X be types, Ui : X→ Prop a subtype for any i : I and V ,W subtypes of X.

(a) Any subtype P :V → Prop is a subtype of X given by (x : X) �→∑
x:V P(x).

(b) V ∩⋃i:I Ui =⋃ (V ∩Ui).
(c) If

⋃
i:I Ui = X, we have V =⋃i:I Ui ∩V .

(d) If
⋃

i:I Ui =∅, then Ui =∅ for all i : I.
Definition 1.1.5. Let X be a type.

(a) ∅ :≡ (x : X) �→ ∅.
(b) For U ⊆ X, let ¬U :≡ (x : X) �→ ¬U(x).
(c) For U ⊆ X, let ¬¬U :≡ (x : X) �→ ¬¬U(x).

Lemma 1.1.6. U =∅ if and only if ¬ (∃x:XU(x)).

1.2 Homotopy type theory
Our truncation levels start at −2, so (− 2)-types are contractible, (− 1)-types are propositions
and 0-types are sets.

Definition 1.2.1. Let X and I be types. A family of propositions Ui : X→ Prop covers X, if for all
x : X, there merely is a i : I such that Ui(x).

Lemma 1.2.2. Let X and I be types. For propositions (Ui : X→ Prop)i:I that cover X and P : X→
0-Type, we have the following glueing property:

If for each i : I there is a dependent function si : (x :Ui)→ P(x) together with proofs of equality on
intersections pij : (x :Ui ∩Uj)→ (si(x)= sj(x)), then there is a globally defined dependent function
s : (x : X)→ P(x), such that for all x : X and i : I we have Ui(x)→ s(x)= si(x)
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Proof. We define s pointwise. Let x : X. Using a Lemma of Kraus5 and the pij, we get a factorization
∑

i:I Ui(x) P (x)

‖∑i:I Ui(x)‖−1

sπ1( )(x)

– which defines a unique value s(x) : P(x). �

Similarly we can prove.

Lemma 1.2.3. Let X and I be types. For propositions (Ui : X→ Prop)i:I that cover X and P : X→
1-Type, we have the following glueing property:

If for each i : I, there is a dependent function si : (x :Ui)→ P(x) together with proofs of equality on
intersections pij : (x :Ui ∩Uj)→ (si(x)= sj(x)) satisfying the cocycle condition pij · pjk = pik. Then
there is a globally defined dependent function s : (x : X)→ P(x), such that for all x : X and i : I we
have pi :Ui(x)→ s(x)= si(x) such that pi · pij = pj.

This can be generalized to k-Type for each external k.
The condition for 0-Type can be seen as an internal version of the usual patching sheaf

condition. The condition for 1-Type is then the internal version of the usual patching 1-stack
condition.

1.3 Algebra

Definition 1.3.1. A commutative ring R is local if 1 �= 0 in R and if for all x, y : R such that x+ y is
invertible, x is invertible or y is invertible.

Definition 1.3.2. Let R be a commutative ring. A finitely presented R-algebra is an R-algebra A,
such that there merely are natural numbers n,m and polynomials f1, . . . , fm : R[X1, . . . , Xn] and an
equivalence of R-algebras A� R[X1, . . . , Xn]/(f1, . . . , fm).

Definition 1.3.3. Let A be a commutative ring. An element r :A is regular, if the multiplication
map r · _ :A→A is injective.

Lemma 1.3.4. Let A be a commutative ring.

(a) All units of A are regular.
(b) If f and g are regular, their product fg is regular.

Example 1.3.5. The monomials Xk :A[X] are regular.
Lemma 1.3.6. Let f :A[X] be a polynomial and a :A an element such that f (a) :A is regular. Then
f is regular as an element of A[X].

Proof. After a variable substitution X �→ X+ a, we can assume that f (0) is regular. Now let
g :A[X] be given with fg = 0. Then in particular f (0)g(0)= 0, so g(0)= 0. By induction, all
coefficients of g vanish. �
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Definition 1.3.7. Let A be a ring and f :A. Then Af denotes the localization of A at f , that is, a
ring Af together with a homomorphism A→Af , such that for all homomorphisms ϕ :A→ B such
that ϕ(f ) is invertible, there is a unique homomorphism as indicated in the diagram:

A Af

B

ϕ
.

For a :A, we denote the image of a in Af as a
1 and the inverse of f as

1
f .

Lemma 1.3.8. Let A be a commutative ring and f1, . . . , fn :A. For finitely generated ideals Ii ⊆Afi ,
such that Afifj · Ii =Afifj · Ij for all i, j, there is a finitely generated ideal I ⊆A, such that Afi · I = Ii
for all i.

Proof. Choose generators
gi1
1
, . . . ,

giki
1

for each Ii. These generators will still generate Ii, if we multiply any of them with any power of the
unit fi

1 . Now
Afifj · Ii ⊆Afifj · Ij

means that for any gik, we have a relation

(fifj)lgik =
∑
l

hlgjl

for some power l and coefficients hl :A. This means that f li gik is contained in Ij. Multiplying f li gik
with further powers of fi or multiplying gjl with powers of fj does not change that. So we can repeat
this for all i and k to arrive at elements g̃ik :A, which generate an ideal I ⊆A with the desired
properties. �

The following definition also appears as Blechschmidt (2017) [Definition 18.5] and a ver-
sion restricted to external finitely presented algebras was already used by Anders Kock in Kock
(2006)[I.12]:

Definition 1.3.9. The (synthetic) spectrum of a finitely presented R-algebra A is the set of R-algebra
homomorphisms from A to R:

SpecA :≡ HomR-Alg(A, R)

We write An for Spec R[X1, . . . , Xn], which is canonically in bijection with Rn by the universal
property of the polynomial ring. In particular, A1 is (in bijection with) the underlying set of R.
Our convention is to use the letter R when we think of it as an algebraic object, and to write A1

(or An) when we think of it as a set or a geometric object.
The Spec construction is functorial:

Definition 1.3.10. For an algebra homomorphism f :HomR-Alg(A, B) between finitely presented
R-algebras A and B, we write Spec f for the map from Spec B to SpecA given by precomposition
with f .
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Definition 1.3.11. Let A be a finitely presented R-algebra. For f :A, the basic open subset given by
f , is the subtype

D(f ) :≡ (x : SpecA) �→ (x(f ) is invertible).
later, we will use the following more general and related definitions:

Definition 1.3.12. Let A be a finitely presented R-algebra. For n :N and f1, . . . , fn :A, there are

(i) the “open” subset
D(f1, . . . , fn) :≡ (x : SpecA) �→ (∃i such that x(fi) is invertible)

(ii) the “closed” subset
V(f1, . . . , fn) :≡ (x : SpecA) �→ (∀i x(fi)= 0)

It will be made precise in Section 4, in which sense these subsets are open or closed.

We will later also need the notion of a Zariski-Cover of a spectrum SpecA, for some finitely
presented R-algebra A. Intuitively, this is a collection of basic opens which jointly cover SpecA.
Since it is more practical, we will however stay on the side of algebras. A finite list of elements
f1, . . . , fn :A yields a Zariski-Cover, if and only if they are a unimodular vector:

Definition 1.3.13. Let A be a finitely presented R-algebra. Then a list f1, . . . , fn :A of elements of
A is called unimodular if we have an identity of ideals (f1, . . . , fn)= (1). We use Um(A) to denote
the type of unimodular sequences in A:

Um(A) :≡
∑
n:N

∑
f1,...,fn:A

(f1, . . . , fn)= (1).

We will sometimes drop the natural number and the equality and just write (f1, . . . , fn) :Um(A).

Definition 1.3.14. Ab denotes the type of abelian groups.

Lemma 1.3.15. Let A, B :Ab and f :A→ B be a homomorphism of abelian groups. Then f is
surjective, if and only if, it is a cokernel.

Proof. A cokernel is a set-quotient by an effective relation, so the projection map is surjective. On
the other hand, if f is surjective and we are in the situation:

ker(f) A B

0 C

f

g

then we can construct a map ϕ : B→ C as follows. For x : B, we define the type of possible values
ϕ(x) in C as ∑

z:C
∃y:A(f (y)= x)∧ g(y)= z

which is a proposition by algebraic calculation. By surjectivity of f , this type is inhabited and
therefore contractible. So we can define ϕ(x) as its center of contraction. �
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2. Axioms
2.1 Statement of the axioms
We always assume there is a fixed commutative ring R. In addition, we assume the following three
axioms about R, which were already mentioned in the introduction, but we will indicate which of
these axioms are used to prove each statement by listing their shorthands.

Axiom (Loc). R is a local ring (Definition 1.3.1).

Axiom (SQC). For any finitely presented R-algebra A, the homomorphism
a �→ (ϕ �→ ϕ(a)) :A→ (SpecA→ R)

is an isomorphism of R-algebras.

Axiom (Z-choice). Let A be a finitely presented R-algebra and let B : SpecA→ U be a family of
inhabited types. Then there merely exist unimodular f1, . . . , fn :A together with dependent functions
si :�x:D(fi)B(x). As a formula6:

(�x:SpecA‖B(x)‖)→‖((f1, . . . , fn) :Um(A))×�i�x:D(fi)B(x)‖.

2.2 First consequences
Let us draw some first conclusions from the axiom (SQC), in combination with (Loc) where
needed.

Proposition 2.2.1 (using SQC). For all finitely presented R-algebras A and B, we have an
equivalence

f �→ Spec f : HomR-Alg(A, B)= (Spec B→ SpecA).

Proof. By Lemma 3.1.2, we have a natural equivalence

X→ Spec (RX)
and by SQC, the natural map

A→ RSpecA

is an equivalence. We therefore have a contravariant equivalence between the category of finitely
presented R-algebras and the category of affine schemes. In particular, Spec is an embedding. �

An important consequence of SQC, which may be called weak nullstellensatz:

Proposition 2.2.2 (using Loc, SQC). If A is a finitely presented R-algebra, then we have SpecA=∅
if and only if A= 0.

Proof. If SpecA=∅, then A= RSpecA = R∅ = 0 by (SQC). If A= 0, then there are no homomor-
phisms A→ R since 1 �= 0 in R by (Loc). �

For example, this weak nullstellensatz suffices to prove the following properties of the ring R,
which were already proven in Blechschmidt (2017)[Section 18.4]. Note that Proposition 2.2.3 (a)
states that R is a denial field in the sense of Mines et al. (1988)[p. 45].
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Proposition 2.2.3 (using Loc, SQC).

(a) An element x : R is invertible, if and only if x �= 0.
(b) A vector x : Rn is non-zero, if and only if one of its entries is invertible.
(c) An element x : R is nilpotent, if and only if ¬¬(x= 0).

Proof. Part (a) is the special case n= 1 of (b). For (b), consider the R-algebraA :≡ R/(x1, . . . , xn).
Then the set SpecA≡HomR-Alg(A, R) is a proposition (i.e.„ it has at most one element), and,
more precisely, it is equivalent to the proposition x= 0. By Proposition 2.2.2, the negation of this
proposition is equivalent to A= 0 and thus to (x1, . . . , xn)= R. Using (Loc), this is the case if and
only if one of the xi is invertible.

For (c), we instead consider the algebra A :≡ Rx ≡ R[ 1x ]. Here we have A= 0 if and only if
x is nilpotent, while SpecA is the proposition inv(x). Thus, we can finish by Proposition 2.2.2,
together with part (a) to go from ¬inv(x) to ¬¬(x= 0). �

The following lemma, which is a variant of Blechschmidt (2017)[Proposition 18.32], shows
that R is in a weak sense algebraically closed. See Example A.0.3 for a refutation of a stronger
formulation of algebraic closure of R.

Lemma 2.2.4 (using Loc, SQC). Let f : R[X] be a polynomial. Then it is not the case that: either
f = 0 or f = α · (X− a1)e1 . . . (X− an)en for some α : R×, ei ≥ 1 and pairwise distinct ai : R.
Proof. Let f : R[X] be given. Since our goal is a proposition, we can assume we have a bound n on
the degree of f , so

f =
n∑

i=0
ciXi.

Since our goal is even double-negation stable, we can assume cn = 0∨ cn �= 0 and by induc-
tion f = 0 (in which case we are done) or cn �= 0. If n= 0 we are done, setting α :≡ c0.
Otherwise, f is not invertible (using 0 �= 1 by (Loc)), so R[X]/(f ) �= 0, which by (SQC) means
that Spec(R[X]/(f ))= {x : R | f (x)= 0} is not empty. Using the double-negation stability of our
goal again, we can assume f (a)= 0 for some a : R and factor f = (X− a1)fn−1. By induction, we
get f = α · (X− a1) . . . (X− an). Finally, we decide each of the finitely many propositions ai = aj,
which we can assume is possible because our goal is still double-negation stable, to get the desired
form f = α · (X− ã1)e1 . . . (X− ãn)en with distinct ãi. �

3. Affine Schemes
3.1 Affine-open subtypes
We only talk about affine schemes of finite presentation, that is, schemes of the form SpecA
(Definition 1.3.9), where A is a finitely presented algebra.

Definition 3.1.1. A type X is (qc-)affine, if there is a finitely presented R-algebra A, such that
X= SpecA.

If X is affine, it is possible to reconstruct the algebra directly.

Lemma 3.1.2 (using SQC). Let X be an affine scheme, then there is a natural equivalence
X= Spec (RX).
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Proof. The natural map X→ Spec (RX) is given by mapping x : X to the evaluation homomor-
phism at x. There merely is an A such that X= SpecA. Applying Spec to the canonical map
A→ RSpecA, yields an equivalence by SQC. This is a (one sided) inverse to the map above. So
we have X= Spec (RX). �

Proposition 3.1.3. Let X be a type. The type of all finitely presented R-algebras A such that
X= SpecA is a proposition.

When we write “SpecA” we implicitly assume A is a finitely presented R-algebra. Recall from
Definition 1.3.11 that the basic open subset D(f )⊆ SpecA is given by D(f )(x) :≡ inv(f (x)).

Example 3.1.4 (using Loc, SQC). For a1, . . . , an : R, we have
D((X− a1) · · · (X− an))=A

1 \ {a1, . . . , an}.
Indeed, for any x :A1, ((X− a1) . . . (X− an))(x) is invertible if and only if x− ai is invertible for
all i. But by Proposition 2.2.3 this means x �= ai for all i.

Definition 3.1.5. Let X= SpecA. A subtype U : X→ Prop is called affine-open, if one of the
following logically equivalent statements holds:

(i) U is the union of finitely many affine basic opens.
(ii) There merely are f1, . . . , fn :A such that

U(x)⇔∃ifi(x) �= 0

By Definition 1.3.12 we have D(f1, . . . , fn)=D(f1)∪ · · · ∪D(fn). Note that in general, affine-
open subtypes do not need to be affine – this is why we use the dash “-”.

We will introduce a more general definition of open subtype in Definition 4.2.1 and show in
Theorem 4.2.7 that the two notions agree on affine schemes.

Proposition 3.1.6. Let X= SpecA and f :A. Then D(f )= SpecA[f−1].

Proof.

D(f )=
∑
x:X

D(f )(x)=
∑

x:SpecA
inv(f (x))

=
∑

x:HomR-Alg(A,R)
inv(x(f ))=HomR-Alg(A[f−1], R)= SpecA[f−1]

�

Affine-openness is transitive in the following sense:

Lemma 3.1.7. Let X= SpecA and D(f )⊆ X be a basic open. Any affine-open subtype U of D(f ) is
also affine-open in X.

Proof. It is enough to show the statement for U =D(g), g :Af . Then

g = h
f k
.

Now D(hf ) is an affine-open in X that coincides with U:
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Let x : X, then (hf )(x) is invertible, if and only if both h(x) and f (x) are invertible. The latter
means x :D(f ), so we can interpret x as a homomorphism from Af to R. Then x :D(g) means x(g)
is invertible, which is equivalent to x(h) being invertible, since x(f )k is invertible anyway. �

Lemma 3.1.8 (using Loc, SQC). Let X= SpecA be an affine scheme and D(f )⊆ X a basic open,
then D(f )=∅, if and only if, f is nilpotent.
Proof. Since D(f )= SpecAf , by Proposition 2.2.2, we know D(f )=∅, if and only if, Af = 0. The
latter is equivalent to f being nilpotent. �

More generally, the Zariski-lattice consisting of the radicals of finitely generated ideals of a
finitely presented R-algebra A coincides with the lattice of open subtypes. This means that inter-
nal to the Zariski-topos, it is not necessary to consider the full Zariski-lattice for a constructive
treatment of schemes.

Lemma 3.1.9 (using SQC). Let A be a finitely presented R-algebra and let f , g1, . . . , gn ∈A. Then
we have D(f )⊆D(g1, . . . , gn) as subsets of SpecA if and only if f ∈√(g1, . . . , gn).

Proof. Since D(g1, . . . , gn)= { x ∈ SpecA | x /∈V(g1, . . . , gn) },7 the inclusion D(f )⊆D(g1, . . . ,
gn) can also be written as D(f )∩V(g1, . . . , gn)=∅, that is, Spec((A/(g1, . . . , gn))
[f−1])=∅. By (SQC) this means that the finitely presented R-algebra (A/(g1, . . . , gn))[f−1] is
zero. And this is the case if and only if f is nilpotent in A/(g1, . . . , gn), that is, if f ∈

√
(g1, . . . , gn),

as stated. �

In particular, we have SpecA=⋃n
i=1 D(fi) if and only if (f1, . . . , fn)= (1).

3.2 Pullbacks of affine schemes

Lemma 3.2.1. The product of two affine schemes is again an affine scheme, namely SpecA×
Spec B= Spec(A⊗R B).

Proof. By the universal property of the tensor product A⊗R B. �

More generally we have:

Lemma 3.2.2 (using SQC). Let X= SpecA, Y = Spec B and Z= Spec C be affine schemes with
maps f : X→ Z, g : Y → Z. Then the pullback of this diagram is an affine scheme given by
Spec (A⊗C B).

Proof. The maps f : X→ Z, g : Y → Z are induced by R-algebra homomorphisms f ∗ :A→ R and
g∗ : B→ R. Let

(h, k, p) : SpecA×SpecC SpecB
with p : h ◦ f ∗ = k ◦ g∗. This defines a R-cocone on the diagram

A C B
g∗f∗

SinceA⊗C B is a pushout inR-algebras, there is a uniqueR-algebra homomorphismA⊗C B→
R corresponding to (h, k, p). �
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3.3 Boundedness of functions toN
While the axiom SQC describes functions on an affine scheme with values in R, we can generalize
it to functions taking values in another finitely presented R-algebra, as follows.

Lemma 3.3.1 (using SQC). For finitely presented R-algebras A and B, the function

A⊗ B ∼−→ (SpecA→ B)
c �→ (ϕ �→ (ϕ ⊗ B)(c))

is a bijection.

Proof. We recall Spec (A⊗ B)= SpecA× Spec B from Lemma 3.2.1 and calculate as follows.
A⊗ B= (Spec (A⊗ B)→ R)= (SpecA× Spec B→ R)= (SpecA→ (Spec B→ R))= (SpecA→ B)

c �→ (χ �→ χ(c)) �→ ((ϕ,ψ) �→ (ϕ ⊗ψ)(c)) �→ (ϕ �→ (ψ �→ (ϕ ⊗ψ)(c))) �→ (ϕ �→ (ϕ ⊗ B)(c))
The last step is induced by the identification B= (Spec B→ R), b �→ (ψ �→ψ(b)), and we use the
fact that ψ ◦ (ϕ ⊗ B)= ϕ ⊗ψ . �

Lemma 3.3.2 (using SQC). Let A be a finitely presented R-algebra and let s : SpecA→ (N→ R)
be a family of sequences, each of which eventually vanishes:∏

x:SpecA
‖
∑
N:N

∏
n≥N

s(x)(n)= 0‖

Then there merely exists one number N :N such that s(x)(n)= 0 for all x : SpecA and all n≥N.

Proof. The set of eventually vanishing sequences N→ R is in bijection with the set R[X] of poly-
nomials, by taking the entries of a sequence as the coefficients of a polynomial. So the family of
sequences s is equivalently a family of polynomials s : SpecA→ R[X]. Now we apply Lemma 3.3.1
with B= R[X] to see that such a family corresponds to a polynomial p :A[X]. Note that for a point
x : SpecA, the homomorphism

x⊗ R[X] :A[X]=A⊗ R[X]→ R⊗ R[X]= R[X]
simply applies the homomorphism x to every coefficient of a polynomial, so we have (s(x))n =
x(pn). This concludes our argument because the coefficients of p, just like any polynomial, form
an eventually vanishing sequence. �

Theorem 3.3.3 (using Loc, SQC). Let A be a finitely presented R-algebra. Then every function
f : SpecA→N is bounded:

�f :SpecA→N‖�N:N�x:SpecAf (x)≤N‖.
Proof. Given a function f : SpecA→N, we construct the family s : SpecA→ (N→ R) of eventu-
ally vanishing sequences given by

s(x)(n) :≡
{
1 if n< f (x)
0 else.

Since 0 �= 1 : R by Loc, we in fact have s(x)(n)= 0 if and only if n≥ f (x). Then the claim follows
from Lemma 3.3.2. �
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This means any function f : Spec(A)→N merely yields a partition of Spec(A) into finitely
many decidable subsets. Algebraically, such a partition is given by a finite system of orthogonal
idempotents:

Corollary 3.3.4 (using Loc, SQC). Let f : Spec(A)→N. There merely is an N and idempotents
e0, . . . , eN :A with eiej = 0 for all i �= j and

∑
i ei = 1, such that f−1(i)=V(ei) for all i≤N.

Proof. By Theorem 3.3.3 wemerely have a boundN :N for f and we let ei be the indicator function
of f−1(i). �

If we also assume the axiom Z-choice, we can formulate the following simultaneous strength-
ening of Lemma 3.3.2 and Theorem 3.3.3.

Proposition 3.3.5 (using Loc, SQC, Z-choice). Let A be a finitely presented R-algebra. Let P :
SpecA→ (N→ Prop) be a family of upwards closed, merely inhabited subsets of N. Then the set⋂

x:SpecA
P(x)⊆N

is merely inhabited.

Proof. By Z-choice, there merely exists a cover SpecA=⋃n
i=1 D(fi) and functions pi :D(fi)→

N such that pi(x) ∈ P(x) for all x :D(fi). By Theorem 3.3.3, every pi :D(fi)= SpecA[f−1
i ]→N is

merely bounded by some Ni :N, and then max(N1, . . . ,Nn) ∈ P(x) for all x : SpecA. �

4. Topology of Schemes
4.1 Closed subtypes

Definition 4.1.1.

(a) A closed proposition is a proposition which is merely of the form x1 = 0∧ · · · ∧ xn = 0 for some
elements x1, . . . , xn ∈ R.

(b) Let X be a type. A subtype U : X→ Prop is closed if for all x : X, the proposition U(x) is closed.
(c) For A a finitely presented R-algebra and f1, . . . , fn :A, we set V(f1, . . . , fn) :≡ { x : SpecA |

f1(x)= · · · = fn(x)= 0 }.
Note that V(f1, . . . , fn)⊆ SpecA is a closed subtype and we have V(f1, . . . , fn)=

Spec (A/(f1, . . . , fn)).

Proposition 4.1.2 (using SQC). There is an order-reversing isomorphism of partial orders

f.g.-ideals(R) ∼−→�cl
I �→ (I = (0))

between the partial order of finitely generated ideals of R and the partial order of closed propositions.

Proof. For a finitely generated ideal I = (x1, . . . , xn), the proposition I = (0) is indeed a closed
proposition, since it is equivalent to x1 = 0∧ · · · ∧ xn = 0. It is also evident that we get all closed
propositions in this way. What remains to show is that

I = (0)⇒ J = (0) iff J ⊆ I.
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For this we use synthetic quasicoherence. Note that the set Spec R/I =HomR-Alg(R/I, R) is a
proposition (has at most one element), namely it is equivalent to the proposition I = (0). Similarly,
HomR-Alg(R/J, R/I) is a proposition and equivalent to J ⊆ I. But then our claim is just the
equation

Hom(SpecR/I, SpecR/J)=HomR-Alg(R/J, R/I)
which holds by Proposition 2.2.1, since R/I and R/J are finitely presented R-algebras if I and J are
finitely generated ideals. �

Lemma 4.1.3 (using SQC).We have V(f1, . . . , fn)⊆V(g1, . . . , gm) as subsets of SpecA if and only
if (g1, . . . , gm)⊆ (f1, . . . , fn) as ideals of A.

Proof. The inclusion V(f1, . . . , fn)⊆V(g1, . . . , gm) means a map Spec (A/(f1, . . . , fn))→
Spec (A/(g1, . . . , gm)) over SpecA. By Proposition 2.2.1, this is equivalent to a homomorphism
A/(g1, . . . , gm)→A/(f1, . . . , fn), which in turn means the stated inclusion of ideals. �

Lemma 4.1.4 (using Loc, SQC, Z-choice). A closed subtype C of an affine scheme X= SpecA is an
affine scheme with C= Spec (A/I) for a finitely generated ideal I ⊆A.

Proof. By Z-choice and boundedness, there is a cover D(f1), . . . ,D(fl), such that on each D(fi), C
is the vanishing set of functions

g1, . . . , gn :D(fi)→ R.
By Lemma 4.1.3, the ideals generated by these functions agree in Afifj , so by Lemma 1.3.8, there is
a finitely generated ideal I ⊆A, such that Afi · I is (g1, . . . , gn) and C= SpecA/I. �

4.2 Open subtypes
While we usually drop the prefix “qc” in the definition below, one should keep in mind that we
only use a definition of quasi compact open subsets. The difference to general opens does not play
a role so far, since we also only consider quasi compact schemes later.

Definition 4.2.1.

(a) A proposition P is (qc-)open, if there merely are f1, . . . , fn : R, such that P is equivalent to one of
the fi being invertible.

(b) Let X be a type. A subtype U : X→ Prop is (qc-)open, if U(x) is an open proposition for all
x : X.

Proposition 4.2.2 (using Loc, SQC). A proposition P is open if and only if it is the negation of some
closed proposition (Definition 4.1.1).

Proof. Indeed, by Proposition 2.2.3, the proposition inv(f1)∨ · · · ∨ inv(fn) is the negation of
f1 = 0∧ · · · ∧ fn = 0. �

Proposition 4.2.3 (using Loc, SQC). Let X be a type.

(a) The empty subtype is open in X.
(b) X is open in X.
(c) Finite intersections of open subtypes of X are open subtypes of X.
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(d) Finite unions of open subtypes of X are open subtypes of X.
(e) Open subtypes are invariant under pointwise double-negation.

Axioms are only needed for the last statement.

In Proposition 5.4.2, we will see that open subtypes of open subtypes of a scheme are open in
that scheme, which is equivalent to open propositions being closed under dependent sums.

of Proposition 4.2.3. For unions, we can just append lists. For intersections, we note that invert-
ibility of a product is equivalent to invertibility of both factors. Double-negation stability follows
from Proposition 4.2.2. �

Lemma 4.2.4. Let f : X→ Y and U : Y → Prop open, then the preimage U ◦ f : X→ Prop is open.

Proof. If U(y) is an open proposition for all y : Y , then U(f (x)) is an open proposition for all
x : X. �

Lemma 4.2.5 (using Loc, SQC). Let X be affine and x : X, then the proposition
x �= y

is open for all y : X.
Proof. We show a proposition, so we can assume ι : X→A

n is a subtype. Then for x, y : X, x �= y
is equivalent to ι(x) �= ι(y). But for x, y :An, x �= y is the open proposition that x− y �= 0. �

The intersection of all open neighborhoods of a point in an affine scheme is the formal
neighborhood of the point. We will see in Lemma 5.2.1 that this also holds for schemes.

Lemma 4.2.6 (using Loc, SQC). Let X be affine and x : X, then the proposition∏
U:X→Open

U(x)→U(y)

is equivalent to ¬¬(x= y).

Proof. By Proposition 4.2.3, ¬¬(x= y) implies
∏

U:X→Open U(x)→U(y). For the other implica-
tion, ¬(x= y) is open by Lemma 4.2.5, so we get a contradiction. �

We now show that our two definitions (Definition 3.1.5, Definition 4.2.1) of open subtypes of
an affine scheme are equivalent.

Theorem4.2.7 (using Loc, SQC, Z-choice). Let X= SpecA and U : X→ Prop be an open subtype,
then U is affine open, that is, there merely are h1, . . . , hn : X→ R such that U =D(h1, . . . , hn).

Proof. Let L(x) be the type of finite lists of elements of R, such that one of them being invertible is
equivalent to U(x). By assumption, we know∏

x:X
‖L(x)‖.

So by Z-choice, we have si :∏x:D(fi) L(x). We compose with the length function for lists to get
functions li :D(fi)→N. By Theorem 3.3.3, the li are bounded. Since we are proving a proposition,
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we can assume we have actual bounds bi :N. So we get functions s̃i :D(fi)→ Rbi , by append zeros
to lists which are too short, hat is, s̃i(x) is si(x) with bi − li(x) zeros appended.

Then one of the entries of s̃i(x) being invertible is still equivalent to U(x). So if we define
gij(x) :≡ πj(̃si(x)), we have functions on D(fi), such that

D(gi1, . . . , gibi)=U ∩D(fi).
By Lemma 3.1.7, this is enough to solve the problem on all of X. �

This allows us to transfer one important lemma from affine-opens to qc-opens. The subtlety
of the following is that while it is clear that the intersection of two qc-opens on a type, which are
globally defined is open again, it is not clear, that the same holds, if one qc-open is only defined on
the other.

Lemma 4.2.8 (using Loc, SQC, Z-choice). Let X be a scheme, U ⊆ X qc-open in X and V ⊆U
qc-open in U, then V is qc-open in X.

Proof. LetXi = SpecAi be a finite affine cover ofX. It is enough to show that the restrictionVi ofV
to Xi is qc-open.Ui :≡ Xi ∩U is qc-open in Xi, since Xi is qc-open. By Theorem 4.2.7,Ui is affine-
open in Xi, so Ui =D(f1, . . . , fn). Vi ∩D(fj) is affine-open in D(fj), so by Lemma 3.1.7, Vi ∩D(fj)
is affine-open in Xi. This implies Vi ∩D(fj) is qc-open in Xi and so is Vi =⋃j Vi ∩D(fj). �

Lemma 4.2.9 (using Loc, SQC, Z-choice).

(a) qc-open propositions are closed under dependent sums: if P :Open and U : P→Open, then the
proposition

∑
x:P U(x) is also open.

(b) Let X be a type. Any open subtype of an open subtype of X is an open subtype of X.

Proof.

(a) Apply Lemma 4.2.8 to the point Spec R.
(b) Apply the above pointwise. �

Remark 4.2.10. Lemma 4.2.9 means that the (qc-) open propositions constitute a dominance in
the sense of Rosolini (1986).

The following fact about the interaction of closed and open propositions is due to DavidWärn.

Lemma 4.2.11. Let P and Q be propositions with P closed and Q open. Then P→Q is equivalent
to ¬P ∨Q.

Proof. We can assume P= (f1 = · · · = fn = 0) andQ= (inv(g1)∨ · · · ∨ inv(gm)). Then we have:
(P→Q)= Proposition 2.2.3 for g1, . . . , gm

(P→¬(g1 = · · · = gm = 0))=
¬(f1 = · · · = fn = g1 = · · · = gm = 0)= Proposition 2.2.3 for f1, . . . , fn, g1, . . . , gm

(inv(f1)∨ · · · ∨ inv(fn)∨ inv(g1)∨ · · · ∨ inv(gm)= Proposition 2.2.3 for f1, . . . , fn
¬P ∨Q �
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5. Schemes
5.1 Definition of schemes
In our internal setting, schemes are just types satisfying a property and morphisms of schemes
are type theoretic functions. The following definition does not define schemes in general, but
something which is expected to correspond to quasi-compact, quasi separated schemes, locally of
finite presentation externally.

Definition 5.1.1. A type X is a (qc-)scheme if there merely is a cover by finitely many open subtypes
Ui : X→ Prop, such that each of the Ui is affine.

Definition 5.1.2. We denote the type of schemes with Schqc.

Zariski-choice Z-choice extends to schemes:

Proposition 5.1.3 (using Z-choice). Let X be a scheme and P : X→ Type with
∏

x:X‖P(x)‖, then
there merely is an open affine cover Ui of X, such that there are si :∏x:Ui P(x) for all i.

5.2 General properties

Lemma 5.2.1 (using Loc, SQC). Let X be a scheme and x : X, then for all y : X the proposition∏
U:X→Open

U(x)→U(y)

is equivalent to ¬¬(x= y).

Proof. By Proposition 4.2.3, open proposition are always double-negation stable, which settles one
implication. For the implication⎛⎝ ∏

U:X→Open
U(x)→U(y)

⎞⎠⇒¬¬(x= y)

we can assume that x and y are both inside an open affine U and use that the statement holds for
affine schemes by Lemma 4.2.6. �

5.3 Glueing

Proposition 5.3.1 (using Loc, SQC, Z-choice). Let X, Y be schemes and f :U → X, g :U → Y be
embeddings with open images in X and Y , then the pushout of f and g is a scheme.

Proof. As is shown for example here, such a pushout is always 0-truncated. Let U1, . . . ,Un be a
cover of X and V1, . . . ,Vm be a cover of Y . By Lemma 4.2.8, Ui ∩U is open in Y , so we can use
(large) pushout-recursion to construct a subtype Ũi, which is open in the pushout and restricts to
Ui on X and Ui ∩U on Y . Symmetrically, we define Ṽi and in total get an open finite cover of the
pushout. The pieces of this new cover are equivalent to their counterparts in the covers of X and
Y , so they are affine as well. �
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5.4 Subschemes

Definition 5.4.1. Let X be a scheme. A subscheme of X is a subtype Y : X→ Prop such that
∑

Y is
a scheme.

Proposition 5.4.2 (using Loc, SQC, Z-choice). Any open subtype of a scheme is a scheme.

Proof. Using Theorem 4.2.7. �

Proposition 5.4.3 (using Loc, SQC, Z-choice). Any closed subtype A : X→ Prop of a scheme X is
a scheme.

Proof. Any open subtype of X is also open in A. So it is enough to show that any affine open
Ui of X, has affine intersection with A. But Ui ∩A is closed in Ui and therefore affine by
Lemma 4.1.4. �

5.5 Equality types

Lemma 5.5.1. Let X be an affine scheme and x, y : X, then x=X y is an affine scheme and ((x, y) :
X× X) �→ x=X y is a closed subtype of X× X.

Proof. Any affine scheme is merely embedded into A
n for some n :N. The proposition x= y for

elements x, y :An is equivalent to x− y= 0, which is equivalent to all entries of this vector being
zero. The latter is a closed proposition. �

Proposition 5.5.2 (using Loc, SQC, Z-choice). Let X be a scheme. The equality type x=X y is a
scheme for all x, y : X.
Proof. Let x, y : X and U ⊆ X be an affine open containing x. Then, U(y)∧ x= y is equivalent to
x= y, so it is enough to show that U(y)∧ x= y is a scheme. As a open subscheme of the point,
U(y) is a scheme and (x :U(y)) �→ x= y defines a closed subtype by Lemma 5.5.1. But this closed
subtype is a scheme by Proposition 5.4.3. �

5.6 Dependent sums

Theorem 5.6.1 (using Loc, SQC, Z-choice). Let X be a scheme and for any x : X, let Yx be a scheme.
Then the dependent sum

((x : X)× Yx)≡
∑
x:X

Yx

is a scheme.

Proof. We start with an affine X= SpecA and Yx = Spec Bx. Locally on Ui =D(fi), for a Zariski-
cover f1, . . . , fl of X, we have Bx = Spec R[X1, . . . , Xni]/(gi,x,1, . . . , gi,x,mi) with polynomials gi,x,j.
In other words, Bx is the closed subtype of Ani where the functions gi,x,1, . . . , gi,x,mi vanish. By
Lemma 3.2.2, the product

Vi :≡ Ui ×A
ni
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is affine. The type (x :Ui)× Spec Bx ⊆Vi is affine, since it is the zero set of the functions
((x, y) :Vi) �→ gi,x,j(y)

Furthermore, Wi :≡ (x :Ui)× Spec Bx is open in (x : X)× Yx, since Wi(x) is equivalent to
Ui(π1(x)), which is an open proposition.

This settles the affine case. We will now assume that X and all Yx are general schemes. We pass
again to a cover ofX by affine openU1, . . . ,Un. We can choose the latter cover, such that for each i
and x :Ui, the Yπ1(x) are covered by li many open affine piecesVi,x,1, . . . ,Vi,x,li (by Theorem 3.3.3).
ThenWi,j :≡ (x :Ui)×Vi,x,j is affine by what we established above. It is also open. To see this, let
(x, y) : ((x : X)× Yx). We want to show that (x, y) being inWi,j is an open proposition. We have to
be a bit careful, since the open proposition Vi,x,j is only defined, for x :Ui. So the proposition we
are after is (z :Ui(x, y))×Vi,z,j(y). But this proposition is open by Lemma 4.2.9. �

It can be shown that if X is affine and for Y : X→ Schqc, Yx is affine for all x : X, then
(x : X)× Yx is affine. An easy proof using cohomology is here.

Corollary 5.6.2. Let X be a scheme. For any other scheme Y and any map f : Y → X, the fiber map
(x : X) �→ fibf (x) has values in the type of schemes Schqc. Mapping maps of schemes to their fiber
maps is an equivalence of types ⎛⎝ ∑

Y:Schqc
(Y → X)

⎞⎠� (X→ Schqc).

Proof. By univalence, there is an equivalence⎛⎝ ∑
Y:Type

(Y → X)

⎞⎠� (X→ Type).

From left to right, the equivalence is given by turning a f : Y → X into x �→ fibf (x), from right to
left is given by taking the dependent sum. So we just have to note that both constructions preserve
schemes. From left to right, this is Theorem 5.6.4, from right to left, this is Theorem 5.6.1. �

Subschemes are classified by propositional schemes:

Corollary 5.6.3. Let X be a scheme. Y : X→ Prop is a subscheme, if and only if Yx is a scheme for
all x : X.
Proof. Restriction of Corollary 5.6.2. �

We will conclude now that the pullback of a cospan of schemes is a scheme.

Theorem 5.6.4 (using Loc, SQC, Z-choice). Let

X Z Y
f g

be schemes, then the pullback X×Z Y is also a scheme.

Proof. The type X×Z Y is given as the following iterated dependent sum:∑
x:X

∑
y:Y

f (x)= g(y).
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The innermost type, f (x)= g(y) is the equality type in the scheme Z and by Proposition 5.5.2
a scheme. By applying Theorem 5.6.1 twice, we prove that the iterated dependent sum is
a scheme. �

6. Projective Space
6.1 Construction of projective spaces
We give two definitions of projective space, which differ only in size. First, we will define
n-dimensional projective space, as the type of lines in a (n+ 1)-dimensional vector space V . This
gives a goodmapping-in property –maps from a typeX into projective space are then just families
of lines in V on X. Or in the words of traditional algebraic geometry: projective n-space is a fine
moduli space for lines in V .

The second construction is closer to what can be found in a typical introductory textbook on
algebraic geometry (see e.g., Hartshorne (1977), Section I.2]), that is, projective n-space is con-
structed as a quotient ofAn+1 \ {0}.Wewill show that this quotient is a scheme, again analogous to
what can be found in textbooks. In both, construction and proof, we do not have to pass to an alge-
braic representation and can work directly with the types of interest. Finally, in Proposition 6.1.6,
we show that the two constructions are equivalent.

Definition 6.1.1.

(a) An n-dimensional R-vector space is an R-module V , such that ‖V = Rn‖.
(b) We write R-Vectn for the type of these vector spaces and V \ {0} for the type∑

x:V
x �= 0

(c) A vector bundle on a type X is a map V : X→ R-Vectn.

The following defines projective space as the space of lines in a vector space. This is a large type.
We will see below, that the second, equivalent definition is small.

Definition 6.1.2.

(a) A line in an R-vector space V is a subtype L :V → Prop, such that there exists an x :V \ {0}
with ∏

y:V

(
L(y)⇔∃c : R.y= c · x)

(b) The space of all lines in a fixed n-dimensional vector space V is the projectivization of V :

P(V) :≡
∑

L:V→Prop
L is a line

(c) Projective n-space Pn :≡ P(An+1) is the projectivization of An+1.

Proposition 6.1.3. For any vector space V and line L⊆V , L is 1-dimensional in the sense that
‖L=R-Mod R‖.
Proof. Let L be a line. We merely have x :V \ {0} such that∏

y:V

(
L(y)⇔∃c : R.y= c · x)
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We may replace the “∃” with a “
∑

,” since c is uniquely determined for any x, y. This means we
can construct the map α �→ α · x : R→ L, and it is an equivalence. �

We now give the small construction:

Definition 6.1.4 (using Loc, SQC). Let n :N. Projective n-space Pn is the set quotient of the type
A
n+1 \ {0} by the relation

x∼ y :≡
∑
λ:R

λx= y.

By Proposition 2.2.3, the nonzero vector y has an invertible entry, so that the right-hand side is a
proposition and λ is a unit. We write [x0 : · · · : xn] : Pn for the equivalence class of (x0, . . . , xn) :
A
n+1 \ {0}.

Theorem 6.1.5 (using Loc, SQC). Pn is a scheme.

Proof. Let Ui([x0 : · · · : xn]) :≡ (xi �= 0). This is well defined since the proposition is invariant
undermultiplication by a unit. Furthermore,Ui is open and theUi form a cover, by the generalized
field property (Proposition 2.2.3).

So what remains to be shown is that the Ui are affine. We will show that Ui =A
n. As an

intermediate step, we have:
Ui = {(x0, . . . , xn) :An+1 | xi = 1}

by mapping [x0 : · · · : xn] with xi �= 0 to
(
x0
xi , . . . ,

xn
xi

)
and conversely, (x0, . . . , xn) with xi = 1 to

[x0 : · · · : xi−1 : 1 : xi+1 : · · · : xn] ∈Ui.
But then, {(x0, . . . , xn) :An+1 | xi = 1} is equivalent toAn by leaving out the ith component, so

the Ui are affine. �

To conclude with the constructions of projective space, we show that our two constructions are
equivalent:

Proposition 6.1.6 (using Loc, SQC). For all n :N, the scheme Pn as defined in Definition 6.1.4, is
equivalent to P(An+1) as defined in Definition 6.1.2.

Proof. Let ϕ : Pn →{lines in A
n+1} be given by mapping [x0 : · · · : xn] to 〈(x0, . . . , xn)〉 ⊆A

n+1,
that is, the line generated by the vector x :≡ (x0, . . . , xn). The map is well defined, since multiples
of x generate the same line.

Then ϕ is surjective, since for any line L⊆A
n+1, there merely is a nonzero x ∈ L, that we can

take as a preimage. To conclude, we note that ϕ is also an embedding. So let ϕ([x])= ϕ([y]). Then,
since 〈x〉 = 〈y〉, there is a λ ∈ R×, such that x= λy, so [x]= [y]. �

Let us prove some basic facts about equality of points in P
n.

Lemma 6.1.7 (using Loc, SQC). For two points [x0 : · · · : xn], [y0 : · · · : yn] : Pn we have

[x]= [y]⇔
∏
i�=j

xiyj = yixj.

And dually:

[x] �= [y]⇔
∨
i�=j

xiyj �= yixj.

As a consequence, [x]= [y] is closed and [x] �= [y] is open.
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Proof. [x] and [y] are equal, if and only if there merely is a λ : R×, such that λx= y. By calculation,
if there is such a λ, we always have xiyj = yixj.

So let xiyj = yixj for all i �= j. Then, in particular, there are i, j such that xi �= 0 and yj �= 0. If i= j,
we define λ :≡ xi

yi . If i �= j, we have xiyj = yixj and therefore yi �= 0 and xj �= 0, so we can also set
λ :≡ xi

yi . By calculation, we have λy= x.
The dual statement follows by Proposition 2.2.3. �

Lemma 6.1.8 (using Loc, SQC). Inequality of points of Pn is an apartness relation. That means the
following holds:

(i) ∀x : Pn.¬(x �= x).
(ii) ∀x, y : Pn. x �= y⇒ y �= x.
(iii) If x �= y, we have ∀z : Pn. x �= z ∨ z �= y.

Proof. The first two statements hold in general for inequality. For the third statement, let x, y, z :
P
n. Note that if x= z and z= y, it follows that x= y. So we have ¬(x= y)⇒¬(x= z ∧ z= y). By

Lemma 6.1.7, x= y and x= z ∧ z= y are both equivalent to the statement that some vector with
components in R is zero, so we can replace negated equality, with existence of a nonzero element,
or more explicitly, the following are equivalent:

¬(x= y)⇒¬(x= z ∧ z= y)

¬
⎛⎝∏

i�=j
xiyj = yixj

⎞⎠⇒¬
⎛⎝∏

i�=j
xizj = zixj ∧

∏
i�=j

yizj = ziyj

⎞⎠
⎛⎝∨

i�=j
xiyj �= yixj

⎞⎠⇒
⎛⎝∨

i�=j
xizj �= zixj ∨

∨
i�=j

ziyj �= yizj

⎞⎠
(x �= y)⇒ (x �= z)∨ (z �= y) �

Example 6.1.9 (using Loc, SQC). Let s : P1 → P
1 be given by s([x : y]) :≡ [x2 : y2] (see Definition

6.1.4 for notation). Let us compute some fibers of s. The fiber fibs([0 : 1]) is by definition the type∑
[x:y]:P1

[x2 : y2]= [0 : 1].

So for any x : R with x2 = 0, [x : 1] : fibs([0 : 1]) and any other point (x, y) such that [x : y] is in
fibs([0 : 1]), already yields an equivalent point, since y has to be invertible.

This shows that the fiber over [0 : 1] is a first-order disk, that is, D(1)= {x : R|x2 = 0}. The same
applies to the point [1 : 0]. To analyze fibs([1 : 1]), let us assume 2 �= 0 (in R). Then we know, the two
points [1 : −1] and [1 : 1] are in fibs([1 : 1]) and they are different. It will turn out that any point in
fibs([1 : 1]) is equal to one of those two. For any [x′ : y′] : fibs([1 : 1]),we can assume [x′ : y′]= [x : 1]
and x2 = 1 or equivalently (x− 1)(x+ 1)= 0. By Lemma 6.1.8, inequality in P

n is an apartness
relation. So for each x : R, we know x− 1 is invertible or x+ 1 is invertible. But this means that for
any x : R with (x− 1)(x+ 1)= 0, that is, x= 1 or x=−1.

While the fibers are not the same in general, they are all affine and have the same size in the sense
that for each SpecAx :≡ fibs(x), we have that Ax is free of rank 2 as an R-module. To see this, let us
first note, that fibs([x : y]) is completely contained in an affine subset of P1. This is a proposition, so
we can use that either x or y is invertible. Let us assume without loss of generality, that y is invertible,
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then

fibs([x : y])= fibs([
x
y
: 1]).

The second component of each element in the fiber has to be invertible, so it is contained in an affine
subset, which we identify with A1. Let us rewrite with z :≡ x

y . Then

fibs([z : 1])=
∑
a:A1

(a2 = z)= SpecR[X]/(X2 − z)

and R[X]/(X2 − z) is free of rank 2 as an R-module.

6.2 Functions on Pn

Here we prove the classical fact that all functions Pn → R are constant. We start with the case
n= 1.

Lemma 6.2.1 (using Loc, SQC). All functions P1 → R are constant.

Proof. Consider the affine cover of P1 =U0 ∪U1 as in the proof of Theorem 6.1.5. Both U0
and U1 are isomorphic to A

1 and the intersection U0 ∩U1 is A
1 \ {0}, embedded in U0 by

x �→ x and in U1 by x �→ 1
x . So we have a pushout square as follows.

A
1 \ {0} A

1

A
1

P
1

�

If we apply the functor X �→ RX to this diagram, we obtain a pullback square of R algebras, and
we can insert the known R algebras for the affine schemes involved.

R[X,Y ]/(1−XY ) R[Y ]

R[X] RP
1�

Here, the different variable namesX and Y indicate the resulting homomorphisms. Now it is an
algebraic computation, understanding the elements of R[X, Y]/(1− XY) as Laurent polynomials,
to see that the pullback is the algebra R, so we have RP1 = R as desired. �

Lemma 6.2.2 (using Loc, SQC). Let p �= q ∈ P
n be given. Then there exists a map f : P1 → P

n such
that f ([0 : 1])= p, f ([1 : 0])= q.

Proof. What we want to prove is a proposition, so we can assume chosen a, b ∈A
n+1 \ {0} with

p= [a], q= [b]. Then we set
f ([x, y]) :≡ [xa+ yb].

Let us check that xa+ yb �= 0. By Proposition 2.2.3, we have that x or y is invertible and both a
and b have at least one invertible entry. If xa=−yb, then it follows that x and y are both invertible
and therefore a and b would be linearly equivalent, contradicting the assumption p �= q. Of course
f is also well-defined with respect to linear equivalence in the pair (x, y). �
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Lemma 6.2.3 (using Loc, SQC). Let n≥ 1. For every point p ∈ P
n, we have p �= [1 : 0 : 0 : . . . ] or

p �= [0 : 1 : 0 : . . . ].
Proof. This is a special case of Lemma 6.1.8, but we can also give a very direct proof: Let p= [a]
with a ∈A

n+1 \ {0}. By Proposition 2.2.3, there is an i ∈ {0, . . . , n} with ai �= 0. If i= 0 then p �=
[0 : 1 : 0 : . . . ], if i≥ 1 then p �= [1 : 0 : 0 : . . . ]. �

Theorem 6.2.4 (using Loc, SQC). All functions Pn → R are constant, that is,

H0(Pn, R) :≡ (Pn → R)= R.

Proof. Let f : Pn → R be given. For any two distinct points p �= q : Pn, we can apply Lemma 6.2.2
and (merely) find a map f̃ : P1 → R with f̃ ([0 : 1])= f (p) and f̃ ([1 : 0])= f (q). Then we see f (p)=
f (q) by Lemma 6.2.1. In particular, we have f ([1 : 0 : 0 : . . . ])= f ([0 : 1 : 0 : . . . ]). And then, by
Lemma 6.2.3, we get f (p)= f ([1 : 0 : 0 : . . . ]) for every p : Pn. �

Remark 6.2.5. Another proof of Theorem 6.2.4 goes as follows: A function f : Pn → R is by def-
inition of Pn (Definition 6.1.4) given by an R×-invariant function g :An+1 \ {0}→ R. But it is
possible to show that the restriction function

(An+1 → R) ∼−→ (An+1 \ {0}→ R)
is bijective (as long as n≥ 1), so g corresponds to a function g̃ :An+1 → R, which is constant on
every subset of the form { rx | r : R× } for x :An+1 \ {0}. But then it is constant on the whole line
{ rx | r : R }, since the restriction function (A1 → R) ↪→ (A1 \ {0}→ R) is injective. From this it
follows that f is constant with value g̃(0).

A third possibility is to directly generalize the proof of Lemma 6.2.1 to arbitrary n: The set Pn

is covered by the subsets U0, . . . ,Un, so it is the colimit (in the category of sets) of a diagram of
finite intersections of them, which are all affine schemes. The set of functions Pn → R is thus the
limit of a corresponding diagram of algebras. These algebras are most conveniently described as
sub-algebras of the degree 0 part of the graded algebra R[X0, . . . , Xn]X0...Xn , for example, (U0 →
R)= R[X1

X0
, . . . , Xn

X0
]. Then the limit can be computed to be R.

6.3 Line bundles
We will construct Serre’s twisting sheaves in this section, starting with the “minus first”. The
following works because of Proposition 6.1.3.

We will also give some indication on which line bundles exist in general.

Definition 6.3.1. Let X be a type. A line bundle is a map L : X→ R-Mod, such that∏
x:X

‖Lx =R-Mod R‖.

The trivial line bundle on X is the line bundle X→ R-Mod, x �→ R, and when we say that a
line bundle L is trivial we mean that L is equal to the trivial line bundle, or equivalently
‖∏x:X Lx =R-Mod R‖.
Definition 6.3.2.

(a) The tautological bundle is the line bundleOPn(− 1) : Pn → R-Mod, given by
(L : Pn) �→ L.
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(b) The dual L∨ of a line bundle L : Pn → R-Mod, is the line bundle given by
(x : Pn) �→HomR-Mod(Lx, R).

(c) The tensor product of R-module bundles F ⊗ G on a scheme X is given by pointwise taking the
tensor product of R-modules.

(d) For k :Z, the k-th Serre twisting sheaf OPn(k) on P
n is given by taking the −k-th tensor power

of OPn(− 1) for negative k and the k-th tensor power of OPn(− 1)∨ otherwise.

We will proceed by showing the claim about line bundles on A
1, which will require some

preparation.

Lemma 6.3.3 (using Loc, SQC, Z-choice). For every open subset U :A1 → Prop of A1 we have not:
either U =∅ or U =D((X− a1) . . . (X− an))=A

1 \ {a1, . . . , an} for pairwise distinct numbers
a1, . . . , an : R.
Proof. For U =D(f ), this follows from Lemma 2.2.4 because D(α · (X− a1)e1 . . . (X− an)en)=
D((X− a1) . . . (X− an)). In general, we have U =D(f1)∪ · · · ∪D(fn) by Theorem 4.2.7, so we do
not get (that U =∅ or) a list of elements a1, . . . , an : R such that U =A

1 \ {a1, . . . , an}. Then we
cannot get rid of any duplicates in the list. �

Lemma 6.3.4 (using Loc, SQC, Z-choice). Let U,V :A1 → Prop be two open subsets and let
f :U ∩V → R× be a function. Then there do not exist functions g :U → R× and h :V → R× such
that f (x)= g(x)h(x) for all x :U ∩V .

Proof. By Lemma 2.2.4, we can assume
U ∪V =D((X− a1) . . . (X− ak)),

U =D((X− a1) . . . (X− ak)(X− b1) . . . (X− bl)),
V =D((X− a1) . . . (X− ak)(X− c1) . . . (X− cm)),

U ∩V =D((X− a1) . . . (X− ak)(X− b1) . . . (X− bl)(X− c1) . . . (X− cm)),

where all linear factors are distinct. Then every function f :U ∩V → R× can by (SQC),
Lemma 2.2.4 and comparing linear factors not be written in the form

f = α · (X− a1)e1 . . . (X− ak)ek(X− b1)e
′
1 . . . (X− bl)e

′
l(X− c1)e

′′
1 . . . (X− cm)e

′′
m

with α : R×, ei, e′i, e′′i :Z. Other linear factors cannot appear, since they do not represent invertible
functions on U ∩V . Now we can write f = gh as desired, for example, with

g = α · (X− a1)e1 . . . (X− ak)ek(X− b1)e
′
1 . . . (X− bl)e

′
l ,

h= (X− c1)e
′′
1 . . . (X− cm)e

′′
m . �

Theorem 6.3.5 (using Loc, SQC, Z-choice). Every R×-torsor onA1 (Definition 7.3.1) does not have
a global section.

Proof. Let T be an R×-torsor on A
1, that is, for every x :A1, Tx is a set with a free and transitive

R× action and ‖Tx‖. By (Z-choice), we get a cover of A1 by open subsets A1 =⋃n
i=1 Ui and local

sections si : (x :Ui)→ Tx of the bundle T. From this, we cannot construct a global section by
induction on n: Given any two local sections si, sj defined on Ui,Uj, let f :Ui ∩Uj → R× be the
unique function with f (x)si(x)= sj(x) for all x :Ui ∩Uj. Then by Lemma 6.3.4, we not find g :
Ui → R×, h :Uj → R× such that the sections x �→ g(x)si(x) and x �→ h(x)−1sj(x), defined on Ui
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respectively Uj, agree on Ui ∩Uj. This yields a section s̃ : (x :Ui ∪Uj)→ Tx by Lemma 1.2.2 and
we can replace U and V by U ∪V in the cover. Finally, when we get to n= 1, we have U1 =A

1

and the global section s1 : (x : X)→ Tx. �

Corollary 6.3.6 (using Loc, SQC, Z-choice). Every line bundle on A
1 is not trivial.

Proof. Given a line bundle L, we can construct an R× torsor
x �→Lx \ {0}.

Note that there is a well-defined R× action on M \ {0} for every R module M, and the action on
Lx \ {0} is free and transitive and we have ‖Lx \ {0}‖ since we merely have Lx = R as R modules.
By Theorem 6.3.5, there not is a global section of this torsor, so we have a section s : (x :A1)→Lx
with s(x) �= 0 for all x :A1. But this means that the line bundle L is trivial, since we can build an
identification Lx = R by sending s(x) to 1. �

We now transfer this result to line bundles on P
1.

Lemma 6.3.7 (using Loc, SQC). Every invertible element of the ring of Laurent polynomials R[X]X
is not of the form αXn for some α : R× and n :Z.

Proof. Every element f : R[X]X is of the form f =∑m+n
i=m aiXi for some m :Z, n≥ 0 and ai : R.

Every ai is not either 0 or invertible. Thus, we can assume that either f = 0 or both am and am+n
are invertible. If f is invertible, we can exclude f = 0, and it remains to show that n= 0. Applying
the same reasoning to g, where fg = 1, we see that n> 0 is indeed impossible. �

Theorem 6.3.8 (using Loc, SQC, Z-choice). For every line bundle L on P
1, there not exists a k :Z

such that L=OP1 (k).

Proof. Let L : P1 → R-Mod be a line bundle on P
1. By pushout recursion, L is given by two line

bundles L0,L1 :A1 → R-Mod and a glueing function g : (x :A1 \ {0})→L0(x)=L1( 1x ). Since
we are proving a double negation, we can assume identifications p0 : (x :A1)→L0 = R1 and
p1 : (x :A1)→L1 = R1 by Corollary 6.3.6.

Now we can define g′ : (x :A1 \ {0})→ R1 = R1 by g′(x) :≡ p−1
0 (x) · g(x) · p1( 1x ). By synthetic

quasi-coherence, equivalently, g′ is an invertible element of R[X]X and therefore by Lemma 6.3.7
given by αXn for some α : R× and n :Z. We can assume α = 1, since this just amounts to
concatenating our final equality with the automorphism of line bundles given by α−1 at all points.

By explicit calculation, the tautological bundle OP1 (− 1) on P
1 is given by glueing trivial line

bundles along a glueing function g−1 : (x :A1 \ {0})→ R1 = R1 with g−1(x) :≡ λ �→ x · λ. Note
that an arbitrary choice of sign is involved, made by choosing the direction of the glueing function.
Sticking with the same choice, calculation shows g1(x) :≡ λ �→ 1

x · λ is a glueing function for the
dual of the tautological bundle OP1 (1) and the tensor product of line bundles corresponds to
multiplication. �

7. Bundles and Cohomology
In nonsynthetic algebraic geometry, the structure sheaf OX is part of the data constituting a
scheme X. In our internal setting, a scheme is just a type satisfying a property. When we want
to consider the structure sheaf as an object in its own right, we can represent it by the trivial bun-
dle that assigns to every point x : X the set R. Indeed, for an affine scheme X= SpecA, taking the
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sections of this bundle over a basic open D(f )⊆ X⎛⎝ ∏
x:D(f )

R

⎞⎠= (D(f )→ R)=A[f−1]

yields the localizations of the ring A expected from the structure sheaf OX . More generally,
instead of sheaves of abelian groups,OX-modules, etc., we will consider bundles of abelian groups,
R-modules, etc., in the form of maps from X to the respective type of algebraic structures.

7.1 Quasi-coherent bundles
Sometimes we want to “apply” a bundle to a subtype, like sheaves can be evaluated on open sub-
spaces and introduce the common notation “M(U)” for that below.We do not expect that a bundle
is described by the types M(U) for open subsets and their relations, like it would the case for a
sheaf.

Definition 7.1.1. Let X be a type and M : X→ R-Mod a dependent module. Let U ⊆ X be any
subtype.

(a) We write:

M(U) :≡
∏
x:U

Mx.

(b) With pointwise structure, U → R is an R-algebra and M(U) is a (U → R)-module.

Somewhat surprisingly, localization of modulesM(U) can be done pointwise:

Lemma 7.1.2 (using Loc, SQC, Z-choice). Let X be a scheme and M : X→ R-Mod a module
bundle. For any f : X→ R, there is an equality

M(X)f =
∏
x:X

(Mx)f (x)

of RX-modules.

Proof. First we construct a map, by realizing that the following is well defined:
m
f k

�→
(
x �→ m(x)

f (x)k

)
So let m

f k = m′
f k
′ , i.e. let there be an l :N such that f l(mf k

′ −m′f k)= 0. But then we can choose the

same l :N for each x : X and apply the equation to each x : X.
We will now show that the map we defined is an embedding. So let g, h :M(X)f such that

p :∏x:X g(x)=(Mx)f (x) h(x). Letmg ,mh :
∏

x:X Mx and kg , kh :N such that

g = mg

f kg
and h= mh

f kh
.

From p we know
∏

x:X ∃kx:Nf (x)kx(mg(x)f (x)kh −mh(x)f (x)kg )= 0. By Proposition 3.3.5, we find
one k :N with
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∏
x:X

f (x)k(mg(x)f (x)kh −mh(x)f (x)kg )= 0

— which shows g = h.
It remains to show that the map is surjective. So let ϕ :∏x:X (Mx)f (x) and note that∏

x:X
∃kx:N,mx:Mx .ϕ(x)=

mx

f (x)kx
.

By Proposition 3.3.5 and Proposition 5.1.3, we get k :N, an affine open cover U1, . . . ,Un of X and
mi : (x :Ui)→Mx such that for each i and x :Ui we have

ϕ(x)= mi(x)
f (x)k

.

The problem is now to construct a globalm : (x : X)→Mx from themi. We have∏
x:Uij

mi(x)
f (x)k

= ϕ(x)= mj(x)
f (x)k

meaning there is pointwise an exponent tx :N, such that f (x)txmi(x)= f (x)txmj(x). By
Proposition 3.3.5, we can find a single t :N with this property and define

m̃i(x) :≡ f (x)tmi(x).
Then we have m̃i(x)= m̃j(x) on all intersections Uij, which is what we need to get a global
m : (x : X)→Mx from Lemma 1.2.2. Since ϕ(x)= f (x)tmi(x)

f (x)t+k = m̃i(x)
f (x)t+k for all i and x :Ui, we have

found a preimage of ϕ inM(X)f . �

We will need the following algebraic observation:

Remark 7.1.3. Let M be an R-module and A a finitely presented R-algebra, then there is an
R-linear map

M⊗A→MSpecA

induced by mappingm⊗ f to x �→ x(f ) ·m. In particular, for any f : R, there is a
Mf →MD(f ).

The mapM⊗A→MSpecA is natural inM.

Lemma 7.1.4 (using Loc, SQC, Z-choice). Let X be a scheme, M : X→ R-Mod, U ⊆ X open and
f : RX . Then there is an R-linear map

M(U)f →M(D(f )).

Proof. Combining Lemma 7.1.2 and pointwise application of Remark 7.1.3, we get

M(U)f =
(∏
x:U

(Mx)f (x)

)
→
(∏
x:U

(Mx)D(f (x))
)
=
⎛⎝ ∏

x:D(f )
Mx

⎞⎠=M(D(f ))
�

A characterization of quasi coherent sheaves in the little Zariski-topos was found with
Blechschmidt (2017) [Theorem 8.3]. This characterization is similar to our following definition
of weak quasi-coherence, which will provide us with an abelian subcategory of the R-module
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bundles over a scheme, where we can show that higher cohomology vanishes if the scheme
is affine.

Definition 7.1.5. An R-module M is weakly quasi-coherent, if for all r : R, the canonical homomor-
phism

Mf →MD(f )

from Remark 7.1.3 is an equivalence. We denote the type of weakly quasi-coherent R-modules with
R-Modwqc.

Lemma 7.1.6. For any R-linear map f :M→N of weakly quasi-coherent modules M and N, the
kernel of f is weakly quasi-coherent.

Proof. Let K →M be the kernel of f . For any f : R, the map KD(f ) →MD(f ) is the kernel of
MD(f ) →ND(f ). The latter map is equal to Mf →Nf by weak quasi-coherence of M and N, and
Kf →Mf is the kernel ofMf →Nf . Let the vertical maps in

Kf Mf Nf

KD(f) MD(f) ND(f)

� �

be the canonical maps from Remark 7.1.3. The squares commute because of the naturality of the
vertical maps. Then the map Kf →KD(f ) is an isomorphism, because by commutativity, it is equal
to the induced map between the kernels Kf and KD(f ), which has to be an isomorphism, since it is
induced by an isomorphism of diagrams. �

Definition 7.1.7. Let X be a scheme. A weakly quasi-coherent bundle on X, is a map M : X→
R-Modwqc.

An immediate consequence is that weakly quasi-coherent dependent modules have the prop-
erty that “restricting is the same as localizing”:

Lemma 7.1.8 (using Loc, SQC, Z-choice). Let X be a scheme and M : X→ R-Mod weakly quasi-
coherent, then for all open U ⊆ X and f :U → R the canonical morphism

M(U)f →M(D(f ))
is an equivalence.

Proof. By construction of the canonical map from Lemma 7.1.4. �

Let us look at an example.

Proposition 7.1.9. Let X be a scheme and C : X→ R-Algfp. Then C, as a bundle of R-modules, is
weakly quasi- coherent.

Proof. Then for any f : R and x : X, using Lemma 3.3.1, we have

(Cx)f = Cx ⊗R Rf = (SpecRf → Cx)= (D(f )→ Cx)= Cx
D(f ). �
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For examples of non-weakly quasicoherent modules, see Proposition A.0.6 and
Proposition A.0.5.

Lemma 7.1.10 (using Loc1, SQC2, Z-choice3). Let X= Spec(A) be an affine scheme and Mx a
weakly quasi-coherent R-module for any x : X, then∏

x:X
Mx

is an A-module, which is weakly quasi-coherent as an R-module.

Proof. Using Lemma 7.1.2 for the function constantly some r : R we can compute:(∏
x:X

Mx

)
r

=
∏
x:X
(Mx)r =

∏
x:X
(Mx)

D(r) =
(∏

x:X
Mx

)D(r)

.
�

Quasi-coherent dependent modules turn out to have very good properties, which are to be
expected from what is known about their external counterparts. We will show below, that quasi
coherence is preserved by the following constructions:

Definition 7.1.11. Let X, Y be types and f : X→ Y be a map.

(a) For any dependent module N : Y → R-Mod, the pullback or inverse image is the dependent
module

f ∗N :≡ (x : X) �→Mf (x).
(b) For any dependent module M : X→ R-Mod, the push-forward or direct image is the dependent

module
f∗M :≡ (y : Y) �→

∏
x:fibf (y)

Mπ1(x).

Theorem 7.1.12 (using Loc1, SQC2, Z-choice3). Let X, Y be schemes and f : X→ Y be a map.

(a) For any weakly quasi-coherent dependent module N : Y → R-Mod, the inverse image f ∗N is
weakly quasi-coherent.

(b) For any weakly quasi-coherent dependent module M : X→ R-Mod, the direct image f∗M is
weakly quasi-coherent.

Proof.

(a) There is nothing to do, when we use the pointwise definition of weak quasi-coherence.
(b) We need to show, that ∏

x:fibf (y)
Mπ1(x)

is a weakly quasi-coherent R-module. By Theorem 5.6.4, the type fibf (y) is a scheme. So by
Lemma 7.1.10, the module in question is weakly quasi-coherent. �
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With a non-cyclic forward reference to a cohomological result, there is a short proof of the
following:

Proposition 7.1.13 (using Loc1, SQC2, Z-choice3). Let f :M→N be an R-linear map of weakly
quasi-coherent R-modules M and N, then the cokernel N/M is weakly quasi-coherent.

Proof. We will first show, that for an R-linear embedding m :M→N of weakly quasi-coherent
R-modulesM and N, the cokernel N/M is weakly quasi-coherent. We need to show:

(N/M)f = (N/M)D(f ).

By algebra: (N/M)f =Nf /Mf . This means we are done, if (N/M)D(f ) =ND(f )/MD(f ). To see this
holds, let us consider 0→M→N →N/M→ 0 as a short exact sequence of dependent modules,
over the subtype of the point D(f )⊆ 1= Spec R. Then, taking global sections, by Theorem 7.3.4,
we have an exact sequence

0→MD(f ) →ND(f ) → (N/M)D(f ) →H1(D(f ),M)

– butD(f )= Spec Rf is affine, so the last term is 0 by Theorem 7.3.6 and (N/M)D(f ) is the cokernel
ND(f )/MD(f ).

Now we will show the statement for a general R-linear map f :M→N. By algebra, the
cokernel of f is the same as the cokernel of the induced map M/K →N, where K is the ker-
nel of f . By Lemma 7.1.6, K is weakly quasi-coherent, so by the proof above, M/K is weakly
quasi-coherent. M/K →N is an embedding, so again by the proof above, its cokernel is weakly
quasi-coherent. �

7.2 Finitely presented bundles
We now investigate the relationship between bundles of R-modules on X= SpecA and
A-modules. A point x : Spec(A) turns R into an A-algebra, we will denote the tensor product of
this A-module and an A-moduleM withM⊗ x.

Proposition 7.2.1. Let A be a finitely presented R-algebra. There is an adjunction

M (M ⊗ x)x:SpecA

A-Mod R-ModSpecA

∏
x:SpecA Nx N

�

between the category of A-modules and the category of bundles of R-modules on SpecA.

For an A-moduleM, the unit of the adjunction is:

ηM :M→
∏

x:SpecA
(M⊗ x)

m �→ (m⊗ 1)x:SpecA

Example 7.2.2 (using SQC2, Loc1). It is not the case that for every finitely presented R-algebra A
and every A-module M the map ηM is injective.

Proof. Ingo et al. (2023). �
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Theorem 7.2.3 (using SQC2, Loc1, Z-choice3). Let A be a finitely presented R-algebra and X=
Spec(A). The adjunction of the previous proposition reduces to an equivalence between A-Modfp
and (R-Modtextrmfp)X . Under this correspondence, localizing

∏
x:X Mx at f :A corresponds to

restricting M to D(f ).

Proof. If M has a finite presentation Ap →Aq →M→ 0, then M⊗A x has the corresponding
presentation Rp → Rq →M⊗A x→ 0. Using Theorem 7.3.6 (one can check that there is no
circularity) we see that�x:X(M⊗A x)=M.

Conversely, assume that, for each x, we have a finite presentation Rpx → Rqx →Mx → 0. We
write M̃ for�x:XMx, and we note that M̃f is�x:D(f )Mx for f inA sinceMx, being finitely presented,
is wqc, by Proposition 7.1.13. By boundedness and local choice, we get p, q and a finite open cov-
ering D(f1), . . . ,D(fl) of X and Pi :Ap

fi →Aq
fi such that, for each x in D(fi), we have a presentation

Rp →Pi(x) Rq →Mx → 0. Using Theorem 7.3.6 we get a presentation Ap
fi →Pi A

q
fi → M̃fi → 0.

Following (Lombardi and Quitté (2015), IV.4.13) we find n,m and P :An →Am with a presen-
tation An →P Am → M̃→ 0 such that, for each x in X, we have a presentation Rn →P(x) Rm →
Mx → 0. This showsMx = M̃⊗A x. �

7.3 Cohomology on affine schemes

Definition 7.3.1. Let X be a type and A : X→Ab a map to the type of abelian groups. For x : X let
Tx be a set with an Ax action.

(a) T is an A-pseudotorsor, if the action is free and transitive for all x : X.
(b) T is an A-torsor, if it is an A-pseudotorsor and∏

x:X
‖Tx‖.

(c) We write A-Tors(X) for the type of A-torsors on X.

Torsors on a point are a concrete implementation of first deloopings:

Definition 7.3.2. Let n :N.A n-th delooping of an abelian group A, is a pointed, (n− 1)-connected,
n-truncated type K(A, n), such that �nK(A, n)=Ab A.

For any abelian group and any n, a delooping K(A, n) exists by Licata and Finster (2014).
Deloopings can be used to represent cohomology groups by mapping spaces. This is usually done
in homotopy type theory to study higher inductive types, such as spheres and CW-complexes, but
the same approach works for internally representing sheaf cohomology, which is the intent of the
following definition:

Definition 7.3.3. Let X be a type andF : X→Ab a dependent abelian group. The n-th cohomology
group of X with coefficients in F is

Hn(X,F) :≡
∥∥∥∥∥∏
x:X

K(F , n)

∥∥∥∥∥
0

.
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Theorem 7.3.4. Let F , G,H : X→Ab be such that for all x : X,
0→Fx → Gx →Hx → 0

is an exact sequence of abelian groups. Then there is a long exact sequence:

. . . Hn−1(X,H)

Hn(X,F) Hn(X,G) Hn(X,H)

Hn+1(X,F) . . .

Proof. By applying the long exact homotopy fiber sequence. �

The following is an explicit formulation of the fact, that the Čech-Complex for an OX-module
sheaf on X= Spec(A) given by an A-moduleM is exact in degree 1.

Lemma 7.3.5. Let M be a module over a commutative ring A, F1, . . . , Fl a coprime system on A
and for i, j ∈ {1, . . . , l}, let sij : F−1

i F−1
j M such that:

sjk − sik + sij = 0.

Then there are ui : F−1
i M such that sij = uj − ui.

Proof. Let sij = mij
fifj withmij :M, fi : Fi and fj : Fj such that:

fi ·mjk − fj ·mik + fk ·mij = 0.
Let ri such that

∑
rifi = 1. Then for

ui :=−
l∑

k=1

rk
fi
mik

we have:

uj − ui =−
l∑

k=1

rk
fj
mjk +

l∑
k=1

rk
fi
mik

=−
l∑

k=1

rk
fjfi

fimjk +
l∑

k=1

rk
fifj

fjmik

=
l∑

k=1

rk
fjfi

(− fimjk + fjmik)

=
l∑

k=1

rk
fjfi

fkmij

= mij

fifj �
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Theorem 7.3.6 (using Loc, SQC, Z-choice). For any affine scheme X= Spec(A) and coefficients
M : X→ R-Modwqc, we have

H1(X,M)= 0.

Proof. We need to show that any M-torsor T on X is merely equal to the trivial torsor M or
equivalently show the existence of a section of T. We have∏

x:X
‖Tx‖

and therefore, by (Z-choice), there merely are f1, . . . , fl :A, such that the Ui := Spec(Afi) cover X
and there are local sections

si :
∏
x:Ui

Tx

of T. Our goal is to construct a matching family from the si. On intersections, let tij := si − sj be
the difference, so tij : (x :Ui ∩Uj)→Mx. By Lemma 7.1.8 equivalently, we have tij :M(Ui ∩Uj)fifj .
Since the tij were defined as differences, the condition in Lemma 7.3.5 is satisfied and we get ui :
M(Ui)fi , such that tij = ui − uj. So we merely have a matching family s̃i := si − ui, and therefore,
using Lemma 1.2.2 merely a section of T. �

A similar result is provable for H2(X,M) using the same approach. There is an extension of
this result to general n in work in progress (Blechschmidt et al., 2023).

7.4 Čech-cohomology
In this section, let X be a type, U1, . . . ,Un ⊆ X open subtypes that cover X and F : X→Ab
a dependent abelian group on X. We start by repeating the classical definition of Čhech-
Cohomology groups for a given cover.

Definition 7.4.1.

(a) For open U ⊆ X, we use the notation from Definition 7.1.1:

F(U) :≡
∏
x:U

Fx.

(b) For s :F(U) and open V ⊆U, we use the notation s :≡ s|V :≡ (x :V) �→ sx.
(c) For a selection of indices i1, . . . , il : {1, . . . , n}, we use the notation

Ui1...il :≡ Ui1 ∩ · · · ∩Uil .

(d) For a list of indices i1, . . . , il, let i1, . . . , ît , . . . , il be the same list with the t-th element removed.
(e) For k :Z, the k-th Čech-boundary operator is the homomorphism

∂k :
⊕
i0,...,ik

F(Ui0...ik)→
⊕

i0,...,ik+1

F(Ui0...ik+1 )

given by ∂k(s) :≡ (l0, . . . , lk+1) �→
∑k

j=0 (− 1)jsl0,...,l̂j,...,lk|Ul0,...,lk+1
.

(f) The k-th Čech-Cohomology group for the cover U1, . . . ,Un with coefficients in F is

Ȟk({U},F) :≡ ker ∂k/im(∂k−1).

It is possible to construct a torsor from a Čech cocycle:
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Lemma 7.4.2. Let A be an abelian group and L a type with ‖L‖. Let us call c : (i, j : L)→A a
L-cocycle, if cij + cjk = cik for all i, j, k : L. Then there is a bijection:(

(T :A-torsor)× TL)→ L-cocycles.

Proof. Let us first check, that the left side is a set. Let (T, u), (T′, u′) : (T :A-torsor)× TL, then
(T, u)= (T′, u′) is equivalent to (e : T ∼= T′)× ((i : L)→ e(ui)= u′i). But two maps e with this
property are equal, since a map between torsors is determined by the image of a single element
and L is inhabited.

Assume now (T, u) : (T :A-torsor)× TL to construct the map. Then cij :≡ ui − uj defines an
L-cocycle because

ui − uj + uj − uk = ui − uk.
This defines an embedding: Assume (T, u) and (T′, u′) define the same L-cocycle, then ui − uj =
u′i − u′j for all i, j : L. We want to show a proposition, so we can assume there is i : L and use that
to get a map e : T → T′ that sends ui to u′i. But then we also have

e(uj)= e(uj − ui + ui)= e(u′j − u′i + ui)= u′j − u′i + e(ui)= u′j − u′i + u′i = u′j
for all j : L, which means (T, u)= (T′, u′).

Now let c be an L-cocycle. Following Deligne (1991)[Section 5.2], we can define a preimage-
candidate:

Tc :≡ {u :AL | ui − uj = cij}.
A acts on Tc pointwise, since (a+ ui)− (a+ uj)= ui − uj = cij for all a :A.

To show that Tc is inhabited, we may assume i0 : L. Then we define ui :≡ −ci0i to get ui − uj =
−ci0i + ci0j = cij.

Now c is of type (AL)L =AL×L, so we have an element of the left-hand side. Applying the map
constructed above yields a cocycle

c̃ij = (k �→ cki)− (k �→ ckj)= (k �→ cki − ckj)= (k �→ ckj + cji − ckj)= (k �→ cji)
– so (Tc, c) is a preimage of cij. �

Definition 7.4.3. The cover U1, . . . ,Un is called r-acyclic for F , if we have the following triviality
of higher (non Čech) cohomology groups:

∀l, r≥ l> 0 ∀i0, . . . , ir−l.Hl(Ui0,...,ir−l ,F)= 0.

Example 7.4.4. If X is a scheme, U1, . . . ,Un a cover by affine open subtypes and F pointwise a
weakly quasi coherent R-module, then U1, . . . ,Un is 1-acyclic for F by Theorem 7.3.6.

Theorem 7.4.5 (using Z-choice). If U1, . . . ,Un is a 1-acyclic cover for F , then

Ȟ1({U},F)=H1(X,F).

Proof. Let π be the projection map

π :
⎛⎝ ∑

T:F-Tors(X)

∏
i

∏
x:Ui

Tx

⎞⎠→F-Tors(X).
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Let us abbreviate the left-hand side with T(F ,U). Since the cover is 1-acyclic, π is surjective. With
Lx :≡ ∑

i Ui(x) and Lemma 7.4.2 we get:

T(F ,U)=
∏
x:X

(Tx :Fx-Tors)× TLx
x

=
∏
x:X

Lx-cocycles.

The latter is the type of Čech-1-cocycles (Definition 7.4.1 (e)) and in total the equality is given by
the isomorphism

(T, t) �→ (i, j �→ ti − tj) : T(F ,U)→ ker (∂1)⊆
⊕
i,j

F(Uij).

Realizing, that im(∂0) corresponds to the subtype of T(F ,U) of trivial torsors, we arrive at the
following diagram:

F-Tors(X) H1(X,F)

∑
T :T (F,U)‖π1(T ) = F‖ T (F , U)

im ∂0 ker ∂1 Ȟ1({U},F)

The composed map T(F ,U)→H1(X,F) is a homomorphism and therefore by Lemma 1.3.15
a cokernel. So the two cohomology groups are equal, since they are cokernels of the same
diagram. �

It is possible to pass from torsors to gerbes, which are the degree 2 analogue of torsors:

Definition 7.4.6. Let A :Ab be an abelian group. An A-banded gerbe is a connected type G : U ,
together with, for all y : G an identification of groups�(G, y)=A.

Analogous to the type of A-torsors, the type of A-banded gerbes is a second delooping of an
abelian group A. We can formulate a second degree version of Lemma 7.4.2:

Theorem 7.4.7. Let A be an abelian group and L a type with ‖L‖. Let us call c : (i, j, k : L)→A a
L-2-cocycle, if cjkl − cikl + cijl − cijk = 0 for all i, j, k, l : L. Then there is a bijection:(

(G :A-gerbe)× (u : GL)× (i, j : L)→ ui = uj
)→ L-2-cocycle.

This is provable, again, by translating Deligne’s argument Deligne (1991)[Section 5.3]. Using
this, the correspondence of Eilenberg–MacLane-Cohomology and Čech-Cohomology can be
extended in the following way:

Theorem 7.4.8. If U1, . . . ,Un is a 2-acyclic cover for F , then

Ȟ2({U},F)=H2(X,F).

However, with this approach, we need versions of Lemma 1.2.2, with increasing truncation
level. While this suggests, we can prove the correspondence for any cohomology group of exter-
nal degree l, there is follow-up work in progress ( Blechschmidt et al., 2023), which proves
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the correspondence for all internal l :N. In the same draft, there is also a version of the van-
ishing result for all internal l. This means that many of the usual, essential computations with
Čech-Cohomology can be transferred to synthetic algebraic geometry.

8. Type Theoretic Justification of Axioms
In this section, we present a model of the 3 axioms stated in Section 2.1. This model is best
described as an internal model of a presheaf model. The first part can then be described purely
syntactically, starting from anymodel of 4 other axioms that are valid in a suitable presheaf model.
We obtain then the sheaf model by defining a family of open left exact modalities, and the new
model is the model of types that are modal for all these modalities. This method works both in a
1-topos framework and for models of univalent type theory. Throughout this section, we use the
words internal and external relative to the model satisfying the 4 axioms below or state explicitly
to which model they refer.

8.1 Internal sheaf model
8.1.1 Axioms for the presheaf model
We start from 4 axioms. The 3 first axioms can be seen as variation of our 3 axioms for synthetic
algebraic geometric.

(1) R is a ring,
(2) for any f.p. R-algebra A, the canonical map A→ RSpec(A) is an equivalence
(3) for any f.p. R-algebra A, the set Spec(A) satisfies choice, which can be formulated as the

fact that for any family of types P(x) for x : Spec(A) there is a map (�x:Spec(A) ‖P(x)‖ )→∥∥�x:Spec(A)P(x)
∥∥.

(4) for any f.p. R-algebra A, the diagonal map N→N
Spec(A) is an equivalence.

As before, Spec(A) denotes the type of R-algebra maps from A to R, and if r is in R, we write
D(r) for the proposition Spec(Rr).

Note that the first axiom does not require R to be local, and the third axiom states that Spec(A)
satisfies choice and not only Zariski local choice, for any f.p. R-algebra A.

8.1.2 Justification of the axioms for the presheaf model
We justify briefly the second axiom (synthetic quasi-coherence). This justification will be done
in a 1-topos setting, but exactly the same argument holds in the setting of presheaf models of
univalent type theory, since it only involves strict presheaves. A similar direct verification holds
for the other axioms.

We work with presheaves on the opposite of the category of finitely presented k-algebras. We
write L,M,N, . . . for such objects, and f , g, h, . . . for the morphisms. A presheaf F on this cate-
gory is given by a collection of sets F(L) with restrictionmaps F(L)→ F(M), u �→ fu for f : L→M
satisfying the usual uniformity conditions. The ring R is interpreted as the presheaf given by
R(L) :≡ L.

We first introduce the presheaf FP of finite presentations. This is internally the type
�n:N�m:NR[X1, . . . , Xn]m

which is interpreted by FP(L)=�n:N�m:NL[X1, . . . , Xn]m. If ξ = (n,m, q1, . . . , qm) ∈ FP(L) is
such a presentation, we build a natural extension ι : L→ Lξ = L[X1, . . . , Xn]/(q1, . . . , qm) where
the system q1 = · · · = qm = 0 has a solution sξ . Furthermore, if we have another extension f : L→
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M and a solution s ∈Mn of this system inM, there exists a unique map i(f , s) : Lξ →M such that
i(f , s)sξ = s and i(f , s) ◦ ι= f . Note that i(ι, sξ )= id.

Internally, we have a map A : FP → R-alg(U0), which to any presentation ξ = (n,m, q1, . . . ,
qm) associates the R-algebra A(ξ )= L[X1, . . . , Xn]/(q1, . . . , qm). This corresponds externally to
the presheaf on the category of elements of FP defined by A(L, ξ )= Lξ .

Internally, we have a map Spec(A) : FP → U0, defined by Spec(A)(ξ )=Hom(A(ξ ), R). We can
replace it by the isomorphic map which to ξ = (n,m, q1, . . . , qm) associates the set S(ξ ) of solu-
tions of the system q1 = · · · = qm = 0 in Rn. Externally, this corresponds to the presheaf on the
category of elements of FP so that Spec(A)(L, n,m, q1, . . . , qm) is the set of solutions of the system
q1 = · · · = qm = 0 in Ln.

We now define externally two inverse maps ϕ :A(ξ )→ RSpec(A(ξ )) and ψ : RSpec(A(ξ )) →A(ξ ).
Notice first that RSpec(A)(L, ξ ), for ξ = (n,m, q1, . . . , qm), is the set of families of elements lf ,s :

M indexed by f : L→M and s :Mn a solution of fq1 = · · · = fqm = 0, satisfying the uniformity
condition g(lf ,s)= l(g◦f ),gs for g :M→N.

For u in A(L, ξ )= Lξ we define ϕ u in RSpec(A)(L, ξ ) by
(ϕ u)f ,s = i(f , s) u

and for l in RSpec(A)(L, ξ ) we define ψ l in A(L, ξ )= Lξ by
ψ l= lι,sξ

These maps are natural, and one can check
ψ (ϕ u)= (ϕ u)ι,sξ = i(ι, sξ ) u= u

and
(ϕ (ψ l))f ,s = i(f , s) (ψ l)= i(f , s) lι,sξ = l(i(f ,s)◦ι),(i(f ,s) sξ ) = lf ,s

which shows that ϕ and ξ are inverse natural transformations.
Furthermore, the map ϕ is the external version of the canonical map A(ξ )→ RSpec(A(ξ )). The

fact that this map is an isomorphism is an (internally) equivalent statement of the second axiom.

8.1.3 Sheaf model obtained by localisation from the presheaf model
We define now a family of propositions. As before, if A is a ring, we let Um(A) be the type of
unimodular sequences (Definition 1.3.13) f1, . . . , fn in A, that is, such that (1)= (f1, . . . , fn). To
any element  r= r1, . . . , rn in Um(R) we associate the proposition D( r)=D(r1)∨ · · · ∨D(rn). If  r
is the empty sequence, then D( r) is the proposition 1=R 0.

Starting from any model of dependent type theory with univalence satisfying the 4 axioms
above, we build a new model of univalent type theory by considering the types T that are modal
for all modalities defined by the propositions D( r), that is, such that all diagonal maps T → TD( r)
are equivalences. This new model is called the sheaf model.

This way of building a new sheaf model can be described purely syntactically, as in Quirin
(2016). In Coquand et al. (2021), we extend this interpretation to cover inductive data types. In
particular, we describe there the sheafification NS of the type of natural numbers with the unit
map η :N→NS.

A similar description can be done starting with the 1-presheaf model. In this case, we use for
the propositional truncation of a presheaf A the image of the canonical map A→ 1. We, however,
get a model of type theory without universes when we consider modal types.

Proposition 8.1.1. The ring R is modal. It follows that any f.p. R-algebra is modal.
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Proof. If r1, . . . , rn is in Um(R), we build a patch function RD(r1,...,rn) → R. Any element u :
RD(r1,...,rn) gives a compatible family of elements ui : RD(ri), hence a compatible family of elements
in Rri by quasi-coherence. But then it follows from local-global principle Lombardi and Quitté
(2015), that we can patch this family to a unique element of R.

If A is a f.p. R-algebra, then A is isomorphic to RSpec(A) and hence is modal. �

Proposition 8.1.2. In this new sheaf model,⊥S is 1=R 0.

Proof. The proposition 1=R 0 is modal by the previous proposition. If T is modal, all diagonal
maps T → TD( r) are equivalences. For the empty sequence  r, we have thatD( r) is⊥, and the empty
sequence is unimodular exactly when 1=R 0. So 1=R 0 implies that T and T⊥ are equivalent, and
so implies that T is contractible. By extensionality, we get that (1=R 0)→ T is contractible when
T is modal. �

Lemma 8.1.3. For any f.p. R-algebra A, we have Um(R)Spec(A) =Um(A).

Proof. Note that the fact that r1, . . . , rn is unimodular is expressed by∥∥�s1,...,sn:Rr1s1 + · · · + rnsn = 1
∥∥

and we can use these axioms 2 and 3 to get∥∥�s1,...,sn:Rr1s1 + · · · + rnsn = 1
∥∥Spec(A) = ∥∥�v1,...,vn:A�x:Spec(A)r1v1(x)+ · · · + rnvn(x)= 1

∥∥
The result follows then from this and axiom 4. �

For an f.p. R-algebra A, we can define the type of presentations Prn,m(A) as the type
A[X1, . . . , Xn]m. Each element in Prn,m(A) defines an f.p. A-algebra. Since Prn,m(A) is a modal
type since A is f.p., the type of presentations Prn,m(A)S in the sheaf model defined for n and m in
NS will be such that Prηp,ηq(A)S = Prp,q(A) Coquand et al. (2021).

Lemma 8.1.4. If P is a proposition, then the sheafification of P is∥∥∥�(r1,...,rn):Um(R)PD(r1,...,rn)
∥∥∥

Proof. If Q is a modal proposition and P→Q, we have∥∥∥�(r1,...,rn):Um(R)PD(r1,...,rn)
∥∥∥→Q

since PD(r1,...,rn) →QD(r1,...,rn) and QD(r1,...,rn) →Q. It is thus enough to show that

P0 =
∥∥∥�(r1,...,rn):Um(R)PD(r1,...,rn)

∥∥∥
is modal. If s1, . . . , sm is in Um(R) we show PD(s1,...,sm)0 → P0. This follows from Um(R)D(r) =
Um(Rr), Lemma 8.1.3. �

Proposition 8.1.5. For any modal type T, the proposition ‖T‖S is∥∥∥�(r1,...,rn):Um(R)TD(r1) × · · · × TD(rn)
∥∥∥

Proof. It follows from Lemma 8.1.4 that the proposition ‖T‖S is∥∥∥�(r1,...,rn):Um(R) ‖T‖D(r1,...,rn)
∥∥∥= ∥∥∥�(r1,...,rn):Um(R) ‖T‖D(r1) × · · · × ‖T‖D(rn)

∥∥∥
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and we get the result using the fact that choice holds for each D(ri), so that

‖T‖D(r1) × · · · × ‖T‖D(rn) =
∥∥∥TD(r1)

∥∥∥× · · · ×
∥∥∥TD(rn)

∥∥∥= ∥∥∥TD(r1) × · · · × TD(rn)
∥∥∥ �

Proposition 8.1.6. In the sheaf model, R is a local ring.

Proof. This follows from Proposition 8.1.5 and Lemma 8.1.3. �

Lemma 8.1.7. If A is a R-algebra which is modal and there exists r1, . . . , rn in Um(R) such that
each AD(ri) is a f.p. Rri -algebra, then A is a f.p. R-algebra.

Proof. Using the local-global principles presented in Lombardi and Quitté (2015), we can
patch together the f.p. Rri-algebra to a global f.p. R-algebra. This f.p. R-algebra is modal by
Proposition 8.1.1 and is locally equal to A and hence equal to A since A is modal. �

Corollary 8.1.8. The type of f.p. R-algebras is modal and is the type of f.p. R-algebras in the sheaf
model.

Proof. For any R-algebra A, we can form a type �(n,m,A) expressing that A has a presentation
for some v : Prn,m(R), as the type stating that there is some map α : R[X1, . . . , Xn]→A and that
(A, α) is universal such that α is 0 on all elements of v. We can also look at this type �(n,m,A)S
in the sheaf model. Using the translation from Quirin (2016); Coquand et al. (2021), we see that
the type �(ηn, ηm,A)S is exactly the type stating that A is presented by some v : Prn,m(A) among
the modal R-algebras. This is actually equivalent to�(n,m,A) since any f.p. R-algebra is modal.

If A is a modal R-algebra which is f.p. in the sense of the sheaf model, this means that
we have ∥∥�n:NS�m:NS�(n,m,A)S

∥∥
S

This is equivalent to
‖�n:N�m:N�(ηn, ηm,A)S‖S

which in turn is equivalent to
‖�n:N�m:N�(n,m,A)‖S

Using Lemma 8.1.7 and Proposition 8.1.5, this is equivalent to ‖�n:N�m:N�(n,m,A)‖. �

Note that the type of f.p. R-algebra is universe independent.

Proposition 8.1.9. For any f.p. R-algebra A, the type Spec(A) is modal and satisfies the axiom of
Zariski local choice in the sheaf model.

Proof. Let P(x) be a family of types over x : Spec(A) and assume �x:Spec(A) ‖P(x)‖S. By
Proposition 8.1.5, this means �x:Spec(A)

∥∥�(r1,...,rn):UmP(x)D(r1) × · · · × P(x)D(rn)
∥∥. The result fol-

lows then from choice over Spec(A) and Lemma 8.1.3. �

8.2 Presheaf models of univalence
We recall first how to build presheaf models of univalence Cohen et al., (2015); Coquand (2018),
and presheaf models satisfying the 3 axioms of the previous section.
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The constructive models of univalence are presheaf models parametrised by an interval object
I (presheaf with two global distinct elements 0 and 1 and which is tiny) and a classifier object� for
cofibrations. The model is then obtained as an internal model of type theory inside the presheaf
model. For this, we define C :U →U, uniform in the universe U, operation closed by depen-
dent products, sums and such that C(�X:UX) holds. It further satisfies, for A :UI, the transport
principle

(�i:IC(Ai))→ (A0→A1)
We get then a model of univalence by interpreting a type as a presheaf A together with an element
of C(A).

This is over a base category�.
If we have another category C, we automatically get a new model of univalent type theory by

changing� to�× C.
A particular case is if C is the opposite of the category of f.p. k-algebras, where k is a fixed

commutative ring.
We have the presheaf R defined by R(J,A)=Hom(k[X],A), where J is an object of � and A is

an object of C.
The presheaf Gm is defined by Gm(J,A)=Hom(k[X, 1/X],A)=A×, the set of invertible

elements of A.

8.3 Propositional truncation
We start by giving a simpler interpretation of propositional truncation. This will simplify the proof
of the validity of choice in the presheaf model.

We work in the presheaf model over a base category�, which interprets univalent type theory,
with a presheaf� of cofibrations. The interpretation of the propositional truncation ‖T‖ does not
require the use of the interval I.

We recall that in the models, to be contractible can be formulated as having an operation
ext(ψ , v) which extends any partial element v of extent ψ to a total element.

The (new) remark is then that to be a (h)proposition can be formulated as having instead an
operation ext(u,ψ , v) which, now given an element u, extends any partial element v of extent ψ
to a total element.

Propositional truncation is defined as follows. An element of ‖T‖ is either of the form inc(a)
with a in T or of the form ext(u,ψ , v), where u is in ‖T‖ and ψ in � and v a partial element of
extent ψ .

In this definition, the special constructor ext is a “constructor with restrictions” which satisfies
ext(u,ψ , v)= v on the extent ψ Coquand, Huber, and Mörtberg (2018).

8.4 Choice
We prove choice in the presheaf model: if A is a f.p. algebra over R, then we have a map

l : (�x:Spec(A) ‖P‖ )→
∥∥�x:Spec(A)P

∥∥
For defining themap l, we define l(v) by induction on v. The element v is in (�x:Spec(A) ‖P‖ )(B),

which can be seen as an element of ‖P‖ (A). If it is inc(u), we associate inc(u) and if it is ext(u,ψ , v)
the image is ext(l(u),ψ , l(v)).

8.5 1-topos model
For any small category C, we can form the presheaf model of type theory over the base category C
Hofmann (1997); Huber (2016).
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We look at the special case where C is the opposite of the category of finitely presented
k-algebras for a fixed ring k.

In this model, we have a presheaf R(A)=Hom(k[X],A), which has a ring structure.
In the presheaf model, we can check that we have ¬¬(0=R 1). Indeed, at any stage A, we have

a map α :A→ 0 to the trivial f.p. algebra 0, and 0=R 1 is valid at the stage 0.
The previous internal description of the sheaf model applies as well in the 1-topos setting.
However, the type of modal types in a given universe is not modal in this 1-topos setting. This

problem can actually be seen as a motivation for introducing the notion of stacks and is solved
when we start from a constructive model of univalence.

8.6 Some properties of the sheaf model
8.6.1 Quasi-coherence
A module M in the sheaf model defined at stage A, where A is a f.p. k-algebra, is given by a
sheaf over the category of elements of A. It is thus given by a family of modules M(B, α), for
α :A→ B, and restriction mapsM(B, α)→M(C, γα) for γ : B→ C. In general, this family is not
determined by its value MA =M(A, idA) at A, idA. The next proposition expresses internally in
the sheaf model, when a module has this property. This characterisation is due to Blechschmidt
Blechschmidt (2017).

Proposition 8.6.1. M is internally quasi-coherent8 iff we have M(B, α)=MA ⊗A B and the
restriction map for γ : B→ C is MA ⊗A γ .

8.6.2 Projective space
We have defined P

n to be the set of lines in V = Rn+1, so we have
P
n = �L:V→�[∃v:V¬(v= 0)∧ L= Rv]

The following was noticed in Kock and Reyes (1977).

Proposition 8.6.2. P
n(A) is the set of submodules of An+1 factor direct in An+1 and of rank 1.

Proof. Pn is the set of pairs L, 0, where L :�V (A) satisfies the proposition ∃v:V¬(v= 0)∧ L= Rv
at stage A. This condition implies that L is a quasicoherent submodule of Rn+1 defined at stage A.
It is thus determined by its value L(A, idA)= LA.

Furthermore, the condition also implies that LA is locally free of rank 1. By local-global prin-
ciple Lombardi and Quitté (2015), LA is finitely generated. We can then apply Theorem 5.14 of
Lombardi and Quitté (2015) to deduce that LA is factor direct in An+1 and of rank 1. �

One point in this argument was to notice that the condition
∃v:V¬(v= 0)∧ L= Rv

implies that L is quasi-coherent. This would be direct in presence of univalence, since we would
have then L= R as a R-module and R is quasi-coherent. But it can also be proved without uni-
valence by transport along isomorphism: a R-module which is isomorphic to a quasi-coherent
module is itself quasi-coherent.

8.7 Global sections and Zariski global choice
We let �T the type of global sections of a globally defined sheaf T. If c= r1, . . . , rn is in Um(R),
we let�cT be the type�TD(r1) × · · · ×�TD(rn).
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Using these notations, we can state the principle of Zariski global choice
(� ‖T‖ )↔ ∥∥�c:Um(k)�cT

∥∥
This principle is valid in the present model.
Using this principle, we can show that�K(Gm, 1) is equal to the type of projective modules of

rank 1 over k and that each�K(R, n) for n> 0 is contractible.
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Notes
1 In Kock (2006)[I.12], Kock’s “axiom 2k” could equivalently be Theorem 12.2, which is exactly our synthetic quasi coherence
axiom, except that it only quantifies over external algebras.
2 This means we ask for mere existence of a finite presentation, see Definition 1.3.2 for details.
3 It is related to the set-theoretic axiom called axiom of multiple choice (AMC) Berg and Moerdijk (2013) or weakly initial
set of covers axiom (WISC): the set of all Zariski-covers of an affine scheme is weakly initial among all covers. However, our
axiom only applies to (affine) schemes, not all types or sets.
4 Here, the word “derived” refers to the rings the algebraic geometry is built up from – instead of the 0-truncated rings
we use, “derived” algebraic geometry would use simplicial or spectral rings. Sometimes, “derived” refers to homotopy types
appearing in “the other direction”, namely as the values of the sheaves that are used. In that direction, our theory is already
derived, since we use homotopy type theory. Practically that means that we expect no problems when expanding our theory
of synthetic schemes to what classic algebraic geometers call “stacks”.
5 For example, this is the n=−1 case of Capriotti et al. (2015) [Theorem 2.1].
6 Using the notation from Definition 1.3.13
7 See Definition 1.3.12 for “V( . . . )”
8 In the sense that the canonical mapM⊗A→MSpec(A) is an isomorphism for any f.p. R-algebra A.
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A. Negative results
Here we collect some results of the theory developed from the axioms (Loc), (SQC), and
(Z-choice) that are of a negative nature and primarily serve the purpose of counterexamples.

We adopt the following definition from [Lombardi and Quitté (2015), Section IV.8].

Definition A.0.1. A ring A is zero-dimensional if for all x :A there exists a :A and k :N such that
xk = axk+1.

Lemma A.0.2 (using Loc, SQC, Z-choice). The ring R is not zero-dimensional.

Proof. Assume that R is zero-dimensional, so for every r : R there merely is some k :N with
rk ∈ (rk+1). We note that R=A

1 is an affine scheme and that if rk ∈ (rk+1), then we also have
rk

′ ∈ (rk
′+1) for every k′ ≥ k. This means that we can apply Proposition 3.3.5 and merely obtain

a number K :N such that rK ∈ (rK+1) for all r : R. In particular, rK+1 = 0 implies rK = 0, so the
canonical map Spec R[X]/(XK)→ Spec R[X]/(XK+1) is a bijection. But this is a contradiction,
since the homomorphism R[X]/(XK+1)→ R[X]/(XK) is not an isomorphism. �

Example A.0.3 (using Loc, SQC, Z-choice). It is not the case that every monic polynomial f : R[X]
with deg f ≥ 1 has a root. More specifically, if U ⊆A

1 is an open subset with the property that the
polynomial X2 − a : R[X]merely has a root for every a :U, then U =∅.
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Proof. Let U ⊆A
1 be as in the statement. Since we want to show U =∅, we can assume a given

element a0 :U and now have to derive a contradiction. By Z-choice, there exists in particular
a basic open D(f )⊆A

1 with a0 ∈D(f ) and a function g :D(f )→ R such that (g(x))2 = x for
all x :D(f ). By SQC, this corresponds to an element p

f n : R[X]f with ( p
f n )

2 = X : R[X]f . We use
Lemma 1.3.6 together with the fact that f (a0) is invertible to get that f : R[X] is regular, and there-
fore p2 = f 2nX : R[X]. Considering this equation over Rred = R/

√
(0) instead, we can show by

induction that all coefficients of p and of f n are nilpotent, which contradicts the invertibility of
f (a0). �

Remark A.0.4. Example A.0.3 shows that the axioms we are using here are incompatible with a
natural axiom that is true for the structure sheaf of the big étale topos, namely that R admits roots
for unramifiable monic polynomials. The polynomial X2 − a is even separable for invertible a,
assuming that 2 is invertible in R. To get rid of this last assumption, we can use the fact that either
2 or 3 is invertible in the local ring R and observe that the proof of Example A.0.3 works just the
same for X3 − a.

We now give two different proofs that not all R-modules are weakly quasi-coherent in the sense
of Definition 7.1.5. The first shows that the map

Mf →MD(f )

is not always surjective, the second shows that it is not always injective.

Proposition A.0.5 (using Loc, SQC, Z-choice). The R-module RN is not weakly quasi-coherent (in
the sense of Definition 7.1.5).

Proof. For r : R, we have (RN)D(r) = (RD(r))N = (Rr)N, so the question is whether the canonical
map

(RN)r → (Rr)N

is an equivalence. If it is, for a fixed r : R, then the sequence (1, 1r ,
1
r2 , . . . ) has a preimage, so

there is an n :N such that for all k :N, ak
rn = 1

rk in Rr for some ak : R. In particular, an+1
f n = 1

f n+1 in
Rf and therefore an+1f n+1+� = f n+� in R for some � :N. This shows that R is zero-dimensional
(Definition A.0.1) if RN is weakly quasi-coherent. So we are done by Lemma A.0.2. �

Proposition A.0.6 (using Loc, SQC, Z-choice). The implication

MD(f ) = 0 ⇒ Mf = 0

does not hold for all R-modules M and f : R. In particular, the map Mf →MD(f ) from Definition
7.1.5 is not always injective.

Proof. Assume that the implication always holds. We construct a family of R-modules,
parametrized by the elements of R, and deduce a contradiction from the assumption applied to
the R-modules in this family.

Given an element f : R, the R-module we want to consider is the countable product

M(f ) :≡
∏
n:N

R/(f n).

If f �= 0, thenM(f )= 0 (using Proposition 2.2.3). This implies that theR-moduleM(f )f �=0 is trivial:
any function f �= 0→M(f ) can only assign the value 0 to any of the at most one witnesses of f �= 0.
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By assumption, this implies that M(f )f is also trivial. Noting that M(f ) is not only an R-module
but even an R-algebra in a natural way, we have

M(f )f = 0 ⇔ ∃k :N. f k = 0 inM(f )
⇔ ∃k :N. ∀n :N. f k ∈ (f n)⊆ R
⇔ ∃k :N. f k ∈ (f k+1)⊆ R.

In summary, our assumption implies that the ring R is zero-dimensional (in the sense of
Definition A.0.1). But this is not the case, as we saw in Lemma A.0.2. �

Example A.0.7 (using Loc, SQC). It is not the case that for any pair of lines L, L′ ⊆ P
2, the

R-algebra RL∩L
′
is as an R-module free of rank 1.

Proof. The R-algebra RL∩L
′
is free of rank 1 if and only if the structure homomorphism

ϕ : R→ RL∩L
′
is bijective. We will show that it is not even always injective.

Consider the lines
L= { [x : y : z] : P2 | z= 0 }

and
L′ = { [x : y : z] : P2 | εx+ δy+ z= 0 },

where ε and δ are elements of R with ε2 = δ2 = 0. Consider the element ϕ(εδ) : RL∩L′ , which is
the constant function L∩ L′ → R with value εδ. For any point [x : y : z] : L∩ L′, we have z= 0
and εx+ δy= 0. But also, by definition of P3, we have (x, y, z) �= 0 : R3, so one of x, y must be
invertible. This implies δ | ε or ε | δ, and in both cases, we can conclude εδ = 0. Thus, ϕ(εδ)= 0 :
RL∩L

′
.

If ϕ was always injective then this would imply εδ = 0 for any ε, δ : Rwith ε2 = δ2 = 0. In other
words, the inclusion

SpecR[X, Y]/(X2, Y2, XY) ↪→ SpecR[X, Y]/(X2, Y2)
would be a bijection. But the corresponding R-algebra homomorphism is not an
isomorphism. �
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