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Abstract

For each positive integer n let N2,,, denote the variety of all groups which are nilpotent of class at most 2
and which have exponent dividing n. For positive integers m and n, let N2,mN2,n denote the variety of all
groups which have a normal subgroup in N2,m with factor group in Nj,,,. It is shown that if G e N2,mN2,n,
where m and n are coprime, then G has a finite basis for its identities.

2000 Mathematics subject classification: primary 20E10.

1. Introduction

The finite basis question for a group G asks whether the set of all identities of G is
equivalent to some finite set of identities. (We refer to [13] for terminology and basic
results concerned with varieties of groups, but we use the term 'identity' rather than
'law'.) Between 1970 and 1973 a number of examples were published of groups for
which the answer is negative: see [9] for references covering this period and see [5]
for an account of more recent results. In the majority of these examples, the groups
are metanilpotent (that is, nilpotent-by-nilpotent) and have finite exponent. In the
simplest cases the groups belong to the variety N2.4N2.4r here, for any positive integer
n, N2,n denotes the variety of all groups which are nilpotent of class at most 2 and have
finite exponent dividing n, and, for varieties U and V, VU denotes the product variety,
consisting of all groups which have a normal subgroup in V with factor group in U.
However, there are also many positive results. In particular, Lyndon [11] showed that
every nilpotent group has a finite basis for its identities and Krasil'nikov [10] showed,
much more generally, that the same is true for every nilpotent-by-abelian group.
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56 R. M. Bryant and A. N. Krasil'nikov [2]

In the negative examples mentioned above in which G is metanilpotent of finite
exponent there is no bound on the class of the nilpotent subgroups of G. It seems
still to be an open question whether a soluble group of finite exponent, in which the
nilpotent subgroups have bounded class, has a finite basis for its identities. Our main
result gives a positive answer in many simple cases.

THEOREM A. Let G e N2,mN2,n where m and n are coprime positive integers. Then
G has a finite basis for its identities.

A special case of this result was proved by Brady, Bryce and Cossey [2]: they
showed that G has a finite basis for its identities if G belongs to AmN2,n, where m and
n are coprime positive integers and Am denotes the variety of all abelian groups of
exponent dividing m. Theorem A solves a problem posed by Kovacs and Newman [9].
The method adopted in [2] depends upon an analysis of the irreducible linear groups
in N2 n , in prime characteristic not dividing n, and develops ideas of Higman [8].
However, at about the same time, Cohen [4] introduced a quite different method for
tackling the finite basis question, dependent on the combinatorics of ordered sets.
Cohen used this method to prove that every metabelian group has a finite basis for its
identities, and the method was developed by others in later work such as [3, 10] and
[12]. We apply similar methods here, for which we need the idea of a well-quasi-
ordered set, defined as follows.

A quasi-order on a set W is a binary relation ^! on W which is reflexive and
transitive. (We do not assume that x =4 y and y =<: x imply x = y, as in a partial order.
Furthermore, we give no meaning to <, only to =<:.) As shown in [6], the following
two properties of a quasi-ordered set (W, =4) are equivalent:

(i) for every infinite sequence wu w2,... of elements of W there exist i and j
with i < j such that u>, =̂  Wj;

(ii) for every subset X of W there exists a finite subset Y of X such that for every
element x of X there exists y e Y such that y =4 x.

If (either of) these conditions hold then (W, =4) is said to be well-quasi-ordered. If
the relation =3! is a total (or linear) order then we obtain the more familiar idea of a
well-ordered set.

We need to apply this idea to bilinear forms. Let AT be a non-zero, finite, com-
mutative and associative ring, with identity element, and let 5 be a finitely generated
A'-module. By an S-form we mean a pair (V, 0) consisting of a finitely generated,
non-zero, free AT-module V and a AT-bilinear mapping 6 : V x V -> S. If (V, 8) and
(V, 6') are 5-forms we write (V, 6) ^ (V , 9') if there is a A1-module monomorphism
£ : V -± V such that d(vu v2) = 0'(v^, v2$) for all vuv2€ V. The first step in the
proof of Theorem A is the following result (or, to be precise, a more technical version
of this result stated in Section 3).
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THEOREM B. The set of all S-forms is well-quasi-ordered under the relation =̂ .

Strictly speaking, the class of all S-forms is not a set. However, Theorem B can be
rephrased to say that every set of S-forms is well-quasi-ordered under ^ .

A result like this for trilinear alternating forms over a finite field was obtained by
Atkinson [1] in order to prove a different finite basis result.

The finite basis question for a group G is equivalent to the finite basis question
for the variety V generated by G (see [13]). Furthermore, if F is a free group of
countably infinite rank and V(F) denotes the verbal subgroup of F corresponding to
V then every subvariety of V is finitely based if and only if V is finitely based and
the maximal condition holds for fully invariant subgroups of the relatively free group
F/\(F). Much of the proof of Theorem A is concerned with establishing that the
maximal condition holds in some closely related situations, typically for certain ideals
in group algebras.

Let n be a positive integer and let A be a free group of countably infinite rank
in the variety N2>n. Let F be a field of characteristic which does not divide n. Let
^ be the set of all endomorphisms of A and, for each positive integer r, let A x r

denote the r-th direct power of A. Each element ty of * acts 'diagonally' on Axr

by (a\,..., ar)\jr = (ai\fr,..., ar\jr) for all a\,..., ar € A, and this action can be
extended to the group algebra F(Axr) in the obvious way. Using the version of
Theorem B mentioned above we shall prove the following result.

THEOREM C. For each positive integer r, the maximal condition holds for ty-closed
left ideals of ¥(A*r).

If U is a left C-module, for some algebra C, and if there is also an action of * on U,
we call U a (C, *)-module. The concepts of (C, *)-submodule and homomorphism
of (C, * ) -modules are defined in the obvious way.

The algebra F(A x A) is isomorphic to FA <g> FA (where the tensor product is taken
over F) under the linear map which sends (a, a') to a <S> a' for all a, a' € A. We shall
identify these two algebras and write (a, a') or a <g> a' interchangeably. Let R be the
subspace of F(A x A) spanned by all elements of the form a ® a and a ® a' + a' ® a
for a, a' 6 A. It is easily verified that R is a subalgebra of F(A x A). Thus we may
regard F(A x A) as a left R-module and, indeed, as an (/?, ^)-module. Clearly R is
an (/?, <I')-submodule of F(A x A). The last main step in the proof of Theorem A is
the following result.

THEOREM D. The maximal condition holds for (R, ^>)-submodules of F(A x A)
which contain R.

The vector space F(A x A)/R is isomorphic to the exterior square FA A FA, which
can therefore be given the structure of an (/?, 4*)-module. Thus Theorem D gives the
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following result.

COROLLARY. The maximal condition holds for (R, ty)-submodules o/FA A FA.

Theorems B, C and D will be proved in Sections 3, 5 and 6, respectively. In
Section 2 we show how Theorem A can be derived from Theorems C and D.

2. The derivation of Theorem A

In this section we assume Theorems C and D, and we obtain Theorem A from these
results.

One step in the proof of Theorem A is the special case proved in [2]. We could,
of course, assume this result, but in order to illustrate our method in a comparatively
simple case we first prove this special case.

Let U and V be varieties of groups. Let A be a free group in U on a free generating set
(JC, : / € N} and let B be a free group in Von a free generating set {yf : i e N, a € A}.
For each /, the element yj is also written as y,. Each element a' of A induces an
automorphism of B in which yf i-> yf' for all i 6 M, a € A. Accordingly we can
form the semidirect product BA, a split extension of B by A in which the original
action of A on B becomes conjugation. We denote this group BA by Fsplit(V, U).
The group has the following universal property implicit in [14] and straightforward to
prove directly.

LEMMA 2.1. Let Gbea split extension of a group B\in\bya group A i in U. Then
every pair of mappings {JC, : / e N} —>• Ait {yt : i € N} —>• B\ extends {uniquely) to
a homomorphism Fspiit(V, U) -> G.

LEMMA 2.2. Let U and V be locally finite varieties of groups ofcoprime exponents
and write W = Fspiit(V, U). Let S be a subvariety ofW. Then S is generated by the
group W/S( W), where S( WO is the verbal subgroup of W corresponding to S.

PROOF. Since S is locally finite it is generated by the finite groups it contains. By
the Schur-Zassenhaus Theorem, each such finite group G is a split extension of a
group in V by a group in U. It follows, by Lemma 2.1, that G is a homomorphic
image of W/S( W). Therefore W/S( W) generates S. •

LEMMA 2.3. Let Fbe a relatively free group and let U be an abelian fully invariant
subgroup of F of exponent dividing a positive integer m. Suppose that U contains an
infinite strictly ascending chain of fully invariant subgroups of F. Then there exists a
prime p dividing m such that U/ Up contains an infinite strictly ascending chain of
fully invariant subgroups of F/ Up.
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PROOF. Let ft be the set of all endomorphisms of F, with ft regarded as a set of
operators. If V is any fully invariant subgroup of F then, since the endomorphisms
of F/ V are precisely those induced by elements of ft, F/ V may be regarded as an
ft-group and the ft-subgroups of F/ V are precisely the fully invariant subgroups of
FI V, each being of the form W/ V for some ft-subgroup W of F containing V.
Observe that if N is an ft-subgroup of U then, since U contains an infinite strictly
ascending chain of ft-subgroups, either N or U/N contains such a chain.

Since U is abelian of exponent dividing m, we may write U as a finite direct
product U = U\ x • • • x £/t where each £/, is a non-trivial ft-subgroup of prime-power
exponent dividing m. By repeated use of the previous observation and isomorphisms
of ft-groups, we find that there exists i e { 1 , . . . , k] such that U/ Y\j# Uj contains an
infinite strictly ascending chain of ft-subgroups. Thus it suffices to prove the lemma
in the case where U has exponent ps for some prime p and positive integer s. By
the same observation applied to the chain U > Up > • • • > Up> = {1}, there exists
r e { 0 , 1 , . . . . s — 1} such that Up' / Up'+' contains an infinite strictly ascending chain
of ft-subgroups. Thus there are ft-subgroups W\, W2,... of U satisfying

up'+l <Wi<w2<-<up'.

Let x '• U ~*• W' be the homomorphism defined by ux = up' for all u e U.
Note that x is surjective. Thus Up < Wix"1 < W2x~* < • • • < £ / . It is easily
verified that x >s a homomorphism of ft-groups. Thus each Wix"1 is an ft-group
and Wix~l/Up < W2x~l/Up < ••• is an infinite strictly ascending chain of fully
invariant subgroups of F/ Up contained in U/ Up. •

We shall now obtain the finite basis result of [2]. For any variety V, F(\) denotes
the free group of V of countably infinite rank.

THEOREM 2.4 ([2]). Let m and n be coprimepositive integers. Then the subvarieties
o/AmN2,n are finitely based.

PROOF. Since AmN2,n is finitely based by [7], it suffices to show that F(AmN2,n)
satisfies the maximal condition on fully invariant subgroups. Write H = F(AmN2,n)
and U = N2,n(H). Thus H/U = F(N2,n). By [11], H/U satisfies the maximal
condition on fully invariant subgroups. Thus it suffices to show that the maximal
condition holds for fully invariant subgroups of H contained in U. By Lemma 2.3,
it suffices to show that for each prime p dividing m the maximal condition holds for
fully invariant subgroups of H/ Up contained in U/ Up. But H/ U" = F(ApN2,n), so
it suffices to show that the minimal condition holds for subvarieties of ApN2 n which
contain N2 n .

Let W = Fspii,(Ap, N2,n) and write W = BA where A = <x, : i € N) = F(N2,n)
and B = (y? : i € N, a € A). Thus B is free in Ap. By Lemma 2.2, the subvarieties
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of ApN2in which contain N2,n are in one-one correspondence with the corresponding
verbal subgroups of W, and these verbal subgroups are contained in B. Thus it suffices
to prove that the maximal condition holds for fully invariant subgroups of W contained
in 5 .

We can write B additively as a vector space over fp, the field with p elements, and
B has basis {yf : i e M, a e A}. Let T be the subspace with basis {y° : a e A}.
There is an Fp-space isomorphism /x : FPA -*• T satisfying a/x = y" for all a € A.
Hence we can give T the structure of a left Fp A-module in such a way that /z is a
module isomorphism. Let * be the set of all endomorphisms of A. By Lemma 2.1,
each element \fr of * can be extended to an endomorphism of W by taking y^ = yt

for each /. Thus ^ acts on W. Clearly T is vj/-closed and the map \x : FPA —yTis
an isomorphism of (FPA, ^-modules.

For each a e A, let £a be the endomorphism of W satisfying x£a = xt for all i,
y^a = y° and >>,£„ = y, for all i > 1. Clearly T is invariant under each £a, and %a acts
on T in the same way as a acts (when T is regarded as a left Fp A-module). It follows
that if V is a fully invariant subgroup of W then V n T is an (FPA, ^)-submodule
of T.

For each i,y € N, let S^ be the endomorphism of W determined by xk8ij — xk for
all k, yi&ij = yj and yk&tJ = 1 for all it € N \ {i}. Let V be a fully invariant subgroup
of W contained in B and let v e V. Then there exists r € N such that v belongs to the
span of [yf : 1 < / < r, a e A}. We have v = v8u8u + vt>2i&n H 1- v&nS\r, where
vSu, vS2i,..., v5rl € F n r . Thus V is generated as a fully invariant subgroup by

vn T.
Suppose that Vi < V2 < . . . is an ascending chain of fully invariant subgroups of

W contained in B. Then Vi n T < V2nT <••• is an ascending chain of (FPA, * ) -
modules. Hence (ViDT)ix~l < (V2nT)ix~l <••• is an ascending chain of ^-closed
left ideals of FPA. By Theorem C, this chain becomes stationary. Therefore, so does
Vi n T < V2 D T < • • •, and so does VJ < V2 < • • •, which completes the proof of
Theorem 2.4. •

PROOF OF THEOREM A. Let m and n be coprime positive integers, and write F =
^(N2,mN2,n). By [7], N2,mN2,n is finitely based. Thus it suffices to show that F satisfies
the maximal condition on fully invariant subgroups. Let U be the verbal subgroup of
F corresponding to AmN2,n. Thus F/ U = F(AmN2iK) and, by Theorem 2.4, it suffices
to show that the maximal condition holds for fully invariant subgroups of F contained
in U. By Lemma 2.3 it suffices to show that, for each prime p dividing m, the maximal
condition holds for fully invariant subgroups of F/ Up contained in U/ Up. Let V
be the variety of all groups G such that G is nilpotent of class at most two, G has
exponent dividing m and G' has exponent dividing p . Thus F/ Up = F(VN2 n). It
suffices to show that the minimal condition holds for subvarieties of VN2n which
contain AmN2n.
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Let W = Fspii,(V, N2,n) and write W = BA where A = {xt : i € N) = F(N2,n)
and B = ()? : / e N, a e A). Thus B is free in V. By Lemma 2.2, the subvarieties of
VN2,n which contain AmN2,n are in one-one correspondence with the corresponding
verbal subgroups of W, and these verbal subgroups are contained in B'. Thus it
suffices to prove that the maximal condition holds for fully invariant subgroups of W
contained in B'. If B' = {1} (as occurs when p =2 and m is not divisible by 4) then
the result is trivial. Thus we may assume that B' ^ {1}.

We can write B' additively as a vector space over Fp spanned by [[yf,yf] :
i,j € N, a, a' € A). Let T, be the subspace spanned by {[yf.yf] : a,a! € A]
and let T2 be the subspace spanned by {[y°, y%'] : a, a' e A}. Thus T\ has basis
{[y°,y°] '• a,a' e A, a > a'}, where > is an arbitrary total order on A, and T2 has basis
{[y°, y2 ] : a, a' € A). Thus there are Fp-space isomorphisms fit : FPA A FpA —• 7\
and/i2 : FP(A x A ) ->• T2 satisfying (a A a')/xi = [y?, yf ] and (a®a')/x2 = [y°,y2]
for all a, a' e A. Hence, with /? defined as in Section 1, we can give 7] the structure
of a left R-module and T2 the structure of a left Fp (A x A)-module in such a way that
Hi and /^2 are module isomorphisms. Let * be the set of all endomorphisms of A.
As in the proof of Theorem 2.4, * acts on W. Clearly Tx and T2 are ^-closed, fix is
an isomorphism of (R, *)-modules, and /x2 is an isomorphism of (FP(A x A), * ) -
modules.

For a € A, let £, be the endomorphism of W satisfying xt%a = xt for all i,
y,£0 = y° and j , ^ f l = y, for all i > 1. For a, a' € A, let | a + a- be the endomorphism of
W satisfying x£a+a' = *, for all i, yi^a+a' = y°y( and y^a+(2' = y, for all i > 1. Thus
7i is invariant under each £a and under each fa+a • Furthermore, ^a acts on T\ in the
same way as a ® a acts, while £a+a. acts on T{ in the same way as (a + a') <8> (a + a')
acts. It is easily verified that R is spanned by the elements a <S> a and (a+a') <8> (a + a')
for a, a' e A. It follows that if V is a fully invariant subgroup of W then V D 7\ is an
(fl,*I>)-submoduleof 7\.

For a, a' € A, let £„,„. be the endomorphism of W determined by Xit-a,a> = xt for all
' . yiHa.c = :y°, yiHa.c = y2 and >>,£,,„< = y, for all i > 2. Clearly T2 is invariant under
each %aj. Furthermore, §a a. acts on T2 in the same way as a <g> a' acts. It follows that
if V is a fully invariant subgroup of W then V D T2 is an (FP(A x A), *)-submodule
of T2.

For each i,j e N, let 5,y be the endomorphism of W determined by xkSij = xk

for all k, ytSjj = yj and ykSij = 1 for all k 6 N \ {/}. For each / , j , i'J' e N with
j ^ j , let £(/,;V. be the endomorphism of W determined by xkeu>jj- = xk for all k,
y^a-jr - y>', yj£u\jj' = yy and ykeiVJy = 1 for a lU e N \ {j, j }.

Let V be a fully invariant subgroup of W contained in B' and let v e V. Then, for
some r € N, we can write v = vx + v2 where v{ is in the span of [[y°, yf] : 1 < / <
r, a , f l ' 6 A ] and v2 is in the span of {[yf, yf] : 1 < i < j < r, a, a' € A). Then it is
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easily verified that v\ = £] , vSnSu and

V - Vi = V2 = ^2 V2£i\J2£U,2j

Here vSn <= V C\TX for all i and v2snj2 e V f) T2 for all i,j. It follows that V is
generated as a fully invariant subgroup by (V D 7i) U (V n T2).

Suppose that Vi < V2 < • • • is an ascending chain of fully invariant subgroups
of W contained in B'. Then VI n Tx < V2 D 7i < • • • is an ascending chain of
(R, *)-submodules of Tx while Vi n T2 < V2 H T2 < • • • is an ascending chain of
(F,(A x A), *I>)-submodules of T2. Hence (Vi D 7 i ) / ^ ' < (V2 n TO/x"1 < is an
ascending chain of (7?, 4')-submodules of FPA A FPi4 and

is an ascending chain of ^-closed left ideals of ¥P(A x A). By Theorem C and
the Corollary to Theorem D, both of the last two chains become stationary. Hence
(V, D 70 U (Vi n T2) < (V2 n 7,) U (V2 n r2) < • • • becomes stationary. Therefore
V\ < V2 < • • • becomes stationary, which proves Theorem A. •

3. Bilinear forms

Let K be a non-zero, finite, commutative and associative ring, with identity
element 1. Unless otherwise stated all ^-modules are finitely generated (therefore
finite). Let 5 be a AT-module. An S-form is a pair (V, 6) consisting of a non-zero free
/iT-module V and a /sT-bilinear map G : V x V - • 5. A ^-linear map % : V -+ V,
where (V, 6) and (V , 0') are S-forms, is said to be a homomorphism of S-forms if
0(vi, v2) = 6>'(u,t, u2£) for all vu v2 € V. We write £ : (V,6) -+ (V',0'). The
terms isomorphism and monomorphism are defined in the obvious way. We define
a quasi-order =<: on the set of all S-forms by defining (V, 0) =$ (V, 6') if there is a
monomorphism £ : (V, 6) —> {V',6'). The main result ofthis section is the following.

THEOREM B. The set of all S-forms is well-quasi-ordered under the relation ^.

Let (V, 9) be an S-form. For any subset U of V we define P(U) to be the subset of
S 0 S given by P(U) = {(0(vuv2),9(v2,vi)) : vx,v2 e £/}, and we define Q(U) c S
by G(£/) = {0(u, w) : v € f/}. Also, for U, U c V we define #([/, f/') c S by
#(£/, C/') = ( % u ' ) : u 6 C / , « ' 6 ( / ' ) . Subsets U and £/' are said to be orthogonal
ifd(U, U') = d{U, U) = {0}.
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LEMMA 3.1. Let V be a free K-module and let vu • • • ,vt e V. Then there are
free K-submodules Uu U2 of V such that V = Ui © U2, rank(f/i) < \K\l, and
Vi,... ,vt € LJ\.

PROOF. Take elements X\,..., xm of V where m is minimal such that {x\,..., xm]
is contained in a ^f-basis of V and Vi belongs to the submodule {x\,..., xm). Write
Vi — Yl?=\aixi where each a, is an element of AT. If m > \K\ then there exist
distinct j , k e [I,... ,m] such that a, = ak and we may replace Xj and xk by Xj + xk,
contrary to the minimality of m. Thus m <\K\. Let W be a free ^-submodule of
V such that V = {xt,..., xm) © W and, for i = 2 , . . . , /, write u, = v\ + wt where
v't e (x\,... ,xm) and tu, e W. The result follows by applying an inductive argument
to w2,... ,wi in W. D

LEMMA 3.2. Let (V, 0) be an S-form. Suppose that W is a free K-submodule of
V and let Vi,... ,vi e V. Then there are free K-submodules Wlt W2 of W such that
W=Wi® W2, rank( W,) < 2 |5 | / and W2 is orthogonal to {u, v,}.

PROOF. We assume that I = 1 since the general case follows easily. We shall
find free submodules Uu U2 of W such that W = Ut © U2, rankC^) < \S\ and
9({v\], U2) - {0}. A similar argument gives U2 = U © U" with rank(f/') < | 5 | and
0(U", {vi}) = {0}. The result follows with W, = [/, © U and W2 = U".

Take basis elements JC, , . . . , xm of W where m is maximal subject to 0(vi, *,•) = 0
for i = I,... ,m. Let [xlt... ,xd) be a basis of W containing [xi,... ,xm). Ifd—m >
\S\ then there exist distinct j , k € (w + 1 , . . . , d) such that 0(vuXj) = 6{v\,xk) and
we may extend {x\,..., xm] to {xu ..., xm, Xj —xk], contrary to the maximality of m.
Thus d — m < \S\ and we may take U[ = {xm+1,... ,xd), U2 = (xu • • • ,xm). •

Let Â  be a positive integer and define N[i\ for each non-negative integer /, by
A^[0] = 0 and Nli] = N + N2 -\ -f iV for i > 0. Let (V, 0) be an S-form
and let {xit... ,xj] be a ^f-basis of V. We shall assume, in such notation, that
the elements xt are distinct (that is, d = rank(V)) and that the basis is ordered
as shown, corresponding to the ordered rf-tuple (xu ••• ,xd). Let m be the non-
negative integer which satisfies N[mI < d < N[m+l] and write Vi = (x\,..., xNm),...,
Vm = {xNim-n+l,...,xNi.\), Vm+1 = {xNM+u...,xd). Thus rank(K) = N'^ for
i — 1 , . . . , m and 0 < rank( Vm+1) < A^m+1. For i = 1 , . . . , m + 1, write V+ =
V, © • • • © Vm+X. We say that (V, 0) is N-regular with respect to the ordered basis
[xu...,xd] if PW) = P(V,+) for i = 1 m + 1, Q(^) = ( 2 ( 0 for i =
1 , . . . , m + 1, and V,_i and V£, are orthogonal for i = 2 , . . . , m. A decomposition
V = Vi © • • • © Vm+1 with these properties, which is obtained from some ordered
basis in the way described, is called an N-regular decomposition of V. Note that Vt
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and Vj are orthogonal whenever \i -j\>2. Also P ( V,) 2 P(V2) 2 • • • 2 P ( Vm+i)
and Q( V,) 2 G( V2) 2 • • • 2 G( Vm+1).

LEMMA 3.3. Let N > |AT|(2|S|2 + |5 | ) . 77ien every 5-/onM W N-regular with
respect to some basis.

PROOF. Write s = \S\. Let (V, 9) be an S-form. Let </ = rank( V) and define m
by A^[ml < rf < Nlm+i]. Suppose we can find free modules V+, V,, V2

+, V2, ... , V+,
Vm, V++l with the following properties: V+ = V; for i = 1 , . . . , m, V,+ = Vt® V£,,
rank(\/) = AT', P(V,) = P(V,+) and <2(V,) = g ( V+); and, for i = 2 , . . . , m, V _̂,
and V;+, are orthogonal. Then, taking Vm+l — V++l, we see that V = V{ © • • • © Vm+i
and (V, 6) is N -regular with respect to a basis of V composed of bases of VJ, . . . , Vm+l.
We construct the required free modules inductively.

First define Vj+ = V. If rank( V,+) < Â  then m = 0 and we have finished. So
suppose that rank(V;+) > AT. Since |P(V,+)| < s2 and |<2(V,+)| < s we can choose
elements vu ..., i ^ + j of V,+ (not necessarily distinct) such that

{(0(i>2i-i, v2i), 0(v2h v2,_1)) : i = 1 , . . . , J 2 } = P( V+),

{0(v,, W<) : i = 2s2 + 1 , . . . , 2s2 + s] = Q(V+).

By Lemma 3.1, we can find free submodules Ui and U2 of V,+ such that V,+ = Ui®U2,
v\,..., v2s2+s 6 Ui and rank(t/i) < \K\(2s2 + s) < N. Choose free modules Vi and
V2

+ such that V+ = V, © V2
+, rank(Vl) = N and Vi 2 Ux. By the choice of

« , , . . . , !*,!+„ we have P ( V,) = P ( V,+) and Q( V,) = Q( V+).
Suppose that for some ^ with 1 < k < m we have found free modules V,+, Vi, V2

+,
• • • » Vt, V^j with the required properties for these modules. If rank(V^,) < Nk+X

thenm = k. and we have finished. So suppose that rankCV^,) > Nk+l. By the method
used in the first part of the proof we may find free submodules U and W of Vf+1 such
that Vk

+
+l = U®W, P(U) = P ( O , Q(U) = Q(V++l) and rank(f^ = N. By

Lemma 3.2, there are free submodules W{ and W2 of W such that W = W, © W2, W2

and Vk are orthogonal and rank( W )̂ < 2^^*. Then

rank([/© W,) < A' + 2sNk < (I+ 2s)Nk < Nk+l.

Choose free modules Vk+1 and Vk
+

+2 such that Vt+, = Vt+,ffi V^2, rank(Vt+1) = Nk+1,
Vk+i 2 f/© Wj and Vt+2 c W2. Then Vi+i and Vt+2 have the required properties. D

LEMMA 3.4. Let (V, 0) fee an S-form which has an N-regular decomposition V —

Vi © • • • © Vm+l.

(i) Let k € (1 m - 1). SH/?p<we tfutf P(Vk) = P(Vk+2) and Q(Vk) =
Q(Vk+2). Then P(Vk) is an additive subgroup of S © 5 and Q(Vk) is an additive
subgroup of S.
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(ii) Let c be a positive integer and let r ( l ) and r(2) be integers such that 1 <
r( l ) < r(2) < m + 1. Suppose that

P(Vr(l)) = P(Vr(l)+1) = • • • = P(Vr(2)) = P c 5 © 5,

G(Vr(i)) = e(K(i ) + i ) = • • • = Q(Vri2)) = Q C 5,

and r(2) - r ( l ) > c(c + 1) + 2. Wrife W = Vr(l)+2 © • • • © Vr(2)_2. For all
i,j e { 1 , . . . , c} with i < j let py € P and for all i e ( 1 , . . . , c) let qt e Q.
Then there exist W\,...,wc e W such that (6(uii, Wj), 6(u)j, iu,)) = pijt for all
i,j € { 1 , . . . , c] with i < j , andO{Wi, wi) = qh for all i e { 1 , . . . , c).

PROOF, (i) Let p,p' e P(Vk). Then there exist v, w € Vk and v', w' e Vk+2

such that (0(v,w),e(w,v)) = p and (0(v',w'),6(w',v')) = p'. Write Vk
+ =

Vk © • • • ffi Vm+l. Since Vk and Vk+2 are orthogonal,

p + p ' = (0(W + u', u; + u;'), fl(u> + iy', V + v')) € P( V+) = P(Vk).

Hence, since P(Vk) is finite, it is a group. Similarly Q( Vk) is a group.
(ii) By (i), P and Q are additive groups. There are c(c + l ) /2 modules in the

set {Vr(i)+2, Vr(i)+4,..., Vr(1)+c(c+1)} and so these modules can be relabelled as Ut for
1 < i < c and Uy for 1 < i < j < c. These modules are pairwise orthogonal
submodules of W such that P(Ud = P(Uy) = P and Q(Ui) = Q(,Uy) = Q for all
i,j. For i,j e [I,... ,c] with i < j choose utj, Vy € Uy such that

(9{Uy , Vy), d{Vy , Uy )) = Py .

T h e n f o r e a c h i e {I,... ,c] c h o o s e « , e Ui s u c h t h a t

t, Ui) =qi-^2 6(Uy,Uy) -

Finally, for i = \,... ,c, define ui, = M, + D J : ; > , «// + 2ZJ:J<, V/I- ^ ' s e a s y t o check
that these elements have the required properties. •

For each 5-form (V, 9) we need to fix an ordered basis of V. Thus we define an
S-triple to be a triple (V, 6, X) where (V, 6) is an 5-form and X is an ordered basis
of V.

Let (V, 9, X) and (V, 9', X') be 5-triples, where rank(V) = d, rank( V) = d',
X = {xi,..., xd] and X' = {x[,..., x'd,}. We say that (V, 9, X) and (V , 9', X') are
isomorphic if d = d' and there is an 5-form isomorphism § : (V, 9) —*• (V',9')
such that xg = x\ for i = 1 , . . . , d. We write (V, 9, X) 4 (V, 9', X') if there is a
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one-one order-preserving map </> : { 1 , . . . , d) -*• { 1 , . . . , d'\ together with an S-form
homomorphism % : (V, 9) —> (V, 9') such that, for / = 1 , . . . , d,

(3.1) *,-£ = x'y + zi, for some Zi € {x[,x'2>..., JCI'0_,>.

Clearly ^ is a quasi-order on the set of all S-triples. Also, if £ satisfies (3.1) then £
is a monomorphism. Hence (V, 9, X) 4 (V, 9', X') implies (V,9) 4 (V, 9'). An
5-triple (V, 9, X) is said to be N-regular if (V, 9) is N-regular with respect to X.

PROPOSITION 3.5. The set of all N-regular S-triples is well-quasi-ordered under
the relation =3!.

PROOF. Let Y(l\ Ya\ Y0),... be an infinite sequence of N-regular S-triples. It
suffices to show that there exist integers 1 and j with i < j such that Y(i) =4 Y(j).
For each /, let Y(i) = (V( I\ 0(O, X(i)) where V(i) has W-regular decomposition V,(l) 8
• • • © C ) + i - rf(') = «nk( V«) and X<" = {*{«,..., * « , } . If {IB(1), m(2) , . . . }

is bounded then there are only finitely many isomorphism types in the sequence
F( 1 \ Y(2), Y°\ ... and the result is clear. Thus we assume that (WJ(1), m(2) , . . .} is
unbounded. By passing to an infinite subsequence we may assume that m(i) > 1 for
all i > 1. There are only finitely many possibilities for the values 6w(xj'\ x(

k°) for
j,k e [1,..., N[l]}. Thus, by passing to an infinite subsequence, we may assume
that, for all j , k € { 1 , . . . , N m } , the value 0(i)(jtj°, xf) is independent of i. Then,
by passing to an infinite subsequence, we may assume that m(i) > 2 for all 1 > 2
and that, for all j , k 6 { 1 , . . . , N[2]}, the value 9{i)(x(/\ x(

k°) is independent of i for
all i > 2. Continuing in this way we may pass to an infinite subsequence with the
following property for all n € N:

m(i) > n for all i > n and,
(3 2) ~

for all j , k e { 1 , . . . , W[n1}, 9U)(xf\ x{
k°) is independent of i for all 1 > n.

Let V be a free AT-module with countably infinite basis X = [xi,x2,...}. Define
a A"-bilinear map 9 : V x V -*• S by taking 9(Xj,xk) to be the limiting value
of 9(i)(Xj')1x

i
k'

)). Furthermore, for each positive integer n, let Pn and Qn be the
limiting values of P(Vn

<;)) and Q(V^), respectively. Since Pj 2 P2 2 • • • and
Q\ 2 0.2 2 • • •, there exist P c 5 © S, Q c 5, and a positive integer r, such that
PT = Pr+l = • • • = P and Qr = Qr+l = • • • = Q. By Lemma 3.4, P and Q are

additive groups.

For each i, let r(i) be the largest integer belonging to { 1 , . . . , m(i)} such that
6(i)(xf\xf) = 9(xj,xk) for a l l . / , * € {1 N[r<l)1}. By construction, the set
{/•(I), r(2),...} is unbounded. Hence, by passing to an infinite subsequence, we may
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assume that r < r ( l ) < r(2) < • • •. Let

fl(i) = N[rU)~l] = rank (V,(i) 0 • • • © Vr^_,),

b(i) = NlrU)] = rank (V,(0 © • • • © V^) = a(i) + Wr(l).

We may pass to an infinite subsequence so that, for each i, we have

d(i) - a(i) < d(i + 1) - a(i + 1) and
(3"3) r(i + 1) - r(i) > (d(i) - a(iMd(i) - a(i) + 1) + 2.

We now focus on r(1) and Ya) and show that r(1> =$ Yi2). By the choice of r ( l ) and
r(2), we have

and

0«\x«\x?))=6«\x?\xf)) forall i , j € { 1 , . . . .

Since a( l ) < a(2) and d( l ) — a( l ) < d(2) — a(2) there exists a one-one order-
preserving map <p:{\,..., d{\)} -> ( 1 , . . . , d(2)} such that i<j> — i for i = l , . . . , a{\)
and (a(l) + 1 , . . . . rf(l)}0 c {a(2) + 1 , . . . ,

r
<
(
2
2
)
)Write W = V / ^ ^ © • • • © Vr

<
(
2
2
)
)_2 as in Lemma 3.4. Note that, for i € (a(

and

Similarly,

\x™)) e P. (9*>(x$,x$),e<»(x%,x$)) e P,

for all i,j € {a(l) + 1 , . . . , d(l)) with i < _/. Hence, by Lemma 3.4, we can choose
elements wa(i)+l,..., tud(i) of W satisfying

\ ^ ' x ^ for * e WD + L-••
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(9m(whwj),e(2\wj,wi))

for i < j with i € (ad) + 1,..., b{\)),j e {b(l) + 1,..., d(l)}\

for i < 7 with i , ; e {a(l) + 1 b(l)};

for i < 7 with j , ; € {£(1) + 1. • • •, d(l)}.

Then we define a /^-linear map £ : Vw - • V(2) by

,(2) for i 6 { l , . . . , a ( l ) } ;

t?2 for i <
for i s {&(!) + 1 , . . . , </(!)}.

Note that, in these equations, xj2) € V,(2) 0 • • • 0 V/2/-,, while u>, € W and x™ e
K((2) © • • • © Vm(2)+i' where V,(2) © • • • © V^, W and V/̂ ' 0 • • • 0 V™2)+i are pairwise
orthogonal. It is straightforward to check that 0(2)(;c,a)£, xj1^) = 0(1)(x,a), x;

a>) in all
the various cases for i and j . Hence f is a homomorphism of S-forms. Clearly £ has
the form required in (3.1). Thus we have Ym ^ Y(2\ as required. •

PROOF OF THEOREM B. Take any positive integer^ such that AT >
Then, by Lemma 3.3, for each 5-form (V, 0) there exists an ordered basis X{Vfi) of
V such that (V, 9, X(V,0)) is an iV-regular 5-triple. If (V, 6) and (V, 6') are S-forms
such that (V, 6, X(V,e)) 4 (V , 6', Xi}rjV)) then (V,6) *$ (V , 9'). Hence the result
follows by Proposition 3.5. •

To prove our result about varieties of groups we need, in fact, not Theorem B itself
but the assertion stated below as Proposition 3.7.

Let T be any non-empty finite set. We consider finite sequences (tit...,tn) of
elements of T and write (t{, . . . , / „ ) =̂  (t{,..., t'n,) if (fI t . . . , /„) is a subsequence
of ( / p . . . , t'n,), that is, if there is a one-one order-preserving map (j> : {1, ...,n] ->
{ 1 , . . . , n'} such that t,, = t'ilf) for i = 1 , . . . , n. Clearly =$ is a quasi-order (in fact a
partial-order). The following result is a special case of [6, Theorem 4.3].

LEMMA 3.6. The set of all finite sequences of elements of T is well-quasi-ordered
under the relation =4.
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We define an (5, T)-form to be a quadruple (V, 0, X, t) where (V, 9, X) is an S-
triple and t is an ordered d-tuple (tu ..., td) of elements of T, with d — rank( V). We
say that (5, 7>forms (V, 9, X, t) and (V, 0', X', t') are isomorphic if the S-triples
(V, 0, X) and (V, 0', X') are isomorphic and t = t'. Let rank( V) = d, rank( V) = d',
X = {xu...,xd] and X' = [x[,.. .,x'd,}. Write (V, 0, X, t) ^ ( V , 0', X', f ) if there

is a one-one order-preserving map 0 : { 1 , . . . , d) ->• { 1 , . . . , rf'} together with an
S-form homomorphism £ : (V, 0) -* (V, 9') such that, for i = 1 , . . . , d, tt•, = t\, and

(3.4) xfe = x'i<t> + z,, for some z, € (*{, X'2, ..., x^).

Clearly =<: is a quasi-order on the set of all (S, r)-forms, and we observe that
(V,9,X,t) 4 (V',9',X',t) implies (V,9,X) 4 (V',e\Xr).

An (5, T)-form (V, 0, X, t) is said to be N-regular if the 5-triple (V, 0, X) is N-
regular. For given 5, T and A' we write 2? for the set of all A7-regular (5, 7>forms.

PROPOSITION 3.7. The set (2f, 4) is well-quasi-ordered.

PROOF. Let Z( l ) , Z(2), Z ( 3 ) , . . . be an infinite sequence of N-regular (S, r)-forms.
It suffices to show that there exist integers i and j with i < j such that Z ( 0 =<; Z 0 ) .
For each, J, let ZU) = (V(i), 0(l), X(i\ t(/)) and use further notation for (V(l'\ 0(", ^ « )
exactly as in the proof of Proposition 3.5. Also, write t(l) = (f,(l),..., td

l)
(i)).

As in the proof of Proposition 3.5, we may assume that (m(l), m(2) , . . . } is un-
bounded and we may pass to a subsequence with the property (3.2) for all n e N.
But, for each n and each k € {1, . . . , N[n]}, there are only finitely many possibilities
for t^\ thus we may also assume that, for all k e [I,..., Af1"1}, t^ is independent of
i for all i > n.

Define V, X, 9, P, Q and r as before. Also, for each k e M, define lk to be the
limiting value of t^. Then define r(i) as before, but with the additional requirement
that t? = lk for all k g { 1 , . . . , N[rW]).

Define a (i) and b(i) as before and pass to an infinite subsequence with property (3.3)
for each i. Also, define t, = ($•)+,, t%)+2,..., t§t)) for each i. By Lemma 3.6, there
exist / and j with / < j such that t, is a subsequence of t ; . Hence, by passing to
an infinite subsequence of Z(1), Z < 2 ) , . . . , we may assume that ti is a subsequence
of t2. Thus there is a one-one order-preserving map <p '• {^(1) + 1, • • •. ^(1)} —•
[a(2) + 1 , . . . . d(2)} such that f,(1) = t$ for i = o(l) + 1 , . . . , rf(l). We may extend
<p to a one-one order-preserving map 0 : { 1 , . . . , d{\)} —> { 1 , . . . , d(2)} by defining
i<p = i for 1 = 1 , . . . , a(l).

As in the proof of Proposition 3.5, there is a homomorphism of 5-forms £ :
(V(1),0(1)) -> (V(2),0<2>) such that ^ has the form required in (3.4). For i =
1 , . . . , fl(l), we have f,(1) = f,(2) = 7,, since a(l) < N[r(i)] < N[r™\ and so f,(1) = t™,
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since i = i<p. Also, for i = a ( l ) + 1 , . . . , d{\), we have t\X) = t™ by the choice of
</>. Thus Z(1) ^ Z(2). D

An alternating 5-form is an 5-form (V, 9) such that 9(v, v) — 0 for all v e V.
Consider now the case where 5 = K. An alternating K-form (V, 9) is called standard
with respect to the ordered basis {xu ..., xd} of V if 0(xhxj) = 0 for all i,j such
thatl <i <j < d and (ij) i {(1,2), ( 3 , 4 ) , . . . . (2[rf/2] - l ,2[d/2])}.

LEMMA 3.8 (compare [2]). Let n0 be an integer, with n0 > 2, and let K = l/no2.
Let (V, 9) be an alternating K-form. Then there is a K-basis [x\,..., xd} of V such
that (V,9) is standard with respect to[x\,... ,xd).

PROOF. Choose uu u2 e V such that the additive cyclic subgroup {9(uu u2)) of K
has largest possible order. Let xi be an element of V of order n0 such that u{ € {xi).
Note that X\ belongs to some basis of V. By maximality, (9(uu w2)) = (9(xu u2)).
Hence we may replace u] by xt. Let Ube a submodule of V such that V = (xi)(BU. If
U = {0} then {JCI } is the required basis, so suppose U ^ {0}. Write u2 = u'2 + u where
u'2 e (^i)andM € U. Clearly we may replace u2 by u. Then, as before, we may replace
u by an element x2 which belongs to a basis of U. Thus {JCJ, JC2} is contained in a basis
of V. Set W = {w e V : 9(xu w) = d(x2, w) = 0}. Let v 6 V. The choice of x, and
x2 shows that 9(x{, x2) is a generator of the cyclic group {9(xu u) : u € V}. Hence
there exists X € K such that 9{x\, v) — Xd(xi,x2). Similarly there exists [i e K such
thdX9(v,x2) = fj,9(xux2). It follows that v — ^ixx—Xx2 € Wand sou € (xux2) + W.
Therefore V = {xu x2) + W. Thus we may find a basis {xi, x2 . wit..., wd-2] of V

with wi,..., wd_2 e W. The lemma follows by an inductive argument applied to

(VJU---,Wd-2)- •

4. Direct powers of finite groups

In this section we shall obtain some results which will be useful for both Theorem C
and Theorem D.

Let G be a finite group and let D be the (restricted) direct product D = ]~[,€N ^<
where G, = G for all /. Thus the elements of D may be regarded as sequences of the
form (gi, g2,...) where g, e G for all i and where [i : g,< ^ 1} is finite.

Let <p : N —>• N be a one-one order-preserving function. Let X be a finite subset
of N \ N<j> and let a : X -> H<p be a function such that j < jo for all j € X. Given
such <p, X and a, let £ be the endomorphism of D defined by

( g i > S 2 , • • • ) £ = ( g ' i , g ' 2 , - - - ) ,
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where g] = gt if j = i<f>, g'j = 1 if; £ N0 U X, and g's = g'ja if j e X. Let S be the
set of all such endomorphisms of D (for all possible choices of 4>, X and a).

Let < be a total order on G which is arbitrary except that 1 < g for all g e G.
Then the set D may be ordered lexicographically from the right: if d, d' e D where
d = (gi, g2,...) and d' = (g\, g'2,...), we set d < d! if there exists ( e N such that
gi < g\ but gi = g\ for all i > /. Clearly (D, <) is well-ordered, and it is easy to
prove the following result.

LEMMA 4.1. Let d, d' e D and let £ e S. Ifd < d' then d% < d'$.

For d e D, where d — (gt, g2, • • •), write

s p a n ( d ) = {g e G\[l}:g = gi f o r s o m e i } ,

and, for g e span(d), let ig(d) denote the largest i such that g, = g.
Let d and d' be elements of D, where d = (gu g2,...) and d! = (g[, g'2,...).

Write d =4 d' if span(d) = span(d') and there is a one-one order-preserving function
<[> : N - • N such that g, = g'iip for all i and ig{d)<p = J4(d') for all g e span(d).
Clearly (D, 4) is quasi-ordered (in fact, partially-ordered).

LEMMA 4.2. 77ie se/ (D, =3!) is well-quasi-ordered.

PROOF. Let m = \G \ {1}| and assume w > 1 (the result is trivial for m — 0).
Write G \ {1} = {a{,..., am). For d e D and k = 1 , . . . , m, define p t (d) = iat(d)
if at G span(d) and pt(d) = 1 otherwise, so that we obtain an m + 1-tuple s(d) =
(Pl(d),..., pm(d), d). held, d' e D, where d = (gl,g2,. ..)mdd'= (g[,g'2,...).

Following the notation of [3], we write s(d) =̂ 4, s(d') if there exists a one-one order-
preserving map 0 : N - • N such that g( = g'i<t> for all i and Pi(d)(p = Pi(d') for
i = 1 , . . . , m. By [3, Lemma 3.2], the set of m + 1-tuples s(d) is well-quasi-ordered
under =̂ 4,. But s(d) =̂ 4, s(d') implies d =̂  d!. The result follows. •

Let IF be any field. Then each non-zero element u of the group algebra fD can
be written (uniquely) in the form u = \\d\ + • • • + krdr where du ..., dr 6 D,
d 1 > • • • > dr and A.i, . . . , kr e F \ {0}. The largest group element d\ is called the
leading group element of u and we write dt = lead(w). Since every endomorphism
of D extends to FD, each element of S acts on FD. For S c FD we write (S)3 for
the S-closed subspace of FD generated by 5.

LEMMA 4.3. Let u and v be non-zero elements of FD with lead(«) =3! lead(u).
Then there exists v* e FD such that {u, v)s = (u, i>*)s and either v* = 0 or
lead(u*) < lead(u).
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PROOF. Write u = X{di -\ h krdr and v = k\d[ H 1- k'sd's where the dt and
d\ are elements of D, d\ > • • • > dr, d[ > • • • > d's, and the A,, and k\ are elements
of F \ {0}. Write d = dl = lead(«) and d' = d[ = lead(u). Thus d 4 d'. Let
d = (gi, g2,...) and J ' = (g[, g'2,...), and let <p : N - • N be as in the definition of
d ^ d'. Let X = {j : j <£ N0 and g'j ^ 1 } . By the definition of d ^ d' we have
ig(d') € N0 for all g e span(rf')- For eachj € X let jo = ig(d') where g = g'r
Let | be the element of 3 corresponding to <j>, X and a. Then it is easy to check that
d$ = d'. Hence, by Lemma 4.1, lead(«|) = d' = lead(i'). Let v* = v - V.AiVf)•
Then the result follows. •

PROPOSITION 4.4. The maximal condition holds for a-closed subspaces of$D.

PROOF. Let U be a S-closed subspace of F£). It suffices to prove that U is finitely
generated as a 3-closed subspace. By Lemma 4.2, there exists a finite subset S of
U \ {0} such that for all v e U\ {0} there exists u € S such that lead(«) =$ lead(u).
We claim that U = (5) s . Suppose, in order to get a contradiction, that there exists
v e U such that v £ (5) s , and choose such v so that lead(u) is as small as possible
in the well-ordered set (D, <). There exists u e S such that lead(«) =3! lead(u). By
Lemma 4.3, there exists v* e FD such that («, v)s = («, v*)s and either v* = 0 or
lead(u*) < lead(ii). Since v £ («)s> we have v* ^ 0. Since v* € («, v)E c [/, the
choice of u gives v* e (5)3. Hence u 6 (M, t>*)s c (5) s , and we have the required
contradiction. D

Let n be a positive integer and let £ be a free group of countably infinite rank in
the variety An. Let T be the set of all endomorphisms of E.

PROPOSITION 4.5. For each positive integer r, the maximal condition holds for
F-closed subspaces o/F(£'x r ) .

PROOF. Clearly we may assume n > 1. Let [xu x2,...} be a free generating set
for E. For each i e N, let G, be the subgroup of Exr generated by the elements
(xit 1 , . . . , 1), (1,JC,, 1 1) (1 I,*,). Write G= Gu Thus G is a finite
group. Clearly Exr is the direct product of the groups G, and, for each i, there is an
obvious isomorphism from G to G,. Thus we may identify Exr with the direct power
D of G considered above. The result will follow from Proposition 4.4 if we can show
that every element of 3 is induced by some element of F. Let £ e 3 and suppose that
f is associated with <p, X and o, in the notation used before. Define a homomorphism
y : E ->• E by x,y — xi<t> Yljex, ja=i^xh f° r e a c n '> w n e r e the product is taken over
all those values of j , if any, which lie in X and satisfy 7 a = i<f>. It is straightforward
to verify that y induces £. •
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5. Proof of Theorem C

We use the notation of Section 1. In particular, n is a positive integer, A is a free
group of N2,n of countably infinite rank, * is the set of endomorphisms of A and F
is a field of characteristic not dividing n. We shall describe the proof of Theorem C
only in the case r = 2. The proof for general r is essentially the same, but greater
notational complexity is required for r > 2.

Let F be the algebraic closure of F. If / is a *-closed left ideal of F(A x A) then
F <g>F / is a ^-closed left ideal of F(A x A), and / = F(A x A) n F ®F / . Therefore
we may assume that F = F. We write F* for the multiplicative group F \ {0}.

Let [XJ : i e N} be a free generating set of A and, for each positive integer k, let
Ak be the subgroup {xu ..., xk). Define n0 by n0 = n if n is odd and n0 — n/2 if n
is even. For all a, b e A we have (ab)" = 1 and hence [a, b]"° = [an°, b] = 1. Thus
(A')"° = {1} and A"0 is central in A. It is easily verified that the relations x" = 1
and [xhXj]n° = 1, for all i,j e { 1 , . . . , k}, imposed on the free nilpotent group of
class 2 on free generators x\,..., xk, give a group of exponent n, which is therefore
isomorphic to Ak. It follows that A'k is a free abelian group of exponent n0 with basis
[[XJ, Xj] : 1 < i < j < k}. If n < 2, then A is the free group of countably infinite
rank in the variety An, and, in this case, Theorem C follows from Proposition 4.5.
Thus we assume that n > 2, so that n0 > 1.

Let K = 2/n0Z and let ft) be a primitive no-th root of unity in F. Thus cok is
well-defined for all k € K, and {cok : k 6 K] is the cyclic subgroup of F* consisting
of all no-th roots of unity in F.

Let Qk be the set of all ordered pairs (i, j) with 1 < / < j < k, and let A t be the
set of all functions 8 : Qk -> K. For each S e Ak there is a group homomorphism
Xs •• A'k -* Fx determined by Xi([Xi,Xj]) = coS(iJ) for all (i,j) e Qk. Since the
elements [xitXj] form a basis for A'k, every homomorphism A'k —> F* arises in this
way from some 8. We extend Xs by linearity to a function Xs '• F^i -* F- In
the language of representation theory, the functions Xs are the characters afforded
by the irreducible representations of the abelian group A'k over F, all of which are
one-dimensional.

For each 8 € Ak, let es be the element of FAj defined by

The elements es have the following properties, which may be verified by elementary
representation theory or direct calculation.

(5.2) wes = Xf,{w)en for all 8 € Ak and all w € FA^.

(5.3) Xs(es) = 1 and e] = es for all 8 e A*.
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(5.4) Xs-(es) = 0 and eses, = 0 for all 8, 8' e Ak with 8 ^ 8'.

(5.5)

Thus the elements es are pairwise orthogonal idempotents. They form a basis
of FA^ and each es spans a one-dimensional ideal of FA^. Within the larger group
algebras FAt and FA, the es are central idempotents. For each 8, let Is = ($Ak)es.
Thus Is is the (two-sided) ideal of FA* generated by es. By (5.3), (5.4) and (5.5),

(5.6) FA* =

It follows from (5.6) and (5.2) that FA* is spanned by all elements of the form
x"1 • ••x°kes with 8 € Ak and a, e Z/nZ for i = 1 , . . . , k. It is easily checked that
there are exactly \Ak\ such elements. Hence they form a basis for FAt and, for fixed
8, the elements *" '••• xk

kes form a basis for Is.

If \jr : Ak —> A( is a homomorphism, where k, I e N, then \{r extends to a
homomorphism FA* -> FA(, which we also denote by \fr. In particular, \js : Ak -> Ak

extends to i/r : FAt ->• FAt.
For each *:, write A* = At/A't(At)"0 and, for a e Ak, write a = aA't(Ai)no € At.

Thus At is a free abelian group of exponent n0 with basis [x\,... ,xk}. We shall
usually think of Ak in additive notation: thus we may regard it as a free Af-module.

If \jr : Ak —>• A i is a homomorphism, we write i/r for the induced homomorphism
from Ak to A(. In particular, if r) e Aut(A*) then ?j € Aut(A^).

For each 8 e Ak, let 9S be the alternating ^T-form on Ak satisfying 9S(XJ,XJ) =
8(i,j) for all (i,j) € Qk. Clearly every alternating K-form on Ak arises in this way
from some 8. Since x&{[xi, Xj]) = coSUJ) it is straightforward to verify that

(5.7) xt([au a2]) = a>*(a'A) for all au a2 e Ak.

LEMMA 5.1. Let 8 e Ak and r] e Aut(A*). Then esr] = ee where e G Ak and

9e(aua2) =es(aifj-l,a2ri'l)forallaua2 € Ak.

PROOF. The map a H-> Xsia*!'1) is a homomorphism from A'k to Fx. Hence there
exists e e Ak such that xe(

a) — Xs(ar1~l) f° r a ^ a e A'k- By direct calculation we
obtain esrj = es. Also, for all aua2 6 Ak, (5.7) gives w

fl«(5'^) = xe([ai,a2]) =
i, fl2]»7"1) = Xit fa iT1 , ^ 'J"1]) = a/'l(a''"lA'"I). The result follows. D

LEMMA 5.2. Let 8 e Ak and e e Ah where k, I € N. Le? \j/ : Ak - • A; fee a
homomorphism which induces a homomorphism of K-forms from (Ak, 9S) to (A;, 9e)
(that is, 9s(ai, a2) = 9e{a\\jr, a2ir) for all au a2 e Ak). Then (esifr)ee = ee.
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PROOF. For all aua2 € Ak,

Xt([au a2]) = d**™ = a,*<a'***> = xAatf, a2f]) = Xt([alt a2]f).

It follows that Xn<,w) = XAwf) for all w e ¥A'k. Therefore, by (5.2) and (5.3),

= e£. D

For each k, we consider F(At x A*), identified with FA* ®F FAt. If f : Ak -+ A,
is a homomorphism, then T̂  yields homomorphisms \fr : A^ x Ak ->• A/ x A; and
^ : F(At x At) —>• F(A( x A/). For S, 8' e At , we write es <g> e&> as ew and /j (g !#
as/M-. Thus, by (5.6),

(5.8) F(At x At) = Q} /„,.

Also, /M. is the ideal of F(At x A t ) generated by the central idempotent eM-, and

E^.y «w = i-
For «5, 8' € At , let ^M- be the alternating K © Jf-form on Ak determined by

9ss'(xhXj) = (9s(xi,Xj),eS'(xi,Xj)) for all (ij) € Qk. Every alternating K © AT-
form on At arises in this way from some 8, 8'.

The following two results are easily deduced from Lemma 5.1 and Lemma 5.2,
respectively.

LEMMA 5.3. Let 8, 8' e A t and r? € Aut(At). Then e^t) = ee? where e, e' e Ak

andOee'(ai,a2) = 0u>(a\r)~l, a^'1) for all au a2 6 Ak.

LEMMA 5.4. Let 8, 8' e At and s, e' 6 A(> where k,l e N. Let ir : Ak -*• A, be
a homomorphism which induces a homomorphism of K © K-forms from (At, Ogy) to
(A/, 6£e.). Then (eSs'^)eee' = eee,.

Let Af = «o(2«o + no)- ^y Lemma 3.3, every K ffi ^T-form is A^-regular with
respect to some basis. For 8, 8' € At , we say that QiV is regular if it is A7-regular with
respect to the basis \xx,..., xk\ of At .

LEMMA 5.5. Let 8, 8' € At. Then there exists r) 6 Aut(At) such that e^r\ = eee>
where e, s' € At and f9££- is regular.

PROOF. By Lemma 3.3, there is a basis [ax,... ,ak] of Ak such that (Ak, Gu,) is
N-regular with respect to this basis. It is easily verified that there exists a generating
set ( v j , . . . , yk) of At such that yt = 5, for i = 1 , . . . , /t. Since Ak is a finite relatively
free group of rank k, it follows that [y\,..., yk] is a free generating set. Let r\ be the
automorphism of At satisfying y^ = *,- for j = 1 , . . . , fc. By Lemma 5.3, eM.»j = e££'
where 0«. (*,, *y) = 0M. (y,, yy) for all (/, y) e g t • Thus 0ee, is regular. D
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LEMMA 5.6. Let 8, 8' € Ak and s, s' 6 A;, where k, I € N, and consider Iss> and
Iee- as subsets o/F(A x A). Then lss> D Ite, = {0} unless k = I, 8 = 8' and e — e'.

PROOF. Suppose that k < I. It is easily verified that ([*,_,, x,] ® l)u> g F(A* x A*)
for all iu 6 F(At x At) \ {0}. On the other hand, for all v e Iee*, the element
([*,_,, x,] <8> l)v is a scalar multiple of v by (5.2). Thus IiS, D Iee, — {0}. If k = I then
Iss, n 7££. ^ {0} implies 8 = 8' and s = e' by (5.8). D

A non-zero element w of F(A x A) will be called regular if iu e 7^- for some ^ and
some 8, 8' e A* such that 0,^ is regular. (By Lemma 5.6, fc, 8 and 5' are then unique.)

LEMMA 5.7. Every ^-closed left ideal of¥(A x A) is generated, as a ^-closed
vector space, by regular elements.

PROOF. Let J be a *-closed left ideal of F(A x A) and let Jo be the vector space
spanned by all elements vrjr where v is a regular element of J and r/r € * . It suffices to
show that J = Jo. Clearly Jo c J. Let w € J. Then iu e F(A* x At) for some k, and
we have w = ( X ^ , e A 4 e«<)w = Z!«,ye A t(^'«') . where eM,tu € 7 n 7W«. It suffices
to show that eH«u; e 70- Clearly we may assume that ess> w •£ 0. By Lemma 5.5, there
exists t] € Aut(A*) such that (ess>w)r] is regular. But (eSs>w)r) e J, since rj extends to
an automorphism of A. Thus eSi*w = (eSs'W)r)r)~l € Jo. D

Let 8, 8' e Ak. Since the elements *" '••• x"kes with a, e 1/nl form a basis of Is,
the elements

(5.9) (x°>---x?®x?---x?)eu.,

with a,-, a\ € 2/nZ, form a basis of 7^.
An element of F(A x A) will be called a monomial if it has the form (5.9) for some

k and some 8,8' e A*, and a regular monomial if 0M< is regular. We write ^ # for the
set of all monomials, M* for the set of all regular monomials, and Mu< for the set of
all monomials of 7M..

Let T — 1/nl x I/nl, that is, the Cartesian square of the set 1/nl. With the
monomial (5.9) we associate the &-tuple (*,, h,..., tk) where /, = (ah a\) € T for
i = \,... ,k. Let < be a total order on T which is arbitrary except that (0, 0) < t for
all? e T. Then the set of all/:-tuples of elements of T can be ordered lexicographically
from the right: if t = ( r , , . . . , tk) and t' = ( f [ , . . . , t'k) are two such ^-tuples, we set
t < t' if there exists q G { 1 , . . . , k} such that tq < t'q but t,; = r, for j = q + 1 , . . . , &.
Hence, for 8,8' € Ak, we obtain an order < on the finite set M^.

Each non-zero element/ of lit/ can be written (uniquely) in the form/ = \\WX +
• • • + Aru>r, where wx,..., wr e ^#M-, U>I > • • • > uv, and A.i,. . . , kr € F \ {0}. The
largest monomial wx is called the leading monomial off, and we write w t = lead(/) .

https://doi.org/10.1017/S1446788700008478 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008478


[23] Metanilpotent varieties of groups 77

We shall now define a quasi-order on M'. Let 8, 8' e Ak and e, e' e A,. Let
v G ^rffss' and w e Met', where

v = (x? • • • x"> ® x? • • • xtk)ew, w = (jcf'

We write v =̂  u> if there is a one-one order-preserving map (p '• {1. •••,&} -»•
{1 , . . . , /} together with a homomorphism ^ : A* -> A/ with the following three
properties.

(i) For i = 1 , . . . , k, we have Jt,i/r = ZiX^ for some 2, 6 ( x i , . . . , JC^-I ) .

(ii) ^ induces a homomorphism of /f © K-forms from (Ak, 6$S') to (A/, 0ee>).
(iii) For i = 1 , . . . , k, we have a, = f}i<t, and aj = fi'ilt>.

It is straightforward to check that {J(, =̂ ) is a quasi-ordered set. Thus (Jt*, =$) is
quasi-ordered. Let 2? be the set of all N-regular (K ® K, T)-forms as defined in
Section 3 with S = K © K. Thus, by Proposition 3.7, {3f, =3!) is well-quasi-ordered,
where =̂  is as defined in Section 3. Let v e jft*, where

a\ a't\
c 1 j : ( ) e

/a,
v = ( V •••xk , t ) w ,

with 5, 8' € At and 0«- regular. Then we can define Z(v) e 2F by

where t = ((ori, a ' , ) , . . . , (ak, &[)). It is straightforward to verify that if v and w are
elements of J(* such that Z(i>) =3! Z(w) then u =̂  w. Hence Proposition 3.7 gives
the following result.

PROPOSITION 5.8. The set {Jt*, =<:) is well-quasi-ordered.

If 5 is any set of elements of F(A x A) we write Ly(S) for the ^-closed left ideal
generated by S.

LEMMA 5.9. Let f e Iss. \ {0} and g e Iee> \ {0} where 8, 8' e Ak and s, e' e A,.
Suppose that lead(/) ^ lead(g). Then there exists g* e /£E< such that £*{ / , g) =
Ly{f, g*} and either g* = 0orlead(g*) < lead(g).

PROOF. Wri te / = . M i H hXrur, where v, e ^^-andA., e F\{0}forall i,and
where u, < vx for all i > 2. Similarly, write g = /zi Wi H h/XjWj, where u», e ^ f -
and fit e F \ {0} for all i, and where wt < W\ for all i > 2. Write u = Ui = lead(/)
and w = Wi = lead(g). Thus v =̂  w. We use the notation for v and u> given in the
definition of =$. Let <p and i}r be as in that definition. Let hx and h2 be the elements of
F(A( x A,) defined by

hi = (xi;---xk^xi;---xk^)[{x1'---xk
l<S)xl'---xk

i) i/rj
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and h2 = Yljec*? ® Y\jecx?• w h e r e c = U /} \ { 1 0 , . . . , *<£}. Then

and so, b y L e m m a 5.4,

*.(«*)*, = {x% • • -*3 ® *5 • • -xfte* = (xj • • -x£ ® x j • ••*£)«.,.

Therefore h2hi(vijf)el.e, = (xf1 • • -xf' ® xf' • • -xf')(a ® «')««', where a, a' € A',.
By (5.2), (a <g> a')eeE, = keS£- where A. 6 F \ {0}. Hence

h2hx(vi;)eee, = A(xf' • • -xf' <g>xf; • • -xf')eee. = kw.

Now let u be an element of M^ such that u <v. Write u = (xf' • • • ;c£' (8)̂ f1 • • • x^')eSS' •
Thus there exists q e {l,...,k} such that (yq,}/) < (a,, a'q) but (y,, y/) = (a,, a,')
for / = q + 1 , . . . , fc. We can write

= (JCJ"""1 • • • * ? - " ' ® x?-*> • • • x ^ ) ( b ® V)

where fc, 6 ' € A'k. B y (5.2) , (fe <g> b')fe^ = ue££, where v e F \ {0}. Hence

^ ® xj
From the properties of ^ we calculate that

IV 1 •*"? 09 Xj •*« )V \

where v' 6 F \ {0} and p ^ . . . , pq<j,-\, p[,..., /0^_, € 2/nl. Hence h\(inj/)eEel has
the form

V ^ 1 ' ' " Xq<t>-\Xq<l>X(q+l)<t> ' ' ' Xk<f, <& X \ ' " Xq<t>-\Xq<t>X{q+l)<t> ' ' ' Xk^)ecC

w h e r e v" € F \ {0} a n d a u ..., (Tqt-u <*[, ••-, ^ _ , e I / n l . T h e r e f o r e h2hi(in/f)eei:,
is a non-zero scalar multiple of a monomial of the form

(rT' • • . rTq*-' rr* r
fi"*+' . . . r

fil <9l r r ' . . . r^*'' rYq r ^* + l . . . rfi'\t>\*l Xqip-\Xq<t>Xq<p+l Xl ^ x l Xq$-\Xq<t>Xq<p+\ Xl )eee'

where r , , . . . , r^_, , x[,..., r^_, e l/nl. Since (yq, y'q) < (aq, a'q) = (Pq<t,, p
1^),

this monomial is smaller than w.
S i n c e h2ht(f \lr)ece> = k\h2h\{v\^/)eeei + ••• + krh2hi(vr\l/)eCE', w e s e e t h a t

h2h\(J \j/)eee> has leading monomial w with coefficient Â A.. Also, since \j/ extends to
an element of ^ , we have h2h\(f ijr)eEef€L^{f}. Let g*=g—Hik^1 k'1 h2hi(f x(f)eee'.
Then g* has the required properties. •

https://doi.org/10.1017/S1446788700008478 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008478


[25] Metanilpotent varieties of groups 79

Now we are in a position to complete the proof of Theorem C. Let J be a ^-closed
left ideal of F(A x A). It suffices to prove that J is finitely generated as a ^-closed left
ideal. By Proposition 5.8, there exists a finite set S of regular elements of J such that
for every regular element g of J there exists / e S such that lead(/) =̂  lead(g). We
claim that J = Ly(S). By Lemma 5.7, it suffices to show that every regular element
of J belongs to L*(5). Suppose, in order to get a contradiction, that this is not so, and
let g be a regular element of J such that g £ L*(5). Suppose g e Iss>. Choose g with
the given properties such that lead(g) is as small as possible in the finite set (jftei,>, <) .
There exists / e 5 such that lead(/) =<: lead(g). By Lemma 5.9, there exists g* e /££<
such that Ly{f, g} = L^[f, g*} and either g* = 0 or lead(g*) < lead(g). Since
g <£ Lv|/{/}, we have g* 5̂  0. Since g* e L*{/ , g] c J, the choice of g gives that
g* 6 L*(5). Hence g € £+{ / , g*} C L*(S) and we have the required contradiction.

6. Proof of Theorem D

Let n, A, 4*, F and R be as in Section 1, where F is a field of characteristic not
dividing n. Let F be the algebraic closure of F. The subalgebra F 0 F R of F(A x A)
corresponds to /? in F(/l x A). If M is an (/?, *)-submodule of IF (A x A) which
contains R, then F <8>F Af is an (F <8>F /?, vl/)-submodule of F(A x A) which contains
F ®F R, and M = F(A x A) n F ®F M. Therefore, to prove Theorem D, we may
assume that F = F.

We shall use the notation of Section 5. If n < 2, then Theorem D follows from
Proposition 4.5. Thus, as in Section 5, we assume that n > 2, so that n0 > 1.

Let P be the subgroup of A x A defined by P — [(c, c~l) : c e A'} and let
H = (A x A)/P. Note that P is a *-closed subgroup of A x A, so each element of
* induces endomorphisms of H and F / / . For i,j € N, let ctj be the element of H
given by Cy = ([*,-,*,•], l)P = (1, [*,,*,])P.

For each positive integer k, let Hk be the subgroup of H generated by the elements
(XJ, l)P and (1, xt)P for i = 1 , . . . , k. It is easily verified that H'k is a free abelian
group of exponent n0 with basis {Cy : 1 < / < j < k}. Furthermore, there are
isomorphisms from A'k to H'k and from FA^ to §H'k given by [JC,,Xj] i-»- Cy for all
i,j. If ^ : Ak -*• A i is a homomorphism, where &, Z e N, then the associated
homomorphism \jf : Ak x Ak -> A; x A; yields homomorphisms i/f : / / t —> /// and
ir :¥Hk-+ F//;.

Let A" = l/nol, and let £2* and A* be as in Section 5. For each 5 e A*, let Xs
and ^ be defined as in Section 5, but with respect to H'k rather than A'k. Thus Xs is
a character of //,( and es is an idempotent of F//^. Results (5.2)-(5.5) apply just as
before. For 8 e A* we define 7j = (fHk)es. Thus 7a is the ideal of Fff* generated by
es, and we have F//* = 0 i e A ^ j .
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For each k we write Q°k = Qk \ {(1, 2) , ( 3 , 4 ) , . . . } . An element 8 of A* will be

called standard if &(i,j) = 0 ( e q u i v a l e n t l y , Xs(cij) = 1) fo r al l (i,j) e Q°k. W e w r i t e

A*k for the set of all standard elements of Ak and A° = Ak \ A*k.
For each 8 6 Ak, let 0s be the alternating AT-form on Ak defined as in Section 5.

Thus (Ak, 0$) is standard with respect to {xt,... ,xk] (in the terminology of Section 3)
if and only if <5 is standard, that is, 8 e A*k.

LEMMA 6.1. Let 8 e Ak. Then there exists r) e Aut(A*) such that, for the induced
automorphism Jj: F / / t —• F// t , we have esrj = eE where s € A*k.

PROOF. By Lemma 3.8 there is a basis {au ... ,ak] of Ak such that (Ak, 9S) is
standard with respect to this basis. As in the proof of Lemma 5.5, there is a free
generating set [yu ..., yk} of Ak such that y* = 5,- for i = 1 , . . . , jfc. Let r] be the
automorphism of Ak satisfying ytr] = xt for i = I,... ,k. Note that r) acts on
A'k just as rj acts on H'k. Thus Lemma 5.1 shows that e$rj = ee, where s € Ak

and 6e(Xj,Xj) = Qs(y"i,y~j) for all i,j. Thus (Ak,0e) is standard with respect to
{Jci,... ,xk], that is, e G A*k. O

Since FT/' is a subalgebra of FT/, we may regard F// as a left F//'-module.
Following the terminology of Section 1, we shall consider (IF//', *I')-submodules of
F//. A non-zero element w of F// will be called standard if w e /s for some fc and
some 8 e A*k.

LEMMA 6.2. Every (F//', *l>)-submodule o/F// is generated, as a ty-closed vector
space, by standard elements.

PROOF. This is similar to the proof of Lemma 5.7, with Lemma 6.1 taking the place
of Lemma 5.5. •

Let C be the subgroup of H generated by all elements Cy for which i < j and
(i, j) i {(1, 2), (3, 4 ) , . . . } . Let p be the natural homomorphism p : / / - > / / / C. We
also denote by p the associated homomorphisms Hk -> / / / C and F//* - • F(///C).
Clearly the kernel of p : //* —• / / / C is the subgroup of //* generated by all cy for
which (/,;) € g j . Thus the kernel of p : F//* -> F(///C) is the ideal generated by the
elements c# - 1 for (i, j) € Qj. We write (F/ft)» = ©4eA. 7, and (F//*)° = ©,eA» 74.

LEMMA 6.3. The kernel of p : ¥Hk -+ F(///C) w (F//t)°.

PROOF. Let 5 e Aj. Then Xf (c,y) ^ 1 for some (i,j) e (2?. By (5.2), (cy - 1)^
is a non-zero scalar multiple of e$. But clearly (c,y — l)es € ker(p). Thus £{ € ker(p).
It follows that Js c ker(p) and so (F//*)° c ker(p).
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Let (i,j) e Q°k. Then, for e e A*, we have (cy - \)ee = (xs(cy) - l)ee = 0.
Hence ctJ - 1 = (cy - 1) £ J e A (

 es = (cu ~ 1) ES S A° es- Hence cy - 1 belongs to the
ideal (F// t)°. Since this holds for all (/, j) e Q° we obtain ker(p) c (¥Hk)°. D

For k € N, let \j/k be the endomorphism of A defined by Xj\jrk = 1 for i > k and
Xi\jrk = Xi for i < k. Also write \f/k for the induced endomorphisms of H and F / / .

LEMMA 6.4. Let u e (JHk)* and let I > k. Then there exists v € (F//;)* sue/* r/ia?
vi/ft = u and vp = up.

PROOF. Let B be the subgroup of H[ generated by all elements cy for (i, j) €
Q° \ <22- Let v = u(\B\-1 £ A € f l h). Clearly u ^ t = u and up = «p. To prove that
v e (F///)* it is enough to show that i»e£ = 0 for all e e A".

Let e € A°. Then there exists (i, j) € Q° such that xe(
cu) 5̂  1 • We consider two

cases. Suppose first that (i,j) € Q°k. Then the restriction of xe
 t 0 H'k has the form

XS' for some 5' e A°. Then for all 5 e A* we have esee = Xs>(eB)ee = 0, by (5.2) and
(5.4). Hence uee = 0 and so vee = 0. Suppose secondly that (i,j) € Q°, \ Q°. Then
J2heB n c a n ^ e w r i t t e n as io(l + c,y H— • + c^°) for some u» € F///. Since x«(cy) is a

non-trivialn0-throotofunity,x£(l+CyH hc^0) = 0. Thus(l+c(>H \-Cy")es = 0
and so vee = 0. •

LEMMA 6.5. Suppose that M, and M2 are (¥Hr, ty)-submodules o/F// such that
M\p = M2P. 77zen Mi = Mi-

PROOF. Suppose, in order to get a contradiction, that M\ ^ M2- Without loss of
generality we may assume that M\ £ M2. By Lemma 6.2 there exist k and 8 e A*k

such that MiDJsg. M2. Hence there exists u e (F#*)* such that « e M, \ M2. By
hypothesis there exists w € M2 such that up — wp. Choose I > k such that w; € F//(.
Then tu = w* + w° where w* e (F#/)* and w° 6 (F//;)°. Since M2 is an F//'-module,
w* e M2. Also up — wp = w*p. By Lemma 6.4 there exists v e (F//;)* such that
ui/r̂  = « and vp = up. Thus up = w*p. By Lemma 6.3, this gives v = w* e M2.
Hence u = v\j/k e M2, which is a contradiction. •

Now we return to the group H/C. Recall that H = (A x A)/P. For each
i e N, let G, be the subgroup of H/C generated by the four elements (fez-i. l)^)/°>
((l,jc2i-i)^)/t>, ( f e . 1)P)P and ((l,X2i)P)p. Write G = G,. Thus G is a finite
group. It is easily verified that H/C is the direct product of the groups G,, and,
for each i, there is an obvious isomorphism from G to G,. Thus we may identify
/ / / C with the direct power D of G considered in Section 4. Let S be the set of
endomorphisms of D defined in Section 4.
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LEMMA 6.6. Let M be a ^-closed subspace of F// . Then Mp is a a-closed
subspace of FD.

PROOF. Let £ e 3 and suppose that £ is associated with <f>, X and o in the notation
of Section 4. It suffices to show that there exists an endomorphism ^ of A such
that the induced endomorphism of H leaves C invariant and induces £ on H/ C. To
simplify the notation we rewrite the generators of A by setting yt = x2t-\ and z, = x2i

for all j € N. We define a homomorphism yjr : A -> A by

jeX JeX
ja=iift ja=i4>

for each i. The products are taken over all those values of j , if any, which lie in X and
satisfy j a — i(f>, and the terms yj and z, are taken in increasing order of j (this is an
arbitrary choice). It is straightforward to verify that ir has the required properties. •

By Proposition 4.4 together with Lemma 6.5 and Lemma 6.6 we obtain

LEMMA 6.7. The maximal condition holds for (F// ' , 4>)-submodules offH.

Consider the natural homomorphism n : A x A -*• H with kernel P, and let / be
the kernel of the corresponding homomorphism n : F(A x A ) - > IF//.

LEMMA 6.8. The maximal condition holds for (R, "H)-submodules of F(A x A)
which contain I.

PROOF. By Lemma 6.7 it suffices to show that if M is an (/?, *)-submodule of
IF (A x A) which contains / then Mn is an (F/ / ' , *)-submodule of F/ / . It is clear
that Mn is ^-closed, by definition of the action of * on ¥H. Also, Mn is a left Rn-
submodule of F / / . Thus it suffices to show that H' c. Rn. Since Rn is an algebra, it
suffices to show that Cy € Rn for all i,j. Note that ([*,•,Xj] <8> [*,-,Xj])n = cjj and
([Xi,Xj] ® 1 + 1 ig> [Xi,Xj])n = 2cy . Hence cjj e Rn and 2c0 e Rn. If n0 is odd
then cy e /?7T gives cy 6 /?7r. But if n0 is even then F does not have characteristic 2
and 2c,y € /?7r gives Cy € /?7r. •

In the notation of Section 5, we can write F(A* x Ak) = 0 ^ a,eA( Iss.. Note that

Hence, for 5 ^ 5', we have eSs'X = e&e^ = 0 and so ISi> c. ker(^) = / . It is easily
checked that 0 i e A t hs and ¥Hk have the same dimension. Hence

(6.1) / n F(A* x A,) = m /,
S,S'€At

SjtS'
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LEMMA 6.9. Let M be an (R, ^)-submoduleof^(AxA) such that RDI C M C / ,
and let T be the largest ^-closed left ideal of IF(A x A) contained in M. Then

PROOF. Let L be the subspace of M spanned by all elements of M which have
the form wea> where w e F(A x A) and 8, 8' e Ak for some k, with 8 ^ 8'. Let
wess> be such an element of M. Let ^ € * and a, a' € A. Choose Z > Jfc so that
ejT/f, es<is e FAJ. Since e^V and eyrjr are idempotents, we can write es^ = $^A6A

 e^
and e>y V = £ V e A , ev where A, A' C A;. But {e&i}r){evf) = (eses>)\/r = 0. Thus A
and A' are disjoint. For e e A and e' e A',

((a (8> a')eeE, + {a' ® a)«e.e)(iu^)(e«'V') € M,

because M is an (/?, 40-module. However, gM.^r = ]TX x, eXv- Hence ee,e(ess,i{r) = 0
ande££<(eM'V0 = e«'- Therefore (a®a')("'Vf)ge«' e M, and so (aigiaOC^1^)^' G L.
Since this holds for all e, e', we have (a <g> a')(w\J/)(eSs'if) € L. Therefore L is a
^-closed left ideal of F(A x A). We next prove that M — L + (R D / ) , which will
give the required result.

Let u e M and choose k so that u € F(At x Ak). Since A/ c / we can use (6.1) to
write M = J2 Wisest', where the sum is over all 8,8' e At with 8^8' and each ww
belongs to F(At x Ak). Let 8, 8' € A* with 8 ^ 5'. Since M is an i?-module,

(ess, + es>s)u — Wss>eS8' + ws,ses,s € M.

Write v = wSs- and t/ = wS's. Then it suffices to show that veiS + v'es>s e L + (/? fl / ) .
Let r be the involutory automorphism of F(A x A) satisfying (a ® a')x = a' ® a

for all a, a' € A. Then u; + wx e R for all w € F(A x A). We can write

(6.2) vess> + v'eS's = (v - v'r)eSS' + v'es>s + (v'r)eSS'.

Here

v'es.6 + (v'r)ess' = v'es.s + (v'es,s)r € R D /.

Since RDI c. M, (6.2) gives (i> — v'r)ess- e M, and so (i> - v'r)ew- € L. Therefore,
by (6.2), veu> + v'es.s € L + (RCM), as required. •

To complete the proof of Theorem D, let Mi c M2 c . . . be an ascending chain
of (R, ty)-submodules of F(A x A) which contain R. By Lemma 6.8 the chain
Mi + / C Mi + I c • • • becomes stationary. Thus it suffices to show that the chain
Mj fl / c M2 D / c • • • becomes stationary. For each i, let Tt be the largest ^-closed
left ideal of F(A x A) contained in M, n / . By Lemma 6.9 it suffices to show that the
chain Tx c T2 c • • • becomes stationary. But this holds by Theorem C.
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