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Abstract

We consider a model for a time series of spatial locations, in which points are placed
sequentially at random into an initially empty region of R

d , and given the current
configuration of points, the likelihood at location x for the next particle is proportional
to a specified function βk of the current number (k) of points within a specified distance
of x. We show that the maximum likelihood estimator of the parameters βk (assumed to
be zero for k exceeding some fixed threshold) is consistent in the thermodynamic limit
where the number of points grows in proportion to the size of the region.
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1. Introduction

Cooperative sequential adsorption (CSA) models are a class of probabilistic models for
sequential packing and deposition (see [11] and the references therein), which are briefly
described as follows. Points are placed sequentially at random in a bounded region of Euclidean
space. Given the configuration of points placed so far, the likelihood (probability density) for the
next point to be placed at location x is a specified function of the current configuration of points
near x, divided by a normalising constant which depends on the current global configuration.

CSA is widely used in physics and chemistry for modelling various irreversible adsorption
processes, such as chemisorption on single-crystal surfaces or adsorption in colloidal systems
(see [3] or [12]). A special case of CSA known as random sequential adsorption (RSA, to
be described later) serves as a benchmark in modelling irreversible phenomena in physical
chemistry and other applications (see [2] and the references therein). It has been noted in [3,
p. 1285] that the lattice CSA model ‘can be useful for describing the spatial features of the
irreversible spread of disease epidemics’. The continuum version of CSA considered here
seems to be more technically convenient for modelling sequential point patterns in disciplines
such as geophysics, biology, and ecology in situations where a data set is presented by a
sequential or ordered point pattern, i.e. a collection of spatial events which appear sequentially.

For instance, CSA could be used for space–time models of earthquake occurrences in
geophysics (see [1], [17], and the references therein for existing alternative models where
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the underlying point process is a Poisson process), for spatial spread of an infection in ecology
or a material destruction in materials science. While it will not capture all the details of these
natural phenomena, CSA can be used as an approximation of spatial spread dynamics; see the
simulated images in Section 2 for an illustrative example.

We assume that the likelihood at location x is a function of the number of neighbours,
i.e. the current number of points within a certain distance from x, divided by a normalising
constant. In statistical physics, the lattice analogue of this model is known as monomer filling
with nearest neighbour cooperative effects [3] (see also [13], where an asymptotic study of the
model in continuum is undertaken under some assumptions). Besides, we assume a hard-core-
type constraint on interparticle interaction, whereby the likelihood is zero at any location with
more than a certain number of neighbours (e.g. in RSA the likelihood is zero at any location
with one or more neighbours); one interpretation of this is that usually in practice the ‘defects’
represented by the points have strictly positive size, so that only finitely many defects can be
distinguished in a bounded region.

It is well known in the physical literature that lattice CSA models are very flexible for
modelling both clustered and regular point patterns (e.g. images on p. 1307 of [3]). It is not
surprising that the class of CSA models under consideration inherits the same property (see,
e.g. the example in Section 2). See also a discussion of the same property in [14] for the CSA
point process, which is closely related to the CSA model (the CSA point process is a particular
case of a sequential Markov point process [16] and can also be used for modelling sequential
point patterns arising in applications). Also, this class of CSA models is easy to simulate and
can be characterised by a finite number of parameters.

Fitting the model to real-life data necessarily requires estimation of the model parameters.
The main goal of this paper is to justify statistical inference of these parameters based on
maximum likelihood estimation.

As usual, maximum likelihood estimators (MLEs) are defined as maximisers of the model
likelihood and can be found by solving MLE equations obtained by equating to zero the log-
likelihood derivatives. We prove that, with probability tending to 1, there exists a unique solution
to the MLE equations as the amount of observed information increases in the following natural
sense. Namely, we consider a sequence of target regions (observation windows) expanding
to the whole space and assume that the number of observed points in a region is linear in the
volume of the region. This limit is known as the thermodynamic limit in the statistical physics
literature, and known as the increasing domain asymptotic framework in the spatial statistics
literature.

It turns out that the log-likelihood derivatives behave asymptotically similar to those in
the independent and identically distributed (i.i.d.) case, and this allows us to adapt a classical
argument from [6] to finish the proof of the existence of MLEs (our Theorem 2.2). We also
prove a consistency result saying that MLEs converge in probability to the true parameters in
the thermodynamic limit.

Our asymptotic analysis of MLEs is based on the observation that the MLE equations are
determined by statistics of a special type, namely, sums of locally determined functionals over
a configuration of points (see Section 3). This allows us to analyse the asymptotics of the MLE
equations, exploiting the limit theory for random sequential packing and deposition developed
in [11].

MLEs for the CSA model can be computed numerically by classical Monte Carlo methods,
which is in contrast with Markov point process models for which Markov chain Monte Carlo
(MCMC) approximation is required and, as a result, the MLE is replaced by the MCMCMLE
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(see [4], [5], and [7, Section 9.1]). We are not aware of any results on statistical inference for
CSA models, except [15], where estimation of the time horizon for continuous-time RSA is
addressed.

2. The model and main results

2.1. The cooperative sequential adsorption model

Let R be a positive constant, and let (βk, k ≥ 0) be a sequence of nonnegative numbers.
For any point x ∈ R

d and any finite sequence y = (y1, . . . , yn), n ≥ 1, of points in R
d , we

denote by ν(x, y) the number of points yi in the sequence y, such that the Euclidean distance
between x and yi is not greater than R. By definition, ν(x,∅) = 0.

Given a compact convex subsetD of R
d (which we denote the target region), let (Yi, i ≥ 1)

be a sequence of independent random points uniformly distributed inD, and construct another
sequence of random points by accepting each point of the original sequence with a certain prob-
ability to be described below, otherwise rejecting that point. Let X(A(n)) = (X1, . . . , XA(n))

be the sequence of accepted points from the finite sequence Yi, i = 1, . . . , n. Here A(n)
denotes the number of points in this sequence that are accepted. By definition, X(0) = ∅.

The point Yn+1 is accepted with probability βν(Yn+1,X(A(n)))/K , where K is an arbitrary
constant such that max0≤i≤A(n) βi ≤ K . Regardless of the particular choice of K , the next
accepted point XA(n)+1 has the following probability density:

ψA(n)+1(x) = βν(x,X(A(n)))∫
D
βν(u,X(A(n))) du

. (2.1)

In other words, given the sequence X(�) of the first � accepted points, the next accepted point
X�+1 is sampled from a distribution which is specified by the unnormalised probability density
βν(x,X(�)), x ∈ D (the value ofK influences only the number of discarded pointsYi until the next
acceptance). The probability distribution of the finite random sequence X(�) = (X1, . . . , X�)

is specified by the following probability density:

p�,β,D(x1, . . . , x�) =
�∏
k=1

βν(xk,x(k−1))∫
D
βν(u,x(k−1)) du

, xi ∈ D, i = 1, . . . , �, (2.2)

where we denote, for short, x(k) = (x1, . . . , xk), k ≥ 1, and x(0) = ∅ for k = 0.
We assume that βk is zero for all but finitely many k (this is our hard-core-type constraint);

in fact, we assume that there exists a fixed positive integer N such that

βk > 0, 0 ≤ k ≤ N; βk = 0, k ≥ N + 1.

The interaction radius R is assumed to be a fixed and known constant. Note that the density
(2.1) (and, hence, (2.2)) is unaffected by multiplication of all parameters βk by a constant.
Therefore, for the sake of identifiability, we assume that

β0 = 1. (2.3)

Thus, the model is parametrised by parameters β = (β1, . . . , βN), whereN is also regarded as
a parameter. RSA is the special case with N = 0.

Set

tk(x(�)) :=
�∑
i=1

1{ν(xi ,x(i−1))=k}, k = 0, . . . , N, (2.4)

where 1A stands for the indicator of set A. Then, for (x1, . . . , x�) ∈ D�, using assumption
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(2.3) and adopting the convention that 00 = 1, we can rewrite (2.2) as

p�,β,D(x1, . . . , x�) =
∏∞
j=1 β

tj (x(�))

j∏�
k=1

∫
D
βν(u,x(k−1)) du

. (2.5)

The images in Figures 1 and 2 are of a single simulated realisation of the CSA model in
D = (0, 1)2 with parameters R = 0.04, β0 = 1, β1 = 100, β2 = 300, β3 = 500, and
βk = 0, k ≥ 4, showing successively the first 50, 100, 200, and 300 points.

Small point clusters are visible in the left image of Figure 1. These clusters might be
interpreted as original centres of an infection (for instance). The infection develops in time,
with events appearing sequentially, tending to appear in the vicinity of existing points, but they
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Figure 1: Images of the simulated CSA model with D = (0, 1)2, R = 0.04, N = 3, and
β = (100, 300, 500). Left: � = 50. Right: � = 100.

y

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8
x

y

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8
x

0.0 0.0

Figure 2: Images of the simulated CSA model with D = (0, 1)2, R = 0.04, N = 3, and
β = (100, 300, 500). Left: � = 200. Right: � = 300.
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can appear in unaffected areas as well; see the right image in Figure 1. The images in Figure 2
show further evolution, where the point clusters grow and begin to coalesce. Besides, it is rather
visible that the clusters become more saturated (or dense). Therefore, an increasing sequence
of parameters results in a combination of spreading and a strong clustering effect (‘clusters
inside clusters’). While the point density cannot increase indefinitely because of the ultimate
hard-core constraints, it is easy to imagine that if the parameters increase sufficiently fast then
clustering will prevail in the sense that clusters will be internally nearly saturated. For instance,
if the parameters increase geometrically then it would correspond to the lattice CSA model
with Aarhenius rates [3].

It is interesting to compare the images in Figures 1 and 2 with the images in Figures 3 and 4,
which are of a single simulated realisation of the CSA model in D = (0, 1)2 with parameters
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Figure 3: Images of the simulated CSA model with D = (0, 1)2, R = 0.04, N = 3, and
β = (100, 100, 100). Left: � = 50. Right: � = 100.
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Figure 4: Images of the simulated CSA model with D = (0, 1)2, R = 0.04, N = 3, and
β = (100, 100, 100). Left: � = 200. Right: � = 300.
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R = 0.04, β0 = 1, β1 = β2 = β3 = 100, and βk = 0, k ≥ 4, showing successively the first
50, 100, 200, and 300 points. This choice of a flat sequence of parameters corresponds to the
lattice CSA model with so-called Eden rates [3]. It is not surprising that the spatial dynamics
are similar to those observed in the previous example. The only essential difference is that
now a newly born cluster tends to spread rather than get saturated. We can call this effect mild
clustering. The distribution of points inside a cluster is more or less regular, since the point
distribution is uniform conditioned on being adsorbed in the vicinity of existing points.

The effects that have just been described for the continuous CSA model under consideration
are rather straightforward analogues of the phenomena of ‘competition between the birth,
growth and coalescence’ (see [3, p. 1307]), which were already well known for lattice CSA
models.

2.2. Maximum likelihood estimation

For � ≥ 2, define the log-likelihood function

LD(X(�), β) := log(p�,β,D(X1, . . . , X�)).

For any 0 ≤ k ≤ �− 1 and j ≥ 0, set

�j (X(k)) :=
∫
D

1{u : ν(u,X(k))=j} du.

Note that �j (X(k)) also depends on D. It is easy to see that∫
D

βν(u,X(k)) du =
k∑
j=0

βj�j (X(k)) = �0(X(k))+
∞∑
j=1

βj�j (X(k)),

that �j (X(k)) = 0 for k < j , and that �0(∅) is equal to the Lebesgue measure of D. Denote,
for short,

tj,� := tj (X(�)), j ≥ 1, �j,k := �j (X(k)), j ≥ 0, k = 0, . . . , �.

Also, define N̂ = N̂(X(�)) by

N̂(X(�)) := max
Xi∈X(�)

ν(Xi,X(i − 1)) = max{j : tj,� > 0}.

Then, by (2.5), using the convention that 0 log 0 = 0, we have

LD(X(�), β) =
∞∑
j=1

tj,� log(βj )−
�∑
k=1

log

(
�0,k−1 +

∞∑
j=1

βj�j,k−1

)

=
N̂∑
j=1

tj,� log(βj )−
�∑
k=1

log

(
�0,k−1 +

∞∑
j=1

βj�j,k−1

)
.

This expression is clearly nonincreasing in βj for j > N̂ , and, therefore, we restrict attention
to β with βj = 0 for all j > N̂ . For such β, we have

LD(X(�), β) =
N̂∑
j=1

tj,� log(βj )−
�∑
k=1

log

(
�0,k−1 +

N̂∑
j=1

βj�j,k−1

)
. (2.6)
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It is easy to see that N̂ is the MLE of parameter N . Given observation X(�) and computed N̂ ,
we define the MLE

β̂(X(�)) = (β̂1, . . . , β̂N̂ , 0, 0, . . .)

of the true parameter vector (β(0)1 , . . . , β
(0)
N , 0, 0, . . .) as the maximiser of the function

LD(X(�), β) over vectors of the form (β1, . . . , βN̂ , 0, 0, . . .). The latter depends smoothly
on (β1, . . . , βN̂ ); therefore, the maximiser (β̂1, . . . , β̂N̂ ) (provided it exists) is a solution to the
following system of MLE equations:

∂LD(X(�), β)

∂βj
= 0, j = 1, . . . , N̂ . (2.7)

By (2.6), (2.7) can be rewritten as

tj,�

βj
−

�∑
k=1

�j,k−1

�0,k−1 + ∑N̂
j=1 βj�j,k−1

= 0, j = 1, . . . , N̂ . (2.8)

Clearly, N̂ ≤ N almost surely, and if N̂(X(�)) = N ′ < N then tj,� = 0 for N ′ + 1 ≤ j ≤ N .
It is also possible that tj,� = 0 for some j < N̂(X(�)). Therefore, if an observed point pattern
is not a ‘typical’ model pattern then we might not have sufficient information to estimate the
full set of parameters. Nevertheless, we shall show that, with probability tending to 1 under the
asymptotic regime to be considered in this paper (see Section 2.3), N̂ equalsN and all t-statistics
are positive, so that the system of likelihood equations (2.8) is nondegenerate. Moreover, there
exists a unique positive solution (β̂1, . . . , β̂N ) of the likelihood equations and this solution is
consistent for estimating the true parameter vector β(0) = (β

(0)
1 , . . . , β

(0)
N ).

Numerical results for the simulated images in Figure 1 were as follows: N̂ = 3 and
the t-statistics are positive for all images. For the left image (with � = 50), we obtained
β̂ = (88.0, 374.0, 565.0) by computing the log-likelihood over the lattice cube [40.0, 150.0]×
[150.0, 450] × [400.0, 650.0] with mesh 1. The log-likelihood is equal to 131.657 at β̂,
whereas it takes value 131.306 at the true parameter (the minimal value on the cube is 126.918).
Similar computations for the right image (with � = 100) over the lattice cube [50.0, 150.0] ×
[200.0, 400.0] × [450.0, 650.0] gave β̂ = (110.0, 319.0, 499.0). The maximal value taken
at β̂ equals 247.527, whereas it is 247.494 at the true parameter. It should be noted that the
likelihood surface is very flat in a rather large region containing both the maximiser and the
true parameter. Therefore, the choice of a parameter is not so critical.

It would certainly be desirable to estimate the precision of the estimates via confidence
intervals. This could be done using asymptotic normality of the MLE if one had a proof of this,
and we hope to address this issue in future work.

Each of the�-statistics (defined by (2.4)) was computed as the proportion of 5×105 uniform
random points in (0, 1)2 which fall in the region determining the statistic.

Other methods of computing the �-statistics might be more accurate; for example, if we
update the vector (�j (X(k)))Nj=0 sequentially in k then each new point Xk+1 affects only
the contribution to each component of this vector from inside the R-neighbourhood of X(k)
(cf. (4.14), below). We do not investigate such computational issues in depth here.

2.3. The asymptotic regime

Let D1 denote the unit cube centred at the origin (though the asymptotic theory below will
remain unchanged for any compact convex set D1 ⊂ R

d ). Consider a sequence of rescaled
domains Dm = m1/dD1, m ∈ Z+.
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The jamming density is defined as follows. Givenm, consider the CSA process as described
in Section 2.1 with target region D = Dm. Denote by Am(n) the (random) number of points
accepted out of the first n incoming points (this was called A(n) in Section 2.1, but now it
depends on the choice of D, which depends on m). For an infinite sequence of points arriving
overDm, the total number of accepted points remains bounded because we assume thatN < ∞
(so the number of points accepted in any ball of radius R/2 is at most N ). Therefore, the
limit jm := limn→∞Am(n) exists almost surely, and is a finite random variable. Then it is
known [8] that jm/m converges in probability, as m → ∞, to a constant (dependent on the
parameters R,N, β1, . . . , βN ), known as the jamming density and denoted by θ∞(β) in this
paper. Actually, Theorem 7.1 of [8] is not quite applicable directly here, since the rule for
the acceptance probability takes a slightly different form there. However, the method of proof
of Theorem 7.1 of [8] carries through easily enough to the present setting. An alternative
characterisation of the jamming density is given later (see Lemma 4.1).

Our asymptotics are asm becomes large, i.e. we consider the model in an increasing domain
asymptotic framework. Fix (�m, m ≥ 1), an arbitrary monotonically increasing sequence of
positive numbers, satisfying Assumption 2.1, below. Given N and R, let the state space Sm be
defined by

Sm := {x(�m) = (x1, . . . , x�m) : xi ∈ Dm, 1 ≤ i ≤ �m}.
Let B := (0,∞)N , the set to which the parameter vector β = (β1, . . . , βN) can belong.

Given β = (β1, . . . , βN) ∈ B, consider a probability measure Pm,β (with corresponding
expectation Em,β ) on Sm specified by probability density (2.5) with � = �m and D = Dm.
Note that, given m, if �m ≥ N then the family of probability measures Pm,β, β ∈ B, is
identifiable, i.e. the probability measures P

m,β
′ and P

m,β
′′ are distinct, if β

′ 	= β
′′
.

The true parameter is denoted by β(0) = (β
(0)
1 , . . . , β

(0)
N ), with β(0) ∈ B. We write P(0)m

for Pm,β(0) and E(0)m for Em,β(0) , and simply θ∞ for θ∞(β(0)). If the ξm, m ≥ 1, are random
variables with ξm defined on the sample space Sm for eachm and x ∈ R is a constant, we write

ξm
Pm,β−→ x if

lim
m→∞ Pm,β{|ξm − x| > ε} = 0 for all ε > 0.

Also, we write ‘
P(0)m−→’ for ‘

P
m,β(0)−→ ’.

The following assumption on the sequence �m is similar to what is known as the thermo-
dynamic limit condition in statistical physics and the increasing domain asymptotic framework
in spatial statistics.

Assumption 2.1. The number of observed points is asymptotically linear inm with coefficient
below the jamming density, that is,

lim
m→∞

(
�m

m

)
= µ ∈ (0, θ∞).

Given a target region Dm and an observation X(�m), we define

Lm(β) := LDm(X(�m), β).

To emphasise dependence on the target region, we set

tmj,�m := tj (X(�m)), j = 1, . . . , N, (2.9)

�mj,k := �mj (X(k)), j = 0, . . . , N, k = 0, . . . , �m. (2.10)
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Thus, (2.6) becomes

Lm(β) =
N̂∑
j=1

tmj,lm log(βj )−
�m∑
k=1

log

(
�m0,k−1 +

N̂∑
j=1

βj�
m
j,k−1

)
, (2.11)

and (2.8) in target region Dm can be rewritten as

tmj,�m

βj
−

�m∑
k=1

�mj,k−1

�m0,k−1 + ∑N̂
j=1 βj�

m
j,k−1

= 0, j = 1, . . . , N̂ . (2.12)

2.4. Consistency of the MLE

The next result justifies why statistical inference for the CSA model can be based on the
MLE.

Theorem 2.1. Under Assumption 2.1, there exists a nonnegative function (L(β, µ), β ∈ B,
µ ∈ (0, θ∞)) such that, for any fixed µ,

1. L(β(0), µ) = 0 and L(β,µ) > 0 for any β 	= β(0),

2. L(β,µ) is a continuous function of µ ∈ (0, θ∞),
3. for any fixed β ∈ B, as m → ∞, we have

1

m
(Lm(β

(0))− Lm(β))
P(0)m−→ L(β,µ).

Remark 2.1. It can be shown that Lm(β) ∼ m log(m) as m → ∞, whereas in the i.i.d. case
the log-likelihood is linear in the number of points. Thus, in contrast with the i.i.d. case, we
take the difference Lm(β(0))− Lm(β) and prove convergence for this.

Theorem 2.1 immediately implies Corollary 2.1, below, which is analogous to a known result
for the classical i.i.d. case (for instance, Theorem 2.1 in Chapter 6 of [6]).

Corollary 2.1. Let β = (β1, . . . , βN) 	= β(0) = (β
(0)
1 , . . . , β

(0)
N ). Then, under Assump-

tion 2.1,

P(0)m

{
p�m,β(0),Dm(X1, . . . , X�m)

p�m,β,Dm(X1, . . . , X�m)
> 1

}
→ 1 as m → ∞.

The following theorem is the main result of the paper.

Theorem 2.2. Under Assumption 2.1, with the P(0)m -probability tending to 1 as m → ∞,

1. N̂ = N , and

2. there exists a unique positive solution (β̂1,m, . . . , β̂N,m) ∈ B of the system of equa-
tions (2.12) such that, for i = 1, . . . , N ,

β̂i,m
P(0)m−→ β

(0)
i as m → ∞.
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3. Locally determined functionals

In this section we first give some general limit theorems (Theorems 3.1 and 3.2) for func-
tionals defined on finite ordered sequences of points in R

d by taking sums of so-called locally
determined functionals. The sequence of points is taken to be a realisation of CSA, and the
limit theorems are laws of large numbers as the target regionDm becomes large, which extend
in various ways the previous work of Penrose and Yukich [11] on such limit theory.

As an application of the general theorems, in Theorem 3.3, below, we shall then give laws
of large numbers for the statistics tmj,�m and �mj,k , which determine the MLE equations (2.12).
We shall use Theorem 3.3 to prove Theorems 2.1 and 2.2.

For x ∈ R
d and r > 0, let B(x, r) be the closed ball of radius r centred at x. A set X ⊂ R

d

is locally finite if X ∩ B(x, r) is finite for all finite r and all x ∈ R
d .

Definition 3.1. Let r > 0. A locally determined functional with range r is a measurable real-
valued function ξ(Y,X) defined for all pairs (Y,X), where Y ∈ R

d and X ⊂ R
d is locally

finite, with the property that ξ(Y,X) is determined by the point set X ∩ B(Y, r).
Given w ∈ R

d and given X ⊂ R
d , we write w + X for {w + x : x ∈ X}. A locally

determined functional ξ is said to be translation invariant if, for all Y ∈ R
d , all locally finite

X ⊂ R
d , and all w ∈ R

d , we have ξ(Y,X) = ξ(w + Y,w + X).
Given a finite sequence y = (y1, . . . , yn) ∈ ⋃∞

k=0(R
d)k , we write 〈y〉 for the corresponding

unordered set of points {y1, . . . , yn}. Abusing notation, givenx ∈ R
d and locally finiteX ⊂ R

d ,
we write ν(x,X) for the number of points of X in B(x,R), where R is the interaction radius
of the CSA model, so, in particular, ν(x, 〈y〉) is the same as ν(x, y) defined in Section 2.1
(provided y has no repeats, which is almost surely the case for those y we consider).

Given a locally determined functional ξ , we define the corresponding additive functional
Hξ on finite sequences X(k) = (X1, . . . , Xk) ∈ (Rd)k by

Hξ(X(k)) =
k∑
i=1

ξ(Xi, 〈X(i − 1)〉). (3.1)

Given m, let (Ym1 , Y
m
2 , . . .) be a sequence of independent random d-vectors uniformly dis-

tributed in Dm. Given � ∈ N , let Am(�) be the number of accepted points, according
to the acceptance/rejection scheme determining the CSA model, from the first � arrivals
Ym(�) = (Ym1 , . . . , Y

m
� ). For 0 ≤ j ≤ Am(�), let Xm(j) = (Xm1 , . . . , X

m
j ) ∈ (Rd)j be

the sequence of the first j accepted points. Note that sometimes (as in earlier sections of this
paper) we omit the superscript and writeX(j) rather thanXm(j) andXk rather thanXmk , when
it is clear that the points are inDm (this is the case when the measure Pm,β or P(0)m is mentioned
explicitly).

The following law of large numbers for sums of locally determined functionals, given the
number of arrivals Ymi , generalises Theorem 2.1 of [11].

Theorem 3.1. Let β ∈ B. Let ξ be a bounded, translation-invariant, locally determined
functional. Then there exists a function (Gβ(τ), τ > 0) such that if (Mm, m ≥ 1) is a
sequence of nonrandom integers such that Mm/m → τ > 0 as m → ∞, then, as m → ∞,

Hξ(Xm(Am(Mm)))

m

Pm,β−→ Gβ(τ). (3.2)

In practice, we observe only the accepted points. Hence, we shall use the following law of
large numbers for sums of locally determined functionals given the number of accepted points.
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Theorem 3.2. Let β ∈ B. Let ξ be a bounded, translation-invariant, locally determined
functional, and let β ∈ B. There exists a continuous function (V (λ), 0 ≤ λ < θ∞(β)) (also
dependent on β and ξ ) such that if limm→∞(�m/m) = λ ∈ (0, θ∞(β)) then

Hξ(Xm(�m))

m

Pm,β−→ V (λ) as m → ∞.

The following result gives the asymptotic behaviour of the statistics (2.9) and (2.10) deter-
mining the MLE.

Theorem 3.3. For β ∈ B, there exist strictly positive and continuous (in µ) functions
(ρj (µ, β), µ ∈ (0, θ∞(β))) (defined for 1 ≤ j ≤ N ) and (γj (µ, β), µ ∈ (0, θ∞(β))) (defined
for 0 ≤ j ≤ N ) such that if limm→∞(�m/m) = µ ∈ (0, θ∞(β)) then, as m → ∞,

tmj,�m

m

Pm,β−→ ρj (µ, β), j = 1, . . . , N, (3.3)

and
�mj,�m

m

Pm,β−→ γj (µ, β), j = 0, . . . , N. (3.4)

Also,

ρj (µ, β) =
∫ µ

0

βjγj (λ, β)

γ0(λ, β)+ ∑N
i=1 βiγi(λ, β)

dλ, j = 1, . . . , N. (3.5)

Set γ (0)j (λ) := γj (λ, β
(0)) for j = 0, . . . , N and ρ(0)j (µ) := ρj (µ, β

(0)) for j = 1, . . . , N .
Given µ ∈ (0, θ∞), by (3.5), the vector of true parameters β(0) = (β

(0)
1 , . . . , β

(0)
N ) is a solution

of the system of equations

ρ
(0)
j (µ)

βj
−

∫ µ

0

γ
(0)
j (λ)

γ
(0)
0 (λ)+ ∑N

i=1 βiγ
(0)
i (λ)

dλ = 0, j = 1, . . . , N. (3.6)

This is the infinite-volume analogue of the MLE (2.8). By a similar argument to the proof of
uniqueness in the proof of Theorem 2.2, below, with the sums in (5.12) replaced by integrals,
it can be shown that β = β(0) is the unique solution in B to (3.6).

4. Proofs of Theorems 3.1, 3.2, and 3.3

4.1. Proof of Theorem 3.1

The aim is to use Theorem 3.2 of [11] or Theorem 2.1 of [9]. Given a finite point set
Y ⊂ [0, λ]×[0, 1]×R

d with I elements, list the elements of Y as (ti , ui, yi)Ii=1 (with ti ∈ [0, λ],
ui ∈ [0, 1], and y ∈ R

d ) in lexicographic order (so, in particular, t1 ≤ t2 ≤ · · · ≤ tI ). Let χ�
(the indicator that the �th point is accepted) be defined recursively for � = 1, . . . , I as follows.
Suppose that χ1, . . . , χ�−1 are known; then set k�−1 = ∑�−1

i=1 χi (with k0 = 0), and set

x(k�) = {yi : 1 ≤ i ≤ �, χi = 1}.
Then, with K as in Section 2.1, set χ� = 1 if u� ≤ K−1βν(y�,x(k�−1)), with χ� = 0 otherwise.
Also (with some abuse of notation), set

ψ(y�; Y) := ψ((t�, u�, y�); Y) :=
{
ξ(y�; x(k�−1)) if χ� = 1,

0 otherwise.
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Then, with (t�, u�) viewed as the mark attached to the point y� ∈ R
d , we assert that ψ(y,Y)

is a deterministic and translation invariant functional on marked point sets in R
d , in the sense

of [9] or [11]. Here the mark of each point y ∈ R
d is an element (t, u) of [0, λ]× [0, 1], which

we write as its prefix. Translation invariance follows because, when we translate each point
y ∈ R

d by the same x ∈ R
d (leaving the marks unchanged), then the lexicographic ordering

of points is unchanged, and the acceptance rule is determined by ν(y�, x(k� − 1)), which is
unaffected by translation of all points by x.

Set M = Mn, as given in the statement of the theorem. Let YM be a set of M independent,
uniformly distributed random points in [0, λ]×[0, 1]×Dm. List them in lexicographic order as
(ti , ui, yi)

M
i=1. Then, following the recipe described above, it can be seen that the sequence of

accepted points xi follows the CSA model, so that (with ‘
d=’ denoting equality in distribution)

Hξ(X(Am(M)))
d=

∑
(t,u,y)∈Y

ψ(y; YM),

and we can apply Theorem 3.2 of [11] to obtain the required result (3.2) for the case with
Mm = �λm�. Indeed, the moment conditions for the result in [11] are trivial here because
we assume that ξ is bounded so that all summands are bounded by a constant. Also, for all
τ > 0, the functional H is strongly stabilising in the sense of [11, p. 285]. That is, there is
an almost-sure random variable R̃τ such that the so-called ‘add-one cost’ of an insertion at a
randomly marked point at the origin 0 := (0, . . . , 0) into a Poisson process of intensity τ in R

d ,
restricted to B(0, τ ), is unaffected by addition of points outside B(0, R̃τ ). All points here have
marks uniformly distributed over [0, τ ] × [0, 1]. This property holds by Lemma 4.2 of [11], as
in the proof of Theorem 2.1 of [11].

The general case, Mm/m → λ, is covered by Theorem 2.1 of [9], which generalises
Theorem 3.2 of [11]. Only the case with Mm = [m] will be used in the sequel.

4.2. The function Gβ(τ)

The preceding proof (using Theorem 3.2 of [11]) provides information about the nature of
the limit Gβ(τ) in (3.2). To describe this more clearly, let H denote a unit-rate homogeneous
Poisson process in [0,∞] × [0, 1] × R

d . Given t > 0 and r > 0, let At (r) denote the set of
spatial locations of accepted points when the acceptance rule is applied to the restriction of H to
[0, t)×[0, 1]×B(0, r) (a finite set). By arguments in [11], there exists a limiting set At such that,
for all K > 0, there exists finite (random) r(K) such that At ∩ B(0,K) = At (r) ∩ B(0,K)

for all r > r(K).
The set At can also be viewed as a set of spatial locations of particles accepted up to time

t for the CSA process in R
d . This is a spatial birth process, in the sense of, e.g. Section 4.1

of [10] (with only immigration events), where particles arrive as a unit-rate Poisson process in
space–time R

d × (0,∞) and are accepted with probability equal to βj/K , with j equal to the
number of previously accepted neighbours of the incoming particle, and the initial state at time 0
is the empty set. As discussed in [10], this process turns out to be well defined. The spatial
birth process is parametrised by β = (β1, . . . , βN), so we write Pβ and Eβ for probability and
expectation, respectively, in this model.

Proposition 4.1. The constant Gβ(τ) in (3.2) is given by

Gβ(τ) =
∫ τ

0
K−1 Eβ [βν(0;At )ξ(0,At )] dt, (4.1)

where 0 denotes a particle inserted at the origin (at time t), and where K is as in Section 2.1.
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Proof. Let Hτ be a homogeneous Poisson point process in [0, τ ] × [0, 1] × R
d , and let

(T , U) be uniformly distributed over [0, τ ] × [0, 1] (and independent of Hτ ), representing the
mark of an inserted point at the origin. According to Theorem 3.2 of [11], as used in the proof
of Theorem 3.1, the limit Gβ(τ) in (3.2) is given by the expression τ Eψ∞((T , U, 0); Hτ ),
where the limit

ψ∞((T , U, 0); Hτ ) := lim
L→∞ψ((T ,U, 0); Hτ ∩ ([0, τ ] × [0, 1] × B(0, L)))

is shown to exist in [11]. Integrating out the value of T , we have

Gβ(τ) = τ Eβ [ψ∞((T , U, 0); Hτ )] =
∫ τ

0
Eβ [ψ∞((t, U, 0); Hτ )] dt. (4.2)

Note that ψ∞((t, U, 0); Hτ ) is unaffected by points of Hτ with time coordinate greater than t .
In fact,ψ∞((t, U, 0); Hτ ) is equal to ξ(0; At ) ifU ≤ K−1βν(0;At ) and equal to zero otherwise.
Hence, the integrand in (4.2) equals K−1βν(0;At )ξ(0; At ), so we obtain (4.1).

4.3. Proof of Theorem 3.2

Theorem 3.2 is proved using Theorem 3.1 and the following relation between the number
of incoming Ymi and the number of accepted pointsXmi . LetNm(k) := min{n : Am(n) ≥ k} be
the number of input points for the rejection scheme on the cubeDm until at least k are accepted,
with Nm(k) = ∞, if the total number of accepted points for an infinite input sequence is less
than k.

Lemma 4.1. Given β ∈ B, there exists a strictly positive, continuous, and strictly increasing
function (θ(τ ), τ > 0) (which also depends on β) such that

Am([τm])
m

Pm,β−→ θ(τ ) as m → ∞. (4.3)

Also, limτ→∞ θ(τ ) = θ∞(β), where the jamming density θ∞(β) was defined in Section 2.3.
Also, with θ−1 denoting the inverse function to θ , for any λ ∈ (0, θ∞(β)), asm → ∞, we have

Nm(λm)

m

Pm,β−→ θ−1(λ). (4.4)

Proof. The limit in (4.3) exists as a consequence of Theorem 3.1, where here we set
ξ(x,X) ≡ 1. By (4.1) we have

θ(τ ) =
∫ τ

0
K−1 Eβ [βν(0;At )] dt. (4.5)

Hence, θ is continuous. Also, for all t > 0, Eβ [βν(0;At )] is strictly positive since there is a
nonzero probability that no Poisson points arrive within distance R of the origin before time t ,
and if this happens then βν(0;At ) = β0 = 1. Hence, θ is monotonically strictly increasing, and
is strictly positive.

Since we assume that N < ∞, it is not hard to see that θ is bounded and, therefore, since
θ is monotonic, limλ→∞ θ(λ) exists. This limit is equal to the jamming density θ∞ as defined
earlier, as was shown in [8] for a slightly different CSA model; the proof carries over to the
present case (for our purposes here, one could equally well have defined θ∞ to be the limit
limλ→∞ θ(λ)).
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Choose λ ∈ (0, θ∞(β)). Since θ(·) is continuous and strictly increasing, θ−1(λ) is well
defined. Let b0 < θ−1(λ) < b1. Then θ(b0) < λ < θ(b1), and setting t = bim in (4.3)
(i = 0, 1) yields

Pm,β{Nm(λm) > b0m} = Pm,β

{
Am([b0m])

m
< λ

}
→ 1

and
Pm,β{Nm(λm) ≤ b1m} = Pm,β{Am([b1m]) ≥ λm} → 1,

and (4.4) follows.

We now complete the proof of Theorem 3.2. Set s = θ−1(λ). Then it follows from
Theorem 3.1 that

Hξ(Xm(Am([ms])))
m

Pm,β−→ Gβ(s) (4.6)

for some deterministic limit Gβ(s). Also, using (4.3) and the assumption that �m/m → λ, we
have

�m − Am([ms])
m

Pm,β−→ 0,

and since ξ is assumed bounded, this implies that

|Hξ(Xm(�m))−Hξ(Xm(Am([ms])))|
m

Pm,β−→ 0,

which combined with (4.6) gives the result, if we equate

V (λ) = Gβ(s) = Gβ(θ
−1(λ)). (4.7)

To prove that the limit V (λ) is a continuous function, first note that function Gβ(·) is
continuous by (4.1) and the assumption that ξ is bounded. The function θ−1(λ) is continuous
by Lemma 4.1, so V (λ) = Gβ(θ

−1(λ)) is continuous. The theorem is proved.

4.4. Proof of Theorem 3.3

We first show that the statistics tmj,�m and�mj,�m, j = 1, . . . , N , are sums of locally determined
functionals, as in (3.1), modulo some asymptotically negligible boundary effects.

First consider the statistics tmj,�m, j = 1, . . . , N . Note that

tmj,m =
�m∑
i=1

1{ν(Xi ,〈X(i−1)〉)=j}. (4.8)

It is easy to see that ξ(x,X) = 1{ν(x,X)=j} is a bounded, translation-invariant, locally deter-
mined functional with range R.

Now consider the statistics �mj,�m, j = 1, . . . , N, k = 0, . . . , �m. It is helpful to define the
approximations �̃mj,k to �j,k as follows:

�̃mj,k =
∫

Rd

1{u:ν(u,X(k))=j} du, j ≥ 1, �̃m0,k = m−
∞∑
j=1

�̃mj,k.
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The �̃mj,k are good approximations to �mj,k for the following reason. Set ∂R(Dm) to be the set of
points in R

d \Dm distant at most R fromDm, and let | · | denote the Lebesgue measure. Since
R is fixed, it is straightforward to verify that

0 ≤ �̃mj,k − �mj,k ≤ |∂R(Dm)|, j ≥ 1, (4.9)

0 ≤ �m0,k − �̃m0,k ≤ |∂R(Dm)|, (4.10)

and
|∂R(Dm)| = O(m(d−1)/d) as m → ∞. (4.11)

For locally finite X ⊂ R
d , letUj(X) ⊆ R

d be the set of points with j neighbours in X, i.e. the
set of y ∈ R

d such that X ∩ B(y,R) has j elements. For x ∈ R
d , define

ξj (x,X) = |B(x,R) ∩ Uj−1(X)| − |B(x,R) ∩ Uj(X)|, j ≥ 1, (4.12)

ξ0(x,X) = |B(x,R) ∩ U0(X)|. (4.13)

Then, for each j , ξj (x,X) is a bounded, locally determined functional with range 2R. It is not
hard to see that, for j ≥ 1,

∞∑
r=j

�̃mr,k =
k∑
i=1

|B(Xi, R) ∩ Uj−1(〈X(i − 1)〉)|,

and from this we may deduce that

�̃mj,k =
k∑
i=1

ξj (Xi, 〈X(i − 1)〉), j ≥ 1, (4.14)

�̃0,k = m−
k∑
i=1

ξ0(Xi, 〈X(i − 1)〉). (4.15)

For (3.3), let 0 ≤ j ≤ N . If we define the locally determined functional ζj (x,X) = 1{ν(x,X)=j}
then, by (2.9), (3.1), and (4.8), we have

tmj,�m = Hζj (Xm(�m)),

and, therefore, by Theorem 3.2, along with (4.1) and (4.7), as m → ∞, we have

tmj,�m

m

Pm,β−→
∫ θ−1(µ)

0
Eβ

[
βν(0;At )

K
ζj (0,At )

]
dt

=
∫ θ−1(µ)

0

βj

K
Pβ{ν(0; At ) = j} dt

:= ρj (µ, β). (4.16)

For each t > 0, there is a nonzero probability of there being precisely j Poisson arrivals in
B(0;R) up to time t , and no other arrivals in B(0; 2R) up to time t , and of all the Poisson
arrivals in B(0;R) up to time t being accepted. Thus, the integrand is strictly positive, so ρj is
strictly positive. Also, Pβ{ν(0; At ) = j} is continuous in β, so ρj (t, β) is continuous in (t, β).
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For (3.4), observe first that, for j ≥ 1, we have, from (3.1) and (4.14), �̃mj,�m = Hξj (Xm(�m)),
so that, by Theorem 3.1, along with (4.1) and (4.7), as m → ∞, we have

�̃mj,�m

m

Pm,β−→
∫ θ−1(µ)

0
Eβ

[
βν(0;At )

K
ξj (0,At )

]
dt := γj (µ, β), j ≥ 1. (4.17)

Also, by a similar argument starting from (4.15),

�̃0,�m

m
→ 1 −

∫ θ−1(µ)

0
Eβ

[
βν(0;At )

K
ξ0(0,At )

]
dt := γ0(µ, β). (4.18)

Moreover, in (4.17) and (4.18) the convergence still holds with �̃mj,�m replaced by �mj,�m , by
(4.9), (4.10), and (4.11).

Next we simplify the expressions for γj (λ, β). First consider the case with j ≥ 1. By
definition (4.12), the integrand on the right-hand side of (4.17) satisfies

Eβ

[
βν(0;At )

K
ξj (0,At )

]
= Eβ

[
βν(0;At )

K
|B(0, R) ∩ Uj−1(At )|

]
− Eβ

[
βν(0;At )

K
|B(0, R) ∩ Uj(At )|

]
= Eβ

∞∑
k=0

βk

K

∫
B(0,R)

1{ν(0;At )=k}1{ν(y;At )=j−1} dy

− Eβ

∞∑
k=0

βk

K

∫
B(0,R)

1{ν(0;At )=k}1{ν(y;At )=j} dy

=
∞∑
k=0

βk

K

∫
B(0,R)

Eβ [1{ν(y;At )=k}1{ν(0;At )=j−1}] dy

−
∞∑
k=0

βk

K

∫
B(0,R)

Eβ [1{ν(y;At )=k}1{ν(0;At )=j}] dy

= d

dt
Pβ{ν(0; At ) = j},

where, for the penultimate line, we either exploit the invariance of the distribution of At under
reflection in the mediator of 0 and y, or we make a change of variable y �→ −y and exploit the
translation invariance of the distribution of At , and the last line comes from the Kolmogorov
forward equation.

Since Pβ{ν(0; A0) = j} = 0, it follows from (4.17) and the fundamental theorem of calculus
that, for j ≥ 1,

γj (µ, β) = Pβ{ν(0; Aθ−1(µ)) = j}. (4.19)

https://doi.org/10.1239/aap/1261669581 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1261669581


994 • SGSA M. D. PENROSE AND V. SHCHERBAKOV

Similarly, using (4.13), the integrand in (4.18) is

Eβ

[
βν(0;At )

K
ξ0(0,At )

]
dt = Eβ

[
βν(0;At )

K
|B(0, R) ∩ U0(At )|

]
= Eβ

∞∑
k=0

βk

K

∫
B(0,R)

1{ν(0;At )=k}1{ν(y;At )=0} dy

=
∞∑
k=0

βk

K

∫
B(0,R)

Eβ [1{ν(y;At )=k}1{ν(0;At )=0}] dy

= − d

dt
Pβ{ν(0; At ) = 0},

and since Pβ{ν(0; A0) = 0} = 1, it follows from (4.18) and the fundamental theorem of
calculus that (4.19) is valid for j = 0 too.

As was argued just after (4.16), for all t > 0, the value of Pβ{ν(0; At ) = j} is strictly
positive, and this probability is also continuous in t . Hence, by (4.19), γj (µ, β) is strictly
positive and continuous in β.

Next we prove (3.5). By (4.5), setting τ = θ−1(λ), we have

dλ

dτ
= K−1 Eβ [βν(0;Aτ )],

and, hence, by (4.16) and (4.19)

∂

∂λ
ρj (λ, β) = K−1βjγj (λ, β)

dτ

dλ
= βjγj (λ, β)

Eβ [βν(0;A
θ−1(λ))

] = βjγj (λ, β)∑N
i=0 βiγi(λ, β)

, (4.20)

and since ρj (0, β) = 0 by (4.16), integrating (4.20) from λ = 0 to λ = µ yields (3.5) by the
fundamental theorem of calculus.

5. Proofs of results in Section 2

We start by introducing some notation and formulating two auxiliary lemmas that are proved
in Section 6. Given β(0) ∈ B, define the function ϕ : B × (0, θ∞) → R by

ϕ(β, λ) =
N∑
j=1

log

(
β
(0)
j

βj

)
β
(0)
j γ

(0)
j (λ)

Z(β(0), λ)
+ log

(
Z(β, λ)

Z(β(0), λ)

)
, (5.1)

where

Z(β, λ) = γ
(0)
0 (λ)+

N∑
i=1

βiγ
(0)
i (λ). (5.2)

Lemma 5.1. The function ϕ(β, λ) is continuous in λ and, for any fixed λ ∈ (0, θ∞),
ϕ(β(0), λ) = 0, (5.3)

ϕ(β, λ) > 0 if β 	= β(0). (5.4)

The next lemma describes the asymptotic behaviour of the model’s log-likelihood derivatives.
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Lemma 5.2. Under Assumption 2.1,

1. for any j = 1, . . . , N ,
1

m

∂Lm(β)

∂βj

∣∣∣∣
β=β(0)

P(0)m−→ 0,

2. for all β ∈ B, there exists a symmetric matrix J (β, µ) = (Jij (β, µ))
N
i,j=1 such that, for

1 ≤ i, j ≤ N ,

− 1

m

∂2Lm(β)

∂βi∂βj

P(0)m−→ Jij (β, µ) as m → ∞;

also, the matrix J (0)(µ) := (Jij (β
(0), µ))Ni,j=1 is positive definite,

3. there exist an open neighbourhood U of β(0) and a constant C > 0, such that, for allm,∣∣∣∣ 1

m

∂3Lm(β)

∂βj ∂βi∂βp

∣∣∣∣ ≤ C almost surely

for any 1 ≤ j, i, p ≤ N , any m, and all β ∈ U.

5.1. Proof of Theorem 2.1

Let β = (β1, . . . , βN) ∈ B, and set β0 = β
(0)
0 = 1. By (2.9), (2.10), and (2.11),

Lm(β
(0))− Lm(β) =

N∑
j=1

tmj,�m log

(
β
(0)
j

βj

)
+

�m∑
k=1

log

( ∑N
i=0 βi�

m
i,k∑N

i=0 β
(0)
i �mi,k

)
. (5.5)

By (3.4), for 0 ≤ j ≤ N and any λ ∈ (0, µ],
�mj,�λm�
m

P(0)m−→ γ
(0)
j (λ) as m → ∞. (5.6)

By Theorem 3.3, we can (and now do) choose a constant η with 0 < η <
∑N
i=1 γ

(0)
j (µ), and

using (3.4), if we define the event

Fm :=
{ N∑
j=1

�mj,�µm� > ηm

}
,

then we have limm→∞ Pm,β(0) (Fm) = 1.
Define βmin = min{β0, . . . , βN } and βmax = max{β0, . . . , βN }. Since

βmin

N∑
i=0

�mi,k ≤
N∑
i=0

βi�
m
i,k ≤ βmax

N∑
i=0

�mi,k,

and since
∑N
i=0 �

m
i,k is monotonically nonincreasing in k and bounded above bym for all k, on

the event Fm we have, for all λ ∈ [0, µ], the bounds

βminη ≤
∑N
i=1 βi�

m
i,�λm�

m
≤ βmax. (5.7)
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Using (5.7) and the mean value theorem, then using (5.6) and (5.7) again, we find that

E(0)m

[∣∣∣∣ log

( N∑
i=0

βi
�mi,�λm�
m

)
− log

( N∑
i=0

βiγ
(0)
i (λ)

)∣∣∣∣1Fm]

≤ 1

βminη
E(0)m

[∣∣∣∣ N∑
i=1

βi

(
�i,�λm�
m

− γ
(0)
i (λ)

)∣∣∣∣1Fm]
→ 0 (5.8)

as m → ∞. Using (5.2), (5.7) again, and (5.8), and using Assumption 2.1, we have

E(0)m

[∣∣∣∣( 1

m

�m∑
k=1

log

( N∑
i=0

βi
�mi,k

m

))
−

∫ µ

0
log(Z(β, λ)) dλ

∣∣∣∣1Fm]

= E(0)m

[∣∣∣∣(∫ �m/m

0
log

( N∑
i=0

βi
�mi,�λm�
m

)
dλ

)
−

∫ µ

0
log(Z(β, λ)) dλ

∣∣∣∣1Fm]
→ 0

as m → ∞. Hence, since Pm,β(0) (F
c
m) → 0, by (3.3), (3.4), and (5.5), as m → ∞,

1

m
(Lm(β

(0))− Lm(β))
P(0)m−→ L(β,µ),

where

L(β,µ) =
N∑
j=1

ρ
(0)
j (µ) log

(
β
(0)
j

βj

)
+

∫ µ

0
log

(
Z(β, λ)

Z(β(0), λ)

)
dλ.

By (3.5), the function L(β,µ) in the preceding display satisfies

L(β,µ) =
∫ µ

0
ϕ(β, λ) dλ, (5.9)

where the function ϕ(β, λ) is defined by (5.1). By (5.9) and Lemma 5.1, L(β(0), µ) = 0 and
L(β,µ) > 0 for any β 	= β(0). Continuity in µ of L(β,µ) follows from (5.9), so the theorem
is proved.

5.2. Proof of Theorem 2.2

By (3.3),
P(0)m {N̂(X(�m)) = N} = P(0)m {tmN,�m > 0} → 1

as m → ∞; hence, the first assertion of the theorem is proved and without loss of generality
we may assume in the rest of the proof that N̂ = N .

IfN = 1 then the second assertion of the theorem is easy to prove by using monotonicity in
β of the left-hand side of the only equation in system (2.12) and by noting that

P(0)m {0 < tm1,�m < �m − 1} → 1

as m → ∞ by Theorem 3.3.
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We now show for the general case that, with the P(0)m -probability tending to 1 asm → ∞, the
MLE equations cannot have more than one positive solution. Assume that there are two distinct
positive solutions, β = β ′ = (β ′

1, . . . , β
′
N) and β = β ′′ = (β ′′

1 , . . . , β
′′
N), of system (2.12), so

that

tmj,�m = β ′
j

lm∑
k=1

�mj,k−1

�m0,k−1 + ∑N
i=1 β

′
i�
m
i,k−1

, j = 1, . . . , N, (5.10)

and

tmj,�m = β ′′
j

lm∑
k=1

�mj,k−1

�m0,k−1 + ∑N
i=1 β

′′
i �

m
i,k−1

, j = 1, . . . , N. (5.11)

Set β ′
0 = β ′′

0 = 1, and set Z′
k := ∑N

i=0 β
′
i�
m
i,k−1, which is just the denominator inside the

sum in (5.10). Similarly, set Z′′
k := ∑N

i=0 β
′′
i �

m
i,k−1, which is the denominator inside the sum

in (5.11).
Since β ′ 	= β ′′, without loss of generality, we assume that there exists j such that β ′′

j < β ′
j .

Setting wj = β ′
j /β

′′
j , we have, for some j , wj > 1.

Choose j0 such that wj0 = max(w1, . . . , wN). By the preceding discussion, wj0 > 1.
By (5.10) and (5.11), for each j ∈ {1, . . . , N}, we have

0 =
lm∑
k=1

β ′
j�

m
j,k−1Z

′′
k − β ′′

j �
m
j,k−1Z

′
k

Z′
kZ

′′
k

=
N∑
i=0

β ′′
j β

′′
i (wj − wi)Aij , (5.12)

where

Aij :=
lm∑
k=1

�mi,k−1�
m
j,k−1

Z′
kZ

′′
k

.

By Theorem 3.3, for all i, j , we haveAij > 0 with the P(0)m -probability tending to 1 asm → ∞.
Consider the last line of (5.12) in the case in which j = j0. By the choice of j0, for j = j0,

each term in the sum in (5.12) is nonnegative, and the term for i = 0 is strictly positive since
w0 = 1, so that (5.12) must fail and we have a contradiction. Thus, the solution must be unique.

We complete the proof as follows. By Taylor’s theorem, and part 3 of Lemma 5.2, there
exists δ0 > 0 such that, for all β with ‖β − β(0)‖ ≤ δ0,

Lm(β) = Lm(β
(0))+ (β − β(0)) · ∇Lm(β(0))

− (β − β(0))′
[
∂2Lm(β)

∂2β

]
β(0)
(β − β(0))+ rm(β),

where rm(β) = rm(X(lm), β) is such that

|rm(β)| ≤ Cm‖β − β(0)‖3.

Then, by parts 1 and 2 of Lemma 5.2, there exist strictly positive constants C1 and C2, and a
further constant δ1 ∈ (0, δ0) such that, for all δ ∈ (0, δ1),

P(0)m

{
inf

‖β−β(0)‖=δ
1

m
(Lm(β

(0))− Lm(β)) > C1δ
2 − C2δ

3 > 0

}
→ 1
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as m → ∞, and this implies that there exists δ2 ∈ (0, δ1) such that, for any δ ∈ (0, δ2), with
the P(0)m -probability tending to 1 as m → ∞, there exists a positive root (β(0)1,m, . . . , β

(0)
N,m) ∈

B(β(0), δ) of the MLE equation.
Since, for arbitrarily small δ ∈ (0, δ2), with the P(0)m -probability tending to 1, (i) the solution

is unique and (ii) there exists a solution in B(β(0), δ), we can conclude that there exists a
sequence of unique positive solutions (β̂1,m, . . . , β̂N,m) of MLE equations converging to the
true parameter in P(0)m -probability. The theorem is proved.

6. Proofs of Lemmas 5.1 and 5.2

6.1. Proof of Lemma 5.1

Continuity of ϕ(β, λ) in λ is implied by definitions (5.1) and (5.2), and Theorem 3.3.
Assertion (5.3) is obvious. To prove (5.4), we shall show that β(0) is the only minimum
point of the function ϕ(β, λ), β ∈ R

N+ , for any fixed λ. Consider the system of equations
determining the extremal points of this function:

∂ϕ(β, λ)

∂βj
= − 1

βj

β
(0)
j γ

(0)
j (λ)

Z(β(0), λ)
+ γ

(0)
j (λ)

Z(β, λ)
= 0, j = 1, . . . , N. (6.1)

All the βs are assumed to be positive, and setting β0 = β
(0)
0 = 1, Z = Z(β, λ) as defined

in (5.2), and Z(0) = Z(β(0), λ), we can rewrite (6.1) (for each j ) as

0 = βjγ
(0)
j

Z
− β

(0)
j γ

(0)
j Z(0)

Z(0)

= βjγ
(0)
j Z(0) − β

(0)
j γ

(0)
j Z

Z(0)Z

= γ
(0)
j

Z(0)Z

(
βj

N∑
i=0

β
(0)
i γ

(0)
i − β

(0)
j

N∑
i=0

βiγ
(0)
i

)

= γ
(0)
j

Z(0)Z

( N∑
i=0

γ
(0)
i (βjβ

(0)
i − βiβ

(0)
j )

)
,

and setting vi = βi/β
(0)
i we find that

0 = γ
(0)
j

Z(0)Z

( N∑
i=0

γ
(0)
i β

(0)
j β

(0)
i (vj − vi)

)
. (6.2)

Note that v0 = 1. If maxi vi > 1 then, by choosing j = j1 to maximise vj , setting j = j1
in (6.2), we obtain a contradiction. If mini vi < 1 then, by choosing j2 to minimise vj , setting
j = j2 in (6.2), we obtain a contradiction. Hence, vi = 1 for all i, i.e. β = β(0).

To show that the critical point β(0) is a minimum point of the function ϕ(β, λ), β ∈ R
N+ , we

need to check that, for any fixed λ, the matrix Q(β(0), λ) = (Qij (β
(0), λ))Ni,j=1 given by

Qij (β
(0), λ) = ∂2ϕ(β, λ)

∂βi∂βj

∣∣∣∣
β=β(0)

(6.3)
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is positive definite. By differentiating (6.1) with respect to βi , and considering separately the
cases i = j and i 	= j , we find that

Qij (β
(0), λ) =

(
γ
(0)
i

β
(0)
i Z(0)

)
δij − γ

(0)
i γ

(0)
j

(Z(0))2
,

where δij is the Kroneker symbol. Hence, for any N -vector a = (a1, . . . , aN)
′, we have

a′((Z(0))2Q(β(0), λ))a =
N∑
i=1

a2
i γ

(0)
i Z(0)

β
(0)
i

−
N∑
i=1

N∑
j=1

aiaj γ
(0)
i γ

(0)
j , (6.4)

but, by the Cauchy–Schwarz inequality, if a is nonzero then( N∑
i=1

aiγ
(0)
i

)2

=
( N∑
i=1

(aiβ
(0)
i )

(
γ
(0)
i

β
(0)
i

))2

≤
( N∑
i=1

a2
i

(
γ
(0)
i

β
(0)
i

))( N∑
i=1

(β
(0)
i )2

(
γ
(0)
i

β
(0)
i

))

=
( N∑
i=1

a2
i

(
γ
(0)
i

β
(0)
i

))
(Z(0) − γ

(0)
0 )

<

( N∑
i=1

a2
i

(
γ
(0)
i

β
(0)
i

))
Z(0),

so that (6.4) is strictly positive, and the positive definiteness of matrix (6.3) is established. Hence,
for any fixed λ, the point β(0) is the only minimum point of the function ϕ(β, λ), β ∈ R

N+ , and
the lemma is proved.

6.2. Proof of Lemma 5.2

Part 1. Note from (2.11) that

∂Lm(β)

∂βj
= tmj,�m

βj
−

�m∑
k=1

�mj,k−1

�m0,k−1 + ∑N
i=1 βi�

m
i,k−1

. (6.5)

Dividing both the numerator and denominator in the fraction by m and using (3.3) and (3.4),
we may deduce that, for any β ∈ B, as m → ∞, we have

m−1 ∂Lm(β)

∂βj

P(0)m−→ ρ
(0)
j (µ)

βj
−

∫ µ

0

γ
(0)
j (λ)

Z(β, λ)
dλ,

and if β = β(0) then this is zero by part 3 of Theorem 3.3. Thus, part 1 holds.
Part 2. By (3.3), (3.4), and (6.5), for any β ∈ B,

− 1

m

∂2Lm(β)

∂βi∂βj

P(0)m−→ ρ
(0)
i (µ)

β2
i

δij −
∫ µ

0

(
γ
(0)
i (λ)γ

(0)
j (λ)

Z(β, λ)2

)
dλ,
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where δij is the Kroneker symbol. By (3.5) and (5.1),

ρ
(0)
i (µ)

(β
(0)
i )2

δij −
∫ µ

0

(
γ
(0)
i γ

(0)
j (λ)

Z(β(0), λ)2

)
dλ =

∫ µ

0
Qij (β

(0), λ) dλ,

so

J (0)(µ) =
∫ µ

0
Q(β(0), λ) dλ,

whereQ(β(0), λ) is the matrix defined by (6.3). We proved in the proof of Lemma 5.1 that, for
any fixed λ, this matrix is positive definite, and, therefore, so is the matrix J (0)(µ).

Part 3. Assume, for instance, that j = i = p. Then a direct computation from (6.5) gives

1

m

∂3Lm(β)

∂β3
j

= 2tmj,�m
mβ3

j

+ 2

m

�m∑
k=1

(�mj,k−1)
3

(�m0,k−1 + ∑N
i=1 βi�

m
i,k−1)

3
≤ 4�m
mβ3

j

, (6.6)

where the last inequality follows since tmj,�m ≤ �m by (2.4) and (2.9).
By Assumption 2.1, �m/m is bounded by a constant. Also, if U is a compact neighbourhood

of β(0) with U ⊂ B then, for β ∈ U, we have β−3
j ≤ (infβ∈U βj )

−3, which is finite since U is
compact and contained in B. Hence, (6.6) is bounded uniformly in m ≥ 1, β ∈ U. When all
indices are different or just two of them coincide, similar bounds can be obtained in the same
way; we omit the details. Lemma 5.2 is proved.
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