METANILPOTENT VARIETIES OF GROUPS

R. M. BRYANT and A. N. KRASIL'NIKOV

(Received 10 February 2000)

Communicated by R. B. Howlett

Abstract

For each positive integer n let $\mathbf{N}_{2, n}$ denote the variety of all groups which are nilpotent of class at most 2 and which have exponent dividing n. For positive integers m and n, let $\mathbf{N}_{2, m} \mathbf{N}_{2, n}$ denote the variety of all groups which have a normal subgroup in $\mathbf{N}_{2, m}$ with factor group in $\mathbf{N}_{2, n}$. It is shown that if $G \in \mathbf{N}_{2, m} \mathbf{N}_{2, n}$, where m and n are coprime, then G has a finite basis for its identities.

2000 Mathematics subject classification: primary 20E10.

1. Introduction

The finite basis question for a group G asks whether the set of all identities of G is equivalent to some finite set of identities. (We refer to [13] for terminology and basic results concerned with varieties of groups, but we use the term 'identity' rather than 'law'.) Between 1970 and 1973 a number of examples were published of groups for which the answer is negative: see [9] for references covering this period and see [5] for an account of more recent results. In the majority of these examples, the groups are metanilpotent (that is, nilpotent-by-nilpotent) and have finite exponent. In the simplest cases the groups belong to the variety $\mathbf{N}_{2,4} \mathbf{N}_{2,4}$: here, for any positive integer $n, \mathbf{N}_{2, n}$ denotes the variety of all groups which are nilpotent of class at most 2 and have finite exponent dividing n, and, for varieties \mathbf{U} and $\mathbf{V}, \mathbf{V} \mathbf{U}$ denotes the product variety, consisting of all groups which have a normal subgroup in \mathbf{V} with factor group in \mathbf{U}. However, there are also many positive results. In particular, Lyndon [11] showed that every nilpotent group has a finite basis for its identities and Krasil'nikov [10] showed, much more generally, that the same is true for every nilpotent-by-abelian group.

[^0](C) 2002 Australian Mathematical Society 1446-7887/2000 \$A2.00 + 0.00

In the negative examples mentioned above in which G is metanilpotent of finite exponent there is no bound on the class of the nilpotent subgroups of G. It seems still to be an open question whether a soluble group of finite exponent, in which the nilpotent subgroups have bounded class, has a finite basis for its identities. Our main result gives a positive answer in many simple cases.

Theorem A. Let $G \in \mathbf{N}_{2, m} \mathbf{N}_{2, n}$ where m and n are coprime positive integers. Then G has a finite basis for its identities.

A special case of this result was proved by Brady, Bryce and Cossey [2]: they showed that G has a finite basis for its identities if G belongs to $\mathbf{A}_{m} \mathbf{N}_{2, n}$, where m and n are coprime positive integers and $\mathbf{A}_{\boldsymbol{m}}$ denotes the variety of all abelian groups of exponent dividing m. Theorem A solves a problem posed by Kovács and Newman [9]. The method adopted in [2] depends upon an analysis of the irreducible linear groups in $\mathbf{N}_{2, n}$, in prime characteristic not dividing n, and develops ideas of Higman [8]. However, at about the same time, Cohen [4] introduced a quite different method for tackling the finite basis question, dependent on the combinatorics of ordered sets. Cohen used this method to prove that every metabelian group has a finite basis for its identities, and the method was developed by others in later work such as [3,10] and [12]. We apply similar methods here, for which we need the idea of a well-quasiordered set, defined as follows.

A quasi-order on a set W is a binary relation \preccurlyeq on W which is reflexive and transitive. (We do not assume that $x \preccurlyeq y$ and $y \preccurlyeq x$ imply $x=y$, as in a partial order. Furthermore, we give no meaning to \prec, only to \preccurlyeq.) As shown in [6], the following two properties of a quasi-ordered set (W, \preccurlyeq) are equivalent:
(i) for every infinite sequence w_{1}, w_{2}, \ldots of elements of W there exist i and j with $i<j$ such that $w_{i} \preccurlyeq w_{j}$;
(ii) for every subset X of W there exists a finite subset Y of X such that for every element x of X there exists $y \in Y$ such that $y \preccurlyeq x$.
If (either of) these conditions hold then (W, \preccurlyeq) is said to be well-quasi-ordered. If the relation \preccurlyeq is a total (or linear) order then we obtain the more familiar idea of a well-ordered set.

We need to apply this idea to bilinear forms. Let K be a non-zero, finite, commutative and associative ring, with identity element, and let S be a finitely generated K-module. By an S-form we mean a pair (V, θ) consisting of a finitely generated, non-zero, free K-module V and a K-bilinear mapping $\theta: V \times V \rightarrow S$. If (V, θ) and ($V^{\prime}, \theta^{\prime}$) are S-forms we write $(V, \theta) \preccurlyeq\left(V^{\prime}, \theta^{\prime}\right)$ if there is a K-module monomorphism $\xi: V \rightarrow V^{\prime}$ such that $\theta\left(v_{1}, v_{2}\right)=\theta^{\prime}\left(v_{1} \xi, v_{2} \xi\right)$ for all $v_{1}, v_{2} \in V$. The first step in the proof of Theorem A is the following result (or, to be precise, a more technical version of this result stated in Section 3).

THEOREM B. The set of all S-forms is well-quasi-ordered under the relation \preccurlyeq.
Strictly speaking, the class of all S-forms is not a set. However, Theorem B can be rephrased to say that every set of S-forms is well-quasi-ordered under \preccurlyeq.

A result like this for trilinear alternating forms over a finite field was obtained by Atkinson [1] in order to prove a different finite basis result.

The finite basis question for a group G is equivalent to the finite basis question for the variety \mathbf{V} generated by G (see [13]). Furthermore, if F is a free group of countably infinite rank and $\mathbf{V}(F)$ denotes the verbal subgroup of F corresponding to \mathbf{V} then every subvariety of \mathbf{V} is finitely based if and only if \mathbf{V} is finitely based and the maximal condition holds for fully invariant subgroups of the relatively free group $F / V(F)$. Much of the proof of Theorem A is concerned with establishing that the maximal condition holds in some closely related situations, typically for certain ideals in group algebras.

Let n be a positive integer and let A be a free group of countably infinite rank in the variety $\mathbf{N}_{2, n}$. Let \mathbb{F} be a field of characteristic which does not divide n. Let Ψ be the set of all endomorphisms of A and, for each positive integer r, let $A^{\times r}$ denote the r-th direct power of A. Each element ψ of Ψ acts 'diagonally' on $A^{\times r}$ by $\left(a_{1}, \ldots, a_{r}\right) \psi=\left(a_{1} \psi, \ldots, a_{r} \psi\right)$ for all $a_{1}, \ldots, a_{r} \in A$, and this action can be extended to the group algebra $\mathbb{F}\left(A^{\times r}\right)$ in the obvious way. Using the version of Theorem B mentioned above we shall prove the following result.

THEOREM C. For each positive integer r, the maximal condition holds for Ψ-closed left ideals of $\mathbb{F}\left(A^{\times r}\right)$.

If U is a left C-module, for some algebra C, and if there is also an action of Ψ on U, we call U a (C, Ψ)-module. The concepts of (C, Ψ)-submodule and homomorphism of (C, Ψ)-modules are defined in the obvious way.

The algebra $\mathbb{F}(A \times A)$ is isomorphic to $\mathbb{F} A \otimes \mathbb{F} A$ (where the tensor product is taken over \mathbb{F}) under the linear map which sends $\left(a, a^{\prime}\right)$ to $a \otimes a^{\prime}$ for all $a, a^{\prime} \in A$. We shall identify these two algebras and write (a, a^{\prime}) or $a \otimes a^{\prime}$ interchangeably. Let R be the subspace of $\mathfrak{F}(A \times A)$ spanned by all elements of the form $a \otimes a$ and $a \otimes a^{\prime}+a^{\prime} \otimes a$ for $a, a^{\prime} \in A$. It is easily verified that R is a subalgebra of $\mathbb{F}(A \times A)$. Thus we may regard $\mathbb{F}(A \times A)$ as a left R-module and, indeed, as an (R, Ψ)-module. Clearly R is an (R, Ψ)-submodule of $\mathbb{F}(A \times A)$. The last main step in the proof of Theorem A is the following result.

TheOrem D. The maximal condition holds for (R, Ψ)-submodules of $\mathbb{F}(A \times A)$ which contain R.

The vector space $\mathbb{F}(A \times A) / R$ is isomorphic to the exterior square $\mathbb{F} A \wedge \mathbb{F} A$, which can therefore be given the structure of an (R, Ψ)-module. Thus Theorem D gives the
following result.
COROLLARY. The maximal condition holds for (R, Ψ)-submodules of $\mathbb{F} A \wedge \mathbb{F} A$.
Theorems B, C and D will be proved in Sections 3, 5 and 6, respectively. In Section 2 we show how Theorem A can be derived from Theorems C and D.

2. The derivation of Theorem \mathbf{A}

In this section we assume Theorems C and D, and we obtain Theorem A from these results.

One step in the proof of Theorem A is the special case proved in [2]. We could, of course, assume this result, but in order to illustrate our method in a comparatively simple case we first prove this special case.

Let \mathbf{U} and \mathbf{V} be varieties of groups. Let A be a free group in \mathbf{U} on a free generating set $\left\{x_{i}: i \in \mathbb{N}\right\}$ and let B be a free group in \mathbf{V} on a free generating set $\left\{y_{i}^{a}: i \in \mathbb{N}, a \in A\right\}$. For each i, the element y_{i}^{1} is also written as y_{i}. Each element a^{\prime} of A induces an automorphism of B in which $y_{i}^{a} \mapsto y_{i}^{a a^{\prime}}$ for all $i \in \mathbb{N}, a \in A$. Accordingly we can form the semidirect product $B A$, a split extension of B by A in which the original action of A on B becomes conjugation. We denote this group $B A$ by $F_{\text {split }}(\mathbf{V}, \mathbf{U})$. The group has the following universal property implicit in [14] and straightforward to prove directly.

LEMMA 2.1. Let G be a split extension of a group B_{1} in V by a group A_{1} in U . Then every pair of mappings $\left\{x_{i}: i \in \mathbb{N}\right\} \rightarrow A_{1},\left\{y_{i}: i \in \mathbb{N}\right\} \rightarrow B_{1}$ extends (uniquely) to a homomorphism $F_{\text {split }}(\mathbf{V}, \mathbf{U}) \rightarrow G$.

LEMMA 2.2. Let U and \mathbf{V} be locally finite varieties of groups of coprime exponents and write $W=F_{\text {split }}(\mathbf{V}, \mathbf{U})$. Let \mathbf{S} be a subvariety of $\mathbf{V} \mathbf{U}$. Then \mathbf{S} is generated by the group $W / \mathbf{S}(W)$, where $\mathbf{S}(W)$ is the verbal subgroup of W corresponding to \mathbf{S}.

Proof. Since \mathbf{S} is locally finite it is generated by the finite groups it contains. By the Schur-Zassenhaus Theorem, each such finite group G is a split extension of a group in \mathbf{V} by a group in \mathbf{U}. It follows, by Lemma 2.1 , that G is a homomorphic image of $W / \mathbf{S}(W)$. Therefore $W / \mathbf{S}(W)$ generates \mathbf{S}.

LEMMA 2.3. Let F be a relatively free group and let U be an abelian fully invariant subgroup of F of exponent dividing a positive integer m. Suppose that U contains an infinite strictly ascending chain of fully invariant subgroups of F. Then there exists a prime p dividing m such that U / U^{p} contains an infinite strictly ascending chain of fully invariant subgroups of F / U^{p}.

Proof. Let Ω be the set of all endomorphisms of F, with Ω regarded as a set of operators. If V is any fully invariant subgroup of F then, since the endomorphisms of F / V are precisely those induced by elements of $\Omega, F / V$ may be regarded as an Ω-group and the Ω-subgroups of F / V are precisely the fully invariant subgroups of F / V, each being of the form W / V for some Ω-subgroup W of F containing V. Observe that if N is an Ω-subgroup of U then, since U contains an infinite strictly ascending chain of Ω-subgroups, either N or U / N contains such a chain.

Since U is abelian of exponent dividing m, we may write U as a finite direct product $U=U_{1} \times \cdots \times U_{k}$ where each U_{i} is a non-trivial Ω-subgroup of prime-power exponent dividing m. By repeated use of the previous observation and isomorphisms of Ω-groups, we find that there exists $i \in\{1, \ldots, k\}$ such that $U / \prod_{j \neq i} U_{j}$ contains an infinite strictly ascending chain of Ω-subgroups. Thus it suffices to prove the lemma in the case where U has exponent p^{s} for some prime p and positive integer s. By the same observation applied to the chain $U \geq U^{p} \geq \cdots \geq U^{p^{s}}=\{1\}$, there exists $r \in\{0,1, \ldots, s-1\}$ such that $U^{p^{r}} / U^{p^{r+1}}$ contains an infinite strictly ascending chain of Ω-subgroups. Thus there are Ω-subgroups W_{1}, W_{2}, \ldots of U satisfying

$$
U^{p^{r+1}} \leq W_{1}<W_{2}<\cdots<U^{p^{\prime}} .
$$

Let $\chi: U \rightarrow U^{p^{\prime}}$ be the homomorphism defined by $u \chi=u^{p^{\prime}}$ for all $u \in U$. Note that χ is surjective. Thus $U^{p} \leq W_{1} \chi^{-1}<W_{2} \chi^{-1}<\cdots<U$. It is easily verified that χ is a homomorphism of Ω-groups. Thus each $W_{i} \chi^{-1}$ is an Ω-group and $W_{1} \chi^{-1} / U^{p}<W_{2} X^{-1} / U^{p}<\cdots$ is an infinite strictly ascending chain of fully invariant subgroups of F / U^{p} contained in U / U^{p}.

We shall now obtain the finite basis result of [2]. For any variety $\mathbf{V}, F(\mathbf{V})$ denotes the free group of \mathbf{V} of countably infinite rank.

Theorem 2.4 ([2]). Let m and n be coprime positive integers. Then the subvarieties of $\mathbf{A}_{\boldsymbol{m}} \mathbf{N}_{2, n}$ are finitely based.

Proof. Since $\mathbf{A}_{m} \mathbf{N}_{2, n}$ is finitely based by [7], it suffices to show that $F\left(\mathbf{A}_{m} \mathbf{N}_{2, n}\right)$ satisfies the maximal condition on fully invariant subgroups. Write $H=F\left(\mathbf{A}_{m} \mathbf{N}_{2, n}\right)$ and $U=\mathbf{N}_{2, n}(H)$. Thus $H / U \cong F\left(\mathbf{N}_{2, n}\right)$. By [11], H / U satisfies the maximal condition on fully invariant subgroups. Thus it suffices to show that the maximal condition holds for fully invariant subgroups of H contained in U. By Lemma 2.3, it suffices to show that for each prime p dividing m the maximal condition holds for fully invariant subgroups of H / U^{p} contained in U / U^{p}. But $H / U^{p} \cong F\left(\mathrm{~A}_{p} \mathbf{N}_{2, n}\right)$, so it suffices to show that the minimal condition holds for subvarieties of $\mathbf{A}_{p} \mathbf{N}_{2, n}$ which contain $\mathbf{N}_{2, n}$.

Let $W=F_{\text {split }}\left(\mathbf{A}_{p}, \mathbf{N}_{2, n}\right)$ and write $W=B A$ where $A=\left\langle x_{i}: i \in \mathbb{N}\right\rangle \cong F\left(\mathbf{N}_{2, n}\right)$ and $B=\left\langle y_{i}^{a}: i \in \mathbb{N}, a \in A\right\rangle$. Thus B is free in \mathbf{A}_{p}. By Lemma 2.2, the subvarieties
of $\mathbf{A}_{p} \mathbf{N}_{2, n}$ which contain $\mathbf{N}_{2, n}$ are in one-one correspondence with the corresponding verbal subgroups of W, and these verbal subgroups are contained in B. Thus it suffices to prove that the maximal condition holds for fully invariant subgroups of W contained in B.

We can write B additively as a vector space over \mathbb{F}_{p}, the field with p elements, and B has basis $\left\{y_{i}^{a}: i \in \mathbb{N}, a \in A\right\}$. Let T be the subspace with basis $\left\{y_{1}^{a}: a \in A\right\}$. There is an \mathbb{F}_{p}-space isomorphism $\mu: \mathbb{F}_{p} A \rightarrow T$ satisfying $a \mu=y_{1}^{a}$ for all $a \in A$. Hence we can give T the structure of a left $\mathbb{F}_{p} A$-module in such a way that μ is a module isomorphism. Let Ψ be the set of all endomorphisms of A. By Lemma 2.1, each element ψ of Ψ can be extended to an endomorphism of W by taking $y_{i} \psi=y_{i}$ for each i. Thus Ψ acts on W. Clearly T is Ψ-closed and the map $\mu: \mathbb{F}_{p} A \rightarrow T$ is an isomorphism of $\left(\mathbb{F}_{p} A, \Psi\right)$-modules.

For each $a \in A$, let ξ_{a} be the endomorphism of W satisfying $x_{i} \xi_{a}=x_{i}$ for all i, $y_{1} \xi_{a}=y_{1}^{a}$ and $y_{i} \xi_{a}=y_{i}$ for all $i>1$. Clearly T is invariant under each ξ_{a}, and ξ_{a} acts on T in the same way as a acts (when T is regarded as a left $\mathbb{F}_{p} A$-module). It follows that if V is a fully invariant subgroup of W then $V \cap T$ is an $\left(\mathbb{F}_{p} A, \Psi\right)$-submodule of T.

For each $i, j \in \mathbb{N}$, let $\delta_{i j}$ be the endomorphism of W determined by $x_{k} \delta_{i j}=x_{k}$ for all $k, y_{i} \delta_{i j}=y_{j}$ and $y_{k} \delta_{i j}=1$ for all $k \in \mathbb{N} \backslash\{i\}$. Let V be a fully invariant subgroup of W contained in B and let $v \in V$. Then there exists $r \in \mathbb{N}$ such that v belongs to the span of $\left\{y_{i}^{a}: 1 \leq i \leq r, a \in A\right\}$. We have $v=v \delta_{11} \delta_{11}+v \delta_{21} \delta_{12}+\cdots+v \delta_{r 1} \delta_{1 r}$, where $v \delta_{11}, v \delta_{21}, \ldots, v \delta_{r 1} \in V \cap T$. Thus V is generated as a fully invariant subgroup by $V \cap T$.

Suppose that $V_{1} \leq V_{2} \leq \ldots$ is an ascending chain of fully invariant subgroups of W contained in B. Then $V_{1} \cap T \leq V_{2} \cap T \leq \cdots$ is an ascending chain of $\left(\mathbb{F}_{p} A, \Psi\right)$ modules. Hence $\left(V_{1} \cap T\right) \mu^{-1} \leq\left(V_{2} \cap T\right) \mu^{-1} \leq \cdots$ is an ascending chain of Ψ-closed left ideals of $\mathbb{F}_{p} A$. By Theorem C , this chain becomes stationary. Therefore, so does $V_{1} \cap T \leq V_{2} \cap T \leq \cdots$, and so does $V_{1} \leq V_{2} \leq \cdots$, which completes the proof of Theorem 2.4.

PROOF OF ThEOREM A. Let m and n be coprime positive integers, and write $F=$ $F\left(\mathbf{N}_{2, m} \mathbf{N}_{2, n}\right)$. By [7], $\mathbf{N}_{2, m} \mathbf{N}_{2, n}$ is finitely based. Thus it suffices to show that F satisfies the maximal condition on fully invariant subgroups. Let U be the verbal subgroup of F corresponding to $\mathbf{A}_{m} \mathbf{N}_{2, n}$. Thus $F / U \cong F\left(\mathbf{A}_{m} \mathbf{N}_{2, n}\right)$ and, by Theorem 2.4, it suffices to show that the maximal condition holds for fully invariant subgroups of F contained in U. By Lemma 2.3 it suffices to show that, for each prime p dividing m, the maximal condition holds for fully invariant subgroups of F / U^{p} contained in U / U^{p}. Let \mathbf{V} be the variety of all groups G such that G is nilpotent of class at most two, G has exponent dividing m and G^{\prime} has exponent dividing p. Thus $F / U^{p} \cong F\left(\mathbf{V} \mathbf{N}_{2, n}\right)$. It suffices to show that the minimal condition holds for subvarieties of $\mathbf{V N}_{2, n}$ which contain $\mathbf{A}_{m} \mathbf{N}_{2, n}$.

Let $W=F_{\text {split }}\left(\mathbf{V}, \mathbf{N}_{2, n}\right)$ and write $W=B A$ where $A=\left\langle x_{i}: i \in \mathbb{N}\right\rangle \cong F\left(\mathbf{N}_{2, n}\right)$ and $B=\left\langle y_{i}^{a}: i \in \mathbb{N}, a \in A\right\rangle$. Thus B is free in \mathbf{V}. By Lemma 2.2, the subvarieties of $\mathbf{V N}_{2, n}$ which contain $\mathbf{A}_{m} \mathbf{N}_{2, n}$ are in one-one correspondence with the corresponding verbal subgroups of W, and these verbal subgroups are contained in B^{\prime}. Thus it suffices to prove that the maximal condition holds for fully invariant subgroups of W contained in B^{\prime}. If $B^{\prime}=\{1\}$ (as occurs when $p=2$ and m is not divisible by 4) then the result is trivial. Thus we may assume that $B^{\prime} \neq\{1\}$.

We can write B^{\prime} additively as a vector space over \mathbb{F}_{p} spanned by $\left\{\left[y_{i}^{a}, y_{j}^{a^{\prime}}\right]\right.$: $\left.i, j \in \mathbb{N}, a, a^{\prime} \in A\right\}$. Let T_{1} be the subspace spanned by $\left\{\left[y_{1}^{a}, y_{1}^{a^{\prime}}\right]: a, a^{\prime} \in A\right\}$ and let T_{2} be the subspace spanned by $\left\{\left[y_{1}^{a}, y_{2}^{a^{\prime}}\right]: a, a^{\prime} \in A\right\}$. Thus T_{1} has basis $\left\{\left[y_{1}^{a}, y_{1}^{a^{\prime}}\right]: a, a^{\prime} \in A, a>a^{\prime}\right\}$, where $>$ is an arbitrary total order on A, and T_{2} has basis $\left\{\left[y_{1}^{a}, y_{2}^{a^{\prime}}\right]: a, a^{\prime} \in A\right\}$. Thus there are \mathbb{F}_{p}-space isomorphisms $\mu_{1}: \mathbb{F}_{p} A \wedge \mathbb{F}_{p} A \rightarrow T_{1}$ and $\mu_{2}: \mathbb{F}_{p}(A \times A) \rightarrow T_{2}$ satisfying $\left(a \wedge a^{\prime}\right) \mu_{1}=\left[y_{1}^{a}, y_{1}^{a^{\prime}}\right]$ and $\left(a \otimes a^{\prime}\right) \mu_{2}=\left[y_{1}^{a}, y_{2}^{a^{\prime}}\right]$ for all $a, a^{\prime} \in A$. Hence, with R defined as in Section 1, we can give T_{1} the structure of a left R-module and T_{2} the structure of a left $\mathbb{F}_{p}(A \times A)$-module in such a way that μ_{1} and μ_{2} are module isomorphisms. Let Ψ be the set of all endomorphisms of A. As in the proof of Theorem 2.4, Ψ acts on W. Clearly T_{1} and T_{2} are Ψ-closed, μ_{1} is an isomorphism of (R, Ψ)-modules, and μ_{2} is an isomorphism of $\left(\mathbb{F}_{p}(A \times A), \Psi\right)$ modules.

For $a \in A$, let ξ_{a} be the endomorphism of W satisfying $x_{i} \xi_{a}=x_{i}$ for all i, $y_{1} \xi_{a}=y_{1}^{a}$ and $y_{i} \xi_{a}=y_{i}$ for all $i>1$. For $a, a^{\prime} \in A$, let $\xi_{a+a^{\prime}}$ be the endomorphism of W satisfying $x_{i} \xi_{a+a^{\prime}}=x_{i}$ for all $i, y_{1} \xi_{a+a^{\prime}}=y_{1}^{a} y_{1}^{a^{\prime}}$ and $y_{i} \xi_{a+a^{\prime}}=y_{i}$ for all $i>1$. Thus T_{1} is invariant under each ξ_{a} and under each $\xi_{a+a^{\prime}}$. Furthermore, ξ_{a} acts on T_{1} in the same way as $a \otimes a$ acts, while $\xi_{a+a^{\prime}}$ acts on T_{1} in the same way as $\left(a+a^{\prime}\right) \otimes\left(a+a^{\prime}\right)$ acts. It is easily verified that R is spanned by the elements $a \otimes a$ and $\left(a+a^{\prime}\right) \otimes\left(a+a^{\prime}\right)$ for $a, a^{\prime} \in A$. It follows that if V is a fully invariant subgroup of W then $V \cap T_{1}$ is an (R, Ψ)-submodule of T_{1}.

For $a, a^{\prime} \in A$, let $\xi_{a, a^{\prime}}$ be the endomorphism of W determined by $x_{i} \xi_{a, a^{\prime}}=x_{i}$ for all $i, y_{1} \xi_{a, a^{\prime}}=y_{1}^{a}, y_{2} \xi_{a, a^{\prime}}=y_{2}^{a^{\prime}}$ and $y_{i} \xi_{a, a^{\prime}}=y_{i}$ for all $i>2$. Clearly T_{2} is invariant under each $\xi_{a, a^{\prime}}$. Furthermore, $\xi_{a, a^{\prime}}$ acts on T_{2} in the same way as $a \otimes a^{\prime}$ acts. It follows that if V is a fully invariant subgroup of W then $V \cap T_{2}$ is an $\left(\mathbb{F}_{p}(A \times A), \Psi\right)$-submodule of T_{2}.

For each $i, j \in \mathbb{N}$, let $\delta_{i j}$ be the endomorphism of W determined by $x_{k} \delta_{i j}=x_{k}$ for all $k, y_{i} \delta_{i j}=y_{j}$ and $y_{k} \delta_{i j}=1$ for all $k \in \mathbb{N} \backslash\{i\}$. For each $i, j, i^{\prime}, j^{\prime} \in \mathbb{N}$ with $i \neq j$, let $\varepsilon_{i i^{\prime}, j j^{\prime}}$ be the endomorphism of W determined by $x_{k} \varepsilon_{i i^{\prime}, j j^{\prime}}=x_{k}$ for all k, $y_{i} \varepsilon_{i i^{\prime}, j j^{\prime}}=y_{i^{\prime}}, y_{j} \varepsilon_{i i^{\prime}, j j^{\prime}}=y_{j^{\prime}}$ and $y_{k} \varepsilon_{i i^{\prime}, j j^{\prime}}=1$ for all $k \in \mathbb{N} \backslash\{i, j\}$.

Let V be a fully invariant subgroup of W contained in B^{\prime} and let $v \in V$. Then, for some $r \in \mathbb{N}$, we can write $v=v_{1}+v_{2}$ where v_{1} is in the span of $\left\{\left[y_{i}^{a}, y_{i}^{a^{a}}\right]: 1 \leq i \leq\right.$ $\left.r, a, a^{\prime} \in A\right\}$ and v_{2} is in the span of $\left\{\left[y_{i}^{a}, y_{j}^{a^{\prime}}\right]: 1 \leq i<j \leq r, a, a^{\prime} \in A\right\}$. Then it is
easily verified that $v_{1}=\sum_{i} v \delta_{i 1} \delta_{1 i}$ and

$$
v-v_{1}=v_{2} \doteq \sum_{\substack{i, j \\ 1 \leq i<j \leq r}} v_{2} \varepsilon_{i 1, j 2} \varepsilon_{1 i, 2 j}
$$

Here $v \delta_{i 1} \in V \cap T_{1}$ for all i and $v_{2} \varepsilon_{i 1, j 2} \in V \cap T_{2}$ for all i, j. It follows that V is generated as a fully invariant subgroup by $\left(V \cap T_{1}\right) \cup\left(V \cap T_{2}\right)$.

Suppose that $V_{1} \leq V_{2} \leq \cdots$ is an ascending chain of fully invariant subgroups of W contained in B^{\prime}. Then $V_{1} \cap T_{1} \leq V_{2} \cap T_{1} \leq \cdots$ is an ascending chain of (R, Ψ)-submodules of T_{1} while $V_{1} \cap T_{2} \leq V_{2} \cap T_{2} \leq \cdots$ is an ascending chain of $\left(\mathbb{F}_{p}(A \times A), \Psi\right)$-submodules of T_{2}. Hence $\left(V_{1} \cap T_{1}\right) \mu_{1}^{-1} \leq\left(V_{2} \cap T_{1}\right) \mu_{1}^{-1} \leq \cdots$ is an ascending chain of (R, Ψ)-submodules of $\mathbb{F}_{p} A \wedge \mathbb{F}_{p} A$ and

$$
\left(V_{1} \cap T_{2}\right) \mu_{2}^{-1} \leq\left(V_{2} \cap T_{2}\right) \mu_{2}^{-1} \leq \cdots
$$

is an ascending chain of Ψ-closed left ideals of $\mathbb{F}_{p}(A \times A)$. By Theorem C and the Corollary to Theorem D, both of the last two chains become stationary. Hence $\left(V_{1} \cap T_{1}\right) \cup\left(V_{1} \cap T_{2}\right) \leq\left(V_{2} \cap T_{1}\right) \cup\left(V_{2} \cap T_{2}\right) \leq \cdots$ becomes stationary. Therefore $V_{1} \leq V_{2} \leq \cdots$ becomes stationary, which proves Theorem A.

3. Bilinear forms

Let K be a non-zero, finite, commutative and associative ring, with identity element 1 . Unless otherwise stated all K-modules are finitely generated (therefore finite). Let S be a K-module. An S-form is a pair (V, θ) consisting of a non-zero free K-module V and a K-bilinear map $\theta: V \times V \rightarrow S$. A K-linear map $\xi: V \rightarrow V^{\prime}$, where (V, θ) and $\left(V^{\prime}, \theta^{\prime}\right)$ are S-forms, is said to be a homomorphism of S-forms if $\theta\left(v_{1}, v_{2}\right)=\theta^{\prime}\left(v_{1} \xi, v_{2} \xi\right)$ for all $v_{1}, v_{2} \in V$. We write $\xi:(V, \theta) \rightarrow\left(V^{\prime}, \theta^{\prime}\right)$. The terms isomorphism and monomorphism are defined in the obvious way. We define a quasi-order \preccurlyeq on the set of all S-forms by defining $(V, \theta) \preccurlyeq\left(V^{\prime}, \theta^{\prime}\right)$ if there is a monomorphism $\xi:(V, \theta) \rightarrow\left(V^{\prime}, \theta^{\prime}\right)$. The main result of this section is the following.

THEOREM B. The set of all S-forms is well-quasi-ordered under the relation \preccurlyeq.
Let (V, θ) be an S-form. For any subset U of V we define $P(U)$ to be the subset of $S \oplus S$ given by $P(U)=\left\{\left(\theta\left(v_{1}, v_{2}\right), \theta\left(v_{2}, v_{1}\right)\right): v_{1}, v_{2} \in U\right\}$, and we define $Q(U) \subseteq S$ by $Q(U)=\{\theta(v, v): v \in U\}$. Also, for $U, U^{\prime} \subseteq V$ we define $\theta\left(U, U^{\prime}\right) \subseteq S$ by $\theta\left(U, U^{\prime}\right)=\left\{\theta\left(u, u^{\prime}\right): u \in U, u^{\prime} \in U^{\prime}\right\}$. Subsets U and U^{\prime} are said to be orthogonal if $\theta\left(U, U^{\prime}\right)=\theta\left(U^{\prime}, U\right)=\{0\}$.

Lemma 3.1. Let V be a free K-module and let $v_{1}, \ldots, v_{l} \in V$. Then there are free K-submodules U_{1}, U_{2} of V such that $V=U_{1} \oplus U_{2}$, $\operatorname{rank}\left(U_{1}\right) \leq|K| l$, and $v_{1}, \ldots, v_{l} \in U_{1}$.

PROOF. Take elements x_{1}, \ldots, x_{m} of V where m is minimal such that $\left\{x_{1}, \ldots, x_{m}\right\}$ is contained in a K-basis of V and v_{1} belongs to the submodule $\left\langle x_{1}, \ldots, x_{m}\right\rangle$. Write $v_{1}=\sum_{i=1}^{m} \alpha_{i} x_{i}$ where each α_{i} is an element of K. If $m>|K|$ then there exist distinct $j, k \in\{1, \ldots, m\}$ such that $\alpha_{j}=\alpha_{k}$ and we may replace x_{j} and x_{k} by $x_{j}+x_{k}$, contrary to the minimality of m. Thus $m \leq|K|$. Let W be a free K-submodule of V such that $V=\left\langle x_{1}, \ldots, x_{m}\right\rangle \oplus W$ and, for $i=2, \ldots, l$, write $v_{i}=v_{i}^{\prime}+w_{i}$ where $v_{i}^{\prime} \in\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $w_{i} \in W$. The result follows by applying an inductive argument to w_{2}, \ldots, w_{l} in W.

Lemma 3.2. Let (V, θ) be an S-form. Suppose that W is a free K-submodule of V and let $v_{1}, \ldots, v_{l} \in V$. Then there are free K-submodules W_{1}, W_{2} of W such that $W=W_{1} \oplus W_{2}, \operatorname{rank}\left(W_{1}\right) \leq 2|S| l$ and W_{2} is orthogonal to $\left\{v_{1}, \ldots, v_{l}\right\}$.

Proof. We assume that $l=1$ since the general case follows easily. We shall find free submodules U_{1}, U_{2} of W such that $W=U_{1} \oplus U_{2}, \operatorname{rank}\left(U_{1}\right) \leq|S|$ and $\theta\left(\left\{v_{1}\right\}, U_{2}\right)=\{0\}$. A similar argument gives $U_{2}=U^{\prime} \oplus U^{\prime \prime}$ with $\operatorname{rank}\left(U^{\prime}\right) \leq|S|$ and $\theta\left(U^{\prime \prime},\left\{v_{1}\right\}\right)=\{0\}$. The result follows with $W_{1}=U_{1} \oplus U^{\prime}$ and $W_{2}=U^{\prime \prime}$.

Take basis elements x_{1}, \ldots, x_{m} of W where m is maximal subject to $\theta\left(v_{1}, x_{i}\right)=0$ for $i=1, \ldots, m$. Let $\left\{x_{1}, \ldots, x_{d}\right\}$ be a basis of W containing $\left\{x_{1}, \ldots, x_{m}\right\}$. If $d-m>$ $|S|$ then there exist distinct $j, k \in\{m+1, \ldots, d\}$ such that $\theta\left(v_{1}, x_{j}\right)=\theta\left(v_{1}, x_{k}\right)$ and we may extend $\left\{x_{1}, \ldots, x_{m}\right\}$ to $\left\{x_{1}, \ldots, x_{m}, x_{j}-x_{k}\right\}$, contrary to the maximality of m. Thus $d-m \leq|S|$ and we may take $U_{1}=\left\langle x_{m+1}, \ldots, x_{d}\right\rangle, U_{2}=\left\langle x_{1}, \ldots, x_{m}\right\rangle$.

Let N be a positive integer and define $N^{[i]}$, for each non-negative integer i, by $N^{[0]}=0$ and $N^{[i]}=N+N^{2}+\cdots+N^{i}$ for $i>0$. Let (V, θ) be an S-form and let $\left\{x_{1}, \ldots, x_{d}\right\}$ be a K-basis of V. We shall assume, in such notation, that the elements x_{i} are distinct (that is, $d=\operatorname{rank}(V)$) and that the basis is ordered as shown, corresponding to the ordered d-tuple $\left(x_{1}, \ldots, x_{d}\right)$. Let m be the nonnegative integer which satisfies $N^{[m]}<d \leq N^{[m+1]}$ and write $V_{1}=\left\langle x_{1}, \ldots, x_{N^{[1]}}\right\rangle, \ldots$, $V_{m}=\left\langle x_{N^{[m-1]}+1}, \ldots, x_{N^{[m]}}\right\rangle, V_{m+1}=\left\langle x_{N^{[m]}+1}, \ldots, x_{d}\right\rangle$. Thus $\operatorname{rank}\left(V_{i}\right)=N^{i}$ for $i=1, \ldots, m$ and $0<\operatorname{rank}\left(V_{m+1}\right) \leq N^{m+1}$. For $i=1, \ldots, m+1$, write $V_{i}^{+}=$ $V_{i} \oplus \cdots \oplus V_{m+1}$. We say that (V, θ) is N-regular with respect to the ordered basis $\left\{x_{1}, \ldots, x_{d}\right\}$ if $P\left(V_{i}\right)=P\left(V_{i}^{+}\right)$for $i=1, \ldots, m+1, Q\left(V_{i}\right)=Q\left(V_{i}^{+}\right)$for $i=$ $1, \ldots, m+1$, and V_{i-1} and V_{i+1}^{+}are orthogonal for $i=2, \ldots, m$. A decomposition $V=V_{1} \oplus \cdots \oplus V_{m+1}$ with these properties, which is obtained from some ordered basis in the way described, is called an N-regular decomposition of V. Note that V_{i}
and V_{j} are orthogonal whenever $|i-j| \geq 2$. Also $P\left(V_{1}\right) \supseteq P\left(V_{2}\right) \supseteq \cdots \supseteq P\left(V_{m+1}\right)$ and $Q\left(V_{1}\right) \supseteq Q\left(V_{2}\right) \supseteq \cdots \supseteq Q\left(V_{m+1}\right)$.

Lemma 3.3. Let $N \geq|K|\left(2|S|^{2}+|S|\right)$. Then every S-form is N-regular with respect to some basis.

Proof. Write $s=|S|$. Let (V, θ) be an S-form. Let $d=\operatorname{rank}(V)$ and define m by $N^{[m]}<d \leq N^{[m+1]}$. Suppose we can find free modules $V_{1}^{+}, V_{1}, V_{2}^{+}, V_{2}, \ldots, V_{m}^{+}$, V_{m}, V_{m+1}^{+}with the following properties: $V_{1}^{+}=V$; for $i=1, \ldots, m, V_{i}^{+}=V_{i} \oplus V_{i+1}^{+}$, $\operatorname{rank}\left(V_{i}\right)=N^{i}, P\left(V_{i}\right)=P\left(V_{i}^{+}\right)$and $Q\left(V_{i}\right)=Q\left(V_{i}^{+}\right)$; and, for $i=2, \ldots, m, V_{i-1}$ and V_{i+1}^{+}are orthogonal. Then, taking $V_{m+1}=V_{m+1}^{+}$, we see that $V=V_{1} \oplus \cdots \oplus V_{m+1}$ and (V, θ) is N-regular with respect to a basis of V composed of bases of V_{1}, \ldots, V_{m+1}. We construct the required free modules inductively.

First define $V_{1}^{+}=V$. If $\operatorname{rank}\left(V_{1}^{+}\right) \leq N$ then $m=0$ and we have finished. So suppose that $\operatorname{rank}\left(V_{1}^{+}\right)>N$. Since $\left|P\left(V_{1}^{+}\right)\right| \leq s^{2}$ and $\left|Q\left(V_{1}^{+}\right)\right| \leq s$ we can choose elements $v_{1}, \ldots, v_{2 s^{2}+s}$ of V_{1}^{+}(not necessarily distinct) such that

$$
\begin{array}{r}
\left\{\left(\theta\left(v_{2 i-1}, v_{2 i}\right), \theta\left(v_{2 i}, v_{2 i-1}\right)\right): i=1, \ldots, s^{2}\right\}=P\left(V_{1}^{+}\right) \\
\left\{\theta\left(v_{i}, v_{i}\right): i=2 s^{2}+1, \ldots, 2 s^{2}+s\right\}=Q\left(V_{1}^{+}\right)
\end{array}
$$

By Lemma 3.1, we can find free submodules U_{1} and U_{2} of V_{1}^{+}such that $V_{1}^{+}=U_{1} \oplus U_{2}$, $v_{1}, \ldots, v_{2 s^{2}+s} \in U_{1}$ and $\operatorname{rank}\left(U_{1}\right) \leq|K|\left(2 s^{2}+s\right) \leq N$. Choose free modules V_{1} and V_{2}^{+}such that $V_{1}^{+}=V_{1} \oplus V_{2}^{+}, \operatorname{rank}\left(V_{1}\right)=N$ and $V_{1} \supseteq U_{1}$. By the choice of $v_{1}, \ldots, v_{2 s^{2}+s}$, we have $P\left(V_{1}\right)=P\left(V_{1}^{+}\right)$and $Q\left(V_{1}\right)=Q\left(V_{1}^{+}\right)$.

Suppose that for some k with $1 \leq k \leq m$ we have found free modules $V_{1}^{+}, V_{1}, V_{2}^{+}$, $\ldots, V_{k}, V_{k+1}^{+}$with the required properties for these modules. If $\operatorname{rank}\left(V_{k+1}^{+}\right) \leq N^{k+1}$ then $m=k$ and we have finished. So suppose that $\operatorname{rank}\left(V_{k+1}^{+}\right)>N^{k+1}$. By the method used in the first part of the proof we may find free submodules U and W of V_{k+1}^{+}such that $V_{k+1}^{+}=U \oplus W, P(U)=P\left(V_{k+1}^{+}\right), Q(U)=Q\left(V_{k+1}^{+}\right)$and $\operatorname{rank}(U)=N$. By Lemma 3.2, there are free submodules W_{1} and W_{2} of W such that $W=W_{1} \oplus W_{2}, W_{2}$ and V_{k} are orthogonal and rank $\left(W_{1}\right) \leq 2 s N^{k}$. Then

$$
\operatorname{rank}\left(U \oplus W_{1}\right) \leq N+2 s N^{k} \leq(1+2 s) N^{k} \leq N^{k+1}
$$

Choose free modules V_{k+1} and V_{k+2}^{+}such that $V_{k+1}^{+}=V_{k+1} \oplus V_{k+2}^{+}$, $\operatorname{rank}\left(V_{k+1}\right)=N^{k+1}$, $V_{k+1} \supseteq U \oplus W_{1}$ and $V_{k+2}^{+} \subseteq W_{2}$. Then V_{k+1} and V_{k+2}^{+}have the required properties.

Lemma 3.4. Let (V, θ) be an S-form which has an N-regular decomposition $V=$ $V_{1} \oplus \cdots \oplus V_{m+1}$.
(i) Let $k \in\{1, \ldots, m-1\}$. Suppose that $P\left(V_{k}\right)=P\left(V_{k+2}\right)$ and $Q\left(V_{k}\right)=$ $Q\left(V_{k+2}\right)$. Then $P\left(V_{k}\right)$ is an additive subgroup of $S \oplus S$ and $Q\left(V_{k}\right)$ is an additive subgroup of S.
(ii) Let c be a positive integer and let $r(1)$ and $r(2)$ be integers such that $1 \leq$ $r(1)<r(2) \leq m+1$. Suppose that

$$
\begin{aligned}
& P\left(V_{r(1)}\right)=P\left(V_{r(1)+1}\right)=\cdots=P\left(V_{r(2)}\right)=P \subseteq S \oplus S \\
& Q\left(V_{r(1)}\right)=Q\left(V_{r(1)+1}\right)=\cdots=Q\left(V_{r(2)}\right)=Q \subseteq S
\end{aligned}
$$

and $r(2)-r(1) \geq c(c+1)+2$. Write $W=V_{r(1)+2} \oplus \cdots \oplus V_{r(2)-2}$. For all $i, j \in\{1, \ldots, c\}$ with $i<j$ let $p_{i j} \in P$ and for all $i \in\{1, \ldots, c\}$ let $q_{i} \in Q$. Then there exist $w_{1}, \ldots, w_{c} \in W$ such that $\left(\theta\left(w_{i}, w_{j}\right), \theta\left(w_{j}, w_{i}\right)\right)=p_{i j}$, for all $i, j \in\{1, \ldots, c\}$ with $i<j$, and $\theta\left(w_{i}, w_{i}\right)=q_{i}$, for all $i \in\{1, \ldots, c\}$.

PROOF. (i) Let $p, p^{\prime} \in P\left(V_{k}\right)$. Then there exist $v, w \in V_{k}$ and $v^{\prime}, w^{\prime} \in V_{k+2}$ such that $(\theta(v, w), \theta(w, v))=p$ and $\left(\theta\left(v^{\prime}, w^{\prime}\right), \theta\left(w^{\prime}, v^{\prime}\right)\right)=p^{\prime}$. Write $V_{k}^{+}=$ $V_{k} \oplus \cdots \oplus V_{m+1}$. Since V_{k} and V_{k+2} are orthogonal,

$$
p+p^{\prime}=\left(\theta\left(v+v^{\prime}, w+w^{\prime}\right), \theta\left(w+w^{\prime}, v+v^{\prime}\right)\right) \in P\left(V_{k}^{+}\right)=P\left(V_{k}\right)
$$

Hence, since $P\left(V_{k}\right)$ is finite, it is a group. Similarly $Q\left(V_{k}\right)$ is a group.
(ii) By (i), P and Q are additive groups. There are $c(c+1) / 2$ modules in the set $\left\{V_{r(1)+2}, V_{r(1)+4}, \ldots, V_{r(1)+c(c+1)}\right\}$ and so these modules can be relabelled as U_{i} for $1 \leq i \leq c$ and $U_{i j}$ for $1 \leq i<j \leq c$. These modules are pairwise orthogonal submodules of W such that $P\left(U_{i}\right)=P\left(U_{i j}\right)=P$ and $Q\left(U_{i}\right)=Q\left(U_{i j}\right)=Q$ for all i, j. For $i, j \in\{1, \ldots, c\}$ with $i<j$ choose $u_{i j}, v_{i j} \in U_{i j}$ such that

$$
\left(\theta\left(u_{i j}, v_{i j}\right), \theta\left(v_{i j}, u_{i j}\right)\right)=p_{i j}
$$

Then for each $i \in\{1, \ldots, c\}$ choose $u_{i} \in U_{i}$ such that

$$
\theta\left(u_{i}, u_{i}\right)=q_{i}-\sum_{j: j>i} \theta\left(u_{i j}, u_{i j}\right)-\sum_{j: j<i} \theta\left(v_{j i}, v_{j i}\right)
$$

Finally, for $i=1, \ldots, c$, define $w_{i}=u_{i}+\sum_{j: j>i} u_{i j}+\sum_{j: j<i} v_{j i}$. It is easy to check that these elements have the required properties.

For each S-form (V, θ) we need to fix an ordered basis of V. Thus we define an S-triple to be a triple (V, θ, X) where (V, θ) is an S-form and X is an ordered basis of V.

Let (V, θ, X) and $\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$ be S-triples, where $\operatorname{rank}(V)=d, \operatorname{rank}\left(V^{\prime}\right)=d^{\prime}$, $X=\left\{x_{1}, \ldots, x_{d}\right\}$ and $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right\}$. We say that (V, θ, X) and $\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$ are isomorphic if $d=d^{\prime}$ and there is an S-form isomorphism $\xi:(V, \theta) \rightarrow\left(V^{\prime}, \theta^{\prime}\right)$ such that $x_{i} \xi=x_{i}^{\prime}$ for $i=1, \ldots, d$. We write $(V, \theta, X) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$ if there is a
one-one order-preserving map $\phi:\{1, \ldots, d\} \rightarrow\left\{1, \ldots, d^{\prime}\right\}$ together with an S-form homomorphism $\xi:(V, \theta) \rightarrow\left(V^{\prime}, \theta^{\prime}\right)$ such that, for $i=1, \ldots, d$,

$$
\begin{equation*}
x_{i} \xi=x_{i \phi}^{\prime}+z_{i}, \quad \text { for some } z_{i} \in\left\langle x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{i \phi-1}^{\prime}\right\rangle \tag{3.1}
\end{equation*}
$$

Clearly \preccurlyeq is a quasi-order on the set of all S-triples. Also, if ξ satisfies (3.1) then ξ is a monomorphism. Hence $(V, \theta, X) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$ implies $(V, \theta) \preccurlyeq\left(V^{\prime}, \theta^{\prime}\right)$. An S-triple (V, θ, X) is said to be N-regular if (V, θ) is N-regular with respect to X.

PROPOSITION 3.5. The set of all N-regular S-triples is well-quasi-ordered under the relation \preccurlyeq.

PROOF. Let $Y^{(1)}, Y^{(2)}, Y^{(3)}, \ldots$ be an infinite sequence of N-regular S-triples. It suffices to show that there exist integers i and j with $i<j$ such that $Y^{(i)} \preccurlyeq Y^{(j)}$. For each i, let $Y^{(i)}=\left(V^{(i)}, \theta^{(i)}, X^{(i)}\right)$ where $V^{(i)}$ has N-regular decomposition $V_{1}^{(i)} \oplus$ $\cdots \oplus V_{m(i)+1}^{(i)}, d(i)=\operatorname{rank}\left(V^{(i)}\right)$ and $X^{(i)}=\left\{x_{1}^{(i)}, \ldots, x_{d(i)}^{(i)}\right\}$. If $\{m(1), m(2), \ldots\}$ is bounded then there are only finitely many isomorphism types in the sequence $Y^{(1)}, Y^{(2)}, Y^{(3)}, \ldots$ and the result is clear. Thus we assume that $\{m(1), m(2), \ldots\}$ is unbounded. By passing to an infinite subsequence we may assume that $m(i) \geq 1$ for all $i \geq 1$. There are only finitely many possibilities for the values $\theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)$ for $j, k \in\left\{1, \ldots, N^{[1]}\right\}$. Thus, by passing to an infinite subsequence, we may assume that, for all $j, k \in\left\{1, \ldots, N^{[1]}\right\}$, the value $\theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)$ is independent of i. Then, by passing to an infinite subsequence, we may assume that $m(i) \geq 2$ for all $i \geq 2$ and that, for all $j, k \in\left\{1, \ldots, N^{[2]}\right\}$, the value $\theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)$ is independent of i for all $i \geq 2$. Continuing in this way we may pass to an infinite subsequence with the following property for all $n \in \mathbb{N}$:

$$
\begin{equation*}
m(i) \geq n \text { for all } i \geq n \text { and } \tag{3.2}
\end{equation*}
$$

for all $j, k \in\left\{1, \ldots, N^{[n]}\right\}, \theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)$ is independent of i for all $i \geq n$.
Let \bar{V} be a free K-module with countably infinite basis $\bar{X}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots\right\}$. Define a K-bilinear map $\bar{\theta}: \bar{V} \times \bar{V} \rightarrow S$ by taking $\bar{\theta}\left(\bar{x}_{j}, \bar{x}_{k}\right)$ to be the limiting value of $\theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)$. Furthermore, for each positive integer n, let P_{n} and Q_{n} be the limiting values of $P\left(V_{n}^{(i)}\right)$ and $Q\left(V_{n}^{(i)}\right)$, respectively. Since $P_{1} \supseteq P_{2} \supseteq \cdots$ and $Q_{1} \supseteq Q_{2} \supseteq \cdots$, there exist $P \subseteq S \oplus S, Q \subseteq S$, and a positive integer r, such that $P_{r}=P_{r+1}=\cdots=P$ and $Q_{r}=Q_{r+1}=\cdots=Q$. By Lemma 3.4, P and Q are additive groups.

For each i, let $r(i)$ be the largest integer belonging to $\{1, \ldots, m(i)\}$ such that $\theta^{(i)}\left(x_{j}^{(i)}, x_{k}^{(i)}\right)=\bar{\theta}\left(\bar{x}_{j}, \bar{x}_{k}\right)$ for all $j, k \in\left\{1, \ldots, N^{[r(i)]}\right\}$. By construction, the set $\{r(1), r(2), \ldots\}$ is unbounded. Hence, by passing to an infinite subsequence, we may
assume that $r \leq r(1)<r(2)<\cdots$. Let

$$
\begin{aligned}
& a(i)=N^{[r(i)-1]}=\operatorname{rank}\left(V_{1}^{(i)} \oplus \cdots \oplus V_{r(i)-1}^{(i)}\right) \\
& b(i)=N^{[r(i)]}=\operatorname{rank}\left(V_{1}^{(i)} \oplus \cdots \oplus V_{r(i)}^{(i)}\right)=a(i)+N^{r(i)}
\end{aligned}
$$

We may pass to an infinite subsequence so that, for each i, we have

$$
\begin{align*}
d(i)-a(i) & \leq d(i+1)-a(i+1) \quad \text { and } \\
r(i+1)-r(i) & \geq(d(i)-a(i))(d(i)-a(i)+1)+2 \tag{3.3}
\end{align*}
$$

We now focus on $Y^{(1)}$ and $Y^{(2)}$ and show that $Y^{(1)} \preccurlyeq Y^{(2)}$. By the choice of $r(1)$ and $r(2)$, we have

$$
\begin{aligned}
& P\left(V_{r(1)}^{(1)}\right)=P\left(V_{r(1)}^{(2)}\right)=P\left(V_{r(1)+1}^{(2)}\right)=\cdots=P\left(V_{r(2)}^{(2)}\right)=P, \\
& Q\left(V_{r(1)}^{(1)}\right)=Q\left(V_{r(1)}^{(2)}\right)=Q\left(V_{r(1)+1}^{(2)}\right)=\cdots=Q\left(V_{r(2)}^{(2)}\right)=Q,
\end{aligned}
$$

and

$$
\theta^{(1)}\left(x_{i}^{(1)}, x_{j}^{(1)}\right)=\theta^{(2)}\left(x_{i}^{(2)}, x_{j}^{(2)}\right) \quad \text { for all } i, j \in\{1, \ldots, b(1)\}
$$

Since $a(1)<a(2)$ and $d(1)-a(1) \leq d(2)-a(2)$ there exists a one-one orderpreserving $\operatorname{map} \phi:\{1, \ldots, d(1)\} \rightarrow\{1, \ldots, d(2)\}$ such that $i \phi=i$ for $i=1, \ldots, a(1)$ and $\{a(1)+1, \ldots, d(1)\} \phi \subseteq\{a(2)+1, \ldots, d(2)\}$.

Write $W=V_{r(1)+2}^{(2)} \oplus \cdots \oplus V_{r(2)-2}^{(2)}$ as in Lemma 3.4. Note that, for $i \in\{a(1)+$ $1, \ldots, d(1)\}$,

$$
\theta^{(1)}\left(x_{i}^{(1)}, x_{i}^{(1)}\right) \in Q\left(V_{r(1)}^{(1)} \oplus \cdots \oplus V_{m(1)+1}^{(1)}\right)=Q\left(V_{r(1)}^{(1)}\right)=Q
$$

and

$$
\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{i \phi}^{(2)}\right) \in Q\left(V_{r(2)}^{(2)} \oplus \cdots \oplus V_{m(2)+1}^{(2)}\right)=Q\left(V_{r(2)}^{(2)}\right)=Q .
$$

Similarly,

$$
\left(\theta^{(1)}\left(x_{i}^{(1)}, x_{j}^{(1)}\right), \theta^{(1)}\left(x_{j}^{(1)}, x_{i}^{(1)}\right)\right) \in P, \quad\left(\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{j \phi}^{(2)}\right), \theta^{(2)}\left(x_{j \phi}^{(2)}, x_{i \phi}^{(2)}\right)\right) \in P,
$$

for all $i, j \in\{a(1)+1, \ldots, d(1)\}$ with $i<j$. Hence, by Lemma 3.4, we can choose elements $w_{a(1)+1}, \ldots, w_{d(1)}$ of W satisfying

$$
\theta^{(2)}\left(w_{i}, w_{i}\right)= \begin{cases}-\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{i \phi}^{(2)}\right) & \text { for } i \in\{a(1)+1, \ldots, b(1)\} \\ \theta^{(1)}\left(x_{i}^{(1)}, x_{i}^{(1)}\right)-\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{i \phi}^{(2)}\right) & \text { for } i \in\{b(1)+1, \ldots, d(1)\}\end{cases}
$$

and

$$
\begin{aligned}
& \left(\theta^{(2)}\left(w_{i}, w_{j}\right), \theta^{(2)}\left(w_{j}, w_{i}\right)\right) \\
& \quad=\left\{\begin{array}{l}
\left(\theta^{(1)}\left(x_{i}^{(1)}, x_{j}^{(1)}\right), \theta^{(1)}\left(x_{j}^{(1)}, x_{i}^{(1)}\right)\right)-\left(\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{j \phi}^{(2)}\right), \theta^{(2)}\left(x_{j \phi}^{(2)}, x_{i \phi}^{(2)}\right)\right), \\
\text { for } i<j \text { with } i \in\{a(1)+1, \ldots, b(1)\}, j \in\{b(1)+1, \ldots, d(1)\} \\
-\left(\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{j \phi}^{(2)}\right), \theta^{(2)}\left(x_{j \phi}^{(2)}, x_{i \phi}^{(2)}\right)\right), \\
\text { for } i<j \text { with } i, j \in\{a(1)+1, \ldots, b(1)\} ; \\
\left(\theta^{(1)}\left(x_{i}^{(1)}, x_{j}^{(1)}\right), \theta^{(1)}\left(x_{j}^{(1)}, x_{i}^{(1)}\right)\right)-\left(\theta^{(2)}\left(x_{i \phi}^{(2)}, x_{j \phi}^{(2)}\right), \theta^{(2)}\left(x_{j \phi}^{(2)}, x_{i \phi}^{(2)}\right)\right) \\
\text { for } i<j \text { with } i, j \in\{b(1)+1, \ldots, d(1)\} .
\end{array}\right.
\end{aligned}
$$

Then we define a K-linear map $\xi: V^{(1)} \rightarrow V^{(2)}$ by

$$
x_{i}^{(1)} \xi= \begin{cases}x_{i}^{(2)} & \text { for } i \in\{1, \ldots, a(1)\} \\ x_{i}^{(2)}+w_{i}+x_{i \phi}^{(2)} & \text { for } i \in\{a(1)+1, \ldots, b(1)\} \\ w_{i}+x_{i \phi}^{(2)} & \text { for } i \in\{b(1)+1, \ldots, d(1)\}\end{cases}
$$

Note that, in these equations, $x_{i}^{(2)} \in V_{1}^{(2)} \oplus \cdots \oplus V_{r(1)}^{(2)}$, while $w_{i} \in W$ and $x_{i \phi}^{(2)} \in$ $V_{r(2)}^{(2)} \oplus \cdots \oplus V_{m(2)+1}^{(2)}$, where $V_{1}^{(2)} \oplus \cdots \oplus V_{r(1)}^{(2)}, W$ and $V_{r(2)}^{(2)} \oplus \cdots \oplus V_{m(2)+1}^{(2)}$ are pairwise orthogonal. It is straightforward to check that $\theta^{(2)}\left(x_{i}^{(1)} \xi, x_{j}^{(1)} \xi\right)=\theta^{(1)}\left(x_{i}^{(1)}, x_{j}^{(1)}\right)$ in all the various cases for i and j. Hence ξ is a homomorphism of S-forms. Clearly ξ has the form required in (3.1). Thus we have $Y^{(1)} \preccurlyeq Y^{(2)}$, as required.

Proof of Theorem B. Take any positive integer N such that $N \geq|K|\left(2|S|^{2}+|S|\right)$. Then, by Lemma 3.3, for each S-form (V, θ) there exists an ordered basis $X_{(V, \theta)}$ of V such that $\left(V, \theta, X_{(V, \theta)}\right)$ is an N-regular S-triple. If (V, θ) and $\left(V^{\prime}, \theta^{\prime}\right)$ are S-forms such that $\left(V, \theta, X_{(V, \theta)}\right) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X_{\left(V^{\prime}, \theta^{\prime}\right)}\right)$ then $(V, \theta) \preccurlyeq\left(V^{\prime}, \theta^{\prime}\right)$. Hence the result follows by Proposition 3.5.

To prove our result about varieties of groups we need, in fact, not Theorem B itself but the assertion stated below as Proposition 3.7.

Let T be any non-empty finite set. We consider finite sequences $\left(t_{1}, \ldots, t_{n}\right)$ of elements of T and write $\left(t_{1}, \ldots, t_{n}\right) \preccurlyeq\left(t_{1}^{\prime}, \ldots, t_{n^{\prime}}^{\prime}\right)$ if $\left(t_{1}, \ldots, t_{n}\right)$ is a subsequence of $\left(t_{1}^{\prime}, \ldots, t_{n^{\prime}}^{\prime}\right)$, that is, if there is a one-one order-preserving map $\phi:\{1, \ldots, n\} \rightarrow$ $\left\{1, \ldots, n^{\prime}\right\}$ such that $t_{i}=t_{i \phi}^{\prime}$ for $i=1, \ldots, n$. Clearly \preccurlyeq is a quasi-order (in fact a partial-order). The following result is a special case of [6, Theorem 4.3].

LEMMA 3.6. The set of all finite sequences of elements of T is well-quasi-ordered under the relation \preccurlyeq.

We define an (S, T)-form to be a quadruple $(V, \theta, X, \mathbf{t})$ where (V, θ, X) is an S triple and \mathbf{t} is an ordered d-tuple $\left(t_{1}, \ldots, t_{d}\right)$ of elements of T, with $d=\operatorname{rank}(V)$. We say that (S, T)-forms (V, θ, X, \mathbf{t}) and ($V^{\prime}, \theta^{\prime}, X^{\prime}, \mathbf{t}^{\prime}$) are isomorphic if the S-triples (V, θ, X) and $\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$ are isomorphic and $\mathbf{t}=\mathbf{t}^{\prime}$. Let $\operatorname{rank}(V)=d, \operatorname{rank}\left(V^{\prime}\right)=d^{\prime}$, $X=\left\{x_{1}, \ldots, x_{d}\right\}$ and $X^{\prime}=\left\{x_{1}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right\}$. Write $(V, \theta, X, \mathbf{t}) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X^{\prime}, \mathbf{t}^{\prime}\right)$ if there is a one-one order-preserving map $\phi:\{1, \ldots, d\} \rightarrow\left\{1, \ldots, d^{\prime}\right\}$ together with an S-form homomorphism $\xi:(V, \theta) \rightarrow\left(V^{\prime}, \theta^{\prime}\right)$ such that, for $i=1, \ldots, d, t_{i}=t_{i \phi}^{\prime}$ and

$$
\begin{equation*}
x_{i} \xi=x_{i \phi}^{\prime}+z_{i}, \quad \text { for some } z_{i} \in\left\langle x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{i \phi-1}^{\prime}\right\rangle \tag{3.4}
\end{equation*}
$$

Clearly \preccurlyeq is a quasi-order on the set of all (S, T)-forms, and we observe that $(V, \theta, X, \mathbf{t}) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X^{\prime}, \mathbf{t}^{\prime}\right)$ implies $(V, \theta, X) \preccurlyeq\left(V^{\prime}, \theta^{\prime}, X^{\prime}\right)$.

An (S, T)-form $(V, \theta, X, \mathbf{t})$ is said to be N-regular if the S-triple (V, θ, X) is N regular. For given S, T and N we write \mathscr{Z} for the set of all N-regular (S, T)-forms.

PROPOSITION 3.7. The set $(\mathscr{Z}, \preccurlyeq)$ is well-quasi-ordered.

PROOF. Let $Z^{(1)}, Z^{(2)}, Z^{(3)}, \ldots$ be an infinite sequence of N-regular (S, T)-forms. It suffices to show that there exist integers i and j with $i<j$ such that $Z^{(i)} \preccurlyeq Z^{(j)}$. For each i, let $Z^{(i)}=\left(V^{(i)}, \theta^{(i)}, X^{(i)}, \mathbf{t}^{(i)}\right)$ and use further notation for $\left(V^{(i)}, \theta^{(i)}, X^{(i)}\right)$ exactly as in the proof of Proposition 3.5. Also, write $\mathbf{t}^{(i)}=\left(t_{1}^{(i)}, \ldots, t_{d(i)}^{(i)}\right)$.

As in the proof of Proposition 3.5 , we may assume that $\{m(1), m(2), \ldots\}$ is unbounded and we may pass to a subsequence with the property (3.2) for all $n \in \mathbb{N}$. But, for each n and each $k \in\left\{1, \ldots, N^{[n]}\right\}$, there are only finitely many possibilities for $t_{k}^{(i)}$; thus we may also assume that, for all $k \in\left\{1, \ldots, N^{[n]}\right\}, t_{k}^{(i)}$ is independent of i for all $i \geq n$.

Define $\bar{V}, \bar{X}, \bar{\theta}, P, Q$ and r as before. Also, for each $k \in \mathbb{N}$, define \bar{t}_{k} to be the limiting value of $t_{k}^{(i)}$. Then define $r(i)$ as before, but with the additional requirement that $t_{k}^{(i)}=\bar{t}_{k}$ for all $k \in\left\{1, \ldots, N^{[r(i)]}\right\}$.

Define $a(i)$ and $b(i)$ as before and pass to an infinite subsequence with property (3.3) for each i. Also, define $\mathbf{t}_{i}=\left(t_{a(i)+1}^{(i)}, t_{a(i)+2}^{(i)}, \ldots, t_{d(i)}^{(i)}\right)$ for each i. By Lemma 3.6, there exist i and j with $i<j$ such that \mathbf{t}_{i} is a subsequence of \mathbf{t}_{j}. Hence, by passing to an infinite subsequence of $Z^{(1)}, Z^{(2)}, \ldots$, we may assume that t_{1} is a subsequence of \mathbf{t}_{2}. Thus there is a one-one order-preserving map $\phi:\{a(1)+1, \ldots, d(1)\} \rightarrow$ $\{a(2)+1, \ldots, d(2)\}$ such that $t_{i}^{(1)}=t_{i \phi}^{(2)}$ for $i=a(1)+1, \ldots, d(1)$. We may extend ϕ to a one-one order-preserving map $\phi:\{1, \ldots, d(1)\} \rightarrow\{1, \ldots, d(2)\}$ by defining $i \phi=i$ for $i=1, \ldots, a(1)$.

As in the proof of Proposition 3.5, there is a homomorphism of S-forms ξ : $\left(V^{(1)}, \theta^{(1)}\right) \rightarrow\left(V^{(2)}, \theta^{(2)}\right)$ such that ξ has the form required in (3.4). For $i=$ $1, \ldots, a(1)$, we have $t_{i}^{(1)}=t_{i}^{(2)}=\bar{t}_{i}$, since $a(1) \leq N^{[r(1)]} \leq N^{[r(2)]}$, and so $t_{i}^{(1)}=t_{i \phi}^{(2)}$,
since $i=i \phi$. Also, for $i=a(1)+1, \ldots, d(1)$, we have $t_{i}^{(1)}=t_{i \phi}^{(2)}$ by the choice of ϕ. Thus $Z^{(1)} \preccurlyeq Z^{(2)}$.

An alternating S-form is an S-form (V, θ) such that $\theta(v, v)=0$ for all $v \in V$. Consider now the case where $S=K$. An alternating K-form (V, θ) is called standard with respect to the ordered basis $\left\{x_{1}, \ldots, x_{d}\right\}$ of V if $\theta\left(x_{i}, x_{j}\right)=0$ for all i, j such that $1 \leq i<j \leq d$ and $(i, j) \notin\{(1,2),(3,4), \ldots,(2[d / 2]-1,2[d / 2])\}$.

LEMMA 3.8 (compare [2]). Let n_{0} be an integer, with $n_{0} \geq 2$, and let $K=\mathbb{Z} / n_{0} \mathbb{Z}$. Let (V, θ) be an alternating K-form. Then there is a K-basis $\left\{x_{1}, \ldots, x_{d}\right\}$ of V such that (V, θ) is standard with respect to $\left\{x_{1}, \ldots, x_{d}\right\}$.

Proof. Choose $u_{1}, u_{2} \in V$ such that the additive cyclic subgroup $\left\langle\theta\left(u_{1}, u_{2}\right)\right\rangle$ of K has largest possible order. Let x_{1} be an element of V of order n_{0} such that $u_{1} \in\left\langle x_{1}\right\rangle$. Note that x_{1} belongs to some basis of V. By maximality, $\left\langle\theta\left(u_{1}, u_{2}\right)\right\rangle=\left\langle\theta\left(x_{1}, u_{2}\right)\right\rangle$. Hence we may replace u_{1} by x_{1}. Let U be a submodule of V such that $V=\left\langle x_{1}\right\rangle \oplus U$. If $U=\{0\}$ then $\left\{x_{1}\right\}$ is the required basis, so suppose $U \neq\{0\}$. Write $u_{2}=u_{2}^{\prime}+u$ where $u_{2}^{\prime} \in\left\langle x_{1}\right\rangle$ and $u \in U$. Clearly we may replace u_{2} by u. Then, as before, we may replace u by an element x_{2} which belongs to a basis of U. Thus $\left\{x_{1}, x_{2}\right\}$ is contained in a basis of V. Set $W=\left\{w \in V: \theta\left(x_{1}, w\right)=\theta\left(x_{2}, w\right)=0\right\}$. Let $v \in V$. The choice of x_{1} and x_{2} shows that $\theta\left(x_{1}, x_{2}\right)$ is a generator of the cyclic group $\left\{\theta\left(x_{1}, u\right): u \in V\right\}$. Hence there exists $\lambda \in K$ such that $\theta\left(x_{1}, v\right)=\lambda \theta\left(x_{1}, x_{2}\right)$. Similarly there exists $\mu \in K$ such that $\theta\left(v, x_{2}\right)=\mu \theta\left(x_{1}, x_{2}\right)$. It follows that $v-\mu x_{1}-\lambda x_{2} \in W$ and so $v \in\left\langle x_{1}, x_{2}\right\rangle+W$. Therefore $V=\left\langle x_{1}, x_{2}\right\rangle+W$. Thus we may find a basis $\left\{x_{1}, x_{2}, w_{1}, \ldots, w_{d-2}\right\}$ of V with $w_{1}, \ldots, w_{d-2} \in W$. The lemma follows by an inductive argument applied to $\left\langle w_{1}, \ldots, w_{d-2}\right\rangle$.

4. Direct powers of finite groups

In this section we shall obtain some results which will be useful for both Theorem C and Theorem D.

Let G be a finite group and let D be the (restricted) direct product $D=\prod_{i \in \mathbb{N}} G_{i}$ where $G_{i}=G$ for all i. Thus the elements of D may be regarded as sequences of the form (g_{1}, g_{2}, \ldots) where $g_{i} \in G$ for all i and where $\left\{i: g_{i} \neq 1\right\}$ is finite.

Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be a one-one order-preserving function. Let X be a finite subset of $\mathbb{N} \backslash \mathbb{N} \phi$ and let $\sigma: X \rightarrow \mathbb{N} \phi$ be a function such that $j<j \sigma$ for all $j \in X$. Given such ϕ, X and σ, let ξ be the endomorphism of D defined by

$$
\left(g_{1}, g_{2}, \ldots\right) \xi=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots\right)
$$

where $g_{j}^{\prime}=g_{i}$ if $j=i \phi, g_{j}^{\prime}=1$ if $j \notin \mathbb{N} \phi \cup X$, and $g_{j}^{\prime}=g_{j \sigma}^{\prime}$ if $j \in X$. Let Ξ be the set of all such endomorphisms of D (for all possible choices of ϕ, X and σ).

Let \leq be a total order on G which is arbitrary except that $1 \leq g$ for all $g \in G$. Then the set D may be ordered lexicographically from the right: if $d, d^{\prime} \in D$ where $d=\left(g_{1}, g_{2}, \ldots\right)$ and $d^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots\right)$, we set $d<d^{\prime}$ if there exists $l \in \mathbb{N}$ such that $g_{l}<g_{l}^{\prime}$ but $g_{i}=g_{i}^{\prime}$ for all $i>l$. Clearly (D, \leq) is well-ordered, and it is easy to prove the following result.

Lemma 4.1. Let $d, d^{\prime} \in D$ and let $\xi \in \Xi$. If $d<d^{\prime}$ then $d \xi<d^{\prime} \xi$.
For $d \in D$, where $d=\left(g_{1}, g_{2}, \ldots\right)$, write

$$
\operatorname{span}(d)=\left\{g \in G \backslash\{1\}: g=g_{i} \text { for some } i\right\}
$$

and, for $g \in \operatorname{span}(d)$, let $i_{g}(d)$ denote the largest i such that $g_{i}=g$.
Let d and d^{\prime} be elements of D, where $d=\left(g_{1}, g_{2}, \ldots\right)$ and $d^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots\right)$. Write $d \preccurlyeq d^{\prime}$ if $\operatorname{span}(d)=\operatorname{span}\left(d^{\prime}\right)$ and there is a one-one order-preserving function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that $g_{i}=g_{i \phi}^{\prime}$ for all i and $i_{g}(d) \phi=i_{g}\left(d^{\prime}\right)$ for all $g \in \operatorname{span}(d)$. Clearly (D, \preccurlyeq) is quasi-ordered (in fact, partially-ordered).

Lemma 4.2. The set (D, \preccurlyeq) is well-quasi-ordered.
Proof. Let $m=|G \backslash\{1\}|$ and assume $m \geq 1$ (the result is trivial for $m=0$). Write $G \backslash\{1\}=\left\{a_{1}, \ldots, a_{m}\right\}$. For $d \in D$ and $k=1, \ldots, m$, define $p_{k}(d)=i_{a_{k}}(d)$ if $a_{k} \in \operatorname{span}(d)$ and $p_{k}(d)=1$ otherwise, so that we obtain an $m+1$-tuple $s(d)=$ $\left(p_{1}(d), \ldots, p_{m}(d), d\right)$. Let $d, d^{\prime} \in D$, where $d=\left(g_{1}, g_{2}, \ldots\right)$ and $d^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots\right)$. Following the notation of [3], we write $s(d) \preccurlyeq_{\Phi} s\left(d^{\prime}\right)$ if there exists a one-one orderpreserving map $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that $g_{i}=g_{i \phi}^{\prime}$ for all i and $p_{i}(d) \phi=p_{i}\left(d^{\prime}\right)$ for $i=1, \ldots, m$. By [3, Lemma 3.2], the set of $m+1$-tuples $s(d)$ is well-quasi-ordered under \preccurlyeq_{Φ}. But $s(d) \preccurlyeq_{\Phi} s\left(d^{\prime}\right)$ implies $d \preccurlyeq d^{\prime}$. The result follows.

Let \mathbb{F} be any field. Then each non-zero element u of the group algebra $\mathbb{F} D$ can be written (uniquely) in the form $u=\lambda_{1} d_{1}+\cdots+\lambda_{r} d_{r}$ where $d_{1}, \ldots, d_{r} \in D$, $d_{1}>\cdots>d_{r}$ and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{F} \backslash\{0\}$. The largest group element d_{1} is called the leading group element of u and we write $d_{1}=\operatorname{lead}(u)$. Since every endomorphism of D extends to $\mathbb{F} D$, each element of Ξ acts on $\mathbb{F} D$. For $S \subseteq \mathbb{F} D$ we write $\langle S\rangle_{\Xi}$ for the Ξ-closed subspace of $\mathbb{F} D$ generated by S.

Lemma 4.3. Let u and v be non-zero elements of $\mathbb{F} D$ with lead $(u) \preccurlyeq \operatorname{lead}(v)$. Then there exists $v^{*} \in \mathbb{F} D$ such that $\langle u, v\rangle_{\Xi}=\left\langle u, v^{*}\right\rangle_{\Xi}$ and either $v^{*}=0$ or lead $\left(v^{*}\right)<\operatorname{lead}(v)$.

Proof. Write $u=\lambda_{1} d_{1}+\cdots+\lambda_{r} d_{r}$ and $v=\lambda_{1}^{\prime} d_{1}^{\prime}+\cdots+\lambda_{s}^{\prime} d_{s}^{\prime}$ where the d_{i} and d_{i}^{\prime} are elements of $D, d_{1}>\cdots>d_{r}, d_{1}^{\prime}>\cdots>d_{s}^{\prime}$, and the λ_{i} and λ_{i}^{\prime} are elements of $\mathbb{F} \backslash\{0\}$. Write $d=d_{1}=\operatorname{lead}(u)$ and $d^{\prime}=d_{1}^{\prime}=\operatorname{lead}(v)$. Thus $d \preccurlyeq d^{\prime}$. Let $d=\left(g_{1}, g_{2}, \ldots\right)$ and $d^{\prime}=\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots\right)$, and let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be as in the definition of $d \preccurlyeq d^{\prime}$. Let $X=\left\{j: j \notin \mathbb{N} \phi\right.$ and $\left.g_{j}^{\prime} \neq 1\right\}$. By the definition of $d \preccurlyeq d^{\prime}$ we have $i_{g}\left(d^{\prime}\right) \in \mathbb{N} \phi$ for all $g \in \operatorname{span}\left(d^{\prime}\right)$. For each $j \in X$ let $j \sigma=i_{g}\left(d^{\prime}\right)$ where $g=g_{j}^{\prime}$. Let ξ be the element of Ξ corresponding to ϕ, X and σ. Then it is easy to check that $d \xi=d^{\prime}$. Hence, by Lemma 4.1, lead $(u \xi)=d^{\prime}=\operatorname{lead}(v)$. Let $v^{*}=v-\lambda_{1}^{\prime} \lambda_{1}^{-1}(u \xi)$. Then the result follows.

Proposition 4.4. The maximal condition holds for Ξ-closed subspaces of $\mathbb{F} D$.

Proof. Let U be a Ξ-closed subspace of $\mathbb{F} D$. It suffices to prove that U is finitely generated as a Ξ-closed subspace. By Lemma 4.2, there exists a finite subset S of $U \backslash\{0\}$ such that for all $v \in U \backslash\{0\}$ there exists $u \in S$ such that lead $(u) \preccurlyeq \operatorname{lead}(v)$. We claim that $U=\langle S\rangle_{E}$. Suppose, in order to get a contradiction, that there exists $v \in U$ such that $v \notin\langle S\rangle_{\Xi}$, and choose such v so that lead (v) is as small as possible in the well-ordered set (D, \leq). There exists $u \in S$ such that lead $(u) \preccurlyeq \operatorname{lead}(v)$. By Lemma 4.3, there exists $v^{*} \in \mathbb{F} D$ such that $\langle u, v\rangle_{\Xi}=\left\langle u, v^{*}\right\rangle_{\Xi}$ and either $v^{*}=0$ or lead $\left(v^{*}\right)<\operatorname{lead}(v)$. Since $v \notin\langle u\rangle_{\Xi}$, we have $v^{*} \neq 0$. Since $v^{*} \in\langle u, v\rangle_{\Xi} \subseteq U$, the choice of v gives $v^{*} \in\langle S\rangle_{\Xi}$. Hence $v \in\left\langle u, v^{*}\right\rangle_{\Xi} \subseteq\langle S\rangle_{\Xi}$, and we have the required contradiction.

Let n be a positive integer and let E be a free group of countably infinite rank in the variety \mathbf{A}_{n}. Let Γ be the set of all endomorphisms of E.

Proposition 4.5. For each positive integer r, the maximal condition holds for Γ-closed subspaces of $\mathbb{F}\left(E^{\times r}\right)$.

Proof. Clearly we may assume $n>1$. Let $\left\{x_{1}, x_{2}, \ldots\right\}$ be a free generating set for E. For each $i \in \mathbb{N}$, let G_{i} be the subgroup of $E^{\times r}$ generated by the elements $\left(x_{i}, 1, \ldots, 1\right),\left(1, x_{i}, 1, \ldots, 1\right), \ldots,\left(1, \ldots, 1, x_{i}\right)$. Write $G=G_{1}$. Thus G is a finite group. Clearly $E^{\times r}$ is the direct product of the groups G_{i} and, for each i, there is an obvious isomorphism from G to G_{i}. Thus we may identify $E^{\times r}$ with the direct power D of G considered above. The result will follow from Proposition 4.4 if we can show that every element of Ξ is induced by some element of Γ. Let $\xi \in \Xi$ and suppose that ξ is associated with ϕ, X and σ, in the notation used before. Define a homomorphism $\gamma: E \rightarrow E$ by $x_{i} \gamma=x_{i \phi} \prod_{j \in X, j \sigma=i \phi} x_{j}$, for each i, where the product is taken over all those values of j, if any, which lie in X and satisfy $j \sigma=i \phi$. It is straightforward to verify that γ induces ξ.

5. Proof of Theorem \mathbf{C}

We use the notation of Section 1. In particular, n is a positive integer, A is a free group of $\mathbf{N}_{2, n}$ of countably infinite rank, Ψ is the set of endomorphisms of A and \mathbb{F} is a field of characteristic not dividing n. We shall describe the proof of Theorem C only in the case $r=2$. The proof for general r is essentially the same, but greater notational complexity is required for $r>2$.

Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F}. If I is a Ψ-closed left ideal of $\mathbb{F}(A \times A)$ then $\overline{\mathbb{F}} \otimes_{\mathbb{F}} I$ is a Ψ-closed left ideal of $\overline{\mathcal{F}}(A \times A)$, and $I=\mathbb{F}(A \times A) \cap \overline{\mathbb{F}} \otimes_{\mathbb{F}} I$. Therefore we may assume that $\mathbb{F}=\overline{\mathbb{F}}$. We write \mathbb{F}^{\times}for the multiplicative group $\mathbb{F} \backslash\{0\}$.

Let $\left\{x_{i}: i \in \mathbb{N}\right\}$ be a free generating set of A and, for each positive integer k, let A_{k} be the subgroup $\left\langle x_{1}, \ldots, x_{k}\right\rangle$. Define n_{0} by $n_{0}=n$ if n is odd and $n_{0}=n / 2$ if n is even. For all $a, b \in A$ we have $(a b)^{n}=1$ and hence $[a, b]^{n_{0}}=\left[a^{n_{0}}, b\right]=1$. Thus $\left(A^{\prime}\right)^{n_{0}}=\{1\}$ and $A^{n_{0}}$ is central in A. It is easily verified that the relations $x_{i}^{n}=1$ and $\left[x_{i}, x_{j}\right]^{n_{0}}=1$, for all $i, j \in\{1, \ldots, k\}$, imposed on the free nilpotent group of class 2 on free generators x_{1}, \ldots, x_{k}, give a group of exponent n, which is therefore isomorphic to A_{k}. It follows that A_{k}^{\prime} is a free abelian group of exponent n_{0} with basis $\left\{\left[x_{i}, x_{j}\right]: 1 \leq i<j \leq k\right\}$. If $n \leq 2$, then A is the free group of countably infinite rank in the variety \mathbf{A}_{n}, and, in this case, Theorem C follows from Proposition 4.5. Thus we assume that $n>2$, so that $n_{0}>1$.

Let $K=\mathbb{Z} / n_{0} \mathbb{Z}$ and let ω be a primitive n_{0}-th root of unity in \mathbb{F}. Thus ω^{λ} is well-defined for all $\lambda \in K$, and $\left\{\omega^{\lambda}: \lambda \in K\right\}$ is the cyclic subgroup of \mathbb{F}^{\times}consisting of all n_{0}-th roots of unity in \mathbb{F}.

Let Q_{k} be the set of all ordered pairs (i, j) with $1 \leq i<j \leq k$, and let Δ_{k} be the set of all functions $\delta: Q_{k} \rightarrow K$. For each $\delta \in \Delta_{k}$ there is a group homomorphism $\chi_{\delta}: A_{k}^{\prime} \rightarrow \mathbb{F}^{\times}$determined by $\chi_{\delta}\left(\left[x_{i}, x_{j}\right]\right)=\omega^{\delta(i, j)}$ for all $(i, j) \in Q_{k}$. Since the elements $\left[x_{i}, x_{j}\right]$ form a basis for A_{k}^{\prime}, every homomorphism $A_{k}^{\prime} \rightarrow \mathbb{F}^{\times}$arises in this way from some δ. We extend χ_{δ} by linearity to a function $\chi_{\delta}: \mathbb{F} A_{k}^{\prime} \rightarrow \mathbb{F}$. In the language of representation theory, the functions χ_{δ} are the characters afforded by the irreducible representations of the abelian group A_{k}^{\prime} over \mathbb{F}, all of which are one-dimensional.

For each $\delta \in \Delta_{k}$, let e_{δ} be the element of $\mathbb{F} A_{k}^{\prime}$ defined by

$$
\begin{equation*}
e_{\delta}=\frac{1}{\left|A_{k}^{\prime}\right|} \sum_{a \in A_{k}^{\prime}} \chi_{\delta}\left(a^{-1}\right) a \tag{5.1}
\end{equation*}
$$

The elements e_{δ} have the following properties, which may be verified by elementary representation theory or direct calculation.

$$
\begin{gather*}
w e_{\delta}=\chi_{\delta}(w) e_{\delta} \text { for all } \delta \in \Delta_{k} \text { and all } w \in \mathbb{F} A_{k}^{\prime} \tag{5.2}\\
\chi_{\delta}\left(e_{\delta}\right)=1 \text { and } e_{\delta}^{2}=e_{\delta} \text { for all } \delta \in \Delta_{k} \tag{5.3}
\end{gather*}
$$

$$
\begin{equation*}
\chi_{\delta^{\prime}}\left(e_{\delta}\right)=0 \text { and } e_{\delta} e_{\delta^{\prime}}=0 \text { for all } \delta, \delta^{\prime} \in \Delta_{k} \text { with } \delta \neq \delta^{\prime} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\delta \in \Delta_{k}} e_{\delta}=1 \tag{5.5}
\end{equation*}
$$

Thus the elements e_{δ} are pairwise orthogonal idempotents. They form a basis of $\mathbb{F} A_{k}^{\prime}$ and each e_{δ} spans a one-dimensional ideal of $\mathbb{F} A_{k}^{\prime}$. Within the larger group algebras $\mathbb{F} A_{k}$ and $\mathbb{F} A$, the e_{δ} are central idempotents. For each δ, let $I_{\delta}=\left(\mathbb{F} A_{k}\right) e_{\delta}$. Thus I_{δ} is the (two-sided) ideal of $\mathbb{F} A_{k}$ generated by e_{δ}. By (5.3), (5.4) and (5.5),

$$
\begin{equation*}
\mathbb{F} A_{k}=\bigoplus_{\delta \in \Delta_{k}} I_{\delta} \tag{5.6}
\end{equation*}
$$

It follows from (5.6) and (5.2) that $\mathbb{F} A_{k}$ is spanned by all elements of the form $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} e_{\delta}$ with $\delta \in \Delta_{k}$ and $\alpha_{i} \in \mathbb{Z} / n \mathbb{Z}$ for $i=1, \ldots, k$. It is easily checked that there are exactly $\left|A_{k}\right|$ such elements. Hence they form a basis for $\mathbb{F} A_{k}$ and, for fixed δ, the elements $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} e_{\delta}$ form a basis for I_{δ}.

If $\psi: A_{k} \rightarrow A_{l}$ is a homomorphism, where $k, l \in \mathbb{N}$, then ψ extends to a homomorphism $\mathbb{F} A_{k} \rightarrow \mathbb{F} A_{l}$, which we also denote by ψ. In particular, $\psi: A_{k} \rightarrow A_{k}$ extends to $\psi: \mathbb{F} A_{\boldsymbol{k}} \rightarrow \mathbb{F} A_{\boldsymbol{k}}$.

For each k, write $\tilde{A}_{k}=A_{k} / A_{k}^{\prime}\left(A_{k}\right)^{n_{0}}$ and, for $a \in A_{k}$, write $\tilde{a}=a A_{k}^{\prime}\left(A_{k}\right)^{n_{0}} \in \tilde{A}_{k}$. Thus \tilde{A}_{k} is a free abelian group of exponent n_{0} with basis $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{k}\right\}$. We shall usually think of \tilde{A}_{k} in additive notation: thus we may regard it as a free K-module.

If $\psi: A_{k} \rightarrow A_{l}$ is a homomorphism, we write $\tilde{\psi}$ for the induced homomorphism from \tilde{A}_{k} to \tilde{A}_{l}. In particular, if $\eta \in \operatorname{Aut}\left(A_{k}\right)$ then $\tilde{\eta} \in \operatorname{Aut}\left(\tilde{A}_{k}\right)$.

For each $\delta \in \Delta_{k}$, let θ_{δ} be the alternating K-form on \tilde{A}_{k} satisfying $\theta_{\delta}\left(\tilde{x}_{i}, \tilde{x}_{j}\right)=$ $\delta(i, j)$ for all $(i, j) \in Q_{k}$. Clearly every alternating K-form on \tilde{A}_{k} arises in this way from some δ. Since $\chi_{\delta}\left(\left[x_{i}, x_{j}\right]\right)=\omega^{\delta(i, j)}$ it is straightforward to verify that

$$
\begin{equation*}
\chi_{\delta}\left(\left[a_{1}, a_{2}\right]\right)=\omega^{\theta_{\delta}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)} \text { for all } a_{1}, a_{2} \in A_{k} \tag{5.7}
\end{equation*}
$$

Lemma 5.1. Let $\delta \in \Delta_{k}$ and $\eta \in \operatorname{Aut}\left(A_{k}\right)$. Then $e_{\delta} \eta=e_{\varepsilon}$ where $\varepsilon \in \Delta_{k}$ and $\theta_{\varepsilon}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\theta_{\delta}\left(\tilde{a}_{1} \tilde{\eta}^{-1}, \tilde{a}_{2} \tilde{\eta}^{-1}\right)$ for all $a_{1}, a_{2} \in A_{k}$.

PROOF. The map $a \mapsto \chi_{\delta}\left(a \eta^{-1}\right)$ is a homomorphism from A_{k}^{\prime} to \mathbb{F}^{x}. Hence there exists $\varepsilon \in \Delta_{k}$ such that $\chi_{\varepsilon}(a)=\chi_{\delta}\left(a \eta^{-1}\right)$ for all $a \in A_{k}^{\prime}$. By direct calculation we obtain $e_{\delta} \eta=e_{\varepsilon}$. Also, for all $a_{1}, a_{2} \in A_{k}$, (5.7) gives $\omega^{\theta_{\varepsilon}\left(\bar{a}_{1}, \tilde{a}_{2}\right)}=\chi_{\varepsilon}\left(\left[a_{1}, a_{2}\right]\right)=$ $\chi_{\delta}\left(\left[a_{1}, a_{2}\right] \eta^{-1}\right)=\chi_{\delta}\left(\left[a_{1} \eta^{-1}, a_{2} \eta^{-1}\right]\right)=\omega^{\theta_{8}\left(\tilde{a}_{1} \tilde{\eta}^{-1}, \tilde{a}_{2} \tilde{\eta}^{-1}\right)}$. The result follows.

Lemma 5.2. Let $\delta \in \Delta_{k}$ and $\varepsilon \in \Delta_{l}$, where $k, l \in \mathbb{N}$. Let $\psi: A_{k} \rightarrow A_{l}$ be a homomorphism which induces a homomorphism of K-forms from $\left(\tilde{A}_{k}, \theta_{\delta}\right)$ to $\left(\tilde{A}_{l}, \theta_{\varepsilon}\right)$ (that is, $\theta_{\delta}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\theta_{\varepsilon}\left(\tilde{a}_{1} \tilde{\psi}, \tilde{a}_{2} \tilde{\psi}\right)$ for all $\left.a_{1}, a_{2} \in A_{k}\right)$. Then $\left(e_{\delta} \psi\right) e_{\varepsilon}=e_{\varepsilon}$.

Proof. For all $a_{1}, a_{2} \in A_{k}$,

$$
\chi_{\delta}\left(\left[a_{1}, a_{2}\right]\right)=\omega^{\theta_{\delta}\left(\tilde{a}_{1}, \tilde{a}_{z}\right)}=\omega^{\theta_{\varepsilon}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{\sigma}_{2}\right)}=\chi_{\varepsilon}\left(\left[a_{1} \psi, a_{2} \psi\right]\right)=\chi_{\varepsilon}\left(\left[a_{1}, a_{2}\right] \psi\right) .
$$

It follows that $\chi_{\delta}(w)=\chi_{\varepsilon}(w \psi)$ for all $w \in \mathbb{F} A_{k}^{\prime}$. Therefore, by (5.2) and (5.3),

$$
\left(e_{\delta} \psi\right) e_{\varepsilon}=\chi_{\varepsilon}\left(e_{\delta} \psi\right) e_{\varepsilon}=\chi_{\delta}\left(e_{\delta}\right) e_{\varepsilon}=e_{\varepsilon}
$$

For each k, we consider $\mathbb{F}\left(A_{k} \times A_{k}\right)$, identified with $\mathbb{F} A_{k} \otimes_{\mathbb{F}} \mathbb{F} A_{k}$. If $\psi: A_{k} \rightarrow A_{l}$ is a homomorphism, then ψ yields homomorphisms $\psi: A_{k} \times A_{k} \rightarrow A_{l} \times A_{l}$ and $\psi: \mathbb{F}\left(A_{k} \times A_{k}\right) \rightarrow \mathbb{F}\left(A_{l} \times A_{l}\right)$. For $\delta, \delta^{\prime} \in \Delta_{k}$, we write $e_{\delta} \otimes e_{\delta^{\prime}}$ as $e_{\delta \delta^{\prime}}$ and $I_{\delta} \otimes I_{\delta^{\prime}}$ as $I_{\delta \delta^{\prime}}$. Thus, by (5.6),

$$
\begin{equation*}
\mathbb{F}\left(A_{k} \times A_{k}\right)=\bigoplus_{\delta, \delta^{\prime} \in \Delta_{k}} I_{\delta \delta^{\prime}} \tag{5.8}
\end{equation*}
$$

Also, $I_{\delta \delta^{\prime}}$ is the ideal of $\mathbb{F}\left(A_{k} \times A_{k}\right)$ generated by the central idempotent $e_{\delta \delta^{\prime}}$, and $\sum_{\delta, \delta^{\prime}} e_{\delta \delta^{\prime}}=1$.

For $\delta, \delta^{\prime} \in \Delta_{k}$, let $\theta_{\delta \delta^{\prime}}$ be the alternating $K \oplus K$-form on \tilde{A}_{k} determined by $\theta_{\delta \delta^{\prime}}\left(\tilde{\tilde{x}}_{i}, \tilde{x}_{j}\right)=\left(\theta_{\delta}\left(\tilde{x}_{i}, \tilde{x}_{j}\right), \theta_{\delta^{\prime}}\left(\tilde{x}_{i}, \tilde{x}_{j}\right)\right)$ for all $(i, j) \in Q_{k}$. Every alternating $K \oplus K-$ form on \tilde{A}_{k} arises in this way from some δ, δ^{\prime}.

The following two results are easily deduced from Lemma 5.1 and Lemma 5.2, respectively.

Lemma 5.3. Let $\delta, \delta^{\prime} \in \Delta_{k}$ and $\eta \in \operatorname{Aut}\left(A_{k}\right)$. Then $e_{\delta \delta} \eta=e_{\varepsilon \varepsilon^{\prime}}$ where $\varepsilon, \varepsilon^{\prime} \in \Delta_{k}$ and $\theta_{\varepsilon \varepsilon^{\prime}}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)=\theta_{\delta \delta^{\prime}}\left(\tilde{a}_{1} \tilde{\eta}^{-1}, \tilde{a}_{2} \tilde{\eta}^{-1}\right)$ for all $a_{1}, a_{2} \in A_{k}$.

Lemma 5.4. Let $\delta, \delta^{\prime} \in \Delta_{k}$ and $\varepsilon, \varepsilon^{\prime} \in \Delta_{l}$, where $k, l \in \mathbb{N}$. Let $\psi: A_{k} \rightarrow A_{l}$ be a homomorphism which induces a homomorphism of $K \oplus K$-forms from ($\tilde{A}_{k}, \theta_{\delta \delta^{\prime}}$) to $\left(\tilde{A}_{l}, \theta_{\varepsilon \varepsilon^{\prime}}\right)$. Then $\left(e_{\delta \delta^{\prime}} \psi\right) e_{\varepsilon \varepsilon^{\prime}}=e_{\varepsilon \varepsilon^{\prime}}$.

Let $N=n_{0}\left(2 n_{0}^{4}+n_{0}^{2}\right)$. By Lemma 3.3, every $K \oplus K$-form is N-regular with respect to some basis. For $\delta, \delta^{\prime} \in \Delta_{k}$, we say that $\theta_{\delta \delta^{\prime}}$ is regular if it is N-regular with respect to the basis $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{k}\right\}$ of \tilde{A}_{k}.

Lemma 5.5. Let $\delta, \delta^{\prime} \in \Delta_{k}$. Then there exists $\eta \in \operatorname{Aut}\left(A_{k}\right)$ such that $e_{\delta \delta^{\prime}} \eta=e_{\varepsilon \varepsilon^{\prime}}$ where $\varepsilon, \varepsilon^{\prime} \in \Delta_{k}$ and $\theta_{\varepsilon \varepsilon^{\prime}}$ is regular.

PROOF. By Lemma 3.3, there is a basis $\left\{\tilde{a}_{1}, \ldots, \tilde{a}_{k}\right\}$ of \tilde{A}_{k} such that ($\tilde{A}_{k}, \theta_{\delta \delta^{\prime}}$) is N-regular with respect to this basis. It is easily verified that there exists a generating set $\left\{y_{1}, \ldots, y_{k}\right\}$ of A_{k} such that $\tilde{y}_{i}=\tilde{a}_{i}$ for $i=1, \ldots, k$. Since A_{k} is a finite relatively free group of rank k, it follows that $\left\{y_{1}, \ldots, y_{k}\right\}$ is a free generating set. Let η be the automorphism of A_{k} satisfying $y_{i} \eta=x_{i}$ for $i=1, \ldots, k$. By Lemma 5.3, $e_{\delta \delta^{\prime}} \eta=e_{\varepsilon \varepsilon^{\prime}}$ where $\theta_{\varepsilon \varepsilon^{\prime}}\left(\tilde{x}_{i}, \tilde{x}_{j}\right)=\theta_{\delta \delta^{\prime}}\left(\tilde{y}_{i}, \tilde{y}_{j}\right)$ for all $(i, j) \in Q_{k}$. Thus $\theta_{\varepsilon \varepsilon^{\prime}}$ is regular.

LEMMA 5.6. Let $\delta, \delta^{\prime} \in \Delta_{k}$ and $\varepsilon, \varepsilon^{\prime} \in \Delta_{l}$, where $k, l \in \mathbb{N}$, and consider $I_{\delta \delta^{\prime}}$ and $I_{\varepsilon \varepsilon^{\prime}}$ as subsets of $\mathbb{F}(A \times A)$. Then $I_{\delta \delta^{\prime}} \cap I_{\varepsilon \varepsilon^{\prime}}=\{0\}$ unless $k=l, \delta=\delta^{\prime}$ and $\varepsilon=\varepsilon^{\prime}$.

Proof. Suppose that $k<l$. It is easily verified that $\left(\left[x_{l-1}, x_{l}\right] \otimes 1\right) w \notin \mathbb{F}\left(A_{k} \times A_{k}\right)$ for all $w \in \mathbb{F}\left(A_{k} \times A_{k}\right) \backslash\{0\}$. On the other hand, for all $v \in I_{\varepsilon \varepsilon^{\prime}}$, the element $\left(\left[x_{l-1}, x_{l}\right] \otimes 1\right) v$ is a scalar multiple of v by (5.2). Thus $I_{\delta \delta^{\prime}} \cap I_{\varepsilon \varepsilon^{\prime}}=\{0\}$. If $k=l$ then $I_{\delta \delta^{\prime}} \cap I_{\varepsilon \varepsilon^{\prime}} \neq\{0\}$ implies $\delta=\delta^{\prime}$ and $\varepsilon=\varepsilon^{\prime}$ by (5.8).

A non-zero element w of $\mathbb{F}(A \times A)$ will be called regular if $w \in I_{\delta \delta^{\prime}}$ for some k and some $\delta, \delta^{\prime} \in \Delta_{k}$ such that $\theta_{\delta \delta^{\prime}}$ is regular. (By Lemma $5.6, k, \delta$ and δ^{\prime} are then unique.)

LEMMA 5.7. Every Ψ-closed left ideal of $\mathbb{F}(A \times A)$ is generated, as a Ψ-closed vector space, by regular elements.

Proof. Let J be a Ψ-closed left ideal of $\mathfrak{f}(A \times A)$ and let J_{0} be the vector space spanned by all elements $v \psi$ where v is a regular element of J and $\psi \in \Psi$. It suffices to show that $J=J_{0}$. Clearly $J_{0} \subseteq J$. Let $w \in J$. Then $w \in \mathbb{F}\left(A_{k} \times A_{k}\right)$ for some k, and we have $w=\left(\sum_{\delta, \delta^{\prime} \in \Delta_{k}} e_{\delta \delta^{\prime}}\right) w=\sum_{\delta, \delta^{\prime} \in \Delta_{k}}\left(e_{\delta \delta^{\prime}} w\right)$, where $e_{\delta \delta^{\prime}} w \in J \cap I_{\delta \delta^{\prime}}$. It suffices to show that $e_{\delta \delta^{\prime}} w \in J_{0}$. Clearly we may assume that $e_{\delta \delta^{\prime}} w \neq 0$. By Lemma 5.5, there exists $\eta \in \operatorname{Aut}\left(A_{k}\right)$ such that $\left(e_{\delta \delta^{\prime}} w\right) \eta$ is regular. But $\left(e_{\delta \delta^{\prime}} w\right) \eta \in J$, since η extends to an automorphism of A. Thus $e_{\delta \delta^{\prime}} w=\left(e_{\delta \delta^{\prime}} w\right) \eta \eta^{-1} \in J_{0}$.

Let $\delta, \delta^{\prime} \in \Delta_{k}$. Since the elements $x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} e_{\delta}$ with $\alpha_{i} \in \mathbb{Z} / n \mathbb{Z}$ form a basis of I_{δ}, the elements

$$
\begin{equation*}
\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} \otimes x_{1}^{\alpha_{1}^{\prime}} \cdots x_{k}^{\alpha_{k}^{\prime}}\right) e_{\delta \delta^{\prime}} \tag{5.9}
\end{equation*}
$$

with $\alpha_{i}, \alpha_{i}^{\prime} \in \mathbb{Z} / n \mathbb{Z}$, form a basis of $I_{\delta \delta^{\prime}}$.
An element of $\mathbb{F}(A \times A)$ will be called a monomial if it has the form (5.9) for some k and some $\delta, \delta^{\prime} \in \Delta_{k}$, and a regular monomial if $\theta_{\delta \delta^{\prime}}$ is regular. We write \mathscr{M} for the set of all monomials, \mathscr{M}^{*} for the set of all regular monomials, and $\mathscr{M}_{\delta \delta^{\prime}}$ for the set of all monomials of $I_{\delta \delta^{\prime}}$.

Let $T=\mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$, that is, the Cartesian square of the set $\mathbb{Z} / n \mathbb{Z}$. With the monomial (5.9) we associate the k-tuple $\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ where $t_{i}=\left(\alpha_{i}, \alpha_{i}^{\prime}\right) \in T$ for $i=1, \ldots, k$. Let \leq be a total order on T which is arbitrary except that $(0,0) \leq t$ for all $t \in T$. Then the set of all k-tuples of elements of T can be ordered lexicographically from the right: if $\mathbf{t}=\left(t_{1}, \ldots, t_{k}\right)$ and $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right)$ are two such k-tuples, we set $\mathbf{t}<\mathbf{t}^{\prime}$ if there exists $q \in\{1, \ldots, k\}$ such that $t_{q}<t_{q}^{\prime}$ but $t_{i}=t_{i}^{\prime}$ for $i=q+1, \ldots, k$. Hence, for $\delta, \delta^{\prime} \in \Delta_{k}$, we obtain an order \leq on the finite set $\mathscr{M}_{\delta \delta^{\prime}}$.

Each non-zero element f of $I_{\delta \delta^{\prime}}$ can be written (uniquely) in the form $f=\lambda_{1} w_{1}+$ $\cdots+\lambda_{r} w_{r}$, where $w_{1}, \ldots, w_{r} \in \mathscr{M}_{\delta \delta^{\prime}}, w_{1}>\cdots>w_{r}$, and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{F} \backslash\{0\}$. The largest monomial w_{1} is called the leading monomial of f, and we write $w_{1}=\operatorname{lead}(f)$.

We shall now define a quasi-order on \mathscr{M}. Let $\delta, \delta^{\prime} \in \Delta_{k}$ and $\varepsilon, \varepsilon^{\prime} \in \Delta_{l}$. Let $v \in \mathscr{M}_{\delta \delta^{\prime}}$ and $w \in \mathscr{M}_{\varepsilon \varepsilon^{\prime}}$, where

$$
v=\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} \otimes x_{1}^{\alpha_{1}^{\prime}} \cdots x_{k}^{\alpha_{k}^{\prime}}\right) e_{\delta \delta^{\prime}}, \quad w=\left(x_{1}^{\beta_{1}} \cdots x_{l}^{\beta_{1}} \otimes x_{1}^{\beta_{1}^{\prime}} \cdots x_{l}^{\beta_{l}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}
$$

We write $v \preccurlyeq w$ if there is a one-one order-preserving map $\phi:\{1, \ldots, k\} \rightarrow$ $\{1, \ldots, l\}$ together with a homomorphism $\psi: A_{k} \rightarrow A_{l}$ with the following three properties.
(i) For $i=1, \ldots, k$, we have $x_{i} \psi=z_{i} x_{i \phi}$ for some $z_{i} \in\left\langle x_{1}, \ldots, x_{i \phi-1}\right\rangle$.
(ii) ψ induces a homomorphism of $K \oplus K$-forms from $\left(\tilde{A}_{k}, \theta_{\delta \delta^{\prime}}\right)$ to $\left(\tilde{A}_{l}, \theta_{\varepsilon \varepsilon^{\prime}}\right)$.
(iii) For $i=1, \ldots, k$, we have $\alpha_{i}=\beta_{i \phi}$ and $\alpha_{i}^{\prime}=\beta_{i \phi}^{\prime}$.

It is straightforward to check that ($\mathscr{M}, \preccurlyeq)$ is a quasi-ordered set. Thus $\left(\mathscr{M}^{*}, \preccurlyeq\right)$ is quasi-ordered. Let \mathscr{Z} be the set of all N-regular ($K \oplus K, T$)-forms as defined in Section 3 with $S=K \oplus K$. Thus, by Proposition 3.7 , $\mathscr{Z}, \preccurlyeq)$ is well-quasi-ordered, where \preccurlyeq is as defined in Section 3. Let $v \in \mathscr{M}^{*}$, where

$$
v=\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} \otimes x_{1}^{\alpha_{1}^{\prime}} \cdots x_{k}^{\alpha_{k}^{\prime}}\right) e_{\delta \delta^{\prime}}
$$

with $\delta, \delta^{\prime} \in \Delta_{k}$ and $\theta_{\delta \delta^{\prime}}$ regular. Then we can define $Z(v) \in \mathscr{Z}$ by

$$
Z(v)=\left(\tilde{A}_{k}, \theta_{\delta \delta^{\prime}},\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{k}\right\}, \mathbf{t}\right)
$$

where $\mathbf{t}=\left(\left(\alpha_{1}, \alpha_{1}^{\prime}\right), \ldots,\left(\alpha_{k}, \alpha_{k}^{\prime}\right)\right)$. It is straightforward to verify that if v and w are elements of \mathscr{M}^{*} such that $Z(v) \preccurlyeq Z(w)$ then $v \preccurlyeq w$. Hence Proposition 3.7 gives the following result.

PROPOSITION 5.8. The set $\left(\mathscr{M}^{*}, \preccurlyeq\right)$ is well-quasi-ordered.
If S is any set of elements of $\mathbb{F}(A \times A)$ we write $L_{\Psi}(S)$ for the Ψ-closed left ideal generated by S.

Lemma 5.9. Let $f \in I_{\delta \delta^{\prime}} \backslash\{0\}$ and $g \in I_{\varepsilon \varepsilon^{\prime}} \backslash\{0\}$ where $\delta, \delta^{\prime} \in \Delta_{k}$ and $\varepsilon, \varepsilon^{\prime} \in \Delta_{l}$. Suppose that $\operatorname{lead}(f) \preccurlyeq \operatorname{lead}(g)$. Then there exists $g^{*} \in I_{\varepsilon \varepsilon^{\prime}}$ such that $L_{\Psi}\{f, g\}=$ $L_{\Psi}\left\{f, g^{*}\right\}$ and either $g^{*}=0$ or $\operatorname{lead}\left(g^{*}\right)<\operatorname{lead}(g)$.

Proof. Write $f=\lambda_{1} v_{1}+\cdots+\lambda_{r} v_{r}$, where $v_{i} \in \mathscr{M}_{\delta \delta^{\prime}}$ and $\lambda_{i} \in \mathbb{F} \backslash\{0\}$ for all i, and where $v_{i}<v_{1}$ for all $i \geq 2$. Similarly, write $g=\mu_{1} w_{1}+\cdots+\mu_{s} w_{s}$, where $w_{i} \in \mathscr{M}_{\varepsilon \varepsilon^{\prime}}$ and $\mu_{i} \in \mathbb{F} \backslash\{0\}$ for all i, and where $w_{i}<w_{1}$ for all $i \geq 2$. Write $v=v_{1}=\operatorname{lead}(f)$ and $w=w_{1}=\operatorname{lead}(g)$. Thus $v \preccurlyeq w$. We use the notation for v and w given in the definition of \preccurlyeq. Let ϕ and ψ be as in that definition. Let h_{1} and h_{2} be the elements of $\mathbb{F}\left(A_{l} \times A_{l}\right)$ defined by

$$
h_{1}=\left(x_{1 \phi}^{\alpha_{1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1 \phi}^{\alpha_{1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right)\left(\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} \otimes x_{1}^{\alpha_{1}^{\prime}} \cdots x_{k}^{\alpha_{k}^{\prime}}\right)^{-1} \psi\right)
$$

and $h_{2}=\prod_{j \in C} x_{j}^{\beta_{j}} \otimes \prod_{j \in C} x_{j}^{\beta_{j}^{\prime}}$, where $C=\{1, \ldots, l\} \backslash\{1 \phi, \ldots, k \phi\}$. Then

$$
h_{1}(v \psi)=\left(x_{1 \phi}^{\alpha_{1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1 \phi}^{\alpha_{1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right)\left(e_{\delta \delta^{\prime}} \psi\right)
$$

and so, by Lemma 5.4,

$$
h_{1}(v \psi) e_{\varepsilon \varepsilon^{\prime}}=\left(x_{1 \phi}^{\alpha_{1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1 \phi}^{\alpha_{1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}=\left(x_{1 \phi}^{\beta_{1 \phi}} \cdots x_{k \phi}^{\beta_{k \phi}} \otimes x_{1 \phi}^{\beta_{1 \phi}^{\prime}} \cdots x_{k \phi}^{\beta_{k \phi}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}
$$

Therefore $h_{2} h_{1}(v \psi) e_{\varepsilon \varepsilon^{\prime}}=\left(x_{1}^{\beta_{1}} \cdots x_{i}^{\beta_{1}} \otimes x_{1}^{\beta_{1}^{\prime}} \cdots x_{i}^{\beta_{i}^{\prime}}\right)\left(a \otimes a^{\prime}\right) e_{\varepsilon \varepsilon^{\prime}}$, where $a, a^{\prime} \in A_{1}^{\prime}$. By (5.2), $\left(a \otimes a^{\prime}\right) e_{\varepsilon \varepsilon^{\prime}}=\lambda e_{\varepsilon \varepsilon^{\prime}}$ where $\lambda \in \mathbb{F} \backslash\{0\}$. Hence

$$
h_{2} h_{1}(v \psi) e_{\varepsilon \varepsilon^{\prime}}=\lambda\left(x_{1}^{\beta_{1}} \cdots x_{l}^{\beta_{l}} \otimes x_{1}^{\beta_{1}^{\prime}} \cdots x_{l}^{\beta_{1}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}=\lambda w .
$$

Now let u be an element of $\mathscr{M}_{\delta \delta^{\prime}}$ such that $u<v$. Write $u=\left(x_{1}^{\gamma_{1}} \cdots x_{k}^{\gamma_{k}} \otimes x_{1}^{\gamma_{1}^{\prime}} \cdots x_{k}^{\gamma_{k}^{\prime}}\right) e_{\delta \delta^{\prime}}$. Thus there exists $q \in\{1, \ldots, k\}$ such that $\left(\gamma_{q}, \gamma_{q}^{\prime}\right)<\left(\alpha_{q}, \alpha_{q}^{\prime}\right)$ but $\left(\gamma_{i}, \gamma_{i}^{\prime}\right)=\left(\alpha_{i}, \alpha_{i}^{\prime}\right)$ for $i=q+1, \ldots, k$. We can write

$$
\begin{aligned}
\left(x_{1}^{\alpha_{1}} \cdots x_{k}^{\alpha_{k}} \otimes x_{1}^{\alpha_{1}^{\prime}} \cdots x_{k}^{\alpha_{k}^{\prime}}\right)^{-1} & \left(x_{1}^{\gamma_{1}} \cdots x_{k}^{\gamma_{k}} \otimes x_{1}^{\gamma_{1}^{\prime}} \cdots x_{k}^{\gamma_{k}^{\prime}}\right) \\
& =\left(x_{1}^{\gamma_{1}-\alpha_{1}} \cdots x_{k}^{\gamma_{k}-\alpha_{k}} \otimes x_{1}^{\gamma_{1}^{\prime}-\alpha_{1}^{\prime}} \cdots x_{k}^{\gamma_{k}^{\prime}-\alpha_{k}^{\prime}}\right)\left(b \otimes b^{\prime}\right)
\end{aligned}
$$

where $b, b^{\prime} \in A_{k}^{\prime}$. By (5.2), $\left(b \otimes b^{\prime}\right) \psi e_{\varepsilon \varepsilon^{\prime}}=v e_{\varepsilon \varepsilon^{\prime}}$ where $v \in \mathbb{F} \backslash\{0\}$. Hence

$$
\begin{aligned}
h_{1}(u \psi) e_{\varepsilon \varepsilon^{\prime}} & =v\left(x_{1 \phi}^{\alpha_{1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1 \phi}^{\alpha_{1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right)\left(\left(x_{1}^{\gamma_{1}-\alpha_{1}} \cdots x_{k}^{\gamma_{k}-\alpha_{k}} \otimes x_{1}^{\gamma_{1}^{\prime}-\alpha_{1}^{\prime}} \cdots x_{k}^{\gamma_{k}^{\prime}-\alpha_{k}^{\prime}}\right) \psi\right) e_{\varepsilon \varepsilon^{\prime}} \\
& =v\left(x_{1 \phi}^{\alpha_{1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1 \phi}^{\alpha_{1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right)\left(\left(x_{1}^{\gamma_{1}-\alpha_{1}} \cdots x_{q}^{\gamma_{q}-\alpha_{q}} \otimes x_{1}^{\gamma_{1}^{\prime}-\alpha_{1}^{\prime}} \cdots x_{q}^{\gamma_{q}^{\prime}-\alpha_{q}^{\prime}}\right) \psi\right) e_{\varepsilon \varepsilon^{\prime}} .
\end{aligned}
$$

From the properties of ψ we calculate that

$$
\begin{aligned}
\left(\left(x_{1}^{\gamma_{1}-\alpha_{1}} \cdots x_{q}^{\gamma_{q}-\alpha_{q}}\right.\right. & \left.\left.\otimes x_{1}^{\gamma_{1}^{\prime}-\alpha_{1}^{\prime}} \cdots x_{q}^{\gamma_{q}^{\prime}-\alpha_{q}^{\prime}}\right) \psi\right) e_{\varepsilon \varepsilon^{\prime}} \\
& =v^{\prime}\left(x_{1}^{\rho_{1}} \cdots x_{q \phi-1}^{\rho_{q \phi-1}} x_{q \phi}^{\gamma_{q}-\alpha_{q}} \otimes x_{1}^{\rho_{1}^{\prime}} \cdots x_{q \phi-1}^{\rho_{q \phi-1}^{\prime}} x_{q \phi}^{\gamma_{q}^{\prime}-\alpha_{q}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}
\end{aligned}
$$

where $v^{\prime} \in \mathbb{F} \backslash\{0\}$ and $\rho_{1}, \ldots, \rho_{q \phi-1}, \rho_{1}^{\prime}, \ldots, \rho_{q \phi-1}^{\prime} \in \mathbb{Z} / n \mathbb{Z}$. Hence $h_{1}(u \psi) e_{\varepsilon \varepsilon^{\prime}}$ has the form

$$
v^{\prime \prime}\left(x_{1}^{\sigma_{1}} \cdots x_{q \phi-1}^{\sigma_{q \phi-1}} x_{q \phi}^{\gamma_{q}} x_{(q+1) \phi}^{\alpha_{q+1}} \cdots x_{k \phi}^{\alpha_{k}} \otimes x_{1}^{\sigma_{1}^{\prime}} \cdots x_{q \phi-1}^{\sigma_{q \phi-1}^{\prime}} x_{q \phi}^{\gamma_{q}^{\prime}} x_{(q+1) \phi}^{\alpha_{q+1}^{\prime}} \cdots x_{k \phi}^{\alpha_{k}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}
$$

where $\nu^{\prime \prime} \in \mathbb{F} \backslash\{0\}$ and $\sigma_{1}, \ldots, \sigma_{q \phi-1}, \sigma_{1}^{\prime}, \ldots, \sigma_{q \phi-1}^{\prime} \in \mathbb{Z} / n \mathbb{Z}$. Therefore $h_{2} h_{1}(u \psi) e_{\varepsilon \varepsilon^{\prime}}$ is a non-zero scalar multiple of a monomial of the form

$$
\left(x_{1}^{\tau_{1}} \cdots x_{q \phi-1}^{\tau_{q \phi-1}} x_{q \phi}^{\gamma_{q}} x_{q \phi+1}^{\beta_{q \phi+1}} \cdots x_{l}^{\beta_{l}} \otimes x_{1}^{\tau_{1}^{\prime}} \cdots x_{q \phi-1}^{\tau_{q \phi-1}^{\prime}} x_{q \phi}^{\gamma_{q}^{\prime}} x_{q \phi+1}^{\beta_{q \phi+1}^{\prime}} \cdots x_{l}^{\beta_{1}^{\prime}}\right) e_{\varepsilon \varepsilon^{\prime}}
$$

where $\tau_{1}, \ldots, \tau_{q \phi-1}, \tau_{1}^{\prime}, \ldots, \tau_{q \phi-1}^{\prime} \in \mathbb{Z} / n \mathbb{Z}$. Since $\left(\gamma_{q}, \gamma_{q}^{\prime}\right)<\left(\alpha_{q}, \alpha_{q}^{\prime}\right)=\left(\beta_{q \phi}, \beta_{q \phi}^{\prime}\right)$, this monomial is smaller than w.

Since $h_{2} h_{1}(f \psi) e_{\varepsilon \varepsilon^{\prime}}=\lambda_{1} h_{2} h_{1}\left(v_{1} \psi\right) e_{\varepsilon \varepsilon^{\prime}}+\cdots+\lambda_{r} h_{2} h_{1}\left(v_{r} \psi\right) e_{\varepsilon \varepsilon^{\prime}}$, we see that $h_{2} h_{1}(f \psi) e_{\varepsilon \varepsilon^{\prime}}$ has leading monomial w with coefficient $\lambda_{1} \lambda$. Also, since ψ extends to an element of Ψ, we have $h_{2} h_{1}(f \psi) e_{\varepsilon \varepsilon^{\prime}} \in L_{\psi}\{f\}$. Let $g^{*}=g-\mu_{1} \lambda_{1}^{-1} \lambda^{-1} h_{2} h_{1}(f \psi) e_{\varepsilon \varepsilon^{\prime}}$. Then g^{*} has the required properties.

Now we are in a position to complete the proof of Theorem C. Let J be a Ψ-closed left ideal of $\mathbb{F}(A \times A)$. It suffices to prove that J is finitely generated as a Ψ-closed left ideal. By Proposition 5.8, there exists a finite set S of regular elements of J such that for every regular element g of J there exists $f \in S$ such that lead $(f) \preccurlyeq \operatorname{lead}(g)$. We claim that $J=L_{\Psi}(S)$. By Lemma 5.7, it suffices to show that every regular element of J belongs to $L_{\Psi}(S)$. Suppose, in order to get a contradiction, that this is not so, and let g be a regular element of J such that $g \notin L_{\Psi}(S)$. Suppose $g \in I_{\varepsilon \varepsilon^{\prime}}$. Choose g with the given properties such that lead (g) is as small as possible in the finite set $\left(\mathscr{M}_{\varepsilon \varepsilon^{\prime}}, \leq\right)$. There exists $f \in S$ such that lead $(f) \preccurlyeq \operatorname{lead}(g)$. By Lemma 5.9, there exists $g^{*} \in I_{\varepsilon \varepsilon^{\prime}}$ such that $L_{\Psi}\{f, g\}=L_{\Psi}\left\{f, g^{*}\right\}$ and either $g^{*}=0$ or lead $\left(g^{*}\right)<\operatorname{lead}(g)$. Since $g \notin L_{\Psi}\{f\}$, we have $g^{*} \neq 0$. Since $g^{*} \in L_{\Psi}\{f, g\} \subseteq J$, the choice of g gives that $g^{*} \in L_{\Psi}(S)$. Hence $g \in L_{\Psi}\left\{f, g^{*}\right\} \subseteq L_{\Psi}(S)$ and we have the required contradiction.

6. Proof of Theorem D

Let n, A, Ψ, \mathbb{F} and R be as in Section 1, where \mathbb{F} is a field of characteristic not dividing n. Let $\overline{\mathbb{F}}$ be the algebraic closure of \mathbb{F}. The subalgebra $\overline{\mathbb{F}} \otimes_{\mathbb{F}} R$ of $\overline{\mathbb{F}}(A \times A)$ corresponds to R in $\mathbb{F}(A \times A)$. If M is an (R, Ψ)-submodule of $\mathbb{F}(A \times A)$ which contains R, then $\overline{\mathbb{F}} \otimes_{\mathbb{F}} M$ is an $\left(\overline{\mathbb{F}} \otimes_{\mathbb{F}} R, \Psi\right)$-submodule of $\overline{\mathbb{F}}(A \times A)$ which contains $\overline{\mathbb{F}} \otimes_{\mathfrak{F}} R$, and $M=\mathbb{F}(A \times A) \cap \overline{\mathbb{F}} \otimes_{\mathcal{F}} M$. Therefore, to prove Theorem D , we may assume that $\bar{F}=\mathbb{F}$.

We shall use the notation of Section 5. If $n \leq 2$, then Theorem D follows from Proposition 4.5. Thus, as in Section 5, we assume that $n>2$, so that $n_{0}>1$.

Let P be the subgroup of $A \times A$ defined by $P=\left\{\left(c, c^{-1}\right): c \in A^{\prime}\right\}$ and let $H=(A \times A) / P$. Note that P is a Ψ-closed subgroup of $A \times A$, so each element of Ψ induces endomorphisms of H and $\mathbb{F} H$. For $i, j \in \mathbb{N}$, let $c_{i j}$ be the element of H given by $c_{i j}=\left(\left[x_{i}, x_{j}\right], 1\right) P=\left(1,\left[x_{i}, x_{j}\right]\right) P$.

For each positive integer k, let H_{k} be the subgroup of H generated by the elements $\left(x_{i}, 1\right) P$ and $\left(1, x_{i}\right) P$ for $i=1, \ldots, k$. It is easily verified that H_{k}^{\prime} is a free abelian group of exponent n_{0} with basis $\left\{c_{i j}: 1 \leq i<j \leq k\right\}$. Furthermore, there are isomorphisms from A_{k}^{\prime} to H_{k}^{\prime} and from $\mathbb{F} A_{k}^{\prime}$ to $\mathbb{F} H_{k}^{\prime}$ given by $\left[x_{i}, x_{j}\right] \mapsto c_{i j}$ for all i, j. If $\psi: A_{k} \rightarrow A_{l}$ is a homomorphism, where $k, l \in \mathbb{N}$, then the associated homomorphism $\psi: A_{k} \times A_{k} \rightarrow A_{l} \times A_{l}$ yields homomorphisms $\bar{\psi}: H_{k} \rightarrow H_{l}$ and $\bar{\psi}: \mathbb{F} H_{k} \rightarrow \mathbb{F} H_{l}$.

Let $K=\mathbb{Z} / n_{0} \mathbb{Z}$, and let Q_{k} and Δ_{k} be as in Section 5. For each $\delta \in \Delta_{k}$, let χ_{δ} and e_{δ} be defined as in Section 5, but with respect to H_{k}^{\prime} rather than A_{k}^{\prime}. Thus χ_{δ} is a character of H_{k}^{\prime} and e_{δ} is an idempotent of $\mathbb{F} H_{k}^{\prime}$. Results (5.2)-(5.5) apply just as before. For $\delta \in \Delta_{k}$ we define $J_{\delta}=\left(\mathbb{F} H_{k}\right) e_{\delta}$. Thus J_{δ} is the ideal of $\mathbb{F} H_{k}$ generated by e_{δ}, and we have $\mathbb{F} H_{k}=\bigoplus_{\delta \in \Delta_{k}} J_{\delta}$.

For each k we write $Q_{k}^{0}=Q_{k} \backslash\{(1,2),(3,4), \ldots\}$. An element δ of Δ_{k} will be catled standard if $\delta(i, j)=0$ (equivalently, $\chi_{\delta}\left(c_{i j}\right)=1$) for all $(i, j) \in Q_{k}^{0}$. We write Δ_{k}^{*} for the set of all standard elements of Δ_{k} and $\Delta_{k}^{0}=\Delta_{k} \backslash \Delta_{k}^{*}$.

For each $\delta \in \Delta_{k}$, let θ_{δ} be the alternating K-form on \tilde{A}_{k} defined as in Section 5 . Thus ($\tilde{A}_{k}, \theta_{\delta}$) is standard with respect to $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{k}\right\}$ (in the terminology of Section 3) if and only if δ is standard, that is, $\delta \in \Delta_{k}^{*}$.

Lemma 6.1. Let $\delta \in \Delta_{k}$. Then there exists $\eta \in \operatorname{Aut}\left(A_{k}\right)$ such that, for the induced automorphism $\bar{\eta}: \mathbb{F} H_{k} \rightarrow \mathbb{F} H_{k}$, we have $e_{\delta} \bar{\eta}=e_{\varepsilon}$ where $\varepsilon \in \Delta_{k}^{*}$.

Proof. By Lemma 3.8 there is a basis $\left\{\tilde{a}_{1}, \ldots, \tilde{a}_{k}\right\}$ of \tilde{A}_{k} such that $\left(\tilde{A}_{k}, \theta_{\delta}\right)$ is standard with respect to this basis. As in the proof of Lemma 5.5, there is a free generating set $\left\{y_{1}, \ldots, y_{k}\right\}$ of A_{k} such that $\tilde{y}_{i}=\tilde{a}_{i}$ for $i=1, \ldots, k$. Let η be the automorphism of A_{k} satisfying $y_{i} \eta=x_{i}$ for $i=1, \ldots, k$. Note that η acts on A_{k}^{\prime} just as $\bar{\eta}$ acts on H_{k}^{\prime}. Thus Lemma 5.1 shows that $e_{\delta} \bar{\eta}=e_{\varepsilon}$, where $\varepsilon \in \Delta_{k}$ and $\theta_{\varepsilon}\left(\tilde{x}_{i}, \tilde{x}_{j}\right)=\theta_{\delta}\left(\tilde{y}_{i}, \tilde{y}_{j}\right)$ for all i, j. Thus ($\left.\tilde{A}_{k}, \theta_{\varepsilon}\right)$ is standard with respect to $\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{k}\right\}$, that is, $\varepsilon \in \Delta_{k}^{*}$.

Since $\mathbb{F} H^{\prime}$ is a subalgebra of $\mathbb{F} H$, we may regard $\mathbb{F} H$ as a left $\mathbb{F} H^{\prime}$-module. Following the terminology of Section 1, we shall consider ($\left.\mathbb{F}^{\prime}, \Psi\right)$-submodules of $\mathbb{F} H$. A non-zero element w of $\mathbb{F} H$ will be called standard if $w \in J_{\delta}$ for some k and some $\delta \in \Delta_{k}^{*}$.

Lemma 6.2. Every $\left(\mathbb{F} H^{\prime}, \Psi\right)$-submodule of $\mathbb{F} H$ is generated, as a Ψ-closed vector space, by standard elements.

Proof. This is similar to the proof of Lemma 5.7, with Lemma 6.1 taking the place of Lemma 5.5.

Let C be the subgroup of H generated by all elements $c_{i j}$ for which $i<j$ and $(i, j) \notin\{(1,2),(3,4), \ldots\}$. Let ρ be the natural homomorphism $\rho: H \rightarrow H / C$. We also denote by ρ the associated homomorphisms $H_{k} \rightarrow H / C$ and $\mathbb{F} H_{k} \rightarrow \mathbb{F}(H / C)$. Clearly the kernel of $\rho: H_{k} \rightarrow H / C$ is the subgroup of H_{k} generated by all $c_{i j}$ for which $(i, j) \in Q_{k}^{0}$. Thus the kernel of $\rho: \mathbb{F} H_{k} \rightarrow \mathbb{F}(H / C)$ is the ideal generated by the elements $c_{i j}-1$ for $(i, j) \in Q_{k}^{0}$. We write $\left(\mathbb{F} H_{k}\right)^{*}=\bigoplus_{\delta \in \Delta_{k}} J_{\delta}$ and $\left(\mathbb{F} H_{k}\right)^{0}=\bigoplus_{\delta \in \Delta_{k}^{0}} J_{\delta}$.

Lemma 6.3. The kernel of $\rho: \mathbb{F} H_{k} \rightarrow \mathbb{F}(H / C)$ is $\left(\mathbb{F} H_{k}\right)^{0}$.
Proof. Let $\delta \in \Delta_{k}^{0}$. Then $\chi_{\delta}\left(c_{i j}\right) \neq 1$ for some $(i, j) \in Q_{k}^{0}$. By (5.2), $\left(c_{i j}-1\right) e_{\delta}$ is a non-zero scalar multiple of e_{δ}. But clearly ($\left.c_{i j}-1\right) e_{\delta} \in \operatorname{ker}(\rho)$. Thus $e_{\delta} \in \operatorname{ker}(\rho)$. It follows that $J_{\delta} \subseteq \operatorname{ker}(\rho)$ and so $\left(\mathbb{F} H_{k}\right)^{0} \subseteq \operatorname{ker}(\rho)$.

Let $(i, j) \in Q_{k}^{0}$. Then, for $\varepsilon \in \Delta_{k}^{*}$, we have $\left(c_{i j}-1\right) e_{\varepsilon}=\left(\chi_{\varepsilon}\left(c_{i j}\right)-1\right) e_{\varepsilon}=0$. Hence $c_{i j}-1=\left(c_{i j}-1\right) \sum_{\delta \in \Delta_{k}} e_{\delta}=\left(c_{i j}-1\right) \sum_{\delta \in \Delta_{k}^{0}} e_{\delta}$. Hence $c_{i j}-1$ belongs to the ideal $\left(\mathbb{F} H_{k}\right)^{0}$. Since this holds for all $(i, j) \in Q_{k}^{0}$ we obtain $\operatorname{ker}(\rho) \subseteq\left(\mathbb{F} H_{k}\right)^{0}$.

For $k \in \mathbb{N}$, let ψ_{k} be the endomorphism of A defined by $x_{i} \psi_{k}=1$ for $i>k$ and $x_{i} \psi_{k}=x_{i}$ for $i \leq k$. Also write ψ_{k} for the induced endomorphisms of H and $\mathbb{F} H$.

Lemma 6.4. Let $u \in\left(\mathbb{F} H_{k}\right)^{*}$ and let $l \geq k$. Then there exists $v \in\left(\mathbb{F} H_{l}\right)^{*}$ such that $v \psi_{k}=u$ and $v \rho=u \rho$.

Proof. Let B be the subgroup of H_{l}^{\prime} generated by all elements $c_{i j}$ for $(i, j) \in$ $Q_{l}^{0} \backslash Q_{k}^{0}$. Let $v=u\left(|B|^{-1} \sum_{h \in B} h\right)$. Clearly $v \psi_{k}=u$ and $v \rho=u \rho$. To prove that $v \in\left(\mathbb{F} H_{l}\right)^{*}$ it is enough to show that $v e_{\varepsilon}=0$ for all $\varepsilon \in \Delta_{l}^{0}$.

Let $\varepsilon \in \Delta_{l}^{0}$. Then there exists $(i, j) \in Q_{l}^{0}$ such that $\chi_{\varepsilon}\left(c_{i j}\right) \neq 1$. We consider two cases. Suppose first that $(i, j) \in Q_{k}^{0}$. Then the restriction of χ_{ε} to H_{k}^{\prime} has the form $\chi_{\delta^{\prime}}$ for some $\delta^{\prime} \in \Delta_{k}^{0}$. Then for all $\delta \in \Delta_{k}^{*}$ we have $e_{\delta} e_{\varepsilon}=\chi_{\delta^{\prime}}\left(e_{\delta}\right) e_{\varepsilon}=0$, by (5.2) and (5.4). Hence $u e_{\varepsilon}=0$ and so $v e_{\varepsilon}=0$. Suppose secondly that $(i, j) \in Q_{l}^{0} \backslash Q_{k}^{0}$. Then $\sum_{h \in B} h$ can be written as $w\left(1+c_{i j}+\cdots+c_{i j}^{n_{0}}\right)$ for some $w \in \mathbb{F} H_{l}^{\prime}$. Since $\chi_{\varepsilon}\left(c_{i j}\right)$ is a non-trivial n_{0}-th root of unity, $\chi_{\varepsilon}\left(1+c_{i j}+\cdots+c_{i j}^{n_{0}}\right)=0$. Thus $\left(1+c_{i j}+\cdots+c_{i j}^{n_{0}}\right) e_{\varepsilon}=0$ and so $v e_{\varepsilon}=0$.

Lemma 6.5. Suppose that M_{1} and M_{2} are $\left(\mathbb{F} H^{\prime}, \Psi\right)$-submodules of $\mathbb{F} H$ such that $M_{1} \rho=M_{2} \rho$. Then $M_{1}=M_{2}$.

Proof. Suppose, in order to get a contradiction, that $M_{1} \neq M_{2}$. Without loss of generality we may assume that $M_{1} \nsubseteq M_{2}$. By Lemma 6.2 there exist k and $\delta \in \Delta_{k}^{*}$ such that $M_{1} \cap J_{\delta} \nsubseteq M_{2}$. Hence there exists $u \in\left(\mathbb{F} H_{k}\right)^{*}$ such that $u \in M_{1} \backslash M_{2}$. By hypothesis there exists $w \in M_{2}$ such that $u \rho=w \rho$. Choose $l \geq k$ such that $w \in \mathbb{F} H_{l}$. Then $w=w^{*}+w^{0}$ where $w^{*} \in\left(\mathbb{F} H_{l}\right)^{*}$ and $w^{0} \in\left(\mathbb{F} H_{l}\right)^{0}$. Since M_{2} is an $\mathbb{F} H^{\prime}$-module, $w^{*} \in M_{2}$. Also $u \rho=w \rho=w^{*} \rho$. By Lemma 6.4 there exists $v \in\left(\mathbb{F} H_{l}\right)^{*}$ such that $v \psi_{k}=u$ and $v \rho=u \rho$. Thus $v \rho=w^{*} \rho$. By Lemma 6.3, this gives $v=w^{*} \in M_{2}$. Hence $u=v \psi_{k} \in M_{2}$, which is a contradiction.

Now we return to the group H / C. Recall that $H=(A \times A) / P$. For each $i \in \mathbb{N}$, let G_{i} be the subgroup of H / C generated by the four elements $\left(\left(x_{2 i-1}, 1\right) P\right) \rho$, $\left(\left(1, x_{2 i-1}\right) P\right) \rho,\left(\left(x_{2 i}, 1\right) P\right) \rho$ and $\left(\left(1, x_{2 i}\right) P\right) \rho$. Write $G=G_{1}$. Thus G is a finite group. It is easily verified that H / C is the direct product of the groups G_{i}, and, for each i, there is an obvious isomorphism from G to G_{i}. Thus we may identify H / C with the direct power D of G considered in Section 4. Let Ξ be the set of endomorphisms of D defined in Section 4.

Lemma 6.6. Let M be a Ψ-closed subspace of $\mathbb{F} H$. Then $M \rho$ is a Ξ-closed subspace of $\mathbb{F} D$.

PROOF. Let $\xi \in \Xi$ and suppose that ξ is associated with ϕ, X and σ in the notation of Section 4. It suffices to show that there exists an endomorphism ψ of A such that the induced endomorphism of H leaves C invariant and induces ξ on H / C. To simplify the notation we rewrite the generators of A by setting $y_{i}=x_{2 i-1}$ and $z_{i}=x_{2 i}$ for all $i \in \mathbb{N}$. We define a homomorphism $\psi: A \rightarrow A$ by

$$
y_{i} \psi=y_{i \phi} \prod_{\substack{j \in X \\ j \sigma=i \phi}} y_{j}, \quad z_{i} \psi=z_{i \phi} \prod_{\substack{j \in X \\ j \sigma=i \phi}} z_{j},
$$

for each i. The products are taken over all those values of j, if any, which lie in X and satisfy $j \sigma=i \phi$, and the terms y_{j} and z_{j} are taken in increasing order of j (this is an arbitrary choice). It is straightforward to verify that ψ has the required properties.

By Proposition 4.4 together with Lemma 6.5 and Lemma 6.6 we obtain
LEMMA 6.7. The maximal condition holds for $\left(\mathbb{F} H^{\prime}, \Psi\right)$-submodules of $\mathbb{F} H$.
Consider the natural homomorphism $\pi: A \times A \rightarrow H$ with kernel P, and let I be the kernel of the corresponding homomorphism $\pi: \mathbb{F}(A \times A) \rightarrow \mathbb{F} H$.

LEMMA 6.8. The maximal condition holds for (R, Ψ)-submodules of $\mathbb{F}(A \times A)$ which contain I.

Proof. By Lemma 6.7 it suffices to show that if M is an (R, Ψ)-submodule of $\mathbb{F}(A \times A)$ which contains I then $M \pi$ is an $\left(\mathbb{F} H^{\prime}, \Psi\right)$-submodule of $\mathbb{F} H$. It is clear that $M \pi$ is Ψ-closed, by definition of the action of Ψ on $\mathbb{F} H$. Also, $M \pi$ is a left $R \pi$ submodule of $\mathbb{F} H$. Thus it suffices to show that $H^{\prime} \subseteq R \pi$. Since $R \pi$ is an algebra, it suffices to show that $c_{i j} \in R \pi$ for all i, j. Note that $\left(\left[x_{i}, x_{j}\right] \otimes\left[x_{i}, x_{j}\right]\right) \pi=c_{i j}^{2}$ and $\left(\left[x_{i}, x_{j}\right] \otimes 1+1 \otimes\left[x_{i}, x_{j}\right]\right) \pi=2 c_{i j}$. Hence $c_{i j}^{2} \in R \pi$ and $2 c_{i j} \in R \pi$. If n_{0} is odd then $c_{i j}^{2} \in R \pi$ gives $c_{i j} \in R \pi$. But if n_{0} is even then \mathbb{F} does not have characteristic 2 and $2 c_{i j} \in R \pi$ gives $c_{i j} \in R \pi$.

In the notation of Section 5 , we can write $\mathbb{F}\left(A_{k} \times A_{k}\right)=\bigoplus_{\delta, \delta^{\prime} \in \Delta_{k}} I_{\delta \delta^{\prime}}$. Note that

$$
\left(e_{\delta} \otimes 1\right) \pi=\left(1 \otimes e_{\delta}\right) \pi=e_{\delta} \in \mathbb{F} H_{k}^{\prime}
$$

Hence, for $\delta \neq \delta^{\prime}$, we have $e_{\delta \delta^{\prime}} \pi=e_{\delta} e_{\delta^{\prime}}=0$ and so $I_{\delta \delta^{\prime}} \subseteq \operatorname{ker}(\pi)=I$. It is easily checked that $\bigoplus_{\delta \in \Delta_{k}} I_{\delta \delta}$ and $\mathbb{F} H_{k}$ have the same dimension. Hence

$$
\begin{equation*}
I \cap \mathbb{F}\left(A_{k} \times A_{k}\right)=\bigoplus_{\substack{\delta, \delta^{\prime} \in \Delta_{k} \\ \delta \neq \delta^{\prime}}} I_{\delta \delta^{\prime}} \tag{6.1}
\end{equation*}
$$

LEMmA 6.9. Let M be an (R, Ψ)-submodule of $\mathbb{F}(A \times A)$ such that $R \cap I \subseteq M \subseteq I$, and let T be the largest Ψ-closed left ideal of $\mathbb{F}(A \times A)$ contained in M. Then $M=T+(R \cap I)$.

PROOF. Let L be the subspace of M spanned by all elements of M which have the form $w e_{\delta \delta^{\prime}}$ where $w \in \mathbb{F}(A \times A)$ and $\delta, \delta^{\prime} \in \Delta_{k}$ for some k, with $\delta \neq \delta^{\prime}$. Let $w e_{\delta \delta^{\prime}}$ be such an element of M. Let $\psi \in \Psi$ and $a, a^{\prime} \in A$. Choose $l \geq k$ so that $e_{\delta} \psi, e_{\delta^{\prime}} \psi \in \mathbb{F} A_{l}^{\prime}$. Since $e_{\delta} \psi$ and $e_{\delta^{\prime}} \psi$ are idempotents, we can write $e_{\delta} \psi=\sum_{\lambda \in \Lambda} e_{\lambda}$ and $e_{\delta^{\prime}} \psi=\sum_{\lambda^{\prime} \in \Lambda^{\prime}} e_{\lambda^{\prime}}$ where $\Lambda, \Lambda^{\prime} \subseteq \Delta_{l}$. But $\left(e_{\delta} \psi\right)\left(e_{\delta^{\prime}} \psi\right)=\left(e_{\delta} e_{\delta^{\prime}}\right) \psi=0$. Thus Λ and Λ^{\prime} are disjoint. For $\varepsilon \in \Lambda$ and $\varepsilon^{\prime} \in \Lambda^{\prime}$,

$$
\left(\left(a \otimes a^{\prime}\right) e_{\varepsilon \varepsilon^{\prime}}+\left(a^{\prime} \otimes a\right) e_{\varepsilon^{\prime} \varepsilon}\right)(w \psi)\left(e_{\delta \delta^{\prime}} \psi\right) \in M
$$

because M is an (R, Ψ)-module. However, $e_{\delta \delta^{\prime}} \psi=\sum_{\lambda, \lambda^{\prime}} e_{\lambda \lambda^{\prime}}$. Hence $e_{\varepsilon^{\prime} \varepsilon}\left(e_{\delta \delta^{\prime}} \psi\right)=0$ and $e_{\varepsilon \varepsilon^{\prime}}\left(e_{\delta \delta^{\prime}} \psi\right)=e_{\varepsilon \varepsilon^{\prime}}$. Therefore $\left(a \otimes a^{\prime}\right)(w \psi) e_{\varepsilon \varepsilon^{\prime}} \in M$, and so $\left(a \otimes a^{\prime}\right)(w \psi) e_{\varepsilon \varepsilon^{\prime}} \in L$. Since this holds for all $\varepsilon, \varepsilon^{\prime}$, we have $\left(a \otimes a^{\prime}\right)(w \psi)\left(e_{\delta \delta^{\prime}} \psi\right) \in L$. Therefore L is a Ψ-closed left ideal of $\mathbb{F}(A \times A)$. We next prove that $M=L+(R \cap I)$, which will give the required result.

Let $u \in M$ and choose k so that $u \in \mathbb{F}\left(A_{k} \times A_{k}\right)$. Since $M \subseteq I$ we can use (6.1) to write $u=\sum w_{\delta \delta^{\prime}} e_{\delta \delta^{\prime}}$, where the sum is over all $\delta, \delta^{\prime} \in \Delta_{k}$ with $\delta \neq \delta^{\prime}$ and each $w_{\delta \delta^{\prime}}$ belongs to $\mathbb{F}\left(A_{k} \times A_{k}\right)$. Let $\delta, \delta^{\prime} \in \Delta_{k}$ with $\delta \neq \delta^{\prime}$. Since M is an R-module,

$$
\left(e_{\delta \delta^{\prime}}+e_{\delta^{\prime} \delta}\right) u=w_{\delta \delta^{\prime}} e_{\delta \delta^{\prime}}+w_{\delta^{\prime} \delta} e_{\delta^{\prime} \delta} \in M
$$

Write $v=w_{\delta \delta^{\prime}}$ and $v^{\prime}=w_{\delta^{\prime} \delta}$. Then it suffices to show that $v e_{\delta \delta^{\prime}}+v^{\prime} e_{\delta^{\prime} \delta} \in L+(R \cap I)$.
Let τ be the involutory automorphism of $\mathbb{F}(A \times A)$ satisfying $\left(a \otimes a^{\prime}\right) \tau=a^{\prime} \otimes a$ for all $a, a^{\prime} \in A$. Then $w+w \tau \in R$ for all $w \in \mathbb{F}(A \times A)$. We can write

$$
\begin{equation*}
v e_{\delta \delta^{\prime}}+v^{\prime} e_{\delta^{\prime} \delta}=\left(v-v^{\prime} \tau\right) e_{\delta \delta^{\prime}}+v^{\prime} e_{\delta^{\prime} \delta}+\left(v^{\prime} \tau\right) e_{\delta \delta^{\prime}} \tag{6.2}
\end{equation*}
$$

Here

$$
v^{\prime} e_{\delta^{\prime} \delta}+\left(v^{\prime} \tau\right) e_{\delta \delta^{\prime}}=v^{\prime} e_{\delta^{\prime} \delta}+\left(v^{\prime} \boldsymbol{e}_{\delta^{\prime} \delta}\right) \tau \in R \cap I
$$

Since $R \cap I \subseteq M$, (6.2) gives $\left(v-v^{\prime} \tau\right) e_{\delta \delta^{\prime}} \in M$, and so $\left(v-v^{\prime} \tau\right) e_{\delta \delta^{\prime}} \in L$. Therefore, by (6.2), ve $e_{\delta \delta^{\prime}}+v^{\prime} e_{\delta^{\prime} \delta} \in L+(R \cap I)$, as required.

To complete the proof of Theorem D , let $M_{1} \subseteq M_{2} \subseteq \ldots$ be an ascending chain of (R, Ψ)-submodules of $\mathbb{F}(A \times A)$ which contain R. By Lemma 6.8 the chain $M_{1}+I \subseteq M_{2}+I \subseteq \cdots$ becomes stationary. Thus it suffices to show that the chain $M_{1} \cap I \subseteq M_{2} \cap I \subseteq \cdots$ becomes stationary. For each i, let T_{i} be the largest Ψ-closed left ideal of $\mathbb{F}(A \times A)$ contained in $M_{i} \cap I$. By Lemma 6.9 it suffices to show that the chain $T_{1} \subseteq T_{2} \subseteq \cdots$ becomes stationary. But this holds by Theorem C.

References

[1] M. D. Atkinson, 'Alternating trilinear forms and groups of exponent 6', J. Austral. Math. Soc. 16 (1973), 111-128.
[2] J. M. Brady, R. A. Bryce and J. Cossey, 'On certain abelian-by-nilpotent varieties', Bull. Austral. Math. Soc. 1 (1969), 403-416.
[3] R. M. Bryant and M. F. Newman, 'Some finitely based varieties of groups', Proc. London Math. Soc. (3) 28 (1974), 237-252.
[4] D. E. Cohen, 'On the laws of a metabelian variety', J. Algebra 5 (1967), 267-273.
[5] C. K. Gupta and A. N. Krasil'nikov, 'Some non-finitely based varieties of groups and group representations', Internat. J. Algebra Comput. 5 (1995), 343-365.
[6] G. Higman, 'Ordering by divisibility in abstract algebras', Proc. London Math. Soc. (3) 2 (1952), 326-336.
[7] ———, 'Some remarks on varieties of groups', Quart. J. Math. Oxford (2) 10 (1959), 165-178.
[8] ——, 'The orders of relatively free groups', in: Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., 1965 (eds. L. G. Kovács and B. H. Neumann) (Gordon and Breach, New York, 1967) pp. 153-165.
[9] L. G. Kovács and M. F. Newman, 'Hanna Neumann's problems on varieties of groups', in: Proc. Second Internat. Conf. Theory of Groups, Austral. Nat. Univ., 1973 (ed. M. F. Newman), Lecture Notes in Math. 372 (Springer, Berlin, 1974) pp. 417-431.
[10] A. N. Krasil'nikov, 'The identities of a group with nilpotent commutator subgroup are finitely based', Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 1181-1195; English translation: Math. USSR Izvestiya 37 (1991), 539-553.
[11] R. C. Lyndon, 'Two notes on nilpotent groups', Proc. Amer. Math. Soc. 3 (1952), 579-583.
[12] S. McKay, 'On centre-by-metabelian varieties of groups', Proc. London Math. Soc. (3) 24 (1972), 243-256.
[13] H. Neumann, Varieties of groups (Springer, Berlin, 1967).
[14] A. L. Shmel'kin, 'Wreath products and varieties of groups', Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 149-170.

UMIST
PO Box 88
Manchester M60 1QD
UK
e-mail: bryant@umist.ac.uk

Moscow Pedagogical State University 14 Krasnoprudnaya ul.

Moscow 107140
Russia
Current address:
University of Brasilia
70910-900 Brasilia-DF
Brazil
e-mail: alexei@mat.unb.br

[^0]: Work supported by EPSRC grant GR/L21273.

