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CASSON'S INVARIANT AND SURGERY ON KNOTS

by C. D. FROHMAN* and D. D. LONGf

(Received 7th May 1990, revised 23rd April 1991)

We show that given a knot in a homology sphere there is a sequence of invariants with the property that if
the nth invariant does not vanish, then this implies the existence of a family of irreducible representations of
the fundamental group of the complement of the knot into SU(n).

1980 Mathematics subject classification (1985 Revision) 57N, 20C

0. Introduction

The aim of this paper is two-fold. Firstly, we give generalisations of Casson's
invariant for a knot X'(K), by giving a count of representations of the fundamental
group of the knot into the Lie groups SU(n). This seems to be the first such
construction of representations into higher dimensional Lie groups. These generalisa-
tions have been used by the first named author [3] to show that every fibred knot of
genus g has an irreducible representation into SU(ri) for some 2^n^g+l. In a second
direction, we are able to apply the methods to SU{2) representations and by using a
larger cycle than Casson, we are able to get slightly more data concerning surgeries than
Casson did.

Our main result is that one can extend the definition of Casson's invariant A'(/C). We
summarize this as:

Theorem. Let K be a knot in S3. Then there is a sequence of of invariants tnk defined
for k and n relatively prime, with the property that Tnfc#0 implies that there is a
representation of the fundamental group of the knot into SU(n) sending the longitude to the
matrix e{2nik)l" Id.

In fact, we do more than this; we are able to construct whole families of
representations mapping the longitude close to the given element. Further, our
invariants are defined for knots in any homology sphere by the methods of this paper,
however the definition in this case is deferred to [5]. The case that the homology sphere
is S3 follows from [7], where it is shown that any two free Seifert surfaces for a knot in
S3 are stably equivalent.

Let K cz M3 be a knot in a homology sphere M. We set X to be the exterior of K,
that is the closure of the complement of a tubular neighbourhood. Let X, n<^dX be
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384 C. D. FROHMAN AND D. D. LONG

choices of a longitude and meridian of K, so that A is nullhomologous in X and n is
nullhomologous in N(K). Dehn surgery on K with slope q/p is the three manifold
M(q/p) obtain by gluing a solid torus into X so that the meridian of the solid torus is
sent to a curve that is homologous to pX + qfi. The order of H^M^q/p)) is q, unless q=0,
in which case H^MiO/1)) is isomorphic to Z.

From the way Casson defines his invariant for knots it is obvious that if K c S3 is a
knot with A'(*0#0 then for all nonzero integers n, TT1(M(1/«)) admits an irreducible
representation into SU(2). From our viewpoint this is less obvious, but we get the
strengthened result:

Theorem 3.1. Let K be a knot in S3, such that Casson's invariant of K is nonzero.
Then ni(S

3(q/p)) admits an irreducible representation into SU(2)for:

(a) all nonzero q/p with absolute values less than or equal to 2;
(b) all q/p (# oo) with absolute value sufficiently large.

Since there has been some interest in this question recently, we observe that 3.1(a)
implies:

Corollary. Let K be a knot in S3, such that Casson's invariant of K is nonzero. Then
one cannot obtain RP3 by surgery on K.

In contrast it should be noted that the (-2,3,7) pretzel knot has l\K)=-\2, and
S3(18/l) has cyclic fundamental group.

Recall that a knot is amphichieral if there is a homeomorphism h:S3->S3 that sends
slopes on dX to their negatives. Our methods also yield a weak version of Corollary 4
in [2]:

Theorem 3.2. Let K<=S3 be an amphichieral knot with A'(/C)#O. Then no surgery in
Q — {0} on K yields a manifold with cyclic fundamental group.

In this paper we shall make no computation of these invariants. If K is a fibred knot
our invariants are related to the Lefschetz numbers of certain maps induced on
representation varieties by the mondromy action. From this it follows (essentially from
[1]), that our k2, I (See §2) is Casson's X(K). This is further exploited in [3] to do some
computations; in particular, the Alexander polynomial determines the invariants in this
case and it follows from the methods that if K is fibred of genus g, then for 2 £ n ^ g + 1
at least one of rn t is nonzero.

In a somewhat different direction, the first named author and A. Nicas [6] have
extended these invariants to the case where n and k are not relatively prime by proving
that the analogous cycles in intersection homology can be perturbed in a canonical way
to become intersectable.

1. Special unitary representations

We begin with some preliminary observations. If A is an n x n complex matrix, then
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CASSON'S INVARIANT AND SURGERY ON KNOTS 385

A* will denote the conjugate transpose of A. Let SU{n) be the Lie group of all n x n
complex matrices A which have determinant one and satisfy A~l = A*. The tangent
space at the identity of SU(n) is the space su(ri) of all nxn traceless complex matrices
satisfying a + a* = 0. If AeSU(ri), then we identify the tangent space at A with
{xA\\eSU(n)}, that is to say, we can identify TA(SU(ri)) with su(n) using right
translation by A'1. Further, there is the so-called adjoint representation Ad:SU(n)->
Aut(su(n)) which comes from differentiating the map SU(ri)->SU(n) given by x-*g.x.g~l

at the identity. The kernel of this map is the centre of SU(ri).
The matrix exponential allows us to construct paths in SU(ri) having any desired

tangent vector, so that if xesu(w) and AeSU(n), then y(t) = exp(tx).A is a path such that

Let F be a finitely generated group; then by Rn(T) we shall mean the set of
representations of F into SU(ri) given the structure as a real algebraic set as follows.
Choose a generating set y t , . . . ,y s for F. Then y:Rn(r)->SU(n)s is given by sending
a representation p to the point (p(yi),---,p{ys))- The image of y consists of all those
s-tuples of matrices in SU(n) which satisfy the relations amongst the yt in F.

The Hilbert basis theorem shows that in fact only finitely many relations suffice to
define the image of y. If we use another set of generators for F, we obtain an algebraic
equivalence between the respective images.

There is an obvious action of SU(ri) on Rn(T) conjugation and one sees easily that
two irreducible representations p and p' lie in the same orbit for this action if and only
if tr(p(g)) = tr{p'(g)) for all g e F. A finite number of traces suffice to describe such orbits
and in this way we see that the quotient Rn(r)/SU{ri) = Rn{r) is algebraic. Notice that we
are working with a genuine quotient space, as opposed to a character variety of
representations.

Let peRn(T), then a crossed homomorphism c:F->su(n) (with respect to p) is a map
satisfying c{yly2) = c(yl) + Adp(yi)(c(y2)). Since su(n) is a real vector space, the space of
crossed homomorphisms is a real vector space. If p,:F->Sl/(rc) is a smooth path of
representations with p0 = p then

is a crossed homomorphism.
If xesu(n), then we may form a crossed homomorphism, by setting c(y) = x — AdpM{\);

such a c we shall call a principal crossed homomorphism. These form a sub-vector space
of all crossed homomorphisms. One easily checks that the formula given above applied
to the path of representations given by p^y) = exp (tx) • p{y) • exp (— tx) gives rise to this
crossed homomorphism, and with some work it may be shown that there is a map from
tangent vectors to Kn(F) to the quotient space

{Crossed homomorphisms}/{Principal Crossed homomorphisms}.

We denote this latter space by Hl(F;adp).
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The centre Z(S [/(«)) is a cyclic group of order n, being generated by the matrix co,
which has zeros off the diagonal and e2izi/" on the diagonal. If p.r-+SU(n) is a
representation with lm(p)^Z{SU(n)), then principal crossed homomorphisms are all
zero and Hl{T;adp) = H\T)®su{n).

Let T"~l be the torus of diagonal matrices in SU(n). A typical element of T"'1 is the
diagonal matrix {Xu...,Xn} with the product rU, = l; we shall take W to be the open
subset of this torus consisting of matrices so that no subcollection of the A,'s has
product being equal to 1. For k relatively prime to n we set W(k) to be the connected
component of W which contains a>k.

A complete flag for C" is a sequence of nested subspaces {0} = Eo^Ex^--- ^En = C"
so that for each O^i^n dim(Ei/Ei_1) = l. The space of complete flags Fl(n) is an SU(n)
homogeneous space. The stabiliser of a flag is conjugate to T"~l, and hence Fl(n) =
SU(n)/T"~l. Further, each Fl(n) is a compact Kahler manifold since it can be realised as
a nonsingular projective variety. Observe that Fl(l) is a point and that for each n there
is a fibre bundle Fl(n— l)->Fl{ri)-*CP(n-\) where the projection is given by sending
the flag E0^Ei^-^En to Ey. It follows that F/(2) = CP(1). From our point of view
we need only:

Lemma 1.1. The Euler characteristic of Fl(n) is nonzero.

Proof. The fibre bundles Fl(n— l)->Fl(ri)->CP(n — 1) can easily be seen to be
holomorphic. It follows that the Deligne criterion for the degeneration of a spectral
sequence can be applied to show that the sequence associated with the above fibration
collapses at the E2 term. Since CP(n — 1) is simply connected the monodromy of the
bundle is trivial, so that H*{Fl(n)) = H*(Fl(n- l))(g>tf*(CP(n-l)).

Therefore the Betti numbers of Fl(n) are zero in odd dimensions and nonzero in all
even dimensions less than or equal to n2 — n. Whence the Euler characteristic of Fl(n) is
nonzero, completing the proof. •

There is an action of Tn~l on Rn{T) by conjugation; we shall denote the quotient
under this action by Rn(T). There is an obvious map Rn(T)-*Rn(T). If p is an irreducible
representation then the inverse image of [p] € Rn(T) in Rn(T) is the flag manifold Fl(ri).

Let F be a compact orientable surface with one boundary component. A standard set
of generators for n^F) consists of a family of simple closed curves sharing a common
basepoint on dF and otherwise disjoint, so that the loop ]~I?=i [a'"»̂ "]> (w n e r e [ai,bi'\
denotes the commutator aibiai'lbi'1) corresponds to the conjugacy class of dF in n^F).
Corresponding to such a choice of curves we see that Rn(n1(F)) = SU(n)2g. From this it is
easy to deduce that 7 ,̂(i?n(7t1(F)) is the same as the space of crossed homomorphisms.
Define a map

(1)

to be given in coordinates by d(p) = p(I~[?= I Cai> ̂ <!)• Then we can identify the tangent
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space of SU(n)29 at (Ai,...,Ag,Bl,...,Bg) with su(n)29 by right translation. With this
identification it is easy to check from the co-ordinate formula for

that:

Lemma 1.2 (see [1]). The map d is a submersion at (Al,...,Ag,B1,...,Bg) if and only
if the representation {Al,...,Ag,Bl,...,Bg) is irreducible. Hence the point deT"~l is a
regular value of d if and only ifdeW.

Let M 3 be a closed oriented 3-manifold that is a homology sphere. By definition, a
knot KcM is an oriented simple closed curve in M. A free Seifert surface for K is an
embedded 2-sided surface F in M with dF = K, with the further property that if
Hi = F x / is a collaring of F, then H2 = Cl(M\H1) is a handlebody. It is well known [1]
that every knot has a free Seifert surface. In the notation established above we will
identify n^F) and Ki(FxI) via inclusion. Set S = dHl. Then we may see S as the union
of two surfaces Fo and Fj so that Fo n>Fi = K. Giving Hi the orientation inherited from
M and S the orientation qua8Hu then Fo is a subsurface of S and this gives an
orientation to K.

With generators a, and fc, for n^F) as above, for ;' = 0,1, we may choose bases a(;) (

and b(j)i so that under the inclusion Fj->FxI the elements a(;)i-»a, etc. This gives a
presentation for n^S) with the 4g generators {a(j)hb(j)i} and relator TI[a(0)i,b{O)i'] =
n[a(l)i ,b(l) ,] . By hypothesis, the handlebodies Hi and H2 form a Heegaard splitting
for M. Let T,:Hi-*H be orientation preserving homeomorphisms of the Ht with some
fixed handlebody H. We define <p:S->S by restricting x2^ii to a map dH1->8H2 = S.
Using this map we obtain a presentation for n^

, | a(0), = a( 1),, b{0), = fc( 1),, 0.a(O), = 4>A 1),,

We may similarly obtain a presentation for ^(MXK). For ; = 0,1 let w(y), and t)(j)j
be the words obtained from (p+a(j)j and <t>Jb())i by replacing every occurrence of a(l)f

and fc(l),. by / T 1 •a(l),-ji and /£-1-6(l)(-/«. Then:

n1(M\K) =

j)t, b(j)h ii | O, n[a(0),, 6(0),]], a(0), = a( 1),, 6(0), = 6(1),, H(0), = «(1), »(0), = »(1),- >.

By slight abuse of notation we will denote the representation spaces of Jii(F0),7r1(F1)
and 7t,(S) by Rn(F0), etc. For i= 1,2 we have maps di'.R^F^-^SU^n) analogous to d.

If peRn(S), then using the fact that S = F0KjFi we may obtain po:7i1(Fo)-»Sl/(n) and
Pi'-ni(Fi)-*SU{n), so that we may identify Rn{S) with:

By the diagonal of /?„(£) we shall mean the set P , of representations (po,p1)6i?n(S)
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with the property that po(a(0)I) = p,(a(l)i) and Po(&(0),) = Pi(6(l),-). Further, this identifi-
cation allows us to define in an obvious way a map do:Rn{S)->SU(n).

If A is a subset of SU(n), then we shall use a subscript A to denote the inverse image
of A under d0; so that for example RA n(S) = d$ 1 (A). Observe that since the sets a> and
W consists of regular values of d0, the sets Rm„(£) and Rw n(S) are smooth manifolds. If
n and k are relatively prime, we write Rk,n(S) for the inverse image of a>k.

Lemma 1.3. Suppose that n and k are relatively prime. Then:

(a) The map do:RW(k) n(S)—*W(k) is a fibre bundle map, with fibre Rk,n(S).

(b) The map do:Rmkhn{S)-*W(k) is a bundle map with fibre Rk,n(S).
(c) The natural map Rk n(S)^>Rk n(S) is a bundle map with fibre the complex flag

manifold Fl(n).

Proof. The first two parts follow from the Ehresmann fibration theorem and the fact
that d0 is a submersion onto W(k). The third part we have observed earlier. •

Observe that P t corresponds to those representations of Rn(S) that are restrictions of
representation of n^H^). Further, setting P2 = (j>(P1), this consists of representations of
ni(S) that are restrictions of representations of 7t,(H2)-

Clearly P1 and P2 are homeomorphic to SU(n)2g. Also, the points of Pt n P2 are in
one-one correspondence with representations of %i(M) into SU(n).

A representation is said to be projectively trivial if its image lies in the centre of SU(n).
The intersection of Px and P2 at such a representation is easily analysed.

Proposition 1.4. The intersection of P t and P2 at a projectively trivial representation is
an isolated point of intersection.

Proof. The tangent space of Rn(S) at a projectively trivial representation is
Hl(S)®su{n). The equations for the tangent spaces of Pt and P2 at that point give a
presentation for H1(M)®su(ri) = 0. It follows that Px and P2 are transverse at any
projectively trivial representation. •

We need two maps that are derived from the fact that Rn(S)cRn(F0) xRn(Fi). By
projection, for each k we have:

Also for any A in W we have:

For the sake of notational simplicity, we refer to Rk n{F0) x Rkn{Fx) as Rk and
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Observe that the projection r:Rk^>Rk is fibre bundle with fibre Fl(ri) x Fl{ri). Let Qx

and Q2 be those subsets of Rw obtained by projecting PynRw n{S) and P2nRw n(S)
down into Rw using Sw.

Proposition 1.5. An SU(n) representation of n^MXK) can be constructed for each
point of intersection ofQt and Q2.

Every representation ofn^MXK) with the property that the longitude of K is sent to an
element of W arises from an intersection of Qx and Q2.

Proof. For the first part, we use the presentation of n^MXK) given above. Given a
point of intersection of Qt and Q2, there are points of Pi and P2; (write these as (p,p)
and (£,, <!;)) and an element /i of T" ~1 so that:

(p,p)=(/i-1-{-/i,/i-
1^-/i) (2)

The representations p and £ give representations of n^Hi) and ni(H2), ft gives the
value of the meridian. Equation (2) shows that the relators of n%(M\K) are satisfied.

The second part is the reverse observation, after performing a preliminary conjugacy,
so that /zeT"1"1. •

We also observe the following proposition; for this, we need to restrict to knots in a
simply connected manifold.

Proposition 1.6. Suppose that y(s) is a sequence of representations in Qi r\Q2 so that
the image of the longitude under the representation corresponding to y(s) is the diagonal
matrix d(s). Suppose that d(s)->I as s->oo.

Then there is a representation p0 that is the limit of a subsequence of the represen-
tations y(s) as s-»oo, and this representation is not protectively trivial.

Proof. By compactness, there is obviously a subsequence which converges in the
compact open topology. Relabel, so that this is the whole sequence. We need to show
that the limit of this sequence is not projectively trivial. We shall do this by constructing
from our sequence another representation (not necessarily into SU(n)) where the image
of the meridian is in the centre, but some element of the commutator subgroup is
nontrivial. Since for a knot in a simply connected 3-manifold the normal closure of the
meridian generates the knot group, this will be a contradiction.

Suppose that G is the knot group, and we have chosen a generating set \i, <x!,...,<xk,
where ft is a meridian (in particular, n generates the abelianisation of G) and the a, lie in
the commutator subgroup. By conjugacies which we may suppose to converge, we can
suppose that y(s)(n) is a diagonal matrix. Consider the last column of y(s)(aj). It cannot
be that, for every i, this column only contains a single nonzero entry, namely the
diagonal, since this would make the representation reducible; contrary to hypothesis. So
by subsequence and renumbering, we may suppose without loss that y(s)(a!) always has
its (l,n) entry nonzero. By further subsequence, and again without loss, we may suppose
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further that ^(sKaJjJ^^sKa.Oj^l for all lg i^ / c and l g j ^ w - l . By further subse-
quence, we may arrange that for each a, all the limits as s-+co
{y(s)(ai);,n/y(s)(ai)i,n}is;gn-i exist.

We now define a map R from G' to column vectors which are ( n - l ) x l as follows. If
aeG', set R(a) to be the limit as s->oo of the column vector, {y(s)(a)in /y{s)(a1)ljn}
i^jsn-il providing this limit exists. By hypothesis, this limit exists on the ocjs. From this
it follows easily that R exists on nq'• a,-n~ q for each q. Inductively, if a and /? are
elements in G for which R is defined, then R(a- (3) is defined and is R(x) + R(f}). The fact
that R is well defined follows from the invariant definition given above. Notice that R is
not identically zero, since it has a 1 in the (l,n) entry for <xx.

If now the subsequence y(s) converged to a projectively trivial representation, we
would have that n would converge to the diagonal matrix with say e(2nik)ln on the
diagonal, and one can easily check that

o:nq-<.

is a representation of the required type. •

Remark. This is the PU(n) isolation of the trivial representation; see Proposition 3.4
in [8].

2. The invariants rnli

In this section we define two families of invariants of an oriented knot in an oriented
homology sphere with free Seifert surface. In fact these invariants are independent of the
surface chosen, but we will not address that issue here. In the case that the homology
sphere is S3, this will follow from [7] where stable equivalence of free Seifert surfaces is
proven. Moreover, in the particular case that the knot is fibred, this becomes a triviality
in all cases.

After defining them we shall show that the two invariants are related. We then use
the Ehresmann fibration theorem to show that the nonvanishing of these invariants
implies that the group of the knot has a large family of SU(n) representations.

In order to begin, we need to orient everything. Let R'(S) be the space of irreducible
representations of S. Orient S as the boundary of a collaring of the free Seifert surface
and choose a standard generating system {ah b{} so that a,- meets bt in one point. Let the
map d0 be the boundary map of F o and orient R'(S) using the inverse image orientation
and R'(S) = R'(S)/SU(ri) the quotient orientation. Orient Rk,n(S) as the inverse image of
to* under d0 and R~k n(S) = Rk n(S)/SU(n) as quotient. Orient P, and use this to orient P2

qua (p^Pi). Orient Px and P2 as quotients. Make P, transverse to Rk,n(S) and let S,
and S2 be their oriented intersections. Set s,:5,-»^t n(S) to be the inclusions.

Finally we consider maps dksi:Si-+Rk(S), where Bk is the map defined after
Proposition 1.4. We set xn k to be the oriented intersection number
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Setting d2 to be the intersection number of Ql and Q2 in SU(n)2g we define:

*«.k=(-l)9Tn.k/d2 if n is even

= r n t if n is odd.

Casson's invariant is X21 (See [3], Chapter V]). In the case that K is a fibred knot
then one has that Xn k is the Lefschetz number of the monodromy acting on Rkn(S).

In order to see that the numbers kn k are independent of the perturbations involved, it
is useful to give a cohomological interpretation of these invariants.

inclusion

Let p, be the pushforward

(This is given by Poincare duality on Rk n(S), the induced mapping on homology,
followed by another application of duality.) If we view Q t and Q2 as locally finite cycles,
then they have duals qt and q2 and we see that xnk is given by

That the invariants zn k are well defined for knots in S3 follows from [7], where it is
shown that any two free Seifert surfaces are stably equivalent, and applying the analysis
along the lines of [1]. The general case will be dealt with in [5].

It follows from our analysis of representations of n^MXK) that if XHtk^Q then there
exist representations of n^MXK). We now strengthen this result to show that there is a
family of representations.

This is done by defining an associated intersection number. Let P, be the quotient of
P, by conjugation by T"'1. Notice that at least at an irreducible point of P, the map
P,->P, is a fibre bundle with fibre Fl(n). If we perturb P, so that it is transverse to
Rk n(S) then we may lift the perturbation so that P, is made transverse to Rk,n(S) inside
R'(S). Let St be the intersection of P, with Rk<n(S). Let s,-:S,—»RtiB(S) be the inclusions.
Define ank to be the intersection number of §ksl with Sks2 in Rk. Then we have:

Proposition 2.1. 7/AIl j t#0, then ffn,t#0.

Proof. We need the following lemma:

Lemma 2.2. Let F-*E-*B be a fibre bundle where all the spaces are orientable closed
manifolds. Assume that these hypotheses also hold for Ft-*Ei-*Bl i = 1,2. Suppose that
there are maps making the following diagram commute.
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E, -£U E

I I
tf; > t)

and that dim(F1) + dim(F2) = dim(F) and dim(Bj) + dim(B2) = dim(B). Then after
orienting the objects involved, the intersection number of Gt and G2 (up to sign) is the
product of the intersection number of g^ and g2 in B and of Fi and F2 in some fibre F.

Since S,->S, is a fibre bundle with fibre Fl(n) and since in a fibre Fl(n) x Fl(n) of
Rk->Rk the fibre of S,->S( corresponds to the diagonal in Fl(n) x Fl(n), we have that up
to sign an k is the product of the Euler characteristic of Fl(n) (which is nonzero by
Lemma 1.1) with Xn k. The proposition follows. •

Theorem 2.3. Suppose that K is a knot in M with free Seifert surface F and suppose
that the corresponding Xnk is nonzero. Then for each leW(k) there exists an irreducible
representation ofKt(M\K) so that the longitude of K is sent to I.

Proof. The map d: Rw,k)(S)->W(k) is a bundle map with fibre Rk(S). Hence in the
fibre over / the sets P\ n R, „ and P2 n R,,„ must intersect, otherwise we could make P\
and P2 transverse to R, „ and exhibit S(>1 and S2l as disjoint after projection into
^/,n(^o) x ^i.n(^i)- Since W(k) is contractible and d is a bundle map, this implies that
<7n t = 0, which by Proposition 2.1 implies ^Bit = 0, contradicting the hypothesis. •

Observe that the last theorem implies that if An k is nonzero then the knot group has
a family of conjugacy classes of irreducible SU(n) representations of real dimension at
least n— 1.

3. Surgery on a knot in a simply connected manifold

In this section we use results that were derived in the previous two sections to prove
the existence of irreducible SU(2) representations of the fundamental group of the result
of many surgeries on a knot with nonzero Casson's invariant in a simply connected
manifold.

Let T2 = Sl xSl, where we use the complex numbers of norm one as a model for the
circle. The fundamental group of T2 is Z©Z. Let // and k be generators of n^T2). If
p:ni{T2)^Sl)(2) then p is completely determined by p(fi) and p(k). Since n^T2) is
abelian the matrices p(n) and p(k) can be simultaneously diagonalised. On the other
hand if M and L are a pair of matrices that can be simultaneously diagonalised then
they define a representation of n^T2) by giving values of the representation for \i and L
Further, if a pair of matrices (L, M) in SC/(2) can be simultaneously diagonalised then
they are simultaneously conjugate to (L~l,M~l). The diagonal matrices in SU(2) are
homeomorphic to Sl by the mapping that sends each matrix to its upper left hand
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Id
Id

FIGURE 1

entry. Hence the space of pairs of diagonal matrices is homeomorphic to S1 x S1. Let
r.S1 x Si->Si x S 1 be the involution given by taking the complex conjugate of both
entries. (This is a description of the so-called hyperelliptic involution.) One has easily
that the space of pairs of diagonal matrices up to conjugacy is homeomorphic to the
quotient of S1 x S 1 by the hyperelliptic involution.

This quotient space is commonly called the pillow case, and we will denote it by P.
The space P is topologically a two-sphere and it has the geometric structure of a
Euclidian orbifold with 4 singular points with cone angle n.

We depict P in Fig. 1; it should be imagined as two squares glued together along
their boundaries. One square is the front and one square is the back. The bottom seam
and the top seam are the loci M = Id and M = — Id. The left seam and the right seam
are the loci L = Id and L = —Id. The arc joining (Id,Id) to ( — Id, -Id) on the front is
the locus L = M. The arc on the back joining (Id,Id) to ( — Id,—Id) is the locus
L = M~l. The loci MqLp = ld are geodesies in the Euclidian structure that pass through
the point (Id, Id). For our purposes, it is best to write this equation as Mq = L~". From
this it is clear that the slope of the geodesic in P is — p/q.

If |— p/q\> 1/2 then following the geodesic out from (Id,Id) it will cross the locus
M=—Id before it touches the locus L = Id again. In the critical case |— p/q\ = 1/2 the
first time the geodesic touches the locus L = Id again is at the point (Id, —Id). This is
indicated in the second figure below.

Theorem 3.1. Let K be a knot in a simply connected three-manifold M, such that
Cassoris invariant of the knot is nonzero. The result of surgery on the knot M(q/p) admits
an irreducible representation into SU(2)for:

(a) all nonzero q/p with absolute value less than or equal to 2,

(b) all q/p( ¥= oo) with absolute value sufficiently large.
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L = Id L = -
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L = Id

Proof. We will denote the space of conjugacy classes of SU(2) representations of the
fundamental group Cl(M\N(K)) by R(K). There is a map b:R(K)^P given by
restricting representations to the fundamental group of the boundary torus. Since we are
working up to conjugacy this map is independent of choice of basepoint, and choice of
the representative of the peripheral subgroup. We coordinatize P so that L corresponds
to the longitude to the knot and M corresponds to the meridian.

Next since K is a knot in a simply connected manifold, Proposition 1.4 implies that
the closure of the image of the irreducible representations of the fundamental group of
K misses the loci M = Id and M= —Id. If now A2,i(/Q#0 then by Theorem 2.3 we can
find an arc in the image of the irreducible representations of the fundamental group of
K whose endpoints lie on L = Id that is parameterised by the value of the longitude
away from the locus L = ld. Notice that by Proposition 1.6 such an arc cannot have
endpoints in the loci M= ±Id.

Such an arc is shown in Fig. 2. From our observations about the loci MqLp = ld we
see that this arc must intersect all such loci with | — p/q\ ̂  1/2. This shows that every
surgery on the knot of slope |q/p|^2 admits an irreducible SU(2) representation.
Moreover, it is clear from the picture that there is an e>0 (where the e depends on the
knot) so that if \ — p/q\<e then the locus M"LP = ld intersects the image of the
irreducible representations. The theorem follows. •

Suppose now that K is a knot in a simply connected manifold and there exists a
homeomorphism of the complement of K whose restriction to the boundary sends
slopes to their negative. This is true if for instance K is an amphichieral knot in S3.
Suppose then that q/p is any slope other than zero or infinity.

Notice that the geodesies through the trivial representation in the pillow case, that
have slope p/q or — p/q partition the pillow case into diamond shaped regions. The
diamonds intersect the locus L = Id in vertices. Suppose that A'(X)#0. As above there
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exists an arc in the closure of the image of the irreducible representations of the knot
group that runs monotonically around the pillow case with its endpoints on the locus
L = Id. The interior points of the arc correspond to irreducible representations of the
knot group. The endpoints may correspond to either irreducible representations or
abelian representations of the knot group. The arc must intersect the boundary of one
of the diamond shaped regions. If this arc intersects the boundary of a diamond away
from the locus L = Id then the fundamental group arising as a result of surgery on K
admits an irreducible representation into SU{2). If the closure of the image of the arcs of
representations intersect the boundary of the diamond in one of the points where the
longitude is sent into the identity then either there exists an irreducible representation
into SU{2) or there is an abelian representation at that point. Using a subconvergence
argument we can produce a nonzero tangent vector corresponding this arc of
representations. As in [4] this tangent vector corresponds to an irreducible represen-
tation of the fundamental group of the knot into the congruence transformations of the
Euclidian plane. In any case the fundamental group of the result of surgery on the knot
is not cyclic. (Actually, we may alter a few words in Proposition 1.6 and deduce the
same result). We have proved:

Theorem 3.2. Let K<=S3 be an amphichieral knot with l ' (K)#0. Then no surgery in
Q-{0} on K yields a manifold with cyclic fundamental group.

The argument here indicates a program for proving property P. First it should be
shown that the fundamental group of a knot admits irreducible representations into
SU(2) that map down to immersed arcs and circles in the pillow case. The second thing
that needs to be shown is that the arcs and circles of representations move monotoni-
cally around the pillow case. Partial results of this nature are also known to S.
Kerckhoff (unpublished).
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