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A Technique of Studying Sums
of Central Cantor Sets
Razvan Anisca and Monica Ilie

Abstract. This paper is concerned with the structure of the arithmetic sum of a finite number of central
Cantor sets. The technique used to study this consists of a duality between central Cantor sets and sets
of subsums of certain infinite series. One consequence is that the sum of a finite number of central
Cantor sets is one of the following: a finite union of closed intervals, homeomorphic to the Cantor
ternary set or an M-Cantorval.

1 Introduction

Related with some problems in dynamical systems, J. Palis [8] asked if the arithmetic
difference (or sum) of two Cantor sets, both with zero Lebesgue measure, is either
of Lebesgue measure zero or it contains an interval. For regular Cantor sets negative
answers were given in [1] and [9]. This problem initiated the investigation of such
arithmetic sums.

In this paper we present a technique of dealing with the arithmetic sum of a finite
number of central Cantor sets, which will enable us to study the topological structure
and to describe the sum in some cases. This technique is based on the duality between
central Cantor sets and sets of subsums of certain infinite series. In a very particular
case, this type of argument was used in [5] (see Theorem D).

In the main result of this note, Theorem 2, we show that the sum of a finite number
of central Cantor sets is a finite union of closed intervals or homeomorphic to the
Cantor ternary set or an M-Cantorval. For sums of two symmetric homogeneous
Cantor sets similar results were obtained in [5]; although these two classes of Cantor
sets intersect, neither of them is contained in the other.

Another consequence of our technique is Theorem 3, which gives necessary and
sufficient conditions for C + · · · + C︸ ︷︷ ︸

n-times

to be an interval or a finite union of closed in-

tervals. This theorem improves upon [2].

2 Preliminaries

A central Cantor set in R is constructed in the following way: choose an arbitrary
closed interval K0 and delete a middle open interval leaving two intervals. Let K1

be the union of the remaining two intervals. Repeat the process for each of the two
intervals of K1 (we request now that both open middle intervals which are removed
be of the same length) and we obtain a compact set K2 which is the union of 22
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Sums of Cantor Sets 13

intervals of the same length. Proceeding inductively we construct for each n ∈ N a
set Kn that is the union of 2n intervals of the same length. The central Cantor set is
given by the intersection of these sets. That is C =

⋂
i≥0 Ki .

Note that in the process of constructing Kn+1 from Kn it is sufficient to know the
middle interval which is removed from the first of the 2n intervals of Kn, the others
being deleted by symmetry.

To simplify the proofs, we will consider only central Cantor sets with the first
interval K0 starting from 0. It is clear that this assumption does not present any loss
of generality.

The main tools used to study sums of central Cantor sets will be some properties
of the set of subsums of an infinite series.

Let
∑

n≥0 an be a convergent series with 0 < an+1 ≤ an for all n and let

M
(∑

n≥0

an

)
=
{∑

n∈F

an : F ⊆ N
}

denote its set of subsums. Also, let rn =
∑

s≥n+1 as denote the n-th tail of the series.
The following results are known regarding the set M(

∑
n≥0 an):

Theorem 1 ([3], [4], [6]) Let
∑

n≥0 an be a convergent series with 0 < an+1 ≤ an and
let

A1 =
{

n ∈ N
∣∣∣ an >

∑
s>n

as

}

A2 =
{

n ∈ N
∣∣∣ an ≤

∑
s>n

as

}
.

Then

(i) If A2 = N (equivalent with A1 = ∅) we have

M
(∑

n≥0

an

)
=
[

0,
∑
n≥0

an

]

Also, M(
∑

n≥0 an) is an interval if and only if A2 = N.
(ii) If A1 = N (equivalent with A2 = ∅) then M(

∑
n≥0 an) is a central Cantor set,

which can be explicitly described.
(iii) The set M(

∑
n≥0 an) is one of the following: a finite union of closed intervals,

homeomorphic to the Cantor ternary set or homeomorphic to the set E of subsums
of
∑

n≥1 bn where b2n−1 =
3
4n and b2n =

2
4n , n ≥ 1.

We can also describe M(
∑

n≥0 an) in the case when A1 or A2 are finite, as seen
from the following remark: if M1 is the set of subsums of some tail of

∑
n≥0 an, then

M(
∑

n≥0 an) is a finite union of translates of M1.
The relation between central Cantor sets and sets of subsums of infinite series, that

is essential in the sequel, will follow naturally from the description of the set which
appears in Theorem 1(ii). Under the assumptions of this case the set M(

∑
n≥0 an)
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is the central Cantor set which is obtained in the following way: the first interval K0

will be [0,
∑

n≥0 an], the set K1 will be obtained from K0 by removing the middle
interval (

∑
s>0 as, a0); the set K2 will be obtained from K1 by removing the interval

(
∑

s>1 as, a1) from the first of the 21 intervals of K1 and then, by symmetry, the cor-
responding intervals from the remaining 21 − 1 intervals of K1; inductively, the set
Kn+1 will be obtained from Kn by removing the interval (

∑
s>n as, an) from the first

of the 2n intervals of Kn and then, by symmetry, the corresponding intervals from the
remaining 2n − 1 intervals of Kn.

3 Sums of Central Cantor Sets

We present now a type of duality between central Cantor sets and some infinite se-
ries. That is, for each central Cantor set we correspond a unique infinite series with
positive terms with the property that its set of subsums is our initial Cantor set.

Let C be a central Cantor set, with the notations from the beginning of Section 2.
Let us denote by a the endpoint of K0 and by r0, respectively a0, the left endpoint,
respectively the right endpoint of the middle interval deleted from K0.

Inductively, denote by rn and an the endpoints of the middle interval deleted from
the first of the 2n intervals of Kn (rn < an).

We have that
∑

n≥0 an = a and rn =
∑

s>n as. Moreover the series
∑

n≥0 an

satisfies (ii) from Theorem 1 (an > rn and 0 < an+1 < an, n ∈ N, by construction).
It follows from the end of Section 2 that M(

∑
n≥0 an) is a central Cantor set, in fact

exactly C.
Note that the Lebesgue measure of the set C can be calculated in a simple way.

Indeed,

λ(C) = a−
∑
n≥0

2n
(

an −
∑
s>n

as

)
= lim

n→∞
2n+1rn.

The proof of the following result is straightforward.

Proposition 1 Let C1,C2, . . . ,Ck be central Cantor sets. Then C1 + C2 + · · · + Ck

can be written as the set of subsums of a series with positive terms
∑

n≥0 an, which
satisfies an ≥ an+1 (n ≥ 0). Therefore all the results from Theorem 1 can be applied for
C1 + C2 + · · · + Ck.

As a corollary it follows that the sum of a finite number of central Cantor sets is
of one of the three types described in Theorem 1(iii). In fact, we can give a stronger
description, as it will follow from next Theorem. First, recall that an M-Cantorval is
defined as a perfect subset of R, such that any gap is accumulated on both sides by
infinitely many intervals and gaps.

Theorem 2 If C1,C2, . . . ,Ck are central Cantor sets, then C1 + C2 + · · · + Ck is one of
the following:

(i) a finite union of closed intervals,
(ii) homeomorphic to the Cantor ternary set,
(iii) an M-Cantorval.
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Proof From Proposition 1, C := C1 + C2 + · · · + Ck is the set of subsums of a series
with positive terms

∑
n≥o an, which satisfies an ≥ an+1 (n ≥ 0).

Suppose that C is neither a finite union of closed intervals nor homeomorphic
to the Cantor ternary set. This case, as was proved in [3], will result in C having
infinitely many intervals and infinitely many gaps. Moreover, for each point x ∈
C there are intervals in C arbitrarily close to x. In order to prove that C is an M-
Cantorval it remains to show that we cannot have in C a gap followed by a non-trivial
interval of C or a non-trivial interval of C followed by a gap.

Suppose that the former is true. That is, there exists in C (which is contained in
the interval [0,

∑
n≥o an]) a gap denoted by (u, v), followed by a non-trivial interval

of C denoted by [v,w] (u, v,w ∈ R).
Let N ∈ N be such that aN+1 < v − u.
Denote with z the minimum of the set

{∑
n∈F

an : F ⊂ {0, . . . ,N} and
∑
n∈F

an > v
}

if this set is non void, otherwise put z = w. In both cases we have z > v. Suppose
that there exists l ∈ N such that al < min{z − v,w − v, aN+1} and

al >
∑
n>l

an.

Then (
v +
∑
n>l

an, v + al

)
⊂ (v,w) ⊂ C

For an arbitrary x ∈ (v +
∑

n>l an, v + al) we cannot have in the decomposition of
x (as an element of the set of subsums of

∑
n≥0 an) terms an with N + 1 ≤ n ≤ l,

otherwise
x − an < v + al − an ≤ v

and
x − an > v − an > u

which contradicts x − an ∈ C. So that there exist F1 ⊂ {l + 1, l + 2, . . . } and F2 ⊂
{0, . . . ,N} such that

x =
∑
n∈F1

an +
∑
n∈F2

an

But now ∑
n∈F2

an = x −
∑
n∈F1

an > v +
∑
n>l

an −
∑
n∈F1

an ≥ v

and ∑
n∈F2

an = x −
∑
n∈F1

an < x < v + al < z

contradiction with the definition of z.
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In conclusion there exists a tail of the series
∑

n≥o an such that each term of the
tail satisfies ak ≤

∑
n>k an, which implies (see Theorem 1) that C is a finite union of

closed intervals, contradiction.
The case when a non-trivial interval of C is followed by a gap results from the

previous one using the remark that the set C is symmetric with respect to the middle
point of [0,

∑
n≥0 an].

Remark Note that we have obtained above that if C := C1 + C2 + · · · + Ck does
not satisfy (i) and (ii), then C is an M-Cantorval in which, as it was mentioned in
[3], the endpoints are trivial intervals in C. In particular, all the sets of this type are
homeomorphic (see Appendix in [5]).

Theorem 3 Let C be a central Cantor set and let
∑

n≥0 an be the series corresponded to
C. The positive integer m has the property that C + · · · + C︸ ︷︷ ︸

m-times

is an interval (respectively a

finite union of closed intervals) if and only if an/rn ≤ m for all n (respectively an/rn ≤ m
for all but a finite number of n).

Proof The statement follows from Theorem 1 (similarly as in [7]).

Remark Note that Theorem 3 gives a stronger result than Theorem 2.5 presented in
[2], showing that the condition of the statement from [2] is not only sufficient but
also necessary (here we use the fact that the ratio of dissection of step k—see [2] for
definition—is exactly ξk =

rk
ak+rk

).
Regarding the cases when the problem of Palis has a negative answer, we present

a natural example, constructed using the same technique as above. This example is
close in spirit to the earlier example from [9]; we can now obtain with a quite short
proof the arithmetic sum to be not only a Cantor set but also a central Cantor set.

Proposition 2 For any ε > 0 there exist two central Cantor sets corresponding to
some intervals [0, a] and [0, b] respectively (a, b ≥ 1

5 ) of zero Lebesgue measure whose
arithmetic sum is a central Cantor set of Lebesgue measure larger than a + b− ε.

Proof We will go backwards. First we will construct a central Cantor set which we
want to be the result of the arithmetic sum and then we will show how we can write
it as a sum of two central Cantor sets of Lebesgue measure zero.

Let 1
5 > ε > 0. There exists k ≥ 0 such that ε > 1

2k+1 . Consider the sequence
(αn)n≥0 defined by αn =

1
2n+k+2 , n ≥ 0. Clearly

∑
n≥0 αn =

1
2k+1 < ε.

Consider the following central Cantor set obtained from the interval [0, 1]. Delete
from K0 = [0, 1] the middle open interval of length α0. From each of the intervals
of K1 delete the corresponding middle open interval of length α1

2 . Inductively, from
each of the 2n intervals of Kn delete the corresponding middle open interval of length
αn
2n . We will obtain a central Cantor set C with the Lebesgue measure

λ(C) = 1−
∑
n≥0

2nαn

2n
= 1−

∑
n≥0

αn > 1− ε.

https://doi.org/10.4153/CMB-2001-002-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-002-8


Sums of Cantor Sets 17

Inductively, is not hard to see that the terms of the series corresponded (in the
sense of the duality presented above) to C are

a0 =
1

2
+
α0

2
,

an =
1

2n+1
−
α0

2n+1
−
α1

2n+1
− · · · −

αn−1

2n+1
+
αn

2n+1
, n ≥ 1.

which will give

an =
1

2n+1
A + 3

1

4n+1
B (n ≥ 0),(1)

with A := 1− 1
2k+1 and B := 1

2k+1 .
We have

C =M
(∑

n≥0

an

)
=M

(∑
n≥0

a2n

)
+ M
(∑

n≥0

a2n+1

)
.

Since the series
∑

n≥0 an satisfies (see the beginning of the section)

an > rn =
∑
s>n

as (n ≥ 0),

we obtain that
C1 :=M

(∑
n≥0

a2n

)
, C2 :=M

(∑
n≥0

a2n+1

)

are two central Cantor sets (Theorem 1(ii)). Note that C1 and C2 correspond to
the intervals [0, a] and [0, b] respectively, where a :=

∑
n≥0 a2n ≥ a0 >

1
2 and

b :=
∑

n≥0 a2n+1 ≥ a1 >
1
5 and a + b =

∑
n≥0 an = 1.

By an earlier remark, the Lebesgue measures of C1 and C2 are

λ(C1) = lim
n→∞

2n+1r(1)
n(2)

λ(C2) = lim
n→∞

2n+1r(2)
n(3)

where we denoted r(1)
n :=

∑
s>n a2s and r(2)

n :=
∑

s>n a2s+1.
For n ≥ 0, we have

r(1)
n =

∑
s>n

a2s =
∑
s>n

1

22s+1
A +
∑
s>n

3

42s+1
B =

A

3 · 22n+1
+

B

5 · 42n+1

and

r(2)
n =

∑
s>n

a2s+1 =
∑
s>n

1

22s+2
A +
∑
s>n

3

42s+2
B =

A

3 · 22n+2
+

B

5 · 42n+2
.

From (2) and (3) we obtain λ(C1) = λ(C2) = 0.
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[5] P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets.

Nonlinearity 7(1994), 329–343.
[6] P. K. Menon, On a class of perfect sets. Bull. Amer. Math. Soc. 54(1948), 706–711.
[7] J. E. Nymann, Linear combinations of Cantor sets. Coloq. Math. 68(1995), 259–264.
[8] J. Palis, Homoclinic orbits, hyperbolic dynamics and dimensions of Cantor sets. Contemp. Math.

53(1987).
[9] A. Sannami, An example of a regular Cantor set whose difference set is a Cantor set with positive

measure. Hokkaido Math. J. 21(1992), 7–24.

Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
T6G 2G1

https://doi.org/10.4153/CMB-2001-002-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-002-8

