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Abstract

We prove the Hasse principle for a smooth projective variety X ⊂ Pn−1
Q defined by a

system of two cubic forms F, G as long as n ≥ 39. The main tool here is the development
of a version of Kloosterman refinement for a smooth system of equations defined over Q.

1. Introduction

Let X ⊆ Pn−1
Q denote a projective complete intersection variety. In particular, let X correspond

to the zero locus of a system of R homogeneous polynomials of degree d defined over Q. Let

σ = dim Sing(X),

where

Sing(X) := {x ∈ Pn−1
C : F1(x) = · · · = FR(x) = 0, Rank(∇F1(x) · · · ∇FR(x)) < R} (1.1)

denotes the singular locus of the variety X. Furthermore, we define x to be a non-singular point
of X if

F1(x) = · · · = FR(x) = 0, Rank(∇F1(x) · · · ∇FR(x)) = R. (1.2)
A long-standing result of Birch [Bir61] establishes the Hasse principle as long as

n − σ ≥ (d − 1)2d−1R(R + 1) + R.

While the case of lower-degree hypersurfaces (R = 1) has seen several breakthroughs in recent
times, the case of general complete intersections has seen relatively lower success. In the case of
a pair of quadrics over Q, Munshi [Mun15] verified the Hasse principle when n ≥ 11, provided
that their intersection is non-singular. Instead of proving the Hasse principle, Heath-Brown and
Pierce [HP17] and Pierce, Schindler and Wood [PSW16] considered the question of representa-
tions of almost every integer tuple by systems of quadrics. In this context, [HP17] dealt with a
smooth pair of quadrics in n ≥ 5 variables and [PSW16] dealt with a system of three quadrics
in n ≥ 10 variables.

There have been two recent notable breakthroughs. Myerson [Mye18, Mye19] improved the
square dependence on R in Birch’s result to a linear one. When d = 2 and 3, these results
improve the lower bound to n − σ ≥ 8R and 25R, respectively. This is a significant improvement
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when R is large. However, when R is small (say 2), it fails to improve upon Birch’s bounds.
Typically, one expects better understanding of the distribution of rational points when d and R
are relatively small. When R = 1, this is facilitated by an analytic technique called Kloosterman
refinement, which allows one to use the Poisson summation formula in an effective way. A recent
breakthrough was obtained in the second author’s work [Vis23], where a two-dimensional version
of Farey dissection was developed in the function field setting. Unfortunately, so far the method
there does not extend to the Q setting. The only other available version which works in the
context here is due to Munshi [Mun15]; however, it does not generalise very effectively beyond
the case of two quadrics. The aforementioned works [HP17] and [PSW16] also obtain a version of
Kloosterman refinement for a system of forms, but these methods are only specific to the case of
almost every representable integer tuples and are not applicable for proving the Hasse principle.

The main purpose of this work is to provide a route to Kloosterman refinement for a system
of forms over Q. In particular, the method here should improve upon the current results as long
as the defining forms F and G of X are not two quadrics or a cubic and a quadric.

We now define the setting in this paper. Let F (x), G(x) ∈ Z[x1, . . . , xn] be two homogeneous
cubic forms in n variables and with integer coefficients, and let X denote the smooth projective
variety defined by their simultaneous zero locus. The long-standing result by Birch n ≥ 49 is yet
to be improved in the current setting (a pair of cubics). In the case of a system of diagonal cubic
forms, one can obtain significantly stronger results. In particular, Brüdern and Wooley [BW07,
BW16] proved that the Hasse principle is true for a smooth system of R diagonal cubic forms in
n variables provided that n ≥ 6R + 1.

In this paper, we will use a combination of Kloosterman refinement and a two-dimensional
version of averaged van der Corput differencing to improve upon Birch’s result. In particular, we
aim to prove the following result.

Theorem 1.1. Let X := XF,G ⊂ Pn−1
Q be a smooth complete intersection variety defined by a

system of two cubic forms F and G. Then X satisfies the Hasse principle provided that n ≥ 39.

To the best of the authors’ knowledge, this is the first known improvement of Birch’s result
in this case. As is the typical feature of the methods used here, with some more work the result
can be easily extended to cover the cases of singular varieties, as long as n − σ ≥ 40. However,
here we will stick to the non-singular setting. The limitation of the method here is n ≥ 38. Akin
to the work [MV19] of Marmon and the second author, saving an extra variable variable will
require substantially new technical input which we will not attempt to obtain here.

For those familiar with circle method techniques, there are two key bounds here that facil-
itate Theorem 1.1. The first improvement comes from developing a two-dimensional version of
averaged van der Corput differencing, which will be obtained in § 4. This followed by Weyl dif-
ferencing could hand us Theorem 1.1 when n ≥ 43. Our key innovation comes from combining
an averaged van der Corput process with a version of Kloosterman refinement. This combination
saves us 4 extra variables. To compare our results with the other potential existing methods, the
method of Munshi [Mun15] has to be combined with some version of differencing to be applicable
here. Assuming ideal bounds, our rough calculations show that if one were to combine the ideas
in the second author’s work [MV19] along with Munshi’s method [Mun15] one may be able to
establish Theorem 1.1 for n ≥ 46. If one were to instead combine [Mun15] with our technique
in § 4, one may save an extra variable over the Weyl bound (n ≥ 42). A key difference between
our method with that of [Mun15] is that the latter uses a larger total modulus (the parameter
Q appearing in this paper) than our method. This is wasteful if one is dealing with forms in
many variables, rendering the method not ideal to deal with complete intersections which are
not defined by two quadrics.
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We now give a more detailed outline of the key ideas. From now on, we will assume that X
is a complete intersection of two cubics which contains a non-singular adelic point, i.e. that

Xns(AQ) �= ∅, (1.3)

where given any variety X, let

X(AQ) := X(R) ×
∏
p

X(Qp).

Given a smooth weight function ω ∈ C∞
c (Rn), and a large parameter 1 ≤ P , we define the

following smooth counting function:

N(P ) := Nω(P ) :=
∑

x∈Zn,
F (x)=G(x)=0

ω(x/P ).

Our main tool in proving Theorem 1.1 is the asymptotic formula for N(P ) obtained in
Theorem 1.2. Before stating it, let us define the weight function ω in the following way. We
will choose ω to be a smooth weight function, centred at a non-singular point x0 ∈ X(R) with
the additional property that its support is a ‘small’ region around x0. Upon recalling (1.2), it is
easy to see that the existence of such a point is guaranteed by our earlier assumption that X
has a non-singular adelic point. In particular, the point x0 ∈ X(R) must have

Rank(∇F (x0),∇G(x0)) = 2.

Using homogeneity of F and G, we may further assume that |x0| < 1. This condition is
superficial, and only assumed to make the implied constants appearing in our argument simpler.
Let

γ(x) :=

{∏
j e−1/(1−xj)

2
if |x| < 1,

0 else,

denote a non-negative smooth function supported in the hypercube [−1, 1]n. Given a parameter
0 < ρ < 1 to be suitably decided later, we define

ω(x) := γ(ρ−1(x − x0)). (1.4)

We are now set to state our main counting result, which directly implies Theorem 1.1.

Theorem 1.2. Let X ⊂ Pn−1
Q be a smooth complete intersection variety defined by a system

of two cubic forms F, G. Then provided that n ≥ 39 and Xns(AQ) �= ∅, there exist CX > 0 and
some ρ0 ∈ (0, 1], such that for each 0 < ρ ≤ ρ0, there exists δ0 := δ0(ρ) > 0 such that

N(P ) = CXPn−6 + On,F,G,ρ(Pn−6−δ0).

Our main tool here will be provided by the circle method. It begins with by writing the
counting function N(P ) as an integral of a suitable exponential sum:

N(P ) := Nω(P ) :=
∑

x∈Zn,
F (x)=G(x)=0

ω(x/P ) =
∫ 1

0

∫ 1

0
K(α1, α2) dα1 dα2,

where
K(α) := K(α1, α2) :=

∑
x∈Zn

ω(x/P )e(α1F (x) + α2G(x)), (1.5)

denotes the corresponding exponential sum.
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In the traditional circle method, the unit square I := [0, 1]2 is split into major arcs M which
consist of the points in I which are ‘close’ to a rational point a/q, where a = (a1, a2) ∈ Z2 of
‘small’ denominator q, and minor arcs m = I\M. The limitation of the process usually occurs
while bounding the integral ∫

m
K(α) dα.

When R = 1, Kloosterman’s revolutionary idea [Klo27] was to apply Farey dissection to partition
[0, 1] and use it to bound the minor arc contribution. This allows us to treat the minor arcs in
a similar way to the major arcs. This idea essentially allows us, upon setting α := a/q + z and
fixing the value of z, to consider averages of the corresponding one-dimensional analogues of the
exponential sums averaged over the set {a/q + z : gcd(a, q) = 1}. The extra average over a allows
us to save an extra factor of size O(q1/2), when q is sufficiently large and z relatively small.

When R = 2, finding an analogue of Farey dissection which can be used to attain Kloosterman
refinement over Q has proved to be major problem. In [Vis23], the second author has managed
to find such an analogue in the function field setting, but how to use these ideas when working
over Q remains elusive. The path to Kloosterman refinement in this paper will not focus on
innovations to Farey dissection, and will instead focus on improving van der Corput differencing.

In the setting of that we will discuss (pair of two cubics), the Poisson summation formula
cannot be applied directly. To be more precise, it is possible to apply Poisson summation, but
the bound that it gives is trivial due to the corresponding exponential integral bound behaving
badly when the degrees of our forms become too large.

We therefore must use a differencing argument (such as van der Corput) to bound |K(α)|
by a sum with polynomials of lower degree. To do this, one essentially starts by using Cauchy’s
inequality to bound ∣∣∣∣

∫
m

K(α) dα

∣∣∣∣

(∫

m
|K(α)|2 dα

)1/2

. (1.6)

This leads us for a fixed integer q and a fixed small z ∈ I to consider the averages of the form∫
|z|<q−1Q−1/2

∑
a mod q
(a,q)=1

|K(a/q + z)|2 dz, (1.7)

where Q is a suitable parameter to be fixed later. This parameter Q arises from using a two-
dimensional version of Dirichlet approximation theorem. We further develop a two-dimensional
version of averaged van der Corput differencing used by [Han12], [Hea07], and [MV19] to estimate
the averages of |K(a/q + z)|2 over z. This leads us to considering quadratic exponential sums
for a system of differenced quadratic forms

Fh(x) := h · ∇F (x), Gh(x) := h · ∇G(x). (1.8)

The extra averaging over a in (1.7) leads us to a saving of the size O(q) in the estimation of∑
a |K(a/q + z)|2, and in light of the squaring technique used in (1.6), it overall saves us a factor

of size O(q1/2) when q is square-free.
The methods developed here are versatile and can be readily adapted to deal with general

complete intersections. While dealing with averages of squares of corresponding exponential sums
next to rationals of type (a1, . . . , aR)/q, where q is square-free, we would be able to save a factor
of size O(qR/4) over the bounds coming from averaged van der Corput differencing along with
pointwise Poisson summation. To the best of the authors’ knowledge, this is the first known
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version of Kloosterman refinement which generalises this way over Q. This method could be
further combined with any further versions of Kloosterman refinement in the contexts where a
degree-lowering squaring technique is essential. For instance, in the function field setting, this
method could potentially be combined with the method in the aforementioned work by the
second author [Vis23] to be able to save a factor of size O(q(R−1)/4+1/2) instead.

2. Background on a pair of quadrics

Exponential sums for a pair of quadrics will feature prominently in this work. Let Q1(x), Q2(x)
be a pair of quadratic forms in n variables with integer coefficients and consider the variety
defined by

V : Q1(x) = Q2(x) = 0,

x ∈ Q
n. Let SingK(V ) to be the (projective) singular locus of V over field K. When Q1 and Q2

intersect properly, namely, if V is of projective dimension n − 3, then we can express the singular
locus of V as follows:

SingK(V ) :=
{

x ∈ Pn−1
K

∣∣∣∣x ∈ V, Rank
(∇Q1(x)
∇Q2(x)

)
< 2
}

. (2.1)

We say that the intersection variety of Q1(x) and Q2(x), V , is non-singular if dim SingK(V ) =
−1 and singular otherwise. It should be noted that (2.1) only truly encapsulates the set of singular
points when Q1, Q2 have a proper intersection over K (that is, the forms Q1(x), Q2(x) share
no common factor over K). However, SingK(V ) is still a well-defined set with a well-defined
dimension, even when Q1 and Q2 intersect improperly, and so we will also use this definition in
this case.

We will now begin by noting a slight generalisation of [MV19, Lemma 4.1] in the context of
two quadrics, which will be vital in various stages of this paper.

Lemma 2.1. Let Q1, Q2 be a pair of quadratic forms defining a complete intersection X =
V (Q1, Q2). Let Π be a collection of primes such that #Π = r ≥ 0 and define Πa := {p ∈ Π | p > a}
for every a ∈ N. Then there exists a constant c′ = c′(n) and a set of primitive linearly independent
vectors

e1, . . . , en ∈ Zn

satisfying the following property for any integer 0 ≤ η ≤ n − 1, any subset ∅ �= I ⊂ {1, 2} and
any υ ∈ {∞} ∪ Π2c′ : The subspace Λη ⊂ Pn−1

Fυ
spanned by the images of e1, . . . , en−η is such that

dim(XI ∩ Λη)υ = max{−1, dim(XI)υ − η} (2.2)

and

dim Sing((XI ∩ Λη)υ) = max{−1, dim Sing((XI)υ) − η}. (2.3)

Here given ∅ �= I ⊆ {1, 2}, let XI denote the complete intersection variety defined by the forms
{Fi : i ∈ I}. Moreover, the basis vectors ei can be chosen so that

L/2 ≤ |ei| ≤ L (2.4)

for every i = 1, . . . , n and

Ln 
 det(e1, . . . , en) 
 Ln (2.5)

for some constant L = On(r + 1).
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Proof. Note that the statement of this lemma is identical to that of [MV19, Lemma 4.1] except
that in the latter there is an additional assumption that the closed subscheme XI ⊂ Pn−1

Z defined
by Fi = 0 for all i ∈ I satisfies

dim(XI)υ = n − 1 − |I|. (2.6)

This is equivalent to the case when X1 and X2 intersect properly. Therefore, it is enough to
consider different cases where we have an improper intersection. In each of these particular
cases, somewhat softer argument works.

In the trivial case when Q1 = Q2 = 0, the singular locus would be of dimension n − 1 and,
therefore, any basis e1, . . . , en will work.

When Q2 = λQ1, where λ ∈ K and Q1 a non-zero quadratic form, our singular locus would
consist of the hypersurface Q1 = 0 of dimension n − 2. Here, we may apply [MV19, Lemma 4.1]
only to the hypersurface X1 to find a basis e1, . . . , en which is chosen such that (2.2) and (2.3)
hold for I = {1}. This choice will clearly work for all I ⊂ {1, 2}.

In the remaining case when Q1 = L1L2, Q2 = L1L3, where Li = vi · x and L2 is not a scalar
multiple of L3. In this case, it is easy to check that the singular locus of X1 ∩ X2 to is the
hyperplane L1 = 0 (of dimension n − 2). Here, we may apply [MV19, Lemma 4.1] to the single
variety defined by the cubic form L1L2L3 = 0. The basis Λ that we get from this process will
work here as well. �

Since Q1 and Q2 are quadratic forms, we may also define M1, M2 to be their respective
associated coefficient matrices defined as follows: if

Qi(x) :=
n∑

j=1

n∑
k=j

b
(i)
j,kxjxk,

then

(Mi)j,k :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b
(i)
j,k if j = k

1
2b

(i)
j,k if j < k

1
2b

(i)
k,j if j > k.

(2.7)

We clearly have that M1, M2 ∈ Mn(Z/2), the set of n × n matrices with coefficients of the form
a/2, a ∈ Z, since bk,j ∈ Z. For the rest of this section (and, in fact, the rest of the paper by
Remark 3.1), we will assume without loss of generality that M1, M2 ∈ Mn(Z). This is because
even if M1, M2 �∈ Mn(Z), we certainly have 2M1, 2M2 ∈ Mn(Z), and so we may work with 2Q1,
2Q2 and relabel instead.

We are now ready to prove the following generalisation of [HP17, Proposition 2.1]. This will
be particularly helpful for us when we are working with exponential sums of the form

q∑∗

a

q∑
x

eq(a1Q1(x) + a2Q2(x) + c · x),

where q is square-full, in § 5.3. Here, as is standard, the ∗ next to the sum denotes that the sum
is over (a, q) = 1, and eq(x) := exp(2πix/q).

Proposition 2.2. Let ν either denote a finite prime ν �n 1 or the infinite prime, let Fν either
denote the corresponding finite field or Q, and let

sν(Q1, Q2) := dim SingFν
(V ), (2.8)
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where V is defined as above. Let a ∈ F2
ν\(0, 0) and a1M1 + a2M2 be the matrix associated to the

quadratic form a1Q1 + a2Q2. Then

Rank(a1M1 + a2M2) ≥ n − sν(Q1, Q2) − 2 (2.9)

for any such a. Furthermore, there exists a set Γ = {γ1, . . . , γk} ⊂ Fν such that 1 ≤ i ≤ k ≤ n
and

Rank(a1M1 + a2M2) ≥ n − sν(Q1, Q2) − 1, (2.10)

unless a2 = 0 or a1 = γa2 for some γ ∈ Γ.

Proof. Let M1 and M2 denote the integer matrices defining the forms Q1 and Q2, respectively.
We first note that for sν(Q1, Q2) = −1, we recover (2.9) from [HP17, Proposition 2.1]. In this
case, may also use [HP17, Proposition 2.1] to simultaneously diagonalise M1, M2, letting us
instead work with

Q′
i(x) :=

n∑
j=1

λi,jx
2
j , M ′

i := Diag(λi).

In particular, we have

sν(Q′
1, Q

′
2) = sν(Q1, Q2) = −1, Rank(a1M

′
1 + a2M

′
2) = Rank(a1M1 + a2M2),

for every a ∈ F2
ν\(0, 0). Next, we note that Rank(a1M

′
1 + a2M

′
2) < n if and only if there is some

j ∈ {1, . . . , n} such that a1λ1,j + a2λ2,j = 0, which imposes the desired restriction on (a1, a2)
provided that (λ1,j , λ2,j) �= (0, 0). However, if (λ1,j , λ2,j) = (0, 0), then it is easy to see from the
definition of Q′

i(x) that
∇Q′

1(mej) = ∇Q′
2(mej) = 0

for every m ∈ Fν (provided ν > 2), where ej is the jth vector in the standard basis. This implies
that mej ∈ Sing(Q′

1, Q
′
2), and so sν(Q′

1, Q
′
2) ≥ 0, giving us a contradiction.

If sν(Q1, Q2) �= −1, we invoke Lemma 2.1. As long as ν �n 1, we obtain a basis e1, . . . , en of
Fn

ν such that the system of quadrics Q̃1, Q̃2 corresponding to the restriction of Q1 and Q2 onto
the subspace Λn−sν−1 obeys (2.2)–(2.3). This clearly defines a system of non-singular quadratic
forms defined over n − sν − 1, whose complete intersection is non-singular over Fν as well. Now
let M̃1 and M̃2 denote the integer matrices defining the forms Q̃1, and Q̃2 respectively. The
lemma now follows from noticing that

Rank(a1M1 + a2M2) ≥ Rank(a1M̃1 + a2M̃2),

for any pair (a1, a2) ∈ F2
ν \ (0, 0) and, further, using our analysis of the non-singular case

above. �
One of the key bounds for exponential sums in this work will be provided by Weyl differencing.

Typically, these bounds use a ‘Birch-type’ singular locus σ′
K as defined in (2.12) instead of the

singular locus (2.1) used here. A relation between the two has been studied in [BH17]. A minor
modification of [Mye18, Lemma 1.1] readily provides us with the following result.

Lemma 2.3. Let F, G be non-constant forms of any degree, K be a field, and let

σK(F ) := dim
{
x ∈ Pn−1

K
: F (x) = 0, ∇F (x) = 0

}
, (2.11)

σ′
K(F, G) := dim

{
x ∈ Pn−1

K
: Rank

(∇F (x)
∇G(x)

)
< 2
}

, (2.12)

σK(F, G) := dim SingK(F, G). (2.13)
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Then, we have

σK(a1F + a2G) ≤ σ′
K(F, G) ≤ σK(F, G) + 1,

for any (a1, a2) ∈ K\{(0, 0)}.
Our main exponential sum bound for square-full moduli q will be in terms of the size of the

null set

Nullq(M) := {x ∈ (Z/qZ)n : Mx = 0}, (2.14)

for some matrix M ∈ Mn(Z). The following three lemmas will be related to this set.

Lemma 2.4. For every u, v ∈ N, and every M ∈ Mn(Z), we have

#Nulluv(M) ≤ #Nullu(M)#Nullv(M),

with equality if (u, v) = 1.

Proof. It is easy to prove that #Nullq(M) is a multiplicative function, so we will not prove that

#Nulluv(M) = #Nullu(M)#Nullv(M), (2.15)

when (u, v) = 1. We will be brief when showing the inequality, as this is a standard Hensel
lemma type of argument. If x ∈ Nulluv(M), then we must have Mx ≡ 0 mod u. Hence, if we
write x := y + uz, where y ∈ (Z/uZ)n, z ∈ (Z/vZ)n, then y must be in Nullu(M).

Now, fix y and assume that there is some z1, z2 (not necessarily distinct) such that y + uzi ∈
Nulluv(M). Then

M(y + uzi) ≡ 0 mod uv,

and so

M(y + uz2) − M(y + uz1) = uM(z2 − z1) ≡ 0 mod uv.

Therefore, upon letting z2 := z1 + z′ we must have

Mz′ ≡ 0 mod v.

Hence, there can only be at most #Nullv(M) possible values for z′ and so there can only be at
most #Nullv(M) values for z such that y + uz ∈ Nulluv(M) for any given y. We also have that
y must be in Nullu(M). This gives us

#Nulluv(M) ≤ #Nullu(M)#Nullv(M),

as required. �

In both §§ 5 and 6, we will need to bound #Nullp(M) for matrices of the form M(a) :=
a1M1 + a2M2, where M1 and M2 are symmetric matrices associated to some quadratic forms
Q1(x), Q2(x). In Proposition 2.2, we noted that for most values of a, Rankp(M(a)) ≥ n − sp − 1,
but there were potentially a few lines of a where Rankp(M(a)) = n − sp − 2. Naturally, a lower
bound on the size of the rank of a matrix leads to an upper bound on the dimension of the
nullspace of a matrix (due to the rank-nullity theorem), and so using Rankp(M(a)) ≥ n − sp − 2
in order to bound #Nullp(M(a)) for every a would be wasteful. This will lead us to considering
averages of #Nullp(M(a)), where a is allowed to vary (this is the topic of the next lemma).

Lemma 2.5. Let Q1, Q2 be quadratic forms in n variables, q ∈ N, and d be a square-free divisor
of q. Furthermore, let M1, M2 be integer matrices defining Q1 and Q2, respectively, and let
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sp = sp(Q1, Q2) be as defined in (2.8) for K = Fp, p a prime. If d =
∏r

i=1 pi for some primes pi,
then

∑∗

a mod q

#Nulld(a1M1 + a2M2) 
n q2
r∏

i=1

p
spi+1
i .

Proof. For the duration of this proof only, we will use the notation

D(d, q) :=
∑∗

a mod q

#Nulld(a1M1 + a2M2).

We first note that upon setting a = b + dc,

D(d, q) ≤
∑

a mod q
(a1,a2,d)=1

#Nulld(a1M1 + a2M2)

=
∑

b mod d
(b1,b2,d)=1

#Nulld(b1M1 + b2M2)
∑

c mod q/d

1

=
(

q

d

)2 ∑∗

b mod d

#Nulld(b1M1 + b2M2)

=
(

q

d

)2

D(d, d). (2.16)

For convenience, define

T (d) := D(d, d). (2.17)

Using the Chinese remainder theorem, it is easy to see that T (d) is a multiplicative function. In
particular, we have

T (d) =
r∏

i=1
pi|d where pi prime

T (pi). (2.18)

It is therefore sufficient to consider

T (p) =
∑∗

a mod p

#{x mod p : (a1M1 + a2M2)x ≡ 0 mod p}, (2.19)

where p is a prime. When p 
n 1, the right-hand side is trivially O(p2). It is therefore enough
to consider the case p �n 1, where the implied constant is chosen as in the statement in
Proposition 2.2. Proposition 2.2 now implies that except for On(p) different exceptional pairs
(a1, a2), Rank(a1M1 + a2M2) ≥ n − sp − 1. Moreover, for the exceptional pairs we still have
Rank(a1M1 + a2M2) = n − sp − 2. Finally, we note that if M is an integer matrix rank k over
Fp, it is easy to see that

#{x ∈ Fn
p : Mx = 0} 
 pn−k.
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Applying these results to (2.19) gives us

T (p) 

∑∗

a mod p
Rank(a1M1+a2M2)≥n−sp−1

psp+1 +
∑∗

a mod p
Rank(a1M1+a2M2)=n−sp−2

psp+2


 p2 × psp+1 + p × psp+2


 p2+sp+1,

and so

T (d) 

r∏

i=1

p
2+spi+1
i = d2

r∏
i=1

p
spi+1
i

by (2.18). Hence, by (2.16)–(2.17), we have

D(d, q) ≤
(

q

d

)2

T (d) 
 q2
r∏

i=1

p
spi+1
i ,

as required. �
During the process of bounding quadratic exponential sums, we will need to bound the size

of the set

Nb,q(M) :=
{

x ∈ (Z/qZ)n : Mx ≡ q

2
b (mod q)

}
. (2.20)

The next lemma will help us to do this by letting us relate Nb,q(M) to Nullq(M).

Lemma 2.6. Let q ∈ N be even, M ∈ Mn(Z/qZ) and let Nb,q(M) be defined as in (2.20). Then
for every b ∈ {0, 1}n, either Nb,q(M) = ∅ or there exists some y

b
∈ (Z/qZ)n such that

Nb,q(M) = y
b
+ Nullq(M).

We will not prove this here as the argument used in the classical proof of Hensel’s lemma
can be trivially adapted to prove this lemma.

3. Initial setup

In this section we will start with some initial considerations which will help us to properly set up
the circle method and state our main results which will be used to prove Theorem 1.2. As stated
previously, the Hardy Littlewood circle method transforms the task of answering Theorem 1.2
to proving an asymptotic formula:∫ 1

0

∫ 1

0
K(α1, α2) dα1 dα2 = CXPn−6 + o(Pn−6). (3.1)

Here K(α) is the exponential sum as defined in (1.5) and CX denotes a product of local densities.

Remark 3.1. In order to make some of the arguments in § 5 easier to state, we will assume that
2 | (Cont(F ), Cont(G)), where Cont(F ) is the greatest common denominator (gcd) of all of its
coefficients. We can assume this without loss of generality since F (x) = G(x) = 0 if and only if
2F (x) = 2G(x) = 0, and so we can always opt to work with the latter forms instead if necessary.

We will start by splitting the box [0, 1]2 into a set of major arcs and minor arcs as
follows. For any pair (α1, α2), we can use a two-dimensional version of Dirichlet’s approxi-
mation theorem to find a simultaneous approximation (a1/q, a2/q). In particular, upon taking
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Q = �P 3/2�, there exists a = (a1, a2) ∈ Z2 and q ∈ N such that (a1, a2, q) = 1, q ≤ Q, and∣∣∣∣α1 − a1

q

∣∣∣∣ ≤ 1
qQ1/2

,

∣∣∣∣α2 − a2

q

∣∣∣∣ ≤ 1
qQ1/2

. (3.2)

We can therefore write
α1 =

a1

q
+ z1, α2 =

a2

q
+ z2, (3.3)

for some |z| := max{|z1|, |z2|} ≤ 1/qQ1/2. The choice Q = �P 3/2� arises from our final optimisa-
tion of various bounds. We explain this in detail in § 9.3.1.

Now let 0 < Δ < 1 be some small parameter also to be chosen later, and define

Mq,a(Δ) :=
{

(α1, α2) mod 1 :
∣∣∣∣αi − ai

q

∣∣∣∣ ≤ P−3+Δ, i = 1, 2
}

.

We then define the set of major arcs to be

M = M(Δ) :=
⋃

q≤PΔ

⋃
a mod q
(a,q)=1

Mq,a(Δ). (3.4)

This union of sets is disjoint if P−2Δ ≥ 2P−3+Δ, namely when Δ < 1 and when P is sufficiently
large. Moreover, it is easy to check that P−3+Δ < 1/qQ1/2 for any q ≤ Q, provided that Q <
P 3−Δ. This is certainly true for our final choice Q = P 3/2 since we assumed Δ < 1, and so we
have that each set Mq,a is contained in the corresponding range from (3.2). Therefore, the major
arcs give the following contribution to the integral in (3.1):

SM :=
∑

1≤q≤PΔ

∑∗

a mod q

∫
|z|≤P−3+Δ

K(a/q + z) dz. (3.5)

We then define the minor arcs to be m = [0, 1]2\M. By the construction of M, the individual
minor arcs must therefore either have

PΔ < q ≤ Q and |z| < (qQ1/2)−1 or 1 ≤ q ≤ PΔ and P−3+Δ < |z| < (qQ1/2)−1. (3.6)

Hence, we can bound the minor arcs contribution, upon further bringing the average over a
inside the integral in (3.1), by

Sm =
∑

1≤q≤PΔ

∫
P−3+Δ≤|z|≤1/qQ1/2

K(q, z) dz +
∑

PΔ≤q≤Q

∫
|z|≤1/qQ1/2

K(q, z) dz. (3.7)

Here
K(q, z) :=

∑∗

a mod q

|K(a/q + z)|. (3.8)

Our techniques for dealing with the major arcs contribution are standard. Let

S(R) :=
R∑

q=1

q−n
∑∗

a mod q

∑
x mod q

eq(a1F (x) + a2G(x)),

J(R) :=
∫
|z|<R

∫
Rn

ω(x)e(z1F (x) + z2G(x)) dx dz,

(3.9)

and let
S := lim

R→∞
S(R), J = lim

R→∞
J(R), (3.10)
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denote the singular series and the corresponding singular integral, provided the limits exist. Our
main major arcs estimate is the following lemma.

Lemma 3.2. Assume that n − σ(F, G) ≥ 34, where σ(F, G) := σ(XF,G) as defined in (1.1), and
assume that S is absolutely convergent, satisfying

S(R) = S + Oφ(R−φ),

for some φ > 0. Then provided that we have Δ ∈ (0, 1/7),

SM = SJPn−6 + Oφ(Pn−6−δ).

The proof of this lemma, along with the proof of convergence of the singular series will be
established in § 10.

The majority of our effort will be spent in bounding the minor arcs contribution. In order to
state the proposition we aim to prove for the minor arcs, we need to further specify our choice of
weight function and the point which it will centred on. Let x0 be a fixed point satisfying |x0| < 1
and

Rank
(∇F (x0)
∇G(x0)

)
= 2. (3.11)

Without loss of generality, we may assume that

|∇F (x0) · ∇G(x0)| ≤ C ′‖∇F (x0)‖‖∇G(x0)‖, (3.12)

for some 0 < C ′ < 1, possibly depending on x0. Here and throughout, by ‖x‖ we denote the
�2 norm of the vector x. Note that this norm is equivalent to the sup-norm on Rn. We will
also slightly expand our definition of the test function ω to assume it to be supported in a box
x0 + (−ρ, ρ)n, for a small parameter ρ > 0 to be chosen in due course. Moreover, we ask that
ω ∈ Wn, where Wn is defined to be the set of infinitely differentiable functions ω̂ : Rn → R≥0

with compact support contained within [−Sn, Sn]n for some fixed Sn, and with the following
bound to be true on its derivatives:

max
{∣∣∣∣ ∂j1+···+jn

∂xj1
1 · · · ∂xjn

n

ω̂(x)
∣∣∣∣ | x ∈ R, j1 + · · · + jn = j

}

j,n 1 (3.13)

for every j ≥ 0. A satisfactory bound for the minor arcs will be produced by the following
proposition, which we aim to prove.

Proposition 3.3. Let F, G be a system of two cubic forms with a smooth intersection satisfying
n ≥ 39, and let ω ∈ C∞

c (x0 + (−ρ, ρ)n) satisfy (3.13), where x0 satisfies (3.12). Then there exists
some δ = δ(Δ) > 0 and some ρ0 > 0, such that for any 0 < Δ < 1/7 and for any 0 < ρ < ρ0, we
have

Sm = On,ρ,Δ,‖F‖,‖G‖(Pn−6−δ).

Here, given a polynomial F , let ‖F‖ denote the maximum of all its coefficients.

A major part of the rest of this work will be dedicated to proving Proposition 3.3, which will
ultimately be achieved in § 9. Before we move on, it will be desirable to obtain a consequence
of our choice of ω and x0, akin to the conditions [MV19, (2.15) and (2.16)]. This will be our
aim in Lemma 3.4 below, which will be useful in setting up a two-dimensional van der Corput
differencing argument in § 4 and, in particular, in the proof of Lemma 4.3. In order to state
Lemma 3.4, we will choose an orthonormal basis for the two-dimensional vector space spanned
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by {∇F (x0),∇G(x0)}:
e′1 :=

∇F (x0)
‖∇F (x0)‖

, e′2 :=
∇G(x0) − γe′1

γ1
, (3.14)

where γ = ∇G(x0) · e′1, and γ1 = ‖∇G(x0) − γe′1‖ is a non-zero constant by (3.12).

Lemma 3.4. Let F and G be cubic forms and ω be a compactly supported function supported in
x0 + (−ρ, ρ)n satisfying (3.13), where x0 satisfies (3.12). Then there exist constants M1, M2 > 0
and there exists some 0 < ρ0 ≤ 1 such that if ρ ≤ ρ0, then

min
x∈Supp(Pω)

|∇F (x) · e′1| ≥ M1P
2, min

x∈Supp(Pω)
|∇G(x) · e′2| ≥ M1P

2, (3.15)

max
x∈Supp(Pω)

{|∇F (x) · e′2|} ≤ ρM2P
2, max

x∈Supp(Pω)
{|∇G(x) · e′1|} ≤ M2P

2. (3.16)

Furthermore, M1 and M2 depend only on F , G and our choice of x0 (in particular, M1 and M2

do not depend on ρ).

Proof. A key in the proof here will be the following bound, which is an easy consequence of the
mean value theorem: given any x ∈ Supp(Pω), we have

‖∇F (x) −∇F (Px0)‖ 
‖F‖ ρP 2 and ‖∇G(x) −∇G(Px0)‖ 
‖G‖ ρP 2. (3.17)

Let us first prove that the conditions for ∇F (x) in (3.15)–(3.16) are met. The key here is
conditions (3.11) and (3.12). Clearly, using (3.17) we have

∇F (x) · e′1 = (∇F (x) −∇F (Px0)) · e′1 + ∇F (Px0) · e′1
= (∇F (x) −∇F (Px0)) · e′1 + P 2∇F (x0) · ∇F (x0)/‖∇F (x0)‖
= (∇F (x) −∇F (Px0)) · e′1 + P 2‖∇F (x0)‖
≥ (1 − O(ρ))P 2‖∇F (x0)‖
≥ MF,1P

2

for some MF,1 > 0 which is independent of ρ, provided that ρ is chosen to be small enough.
Similarly, we may also assure that

|∇G(x) · ∇G(x0)| ≥ (1 − O(ρ))P 2‖∇G(x0)‖2. (3.18)

In both of these equations, the implied constants only depend on ‖F‖, ‖G‖ and n. This will be
a feature of all implied constants appearing in this proof. On the other hand, since ∇F (x0) =
‖∇F (x0)‖ e′1 is orthogonal to e′2, we have

|∇F (x) · e′2| = |(∇F (x) − P 2∇F (x0)) · e′2| ≤ ‖(∇F (x) −∇F (Px0))‖ 
‖F‖ ρP 2 (3.19)

by (3.17). In other words, there is some MF,2 > 0 independent of ρ such that

|∇F (x) · e′2| ≤ MF,2 ρP 2.

To deal with the inequalities concerning G, we use (3.12), which hands us a constant 0 < C ′ < 1
satisfying

γ‖∇F (x0)‖ = |∇F (x0) · ∇G(x0)| ≤ C ′‖∇F (x0)‖‖∇G(x0)‖. (3.20)

Therefore, for any x ∈ Supp(Pω), by (3.17) and (3.20), we have that

|∇F (x0) · ∇G(x)| ≤ |∇F (x0) · ∇G(Px0)| + |∇F (x0) · (∇G(x) −∇G(Px0))|
≤ C ′P 2‖∇G(x0)‖‖∇F (x0)‖ + O‖G‖(ρ)P 2‖∇F (x0)‖.
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Hence (since ‖∇G(x0)‖ > 0 is a constant), provided that the support ρ is sufficiently small, we
may choose some 0 < C ′′ < 1 independent of ρ such that

|∇F (x0) · ∇G(x)| ≤ C ′′P 2‖∇F (x0)‖‖∇G(x0)‖. (3.21)

Thus, for any x ∈ Supp(Pω),

|∇G(x) · (∇G(x0) − γe′1)| = |∇G(x) · ∇G(x0) − γ‖∇F (x0)‖−1∇G(x) · ∇F (x0)|
≥ (1 − O(ρ) − C ′C ′′)P 2‖∇G(x0)‖2,

where we have used (3.20) to bound γ by C ′‖∇G(x0)‖, as well as (3.21) and (3.18). Hence,
provided that the support ρ is chosen to be sufficiently small, there is some MG,1 > 0 such that

|∇G(x) · e′2| = γ−1
1 |∇G(x) · (∇G(x0) − γe′1)| ≥ MG,1P

2.

Hence, upon taking

M1 := min{MF,1, MG,1},
we conclude that (3.15) is true. Finally, (3.21) also hands us

|∇G(x) · e′1| = ‖∇F (x0)‖−1|∇F (x0) · ∇G(x)| ≤ C ′′P 2‖G(x0)‖, (3.22)

for any x ∈ Supp(Pω). Therefore, upon setting M2,G := C ′′‖G(x0)‖, and taking

M2 := max{MF,2, MG,2},
we are now able to verify (3.16). Furthermore, there is some ρ0 > 1, such that M1 and M2 are
independent of ρ provided that ρ ≤ ρ0. This concludes the proof of the lemma. �

4. Van der Corput differencing

In this section, we will use van der Corput differencing to bound K(a/q + z) by a quadratic
exponential sum. We will introduce the topic by beginning with the simpler pointwise van der
Corput differencing used in [BH09] before attempting to generalise the differencing arguments
from [Han12] and [Vis23] to attain a bound which also takes advantage of averaging over the
both z integrals. In both cases, we will innovate on the standard differencing approach in order
to introduce a path to attaining Kloosterman refinement.

4.1 Pointwise van der Corput
For convenience, we will set

F̂a,q,z(x) := (a1/q + z1)F (x) + (a2/q + z2)G(x), (4.1)

where F and G are cubic forms. Since x is summed over all of Zn, we can replace x with x + h,
for any h ∈ Zn, giving

K(q, z) =
∑∗

a

∣∣∣∣ ∑
x∈Zn

ω((x + h)/P )e(F̂a,q,z(x + h))
∣∣∣∣, (4.2)

where K(q, z) is as defined in (3.8). Let H ⊂ Zn be a set of lattice points (which we may choose
freely). In the case of pointwise van der Corput differencing, we can just take H to be the set of
lattice points h such that |h| < H, for some 1 ≤ H 
 P which we may choose freely. However,
we will not specify this in the arguments that follow since we will need a different choice of
H when we come to averaged van der Corput differencing later. Applying the Cauchy–Schwarz
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inequality to (4.2) gives the following

#HK(q, z) =
∑∗

a

∣∣∣∣∑
h∈H

∑
x∈Zn

ω((x + h)/P )e(F̂a,q,z(x + h))
∣∣∣∣

≤
∑∗

a

∑
x∈Zn

∣∣∣∣∑
h∈H

ω((x + h)/P )e(F̂a,q,z(x + h))
∣∣∣∣

≤
(∑∗

a

∑
|x|<2P

1
)1/2(∑∗

a

∑
x∈Zn

∣∣∣∣∑
h∈H

ω((x + h)/P )e(F̂a,q,z(x + h))
∣∣∣∣
2)1/2


 qPn/2

(∑∗

a

∑
x∈Zn

∑
h1,h2∈H

ω((x + h1)/P )ω((x + h2)/P )

× e(F̂a,q,z(x + h1))e(F̂a,q,z(x + h2))
)1/2

.

The key difference between this and the standard van der Corput differencing process is the
introduction of the a sum in the Cauchy–Schwarz step. In particular, this enables us to bring
the a sum inside of the bracket in the final step which, in turn, gives us a path to Kloosterman
refinement. We still need to write K(q, z) in terms of a quadratic exponential sum however, so
we will come back to Kloosterman refinement later.

Set y := x + h2, h = h1 − h2 and recall that we defined ω to be a real weight function.
Therefore, after setting

N(h) := #{h2 − h1 = h : h1, h2 ∈ H}, and ωh(x) := ω(x + P−1h)ω(x), (4.3)

we get

|K(q, z)|2 
 #H−2q2Pn
∑∗

a

∑
y∈Zn

∑
h∈H

N(h)ωh(y/P )e(F̂a,q,z(y + h) − F̂a,q,z(y)).

Recall that F̂a,q,z(x) = (a1/q + z1)F (x) + (a2/q + z2)G(x). Therefore if we set Fh and Gh be the
differenced polynomials

Fh(y) := F (y + h) − F (y), Gh(y) := G(y + h) − G(y),

we have

F̂a,q,z(y + h) − F̂a,q,z(y) = (a1/q + z1)Fh(y) + (a2/q + z2)Gh(y).

Hence,

|K(q, z)|2 
 #H−2Pnq2
∑
h∈H

N(h)Th(q, z), (4.4)

where

Th(q, z) :=
∑∗

a mod q

∑
y∈Zn

ωh(y/P )e((a1/q + z1)Fh(y) + (a2/q + z2)Gh(y)) (4.5)

denote the corresponding exponential sum for the system of quadratic polynomials Fh and Gh.
Note that the top form of Fh, F

(0)
h , is precisely (1.8). Finally, by noting that N(h) ≤ #H = Hn,

we arrive at the following.
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Lemma 4.1. For any 1 ≤ H 
 P , for any fixed choice of z ∈ [0, 1]2, we have

|K(q, z)| 
 H−n/2Pn/2q

( ∑
h
H

|Th(q, z)|
)1/2

.

This bound will be useful to us when t := |z| is small, say of size P−3−Δ, since it is wasteful
to use averaged van der Corput differencing in this case. We will now set up averaged van der
Corput differencing, which will be a key in proving Proposition 3.3.

4.2 Averaged van der Corput
Throughout this section, x0 will denote a fixed point satisfying |x0| < 1 in x0 ∈ Supp(ω), where
Supp(ω) is contained in the set x0 + (−ρ, ρ)n. Likewise, F and G will be cubic polynomials whose
leading forms satisfy (3.15) and (3.16) for a fixed orthonormal set of vectors e′1, e′2 (see (3.14)).
Let

{e′1, . . . , e′n}, (4.6)

denote an extended orthonormal basis of Rn. We will begin our effort to bound the sum

∑
PΔ≤q≤Q

∫
P−3−Δ≤|z|≤1/qQ1/2

K(q, z) dz, (4.7)

where K(q, z) =
∑∗

a mod q
|K(a/q + z)| is as defined in (3.8). As in the previous section, let

1 ≤ H 
 P be a parameter to be chosen later. Typically, H will be chosen as a small power
of P , so it is safe to further assume H log P 
 P . In addition, let ε > 0 be an arbitrarily small
absolute constant to be chosen at the end. Note that the implied constants will be allowed to
depend on the choice of ε after it is introduced into our bounds. As is standard (see, for example,
[Vis23]), we start by splitting the integral over z above as a sum over O(P ε) dyadic intervals of
the form [t, 2t] where P−3+Δ ≤ t ≤ 1/(qQ1/2). For convenience, given t ∈ R2

>0, we will set

I(q, t) :=
∫

t≤|z|≤2t
K(q, z) dz.

Analogous to [Han12] and [MV19, Section 3], for a fixed value of P−3−Δ < t < 1/qQ1/2 we choose
two sets T1, T2, each of cardinality O(1 + tHP 2) such that

{z : t ≤ |z| ≤ 2t} ⊆
⋃

τ∈T1×T2

[τ1 − (HP 2)−1, τ1 + (HP 2)−1] × [τ2 − (HP 2)−1, τ2 + (HP 2)−1]

⊆ {z : t ≤ |z| ≤ 2(t + (HP 2)−1)}. (4.8)

Thus, an application of Cauchy–Schwarz further gives

I(q, t) 
 ((HP 2)−1 + t)
(∫

t≤|z|≤2(HP 2)−1+t)
|K(q, z)|2 dz

)1/2


 ((HP 2)−1 + t)
(∑

τ∈T

Mq(τ , H)
)1/2

, (4.9)

786

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


On the Hasse principle for complete intersections

where

Mq(τ , H) :=
∫ τ+(HP 2)−1

τ−(HP 2)−1

|K(q, z)|2 dz



∫

R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])|K(q, z)|2 dz. (4.10)

Here we have used T := T1 × T2, and
∫ τ+(HP 2)−1

τ−(HP 2)−1 to denote the integral∫
(τ1−(HP 2)−1,τ1+(HP 2)−1)×(τ2−(HP 2)−1,τ2+(HP 2)−1)

in order to simplify the notation. After an inspection of the right-hand side of (4.8), it is easy to
see that ∫

P−3−Δ≤|z|≤1/qQ1/2

K(q, z) dz 

∑

t

((HP 2)−1 + t)
(∑

τ∈T

Mq(τ , H)
)1/2

,

where the sum over t runs over Oε(P ε) choices satisfying

P−3−Δ ≤ t ≤ 1/(qQ). (4.11)

Note that the choice of the parameter H will ultimately depend on t. For now, we will assume t
to be fixed.

We are therefore first led to find a bound for |K(q, z)|2 using van der Corput differencing.
Recall that results (4.4) and (4.5) from § 4.1 hold for any subset of integer vectors H satisfying
|h| 
 P for every h ∈ H. Therefore, by (4.4), (4.9) and (4.10), we have shown the following.

Lemma 4.2. For any 1 ≤ H ≤ P , H ⊂ Zn and t satisfying (4.11) we have

I(q, t) 
 ((HP 2)−1 + t)#H−1Pn/2q

×
(∑

τ∈T

∑
h∈H

N(h)
∫

R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz

)1/2

. (4.12)

Since we intend to develop a two-dimensional version of averaged van der Corput differencing,
we intend to choose H to be a set of size O(P 2Hn−2) and then use averaging over z1 and z2

to show that for all but O((H log(P ))n) of h ∈ H, the value of the averaged integral Mq(τ , H)
defined in (4.10) is negligible. This will enable us to ‘win’ an extra factor of P/H in our final
estimate for (4.7) when compared with pointwise van der Corput differencing.

Our choice of H will be informed by the following lemma.

Lemma 4.3. For any h ∈ Rn, any 1 ≤ H ≤ P , any fixed τ and any N > 0,∫ ∞

−∞

∫ ∞

−∞
exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz 
N P−N ,

provided that h =
∑n

i=1 h′
ie

′
i satisfies

HL 
 sup{|h′
1|, |h′

2|} 
 P, |h′
i| < H for i ∈ {3, . . . , n}, (4.13)

where L = log(P ), {e′1, . . . , e′n} denote the basis chosen in (4.6) and the implied constants only
depend on n, ‖F‖ and ‖G‖.
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Proof. We start by rewriting∫
R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz

=
∑
y∈Zn

∑
a

∗ωh(y/P )eq(a1Fh(y) + a2Gh(y))J(h, y),

where

J(h, y) =
∫

R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])e(z1Fh(y) + z2Gh(y)) dz, (4.14)

and eq(x) := e2πix/q. We may separate the two integrals over z and integrate them to get

J(h, y) =
π

H2P 4
exp

(
− π2

H2P 4
(|Fh(y)|2 + |Gh(y)|2)

)
e(−τ1Fh(y) − τ2Gh(y)).

We note that if either |Fh(y)| or |Gh(y)| are � HP 2L, then trivially bounding everything in J
from above gives∑

y∈Zn

∑∗

a mod q

ωh(y/P )eq(a1Fh(y) + a2Gh(y))J(h, y) 
 Pnq2 1
H2P 4

exp(−mL2)


N P−N ,

for some constant m > 0. Therefore, it is sufficient to show that there exist constants 0 < c1,
c2 < 1 such that for every

h =
n∑

i=1

hiei =
n∑

i=1

h′
ie

′
i (4.15)

with h ∈ Rn,

|h′
1| < c1P, |h′

2| < c2P, |h′
i| < H for i ∈ {3, . . . , n}, and HL 
 sup{|h′

1|, |h′
2|}, (4.16)

we have
|Fh(y)| � HP 2L or |Gh(y)| � HP 2L. (4.17)

We will rewrite Fh as follows:

Fh(y) = ∇F (y) · h + htHF (y)h + F
(2)
h

where F
(2)
h is the constant part of Fh and HF (y) is the Hessian of F evaluated at y. Now for h

satisfying (4.16), we have

Fh(y) = ∇F (y) · h +
(∑

h′
ie

′
i

)t

HF (y)
(∑

h′
ie

′
i

)
+ F

(2)
h

= ∇F (y) · h + F
(2)
h + O(|h′

1|2P ) + O(|h′
2|2P ) + O(HP 2), (4.18)

where F
(2)
h is a cubic polynomial in h, and the implied constants depend only on ‖F‖, ‖G‖ and n.

Note that
F

(2)
h = O(|h′

1|3) + O(|h′
2|3) + O(H3),

and so we may simplify (4.18) to

Fh(y) = ∇F (y) · h + O(|h′
1|2P ) + O(|h′

2|2P ) + O(HP 2), (4.19)
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since H, |h′
1|, |h′

2| < P . We also write h = h′
1e

′
1 + · · · + h′

ne′n and invoke (3.15) and (3.16) to
further get that for all y ∈ Supp(Pω) we have

|∇F (y) · h| ≥ |h′
1|M1P

2 + O(ρ|h′
2|P 2) + O(HP 2),

and so we get

|Fh(y)| ≥ M1|h′
1|P 2 + O(ρ|h′

2|P 2) + O(|h′
1|2P ) + O(|h′

2|2P ) + O(HP 2), (4.20)

by (4.19). For now, let us focus on the case |h′
2| 
 ρ−1/2|h′

1|. In this case, we must have that h′
1

satisfies HL 
 |h′
1|. Furthermore, upon choosing c1 ≤ ρ2 and by (4.16), we have

ρ|h′
2|P 2 
 ρ1/2|h′

1|P 2, |h′
1|2P ≤ c1|h′

1|P 2 ≤ ρ2|h′
1|P 2,

|h′
2|2P 
 ρ−1|h′

1|2P ≤ ρ−1c1|h′
1|P 2 ≤ ρ|h′

1|P 2.

Hence, we may simplify (4.20) to obtain

|Fh(y)| ≥ M1|h′
1|P 2 + O(ρ1/2|h′

1|P 2) � |h′
1|P 2 � HP 2L,

provided that ρ is chosen to be sufficiently small with respect to M1.
It now remains to study the case |h′

1| 
 ρ1/2|h′
2|. In this case, we instead have that |h′

2| � HL.
We now apply the same process used to obtain (4.19) to Gh(y) to obtain

Gh(y) = ∇G(y) · h + O(|h′
1|2P ) + O(|h′

2|2P ) + O(HP 2), (4.21)

where the implied constants again depend only on n, ‖F‖ and ‖G‖. Note again that

∇G(y) · h = h′
1∇G(y) · e′1 + h′

2∇G(y) · e′2 + O(HP 2).

Combining this with (4.21), and applying (3.15)–(3.16) gives

|Gh(y)| ≥ M1|h′
2|P 2 + O(|h′

1|P 2) + O(|h′
1|2P ) + O(|h′

2|2P ) + O(HP 2). (4.22)

We now aim to simplify (4.22). Using the assumption that |h′
1| 
 ρ1/2|h′

2|, the fact that |h′
2|

must obey (4.16) in this case, and setting c2 ≤ ρ we have

|h′
1|P 2 
 ρ1/2|h′

2|P 2, |h′
1|2P 
 ρ|h′

2|2P ≤ ρc2|h′
2|P 2 ≤ ρ2|h′

2|P 2,

|h′
2|2P ≤ c2|h′

2|P 2 ≤ ρ|h′
1|P 2, HP 2 
 |h′

1|P 2L−1 
 ρ|h′
1|P 2.

Hence,

|Gh(y)| ≥ M1|h′
2|P 2 + O(ρ1/2|h′

2|P 2) � |h′
2|P 2 � HP 2L,

as long as ρ is chosen small enough depending only on M1 and M2. �

The lemma above leads to the following natural choice for H:

H := {h ∈ Zn : 0 ≤ h′
1 < c1P, 0 ≤ h′

2 < c2P, 0 ≤ h′
i < H for i ∈ {3, . . . , n}}, (4.23)

where c1 and c2 are the implied constants arising in (4.13). Essentially, H is chosen to be the
collection of lattice points inside of a fixed n-dimensional cuboid, BP , centred at the origin, with
volume Vol(BP ) = c1c2P

2Hn−2. The sides of the cuboid are in the direction of the basis vectors
{e′1, . . . , e′n}. We now claim that

P 2Hn−2 
 #H 
 P 2Hn−2. (4.24)
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This follows very easily from the following asymptotic formula for a general cuboid B with side
lengths l1, . . . , ln. It is easy to see that

#{Zn ∩ B} = Vol(B) +
n∑

i=1

O

(∏
j �=i

lj

)
.

The error comes from estimating the (n − 1)-dimensional boundary of B. In our case l1 =
c1P ,l2 = c2P , li = H for i ≥ 3, which leads to (4.24). Note that H is chosen as in (4.23) so
that we can use the bound Lemma 4.3. In particular, we can now show the following.

Lemma 4.4. Let 1 ≤ H ≤ P and let

H̃ := {h ∈ Zn : |h| 
 HL}.
Then for any 1 ≤ H ≤ P , any 1 ≤ N , and any t > 0 such that (4.11) holds, we have

I(q, t) 
 H−n/2+1 log(P )Pn/2−1q((HP 2)−1 + t)2
(∑

h∈H̃
max

z
|Th(q, z)|

)1/2

+ ON (P−N ),

where the maximum over z is taken over the set

t ≤ |z| ≤ 2(t + (HP 2)−1L). (4.25)

Proof. Let H be as in (4.23). Then we use the decomposition H = (H̃ ∩ H)
⋃H\H̃. By

construction,

H\H̃ = {h ∈ Zn : |h′
1| < c1P, |h′

2| < c2P, |h′
i| < H, for i ∈ {3, . . . , n}; HL 
 max{|h′

1|, |h′
2|}}.

Furthermore, note that for any fixed h, N(h) as defined in (4.3) satisfies the bound

N(h) 
 #H 
 P 2Hn−2. (4.26)

Therefore, by Lemma 4.3, and a bound #T 
 (1 + tHP 2)2 
 P 6, which arises from using
crude bounds t ≤ 1 and 1 ≤ H ≤ P

#H−1

(∑
τ∈T

∑
h∈H\H̃

N(h)
∫

R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz

)1/2


 P−N .

Further combining with the bounds q ≤ Q ≤ P 3/2, we may bound the contribution from the sum
over h ∈ H \ H̃ in (4.12) as follows:


 ((HP 2)−1 + t)Pn/2q#H−1

×
(∑

τ∈T

∑
h∈H\H̃

N(h)
∫

R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz

)1/2


N Pn/2+3/2−N 
n,N P−N ,

as N is allowed to be arbitrarily large. Therefore, combining this with Lemma 4.2, we get

I(q, t) 
 ((HP 2)−1 + t)#H−1/2Pn/2q

×
(∑

τ∈T

∑
h∈H̃

∫
R2

exp(−H2P 4[(τ1 − z1)2 + (τ2 − z2)2])Th(q, z) dz

)1/2

+ On,N (P−N ). (4.27)
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Further note that for a fixed τ and for any z satisfying |z − τ | ≥ HP 2L we have the following
decay of the function in the integrand:

exp(−H2P 4(τ − z)2) 
 exp(−L2/2)
|z − τ |2 + 1


N
P−N

|z − τ |2 + 1
. (4.28)

Thus, in the same vein as before, using the bound (4.28) in (4.27) we may obtain

I(q, t) 
 ((HP 2)−1 + t)#H−1/2Pn/2q

(∑
τ∈T

∑
h∈H̃

∫ τ+(HP 2)−1L

τ−(HP 2)−1L
|Th(q, z)| dz

)1/2

+ On,N (P−N ).

The lemma now follows after using (4.24) to estimate #H, using the estimate #T = O((1 +
tHP 2)2), and (4.8) which allows us to take the maximum over all possible z appearing in the
expression. �

Since H is arbitrary, we may relabel HL as H at the expense of a factor of size at most
Oε(P ε) we can now conclude as follows.

Lemma 4.5. For any 1 ≤ H 
 P , any 0 < ε < 1, any t satisfying (4.11) and any N ≥ 1 we have

I(q, t) 
ε,n,N H−n/2+1Pn/2−1+εq((HP 2)−1 + t)2
(

max
|z|

∑
|h|
H

|Th(q, z)|
)1/2

+ P−N ,

where the maximum over z is taken over the set

t ≤ |z| ≤ 2(t + P ε(HP 2)−1). (4.29)

5. Quadratic exponential sums: initial consideration

The differencing technique used in § 4 leads us to consider quadratic exponential sums Th(q, z)
(see (4.5)) for a family of differenced quadratic forms Fh and Gh. Throughout this section,
let q denote an arbitrary but fixed integer. Our main goal here is to estimate quadratic sums
corresponding to a general system of quadratic polynomials f, g defined as

T (q, z) :=
q∑∗

a

∑
y∈Zn

ω(y/P )e((a1/q + z1)f(y) + (a2/q + z2)g(y)). (5.1)

Here f and g denote a system of quadratic polynomials with integer coefficients and ω denotes
a compactly supported function on Rn. Let us denote leading quadratic parts of f and g by f (0)

and g(0), respectively. We further assume that the quadratic forms f (0) and g(0) are defined by
integer matrices M1 and M2, respectively. We will later apply the estimates in this section by
setting f = Fh and g = Gh.

Given a (finite or infinite) prime p, by sp we denote

sp := sp(f (0), g(0)), (5.2)

where, further, given a set of forms F1, F2, sp(F1, F2) denotes the dimension of singular locus of
the projective complete intersection variety defined by the simultaneous zero locus of the forms
F1, F2. That is,

sp(F1, F2) := dim
{
x ∈ Pn

Fp
: F1(x) = F2(x) = 0, Rankp(∇F1(x), F2(x)) < 2

}
.
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When n ≥ 2, given an integer q, we define D(q) by

Df,g(q) = D(q) :=
∏
p|q

p prime

psp(f (0),g(0))+1. (5.3)

On the other hand, when n = 1, we define D(q) as

D(q) := (q, Cont(f (0)), Cont(g(0))), (5.4)

where, given a polynomial f , Cont(f) is the gcd of all its coefficients.
As is standard, we begin by applying Poisson summation to T (q, z). This will allow us

separate the sum over a and the integral over z, into an exponential sum and an exponential
integral respectively. In particular, applying Poisson summation gives us the following.

Lemma 5.1. We have

T (q, z) = q−n
∑
m∈Z

S(q; m)I(z; q−1m),

where

S(q; m, f, g) = S(q; m) :=
q∑∗

a

∑
u mod q

eq(a1f(u) + a2g(u) + m · u), (5.5)

and

I(γ; k) :=
∫

Rn

ω(x/P )e(γ1f(x) + γ2g(x) − k · x) dx. (5.6)

Proof. The proof of Lemma 5.1 is standard and can be obtained by slightly modifying [BH09,
Lemma 8]: let x = u + qv. Then

T (q, z) =
q∑∗

a

∑
u mod q

∑
v∈Zn

ω((u + qv)/P )e([a1/q + z1]f(u + qv) + [a2/q + z2]g(u + qv))

=
q∑∗

a

∑
u mod q

eq(a1f(u) + a2g(u))
∑
v∈Zn

ω((u + qv)/P )e(z1f(u + qv) + z2g(u + qv)).

We now apply Poisson summation on the second sum (and use the substitution x = u + qv) to
get

T (q, z) =
q∑∗

a

∑
u mod q

eq(a1f(u) + a2g(u))

×
∑

m∈Zn

∫
Rn

ω((u + qv)/P )e(z1f(u + qv) + z2g(u + qv) − m · v) dv

= q−n
∑

m∈Zn

q∑∗

a

∑
u mod q

eq(a1f(u) + a2g(u) + m · u)

×
∫

Rn

ω(x/P )e(z1f(x) + z2g(x) − q−1m · x), dx

as required. �
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As a result, we trivially have the following pointwise bound

|T (q, z)| ≤ q−n
∑
m∈Z

|S(q; m)| · |I(z; q−1m)|. (5.7)

The treatment of the exponential integral is standard. In particular, upon letting ‖f‖ denote the
supremum of absolute values of its coefficients and defining

‖f‖P := ‖P− deg(f)f(Px1, . . . , Pxn)‖, (5.8)

we can use the following lemma to bound I(z; q−1m).

Lemma 5.2. Let f, g be quadratic polynomials such that max{‖f‖P , ‖g‖P } 
 H. Furthermore,
let V := 1 + qP ε−1 max{1, HP 2|z|}1/2, ε > 0, and N ∈ N. Then

I(z; q−1m) 
N P−N + meas({y ∈ P Supp(ωh) : |∇f̂z(y) − m| ≤ V }),
where

f̂z(x) := qP−1z1f(x) + qP−1z2g(x).

Furthermore, if |m| ≥ qP ε−1 max{1, HP 2|z|}, then we have

I(z; q−1m) 
N P−N |m|−N .

The proof of this is almost identical to the proofs of [BDH15, Lemmas 6.5 and 6.6], and so we
will not provide details here. In particular, the only thing in the proofs that needs to be tweaked
in order to verify Lemma 5.2 is that Θ in [BDH15, equation (6.11)] must be replaced with

Θ′ := 1 + |z1|HP 2 + |z2|HP 2.

We also note that we use |∇f̂z(y) − m| ≤ V instead of Pq−1|∇f̂z(y) − m| ≤ Pq−1V since we are
using slightly different notation.

The latter bound enables us to handle the tail of the sum over m. Let V̂ :=
qP ε−1 max{1, HP 2|z|}. By trivially bounding |S(q; m)| by qn, and setting N ≥ n + 2, it is easy
to show that

q−n
∑

|m|�V̂

|S(q; m)| · |I(z; q−1m)| 
 1,

by the second half of Lemma 5.2. Hence,

=⇒ |T (q, z)| 
 1 + q−n
∑

|m|
V̂

|S(q; m)| · |I(z; q−1m)|.

Now by the first half of Lemma 5.2 (setting N ≥ n + 4), we have

|Th(q, z)| 
 1 + q−n
∑

|m|
V̂

|S(q; m)| · meas({y ∈ P Supp(ω) : |∇f̂z(y) − m| ≤ V }

= 1 + q−n
∑

|m|
V̂

|S(q; m)|
∫

y∈P Supp(ω)
Char(m, y) dy,

where

Char(m, y) =

{
1 if |∇f̂z(y) − m| ≤ V,

0 else,
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=⇒ |Th(q, z)| 
 1 + q−n

∫
y∈P Supp(ω)

∑
|m|
V̂

|∇f̂z(y)−m|≤V

|S(q; m)| dy


 1 + q−n

∫
y∈P Supp(ω)

∑
|m−m0(y)|≤V

|S(q; m)| dy.

where m0(y) := ∇f̂z(y). Hence, we have the following.

Proposition 5.3. Let |z| = max{|z1|, |z2|}. Then for any q ∈ N,

|T (q, z)| 
 1 + q−nPn sup
y∈P Supp(ω)

{ ∑
|m−m0(y)|≤V

|S(q; m)|
}

,

for some m0(y), where

V := 1 + qP−1+ε max{1, HP 2|z|}1/2. (5.9)

Our attention now turns to finding a suitable bound for |S(q; m)|. As is standard when
dealing with exponential sum bounds, we will take advantage of the multiplicative property of
S(q; m) and decompose q into its square-free, square and cube-full components so that we can use
better bounds in the former two cases (in particular, we will make use of the a sum to improve
our bounds in the former cases). Indeed, we may use a lemma of Hooley [Hoo78, Lemma 3.2] to
get the following result.

Lemma 5.4. Let a ∈ Z2 such that (q, a) = 1, q = rs where (r, s) = 1 and m ∈ Zn. Then

S(rs; m) = S(r; s̄m)S(s; r̄m), (5.10)

where rr̄ + ss̄ = 1.

The above lemma is proved using a very standard argument akin to [BH09, Lemma 10] and
[MV19, Lemma 4.5], and therefore we will skip its proof here. Our treatment of bounds for the
quadratic exponential sums will vary depending on whether q is square-free, a square or cube-
full. Since the exponential sums satisfy the mutliplicativity relation (5.10), it is natural to set
q = b1b2q3 where

b1 :=
∏
p||q

p, b2 :=
∏
p2||q

p2, q3 :=
∏
pe||q
e>2

pe. (5.11)

Then by Lemma 5.4, we have that

S(q; m) = S(b1; c1m)S(b2; c2m)S(q3; c3m), (5.12)

for some constants c1, c2, c3 such that (b1, c1) = (b2, c2) = (q3, c3) = 1. Finding suitable bounds
for the size of these three exponential sums will be the topic of the rest of this section.

5.1 Square-free exponential sums
In this section, we will briefly consider the quadratic exponential sums S(b1; m) when q = b1 is
square-free. This case is extensively studied in [MV19, Section 5], where bounds are obtained
for exponential sums for a general system of polynomials f and g. Using the multiplicativity of
the exponential sum in (5.10), it is enough to consider the sums S(p, m) where p is a prime.
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We may rewrite

S(p, m) = Σ1 − Σ4, (5.13)

where

Σ1 :=
p∑

a1=1

p∑
a2=1

∑
u mod q

ep(a1f(u) + a2g(u) + m · u) and Σ4 :=
∑

u mod q

ep(m · u). (5.14)

Here the notation Σ1 and Σ4 is used to correspond to the corresponding sums in [MV19,
Section 5]. Note that the argument in [MV19, Section 5] does not depend on the degree of
the forms f and g. In fact, our exponential sums are more ‘natural’ than those which appear
in [MV19] and, as a result, only sums Σ1 and Σ4 appear in our analysis. We may now use the
results in [MV19, Section 5] directly here as they do indeed bound the sums Σ1 and Σ4 as well,
but only in the case where f (0) and g(0) intersect properly over Fp. When n ≥ 2, we may use
[MV19, Prop. 5.2, Lemma 5.4] to get the following.

Proposition 5.5. Let f, g ∈ Z[x1, . . . , xn] be quadratic polynomials such that s∞(f (0), g(0)) =
−1. Let b1 be a square-free number. If n > 1, then there exists some Φf,g = Φ ∈ Z[x1, . . . , xn]
such that

S(b1, m) 
n b
1+n/2+ε
1 D(b1)(b1, Φ(m))1/2

for every m ∈ Zn. Furthermore, Φ has the following properties:

(1) Φ is homogeneous;
(2) deg(Φ) 
n 1;
(3) log ‖Φ‖ 
n log ‖f‖ + log ‖g‖;
(4) Cont(Φ) = 1.

Note that all the implied constants here only depend on n and are independent of ‖f‖ and ‖g‖.
Proof. To begin, since sp(f (0), g(0)) = −1, we may use a Q version of the dual variety explicitly
described in [Vis23, Lemma 4.2] to see that the polynomial defining the dual variety of the inter-
section variety of f (0), g(0) satisfies the four conditions for Φ in the statement of this proposition.
Hence, we may let Φ be this polynomial. This allows us to improve the first assertion of [MV19,
Proposition 5.2]: indeed, if we let δp(v) := sp(f (0), g(0), Lv), where Lv is the hyperplane defined
by v, then δp(v) ≤ sp(f (0), g(0)) whenever p � Φ(v). We automatically get this since

sp(f (0), g(0), Lv) ≤ sp(f (0), g(0))

for every v not on the dual variety of f (0), g(0) (over Fp), and we must have p | Φ(v) when v is
on the dual variety by our choice of Φ.

Note that if f (0), g(0) intersect properly, then the bounds in [MV19, Lemmas 5.1 and 5.4]
hold for all polynomials f, g regardless of any condition on their degrees. The key difference to
the situation here is that, in the case when we have improper intersection, we define the singular
locus differently to [MV19]. This is due to both of our polynomials varying here, whilst one of
the corresponding polynomials in [MV19] is fixed. In particular, in this case our singular locus
can either be n − 2 or n − 1 as discussed in the proof of Lemma 2.1, while in [MV19] in the case
of improper intersection of top forms, the singular locus is defined to be n − 1 uniformly. Our
proof here will follow that of [MV19, Lemma 5.4].
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In the case when quadratic polynomials f (0), g(0) intersect properly over Fp, [MV19,
Lemma 5.4] (and our improvement to [MV19, Proposition 5.2]) goes through handing us

S(p, m) 
n p1+n/2+εp(sp(f (0),g(0))+1)/2(p, Φ(m))1/2 = p1+n/2+εD(p)1/2(p, Φ(m))1/2. (5.15)

It now remains to consider the case when f (0) and g(0) intersect improperly in greater detail. In
each of the cases of improper intersection of f (0) and g(0), the singular locus sp(f (0), g(0)) ≥ n − 2.
We therefore note that the trivial bound

Σ4 
 pn 
 p1+sp(f (0),g(0))+1 = pD(p)

suffices for every n ≥ 2. We now turn our attention to Σ1. We will first show that

|Σ1| 
 p2D(p)

in the case that f (0) and g(0) intersect improperly over Fp. In the case where n > 1, there are two
cases to consider: sp(f (0), g(0)) = n − 1 and sp(f (0), g(0)) = n − 2 (see the proof of Lemma 2.1).
In the former case, we may again use the trivial bound:

|Σ1| 
 p2+n = p2+sp(f (0),g(0))+1 = p2D(p).

When sp(f (0), g(0)) = n − 2, we instead note that

|Σ1| =
∣∣∣∣p2

∑
x mod p

f(x)≡g(x)≡0 mod p

ep(m · x)
∣∣∣∣

≤ p2#{x ∈ Fn
p : f(x) = g(x) = 0}


 p2+n−1 = p2+sp(f (0),g(0)) = p2D(p).

Here, we could bound #{x ∈ Fn
p : f(x) = g(x) = 0} by O(pn−1) due to the fact that

sp(f (0), g(0)) = n − 2 =⇒ f �≡ 0 or g �≡ 0.

Hence, we have shown that when f (0), g(0) intersect improperly, we have

|Σ1| 
 p2D(p) ≤ p1+n/2D(p),

provided that n ≥ 2, as required. Therefore, we may conclude that for a general p (irrespective
of whether or not the intersection is proper)

S(p, m) ≤ C(n)p1+n/2+εD(p)(p, Φ(m))1/2,

where C is some constant. Finally, by Lemma 5.4, we have

S(b1, m) =
∏
p|b1

S(p, cpm)

≤ C(n)d(b1)b
1+n/2+ε
1 D(b1)

∏
p|b1

(p, Φ(cpm))1/2

= C(n)d(b1)b
1+n/2+ε
1 D(b1)(b1, Φ(m))1/2,

where d(b1) := #{p | b1} is the divisor function of b1. We could replace (p, Φ(cpm)) with
(b1, Φ(m)) because Φ is homogeneous and (p, cp) = 1. All that is left to do is show that C(n)d(b1)

does not contribute more than O(P ε). To see this, we note that d(b1) 
 log(b1)/ log log(b1).
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Hence, there is some constant d such that

C(n)d(b1) ≤ C(n)d log(b1)/ log log(b1) 
 b
d log(C(n))/ log log(b1)
1 
 bε

1

provided that b1 �ε 1. We automatically have d(b1) 
 1 if b1 �� 1, so we get cd(b1) 
 1 
 bε
1 in

that case. Hence, we may conclude that Proposition 5.5 is true. We will bound the C(n) term
in future lemmas by bε

1 without further comment. �

We also must consider when n = 1. In this case, it is sufficient for us to use a weaker bound
than [MV19, Lemma 5.5]. We will show the following.

Proposition 5.6. Let f, g ∈ Z[x] be quadratic polynomials and let b1 be a square-free integer.
Then

S(b1, m) 
 b2+ε
1 D(b1).

Proof. The proof of Proposition 5.6 is almost trivial. We start by applying Lemma 5.4 so that
we may consider S(p; cm) for some p � c. We note that

|Σ1| = p2#{x mod p : f(x) ≡ g(x) ≡ 0 mod p} 
 p2(p, Cont(f), Cont(g)),

and we trivially have |Σ4| ≤ p. Hence, by (5.4) and noting that (p, Cont(f), Cont(g)) ≤
(p, Cont(f (0)), Cont(g(0))):

|S(p; cm)| ≤ |Σ1| + |Σ4| 
 p2D(p),

and so

|S(b1; m)| 
 b2+ε
1 D(b1)

for any m ∈ Z. �

5.2 Square-full bound
In this section, we will derive the bound which will be used when q is square-full. When q is
square-full, we give up on saving q over the a sum, and instead start with the bound

|S(q; m)| ≤
q∑∗

a

|S(a, q; m)|, (5.16)

where f, g are quadratic polynomials, and

S(a, q; m) :=
∑

x mod q

eq(a1f(x) + a2g(x) + m · x).

For a fixed value of a, the exponential sum S(a, q; m) is a standard quadratic exponential sum
with leading quadratic part defined by the matrix

M(a) := M := a1M1 + a2M2. (5.17)

We will assume further that 2 | (Cont(f (0)), Cont(g(0))) so that M(a) ∈ Mn(Z) for every a.

Remark 5.7. In the broader context of the argument that we are building, the reason why we may
assume that 2 | (Cont(f (0)), Cont(g(0))) is due to Remark 3.1: if the coefficients of our original
cubic forms in § 3 are divisible by 2, then the coefficients of the differenced quadratic polynomials
coming from § 4 must also be divisible by 2.
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A standard squaring argument as obtained in [Vis23, Lemma 2.5], for example, readily hands
us a bound

|S(a, q; m)| 
 qn/2#Nullq(M)1/2, (5.18)

where #Nullq(M) denotes the number of solutions of the equation Mx ≡ 0 mod q as defined
in (2.14). To estimate this, we will resort to using a Smith normal form of the matrix M . The
Smith normal form of M hands us invertible integer matrices S and T be with determinant ±1
such that

SMT = Smith(M) =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
0 λ2 0 · · · 0

0 0
. . .

...
...

...
. . .

0 0 · · · λn

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mn(Z), (5.19)

where λ1 | λ2 | · · · | λn. Since the forms f (0) and g(0) are assumed to be arbitrary for now, it is
easy to conclude that

|S(a, q; m)| 
 qn/2
n∏

i=1

λ
1/2
q,i , (5.20)

where
λq,i := (q, λi). (5.21)

Remark 5.8. Recall that we aim to finally substitute f = Fh and g = Gh. Note that the extra fac-
tor appearing on the right-hand side of (5.20) is a generalisation of the factor D(b1)1/2 appearing
in Proposition 5.5. This is a drawback of van der Corput differencing that although one starts
with a nice pair of forms F and G, one ends up with exponential sums of differenced polynomials
Fh and Gh, which can be highly singular modulo q. If q = p for some prime p, if the singular
locus sp as defined in (5.2) is large, then this gives restrictions on the vector h mod p. When � is
small, the extra factors appearing can be compensated from the corresponding bounds on the h
sum. However, in the case at hand, when q = p for a large �, we cannot rule out the possibility
that for many h, there may exist a large q such that the factor

∏n
i=1 λ

1/2
q,i is as large as qn/2. This

complication arises partly due to the simplicity of the quadratic exponential sums appearing.
However, later we would need to average the sums over various |m − m0| ≤ V . We will aim to
salvage some of this loss by gaining a congruence condition on m instead and saving from the
sum over m. This idea partly has already featured in Vishe’s work [Vis23, Lemma 6.4]. However,
in [Vis23], the authors are dealing with fixed f and g, which is not the case here.

Our main goal here is to prove the following result.

Proposition 5.9. Let a ∈ Z2 and q ∈ N be such that (a, q) = 1, let m ∈ Zn and let f, g be
quadratic polynomials such that 2 | (Cont(f (0)), Cont(g(0))). Furthermore, let

(a1f + a2g)(x) = xtMx + b · x + c. (5.22)

Then

|S(a, q; m)| ≤ 2n/2qn/2#Nullq(M)1/2Δq(m + b),

where

Δq(m) := ΔT,q(m) :=

{
1 if λq,i | (T tm)i for 1 ≤ i ≤ n,

0 else.
(5.23)
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Here, T is the matrix appearing in the Smith normal form of M in (5.19), the λq,i are defined
in (5.21) and given a vector v, (v)i denotes its ith component.

Proof. To estimate |S(a, q; m)|, we begin by working with its square:

|S(a, q; m)|2 =
∑

x,y mod q

eq((a1f + a2g)(x) + m · x)eq((a1f + a2g)(y) + m · y)

=
∑

x,y mod q

eq(xtMx − ytMy + (m + b) · (x − y)).

We will now change order of summation by setting x = y + z. Then

|S(a, q; m)|2 =
∑

y,z mod q

eq(ztMz + (m + b) · z + 2ytMz)

=
∑

z mod q

eq(ztMz + m′ · z)
∑

y mod q

eq(y · 2Mz),

where m′ = m + b. Therefore,

|S(a, q; m)|2 = qn
∑

z mod q

eq(ztMz + m′ · z)δ2M (z), (5.24)

where

δM (z) :=

{
1 if Mz ≡ 0 mod q,

0 otherwise.
(5.25)

The ‘2’ appearing in δ2M (z) gives rise to some minor technical difficulties in the case when q is
even. Therefore, we will start by first considering the case when q is odd.

5.2.1 Case: q odd. In this case, δ2M (z) = 1 if and only if Mz ≡ 0 mod q, and so we may
replace δ2M (z) in (5.24) by δM (z). Furthermore, we note that Mz ≡ 0 mod q implies that
ztMz ≡ 0 mod q. Hence, (5.24) simplifies as

|S(a, q; m)|2 = qn
∑

z mod q

eq(m′ · z)δM (z). (5.26)

Now, M has a Smith normal form Smith(M) := SMT , for some matrices S, T ∈ SLn(Z). In
particular, matrices S and T are invertible modulo q, for any q ∈ N.

First, we note that
δM = δSM .

Therefore, on using the substitution z �→ T−1z, (5.24) becomes

|S(a, q; m)|2 = qn
∑

z mod q

eq(m′ · Tz)δSMT (z), (5.27)

since δSM (Tz) = δSMT (z) by (5.25). We will now work towards determining which z make
δSMT (z) non-zero. By definition, δSMT (z) �= 0 if and only if

SMTz ≡ 0 mod q,

or, equivalently,

z ∈ Nullq(SMT ) := {x ∈ (Z/qZ)n | SMTx ≡ 0 mod q}.
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Hence, we may simplify (5.27) as follows:

|S(a, q; m)|2 = qn
∑

z∈Nullq(SMT )

eq(m′ · Tz)

= qn
∑

z∈Nullq(SMT )

eq(z · T tm′), (5.28)

where T t is the transpose of T . This is true because

m′ · Tz = (Tz)tm′ = ztT tm′ = z · T tm′.

We now turn our attention to the structure of the Nullq(SMT ). Since S and T are defined to
be the unique matrices (up to units) such that SMT = Smith(M), it is quite easy to determine
precisely when z ∈ Nullq(SMT ). Therefore, SMTz ≡ 0 mod q if and only if

q

λq,i

∣∣∣∣zi (5.29)

for every i ∈ {1, . . . , n}. Therefore,

#Nullq(SMT ) =
n∏

i=1

λq,i. (5.30)

Hence, by (5.21) and (5.28)–(5.29), we have the following:

|S(a, q; m)|2 = qn
n∏

i=1

∑
(q/λq,i)|zi

eq(zi(T tm′)i) = qn
n∏

i=1

λq,i∑
xi=1

eλq,i(xi(T tm′)i) = qn
n∏

i=1

λq,iδq,i(m′),

(5.31)
where

δq,i(u) :=

{
1 if λq,i | (T tu)i,

0 otherwise,
(5.32)

and (v)i is the ith component of vector v. Therefore, by (5.30) and (5.31):

|S(a, q; m)|2 = qn#Nullq(SMT )
n∏

i=1

δq,i(m′).

Finally, it is easy to check that

#Nullq(SMT ) = #Nullq(M),

since S and T are both invertible over Z/qZ and, therefore, in this case we establish

|S(a, q; m)| = qn/2#Nullq(M)1/2Δq(m + b),

which clearly suffices.

5.2.2 Case: q even. We now turn to the case where q is even. In this case, the above argument
needs to be modified due to not being able to directly replace the condition δ2M (z) with δM (z)
in (5.24). Instead, we note that δ2M (z) �= 0 if and only if Mz ≡ 0 mod q/2. In particular, there
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must be some c ∈ {0, 1}n such that

Mz ≡ q

2
c mod q.

Therefore, if we let

Nc,q(M) :=
{

x mod q : Mx ≡ q

2
c mod q

}
,

then δ2M(z) �= 0 if and only if z ∈ Nc,q for some c. Hence, we may rewrite (5.24) as follows:

|S(a, q; m)|2 = qn
∑

c∈{0,1}n

∑
z∈Nc,q(M)

eq(ztMz + m′ · z). (5.33)

We now wish to write Nc,q in terms of Nullq(M) as this will enable us to use the arguments
discussed in the odd case. To do this, we invoke Lemma 2.6 to see that either Nc,q = ∅ or there
exists some y

c
∈ (Z/qZ)n such that

Nc,q = y
c
+ Nullq(M).

Hence,

|S(a, q; m)|2 = qn
∑

c∈{0,1}n

Nc,q(M) �=∅

∑
z∈y

c
+Nullq(M)

eq(ztMz + m′ · z)

= qn
∑

c∈{0,1}n

Nc,q(M) �=∅

∑
z∈Nullq(M)

eq([yc
+ z]tM [y

c
+ z] + m′ · [y

c
+ z])

= qn
∑

c∈{0,1}n

Nc,q(M) �=∅

eq(yt
c
My

c
+ m′ · y

c
)

∑
z∈Nullq(M)

eq((z + 2y
c
)tMz + m′ · z)

≤ qn
∑

c∈{0,1}n

∣∣∣∣ ∑
z∈Nullq(M)

eq((z + 2y
c
)tMz + m′ · z)

∣∣∣∣. (5.34)

Finally, we note that Mz ≡ 0 mod q since z ∈ Nullq(M), and so by (5.34), we have the following:

|S(a, q; m)|2 ≤ qn
∑

c∈{0,1}n

∣∣∣∣ ∑
z∈Nullq(M)

eq(m′ · z)
∣∣∣∣

= 2nqn

∣∣∣∣ ∑
z mod q

eq(m′ · z)δM (z)
∣∣∣∣.

This is precisely (5.26) with an extra factor of 2n and some absolute value signs around the sum
(which are irrelevant). We may therefore repeat the arguments in the q odd case which follow
from (5.26) to establish Proposition 5.9. �

5.2.3 Special case: n = 1. We will now briefly consider the case when n = 1, as we will need
to deal with this case separately later. The arguments used above are still valid in this case,
but the bound that we get is simpler due to the matrix, M , becoming an integer. In particular,
Proposition 5.9 becomes the following.
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Proposition 5.10. Let a ∈ Z2 and q ∈ N be such that (a, q) = 1, let m ∈ Z and let f, g ∈ Z[x]
be quadratic polynomials such that 2 | (Cont(f (0)), Cont(g(0))). Let

(a1f + a2g)(x) = Mx2 + bx + c. (5.35)

Then

|S(a, q; m)| ≤ 21/2q1/2(q, M)1/2Δ′
q(m + b),

where

Δ′
q(m) :=

{
1 if (q, M) | m,

0 otherwise.
(5.36)

We will use Propositions 5.9 and 5.10 directly in our future treatment of the cube-full part
of S(q3; m) (see (5.12)) in order to get additional saving over the m sum. For the perfect square
part, b2, however, we will derive a slightly weaker bound from this which will be used to get
saving over the h sum later on in the argument.

5.3 Cube-free square exponential sums
In this section, we will assume that q = b2 or, equivalently, that q is a cube-free square. In this
case, we will give up on the potential saving we could attain via the m sum from the Δq(m′)
term in Proposition 5.9, and bound #Nullq(M(a))1/2 in terms of the singular locus of f (0), g(0),
where M(a) is defined as in (5.22). In this special case, we will need to obtain a pointwise saving
over the a sum in order for our bound to be useful. We will start with the case when n ≥ 2.
Upon letting b2 = c2, by Proposition 5.9, Lemmas 2.4–2.5 and (5.16) we have

|S(b2, m)| 

b2∑∗

a

|S(a, b2; m)| 
 b
n/2
2

b2∑∗

a

#Nullc2(M(a))1/2 
 b
n/2
2

b2∑∗

a

#Nullc(M(a))


 b
2+n/2
2 csp+1 = b

2+n/2
2

∏
p2|q

p prime

psp+1 = b
2+n/2
2 D(b2). (5.37)

When n = 1, we have M(a) = a1df + a2dg for some constants df , dg. By Proposition 5.10,

|S(p2, m)| 
 p
∑∗

a mod p2

(p2, M(a))1/2 
 p
∑∗

a mod p2

(p, a1df + a2dg)

= p

( ∑∗

a mod p2

p|a1df+a2dg

p +
∑∗

a mod p2

p�a1df+a2dg

1
)

≤
{

2p5 if (df , dg, p) = 1,

p6 otherwise.
(5.38)

Hence, upon recalling (5.4), we may bound (5.38) by

|S(p2, m)| 
 p5D(p).

We may then use the multiplicativity relation in Lemma 5.4 to get

|S(b2, m)| 
 b
2+1/2+ε
2 D(b2).

Combining this with (5.37) gives us the following.
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Proposition 5.11. Let b2 ∈ N be a cube-free square. Then

S(b2, m) 
 b
2+n/2+ε
2 D(b2).

6. Quadratic exponential sums: finalisation

In this section, we will combine all of the bounds we have found in § 5 to reach our final estimate
for T (q, z). Recall that Proposition 5.3 hands us

|T (q, z)| 
 1 + q−nPn sup
y∈P Supp(ω)

{ ∑
|m−m0(y)|≤V

|S(q; m)|
}

. (6.1)

In the last section, we focused on getting bounds for individual exponential sums |S(q; m)|.
We begin by considering averages of exponential sums. Throughout, let m0 be an arbitrary
but fixed vector in Zn and let b(a) = b be defined as in (5.22). For n ≥ 2: by Lemma 5.4 and
Propositions 5.5, 5.9, and 5.11, there are some constants c1, c2, c3 such that (b1, c1) = (b2, c2) =
(q3, c3) = 1, and∑

|m−m0|≤V

|S(q; m)| ≤
∑

|m−m0|≤V

|S(b1; c1m)| · |S(b2; c2m)| · |S(q3; c3m)|


 qn/2+εb1b
2
2D(b1b2)

∑
|m−m0(m0)|≤V

(Φ(c1m), b1)1/2

×
q3∑∗

a

#Nullq3(a1M1 + a2M2)1/2ΔT,q3(c3m + b)

:= qn/2+εb1b
2
2D(b1b2)

q3∑∗

a

#Nullq3(M(a))1/2B(b1, q3, V ; m0), (6.2)

where M(a) be as in (5.17) and

B(b1, q3, V ; m0) :=
∑

|m−m0|≤V

(Φ(m), b1)1/2 · ΔT,q3(m + b′), (6.3)

where b′ ≡ c−1
3 b mod q3. We used (Φ(m), b1) instead of (Φ(c1m), b1) in the definition of

B(b1, q3, V ; m0) because Φ is homogeneous and (b1, c1) = 1. Likewise, by inspecting the definition
of Δ, we can use ΔT,q3(m + b′) in the definition of B(b1, q3, V ; m0) instead of ΔT,q3(c3m + b)
since we can ‘divide through’ by c3, as (c3, q3) = 1 (in particular, (c3, λ) = 1 for any divisor, λ,
of q3).

The first and most difficult task for this section is to bound B(b1, q3, V ; m0). This will be
quite a delicate task since we need to save over the m sum in two different ways, simultaneously.
The following lemma will provide our main estimate for this sum.

Lemma 6.1. Let b1, q3, V ∈ N and m0 ∈ Zn. Furthermore, let c and q3 be defined as follows:

q̂3 :=
∏

pe||q3

2�e

p, q3 = c2q̂3. (6.4)

Then

B(b1, q3, V ; m0) 
 bε
1(b

1/2
1 cn/2 + V n−1b

1/2
1 c1/2 + V n)#Nullc(M(a))−1.
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Proof. We begin by noting that

(T tx)i ≡ 0 mod (q3, λi) =⇒ (T tx)i ≡ 0 mod (c, λi),

and so by the definition of ΔT,q3 (5.23) we clearly have that

ΔT,q3(x) = 1 =⇒ ΔT,c(x) = 1,

for any x ∈ Zn. Therefore, since we are looking for an upper bound of B(b1, q3, V ; m0), we may
replace ΔT,q3(m + b′) in (6.3) with ΔT,c(m + b′). Furthermore, since all elements of our sum are
non-negative, we may extend the sum in (6.3) if we wish. In particular, the following bound must
be true:

B(b1, q3, V ; m0) ≤
∑

|m−m0|≤V̂

(Φ(m), b1)1/2 · ΔT,c(m + b′), (6.5)

where

V̂ := max{V, c}. (6.6)

We have extended the sum up to V̂ so that we can consider complete sums modulo c, as this will
make it easier to acquire saving from ΔT,c later. To this end, let m := m0 + m1 + cm2, where
m1 ∈ (Z/cZ)n and |m2| ≤ V̂ /c. Applying this decomposition on the right-hand side of (6.5) gives

B(b1, q3, V ; m0) ≤
∑

m1 mod c

∑
|m2|≤V̂ /c

(Φ(m0 + m1 + cm2), b1)1/2ΔT,c(m0 + m1 + cm2 + b′)

=
∑

m1 mod c

ΔT,c(m0 + m1 + b′)
∑

m2∈U(m1)

(Φ(m0 + m1 + cm2), b1)1/2. (6.7)

The upshot of reordering our sum in this way is that we have managed to separate ΔT,c(m0 +
m1 + b′) and (Φ(m0 + m1 + cm2), b1)1/2. In particular, we can treat m1 as fixed for now,
and since m0 and c are also fixed, we may focus on acquiring saving in the m2 sum via
(Φc,m1

(m2), b1)1/2, where

Φc,m0,m1
(m2) := Φ(m0 + m1 + cm2).

We observe that (Φc,m0,m1
(m2), b1) must be equal to some divisor of b1, so we will decompose

the m2 sum as follows:∑
|m2|≤V̂ /c

(Φ(m0 + m1 + cm2), b1)1/2 =
∑
d|b1

d1/2#{|x| ≤ V̂ /c : Φ(m0 + m1 + cx) ≡ 0 mod d}.

(6.8)
We now aim to use [BH09, Lemma 4] to bound the right-hand side. Since Φ is homogeneous
with Cont(Φ) = 1 by Proposition 5.5, and since c and d are co-prime, we have that(

Cont
(
Φc,m0,m1

)
, d
) ≤ (Cont

(
Φ(0)

c,m0,m1

)
, d
) ≤ (cdeg(Φ)Cont(Φ), d) = (cdeg(Φ), d) = 1.

Hence, for every prime p dividing d, Φ(m0 + m1 + cx) is a non-trivial polynomial and therefore
the corresponding variety is of dimension n − 1. Therefore, we may now use [BH09, Lemma 4]
to conclude that

#{|x| ≤ V̂ /c : Φ(m0 + m1 + cx) ≡ 0 mod d} 
 1 +
(

V

c

)n−1

+
(

V

c

)n

d−1.
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Substituting this back into (6.8) gives the following:

∑
|m2|≤V̂ /c

(Φ(m0 + m1 + cm2), b1)1/2 

∑
d|b1

d1/2 +
(

V

c

)n−1

d1/2 +
(

V

c

)n

d−1/2


 bε
1

(
b
1/2
1 +

(
V

c

)n−1

b
1/2
1 +

(
V

c

)n)
. (6.9)

This, in turn, will enable us to find a suitable bound for B(b1, q2, V ; m0). By (6.7) and (6.9), we
have

B(b1, q3, V ; m0) 
 bε
1

(
b
1/2
1 +

(
V

c

)n−1

b
1/2
1 +

(
V

c

)n) ∑
x mod c

ΔT,c(x + m0 + b′). (6.10)

In order to find the bound we desire for B(b1, q3, V ; m0), we will need to turn our attention to
the sum of type ∑

x mod c

ΔT,c(x + l),

for some fixed l ∈ Zn. Our bound here will be independent of the choice of the vector l. This
sum is much easier to handle since we have a complete sum at hand. It is easy to check from the
definition of ΔT,c(x + l) (and the fact that det(T t) = 1) that∑

x mod c

ΔT,c(x + l) = #{x mod c : (T tx)i ≡ −(T tl)i mod λc,i, i ∈ {1, . . . , n}}

≤ #{x mod c : (T tx)i ≡ 0 mod λc,i, i ∈ {1, . . . , n}}
= #{x mod c : xi ≡ 0 mod λc,i, i ∈ {1, . . . , n}}

=
cn∏
i λc,i

= cn#Nullc(M(a))−1.

Therefore, by (6.10), we have

B(b1, q3, V ; m0) ≤ bε
1(b

1/2
1 cn + V n−1b

1/2
1 c + V n)#Nullc(M(a))−1, (6.11)

as required. �
We are now ready to obtain a final bound for

∑
|m−m0|≤V |S(q; m)|. Before substituting (6.11)

back into (6.2), we will perform some simplifications. First, we note that by (6.4) and Lemma 2.4,
we have

#Nullq3(M(a))1/2 ≤ #Nullc(M(a))#Nullq̂3(M(a))1/2. (6.12)

Furthermore, by Lemma 2.5, we have
q3∑∗

a

#Nullq̂3(M(a))1/2 ≤
q3∑∗

a

#Nullq̂3(M(a)) 
 q2+ε
3

∏
pi|q̂3

p
spi (f

(0),g(0))+1
i = q2+ε

3 D(q̂3). (6.13)

Finally, by combining (6.11)–(6.13) with (6.2), we arrive at the following bound.

Lemma 6.2. For every q ∈ N, if n > 1, then∑
|m−m0|≤V

|S(q; m)| 
 q1+n/2+εb2q3D(b1b2q̂3)(b
1/2
1 cn + V n−1b

1/2
1 c + V n),

where q3 = c2q̂3 as defined in the statement of Lemma 6.1.
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Recall that our ultimate goal was to find a suitable bound for |T (q, z)|. Upon noting that
the above treatment of

∑
|m−m0|≤V |S(q; m)| works for any value of y ∈ P Supp(ω) we may now

substitute the bound in Lemma 6.2 into (6.1) to get the following bound for T (q, z):

|T (q, z)| 
 1 + Pnq1−n/2+εb
1/2
1 b2q3D(b1b2q̂3)(V nb

−1/2
1 + V n−1c + cn).

If q is sufficiently small (q < P 2 say), then the right-hand term dominates over 1 for every n ≥ 1.
Therefore, we finally reach the following bound for |T (q, z)|:

|T (q, z)| 
 Pnq1−n/2+εb
1/2
1 b2q3D(b1b2q̂3)(V nb

−1/2
1 + V n−1c + cn),

where q3 = c2q̂3 as defined in Lemma 6.1. Note that if we use a weaker bound c ≤ b
1/3
3 q

1/2
4 and

D(q̂3) ≤ D(q3), and use the quality q3 = b3q4, where b3 is the fourth power-free cube part of q
and qi is the ith power-full part of q, the above bound becomes the following.

Proposition 6.3. For every q = b1b2q3 < P 2, z and every ε > 0, if n > 1, we have

|T (q, z)| 
 Pnq1−n/2+εb
1/2
1 b2q3D(q)(V nb

−1/2
1 + V n−1b

1/3
3 q

1/2
4 + b

n/3
3 q

n/2
4 ),

where n is the number of variables of f, g.

The bound for the n = 1 case is much simpler to derive than in the n > 1 case. By Lemma 5.4
and Propositions 5.6, 5.10 and 5.11, we have

∑
|m−m0|≤V

|S(q; m)| 
 q1/2+εb
3/2
1 b2

2D(b1b2)
q3∑∗

a

(q3, M(a))1/2
∑

|m−m0|≤V

Δ′
q3

(c3m + b)

≤ q1/2+εb
3/2
1 b2

2D(b1b2)
q3∑∗

a

(q3, M(a))1/2

(
1 +

V

(q3, M(a))

)

≤ q1/2+εb
3/2
1 b2

2D(b1b2)
q3∑∗

a

((q3, M(a))1/2 + V ). (6.14)

We trivially have
∑

a V ≤ q2
3V . As for the other part of the sum, upon recalling that q3 = q̂3c

2,
we have

q3∑∗

a

(q3, M(a))1/2 ≤ c

q3∑∗

a

(q̂3, M(a))1/2 ≤ c5

q̂3∑∗

a

(q̂3, M(a))1/2 
 q2
3cD(q̂3) ≤ q2

3cD(q3),

by the same argument as the proof of Proposition 5.11. Combining this with (6.14) gives the
following result.

Lemma 6.4. Let q = b1b2q3 ∈ N, m ∈ Z and q3 := c2q̂3 be defined as in Lemma 6.1. Then for
every ε > 0, ∑

|m−m0|≤V

|S(q; m)| 
 q2+ε(b2q3)1/2D(q)(V + c).

Finally, upon recalling that q3 = b3q4, c ≤ b
1/3
3 q

1/2
4 , we may combine this lemma with (6.1)

to get our final bound for |T (q, z)| in the n = 1 case.

Proposition 6.5. For every q < P 2, z and every ε > 0, if n = 1, we have

|T (q, z)| 
 Pq1+ε(b2q3)1/2D(q)(V + b
1/3
3 q

1/2
4 ),

where n is the number of variables of f, g.
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7. Finalisation of the Poisson bound

In this section, we will adapt the arguments used in [BH09, Section 7] and [MV19, Section 8] to
our context in order to finalise our main bounds coming from Poisson summation. Throughout
this section, we treat z as fixed. Lemmas 4.1 and 4.5 allow us to consider bounding the sum∑

|h|
H

|Th(q, z)|,

where

Th(q, z) :=
∑∗

a mod q

∑
x∈Zn

ωh(x/P )e((a1/q + z1)Fh(x) + (a2/q + z2)Gh(x)),

is the quadratic exponential sum as defined in (4.5). We may therefore apply our bounds for
quadratic exponential sums in Propositions 6.3 and 6.5 to estimate these.

Now that h is allowed to vary, we will define

sp(h) := sp

(
F

(0)
h , G

(0)
h

)
, (7.1)

where F
(0)
h and G

(0)
h denote the leading quadratic parts of Fh and Gh, respectively. We recall

that q = b1b2q3, where q3 is the cube-full part of q, and b1, b2 are the square-free and cube-free
square parts of q. Since we are fixing q for now, b1, b2 and q3 are also fixed. Recall that we may
write bi = bi,0bi,1 · · · bi,n, q3 = q3,0q3,1 · · · q3,n where bi,j , and q3,j now depend on h and are defined
to be

bi,j(h) =
∏
pi||bi

sp(h)=j−1

pi, q3,j(h) =
∏

pe||q3

sp(h)=j−1

pe.

We see that for any q fixed, there are at most O(qε) = O(P ε) possible choices for

c = (b1,0, . . . , b1,n, b2,0, . . . , b2,n, q3,0, . . . , q3,n)

since there are only at most O(qε) partitions of q into multiplicative factors. Therefore, using
the triangle inequality, we have that∑

h
H

|Th(q, z)| ≤ P ε max
c

{ ∑
h

c(h)=c

|Th(q, z)|
}

= P ε
∑

h
c(h)=c′

|Th(q, z)|

for some particular c′, and c(h) := (b1,0(h), . . . , q3,n(h)). We can then decompose this sum further
by grouping the h with s∞(h) = s:

=⇒
∑
h
H

|Th(q, z)| ≤ P ε
n−1∑

s=−1

∑
h∈Hs

|Th(q, z)|, (7.2)

where

Hs := {h ∈ Zn : h 
 H, c′(h) = c′, s∞(h) = s}. (7.3)

Here, given ν either a prime or ∞, we define

sν(h) = sν(F
(0)
h , G

(0)
h ). (7.4)

We now aim to estimate the size of Hs. We start by noting that we must have that Hs = ∅ unless
b1,i = b2,i = q3,i = 1 for i ≤ s. This is because sp(h) ≥ s∞(h) for every p. To get a bound on #Hs
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we will start by constructing a set which contains Hs that is easier to work with. Let

Vν,i := {h ∈ An
Fν

| sν(h) ≥ i − 1}.
Then, upon defining [h]p to be the reduction modulo p of a point h ∈ Zn, we have (possibly up
to multiplying H by a constant)

Hs ⊂ {h ∈ V∞,s+1 ∩ [ − H, H]n|[h]p ∈ Vp,i for all p|b1,ib2,iq3,i}. (7.5)

In order to bound this larger set, we will need the following lemma, which is analogous to [MV19,
Lemma 8.2].

Lemma 7.1. Let F , G be a pair of forms of degree d1, d2, and define σ := s∞(F, G). Then there
is an absolute constant C such that

dim(Vν,i) ≤ min{n, n + σ + 1 − i}
as long as ν = p > C or ν = ∞.

Proof. We prove this result for any pair of forms instead of two cubics as it does not change the
argument. Since

sν(F
(0)
h , G

(0)
h )

= dim

({
x ∈ Pn−1

Fν
|h · ∇F (0)(x) = h · ∇G(0)(x) = 0, Rank

(
h · ∇2F (0)(x)
h · ∇2G(0)(x)

)
< 2

})
,

we can use [Mar08, Lemma 2.9(ii)] to conclude that dim(Vν,i) ≤ min{n, n + σ + 1 − i}, provided
that ν = p �d1,d2 1. Therefore, we only need to check V∞,i. We will use a slight modification to
the argument used in [BH09, Lemma 1] in order to show that dim(V∞,i) ≤ min{n, n + σ + 1 − i}.
Let

U(F, G) = U :=
{

(x, y) ∈ A2n
Q | y · ∇F (x) = y · ∇G(x) = 0, Rank

(
y · ∇2F (x)
y · ∇2G(x)

)
< 2
}

,

for F, G homogeneous forms of degree 3, and let D := {(x, y) ∈ A2n
Q | x = y}. Then by the affine

dimension theorem, we have that

dim(U) ≤ dim(U ∩ D) − dim(D) + 2n = dim(U ∩ D) + n. (7.6)

Next, we note that

U ∩ D =
{

x ∈ An
Q |x · ∇F (x) = x · ∇G(x) = 0, Rank

(∇(x · ∇F (x))
∇(x · ∇G(x))

)
< 2
}

=
{

x ∈ An
Q |F (x) = G(x) = 0, Rank

(∇F (x)
∇G(x)

)
< 2
}

,

by Euler’s identity. Hence, we have

dim(U ∩ D) = σ + 1,

and so by (7.6) we have

dim(U) ≤ n + σ + 1. (7.7)

Finally, we let F = F (0), G = G(0). If

dim(V∞,i) > n + σ + 1 − i,
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then, by definition, we have that

dim
({

(x, h) ∈ A2n
Q | s∞

(
F

(0)
h , G

(0)
h

) ≥ i − 1, x ∈ s∞
(
F

(0)
h , G

(0)
h

)})
> (n + σ + 1 − i) + i

= n + σ + 1.

It is easy to check that{
(x, h) ∈ A2n

Q | s∞
(
F

(0)
h , G

(0)
h

) ≥ i − 1, x ∈ s∞
(
F

(0)
h , G

(0)
h

)} ⊂ U((F (0), G(0))),

and so

dim(U(F (0), G(0))) > n + σ + 1.

This contradicts (7.7). Hence, dim(V∞,i) ≤ n + σ + 1 − i as required. �

We can now use (7.5) and the argument found in [BH09, Section 7] and upon further setting
σ = −1 in the bounds in [BH09], we get the following upper bound for #H:

#Hs 
 qε max
s+1≤η≤n

Hn−η∏n
i=η+1(b1,ib

1/2
2,i q̃3,i)i−η

, (7.8)

where

q̃3,i :=
∏
p|q3

sp(h)=i−1

p.

For convenience, set

Us :=
∑

h∈Hs

Th(q, z), (7.9)

(recall that
∑

h
H Th(q, z) 
 P ε
∑n−1

s=−1 Us by (7.2)). We will use (7.8) to bound Us later, but
for now, we need to find a bound on |Th(q, z)|. To do this we will need to apply the hyperplane
intersections lemma, namely Lemma 2.1 and then apply the bounds found in Propositions 6.3
and 6.5.

Let η be chosen so as to maximise the expression in (7.8). Let Π be the set of primes p|q
so that r = ω(q) where ω(q) denotes the number of distinct prime factors of q, and {F1, F2} =
{F (0)

h , G
(0)
h }. We may now invoke Lemma 2.1 to find a lattice Λη of rank n − η and a basis

e1, . . . , en−η for Λη such that for every t ∈ Zn, the polynomials

F̃h,t(y) := F
(0)
h

(
t +

n−η∑
i=1

yiei

)
, G̃h,t(y) := G

(0)
h

(
t +

n−η∑
i=1

yiei

)

satisfy

sν(F̃h,t, G̃h,t) = max
{−1, sν

(
F

(0)
h , G

(0)
h

)− η
}
, (7.10)

for every ν ∈ {∞} ∪ Πcr. We also note that deg(F̃h,t) = deg(G̃h,t) = 2 (this is necessary in order
to be able to use the bounds from the previous section). In order to apply the bounds found
in the previous section, we must first fix our choice of basis {e1, . . . , en}, and so we will use
the same process as earlier when we fixed (b1,0, . . . , q3,n): we recall that the L used in (2.4)
is of size L = O(r + 1) = O(log(q)). Therefore, there are at most O(log(q)n) choices of basis
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satisfying (2.4), and so by (7.9), and the triangle inequality, there is one such choice for which

Us 
 log(q)n
∑

h∈Hs

′|Th(q, z)| 
 P ε
∑

h∈Hs

′|Th(q, z)|, (7.11)

where
∑′ denotes that the sum is taken over the vectors h in the original sum for which (7.10)

holds for our chosen basis {e1, . . . , en}. For such h, we can now separate the x sum defining
Th(q, z) into cosets t + Λη of Λη, where t runs over some subset Tη ⊂ Zn. All that is left to do is
use Proposition 6.3 (or Proposition 6.5 for η = n − 1) on each coset, and determine the size of
Tη, as this bounds the number of cosets that we have. We claim that if Λη is chosen according to
Lemma 2.1, then #Tη = O(P η). Indeed, consider x in terms of our basis e1, . . . , en, i.e. writing

x =
n∑

i=1

uiei.

Now, if πi denotes the orthogonal projection onto the subspace spanned by the vectors ej , i �= j,
we have

‖x‖ ≥ ‖πix‖ = |ui| · ‖πiei‖ = |ui| |det(Λ)|
|det(Λi)| ,

where Λ ⊂ Zn denotes the full-dimensional lattice spanned by e1, . . . , en and Λi the lattice
spanned by each ej �= ei. Now by (2.4) and (2.5), we get that

|ui| 
 ‖x‖
L

. (7.12)

Therefore, we must have |ui| 
 P since we need ‖x‖ 
 P . Hence, since Λη = 〈e1, . . . , en−η〉, we
may conclude that t is of the form t =

∑n
i=n−η+1 λiei such that |λi| 
 P . We now choose Tη to

be the collection of such t leading us to conclude that #Tη = O(P η).
In order to complete the hyperplane intersections step, we will now define new weight

functions in n − η variables. In particular, upon recalling (4.3), we set

ω̃h,t(y1, . . . , yn−η) := ωh

(
P−1t + L−1

n−η∑
i=1

yiei

)
.

This gives us ∑
h∈Hs

′|Th(q, z)| ≤
∑

h∈Hs

′ ∑
t∈Tη

|Th,t(q, z)|, (7.13)

where

Th,t(q, z) :=
∑∗

a mod q

∑
y∈Zn−η

ω̃h,t(Ly/P )e((a1/q + z1)F̃h,t(y) + (a2/q + z2)G̃h,t(y)). (7.14)

We now need to verify that Th,t(q, z) and ω̃h,t satisfy the various properties that we assumed in
order to acquire the results we have found in the previous sections. First, we refer to the proof
Proposition 2 of [BH09] to see that ω̃h,t ∈ Wn−η for t 
 P , where Wn−η is as defined in and
before (3.13). We also see that

‖F̃h,t‖P/L 
 L2‖Fh‖P 
 P εH‖F‖p 
 P εH,

and similarly ‖G̃h,t‖P/L 
 P εH. Next, we note that η ≥ s + 1, and so we automatically have
s∞(F̃h,t, G̃h,t) = −1. This covers all conditions that we have needed in the previous sections on
exponential sums.
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Therefore, by (7.11), (7.13) and (7.8):

Us 
 P ε
∑

h∈Hs

′ ∑
t∈Tη

|Th,t(q, z)|


 P ε#Hs#Tη max
h∈Hs

′ max
t∈Tη

|Th,t(q, z)|


 max
s+1≤η≤n

P η+εHn−η∏n
i=η+1((b1,ib

1/2
2,i q̃3,i))i−η

· max
h∈Hs

′ max
t∈Tη

Th,t(q, z). (7.15)

Recall that ∑
h
H

Th(q, z) 
 P ε
n−1∑

s=−1

Us 
 P ε max
−1≤s≤n−1

Us. (7.16)

by (7.2) and (7.9). We will therefore be able to attain our final bound for
∑

h
H Th(q, z) if we
can find a bound for Th,t(q, z) by (7.15).

We may use Propositions 6.3 and 6.5 to bound Th,t(q, z) from above when η < n − 1 and
η = n − 1, respectively. When η = n, we may proceed by a much simpler argument to bound
Th,t(q, z). We trivially have

|Th(q, z)| ≤
∑∗

a

∑
y∈Zn

ωh(y/P ) 
 q2Pn,

and by Lemma 7.1 (v = ∞, i = n), we have that

#{h ∈ An
Q | s∞(h) = n − 1} = O(1).

Hence, ∑
h
H

s∞(h)=n−1

|Th(q,z)| 
 q2Pn. (7.17)

Returning to η ≤ n − 1: By (7.10) (and recalling (5.3)), we may use the proof of Proposition 2
from [BH09] to conclude that for every t ∈ Tη, we have

DF̃h,t,G̃h,t
(b1,ib2,iq̃3,i) 
 qε

n∏
i=η+1

(b1,ib
1/2
2,i q̃3,i)i−η,

when η < n − 1. When η = n − 1, (p, Cont(F̃h,t), Cont(G̃h,t)) = p if and only if p|F̃h,t, G̃h,t or
p 
 P ε. In particular, p|b1,nb

1/2
2,n q̃3,n or p 
 P ε � qε, and so we again have

DF̃h,t,G̃h,t
(b1,nb2,nq̃3,n) 
 qεb1,nb

1/2
2,n q̃3,n.

Therefore, by (7.15), (7.16) and Propositions 6.3 and 6.5 and (7.17), we may conclude as follows.

Proposition 7.2. Let q < P 2, and let

Yη :=
Hn−η

q(n−η)/2
b−1
1 (V n−η + V n−η−1b

1/2
1 b

1/3
3 q

1/2
4 + b

1/2
1 b

(n−η)/3
3 q

(n−η)/2
4 ),

for η ∈ {0, . . . , n − 2} and let

Yn−1 :=
H

q1/2
b
−1/2
1 (V + b

1/3
3 q

1/2
4 ).
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Then ∑
h∈Hs

|Th(q, z)| 
 q2Pn+ε

(
1 +

n−1∑
η=0

Yη

)
.

Here,

V = 1 + qP ε−1 max{1, HP 2|z|}1/2.

8. Weyl differencing

In this section, we will derive several auxiliary bounds using Weyl differencing which will serve
as complementary bounds to the more powerful ones coming from van der Corput differencing
and Poisson summation. We will need a bound which uses Weyl differencing twice, as well as
two bounds which come from applying variations of van der Corput differencing once, followed
by a single application of Weyl differencing on the resulting quadratic exponential sum. In the
case of the former, the topic of performing Weyl differencing repeatedly on a system of forms
has already been covered extensively by Lee in the context of function fields [Lee11]. The Weyl
differencing arguments that are used in his paper do not rely on being in a function fields setting,
and so we may freely invoke the results in [Lee11, Section 3]. In particular, upon setting d = 3
and R = 2, an application of [Lee11, Lemma 3.7] gives us

|K(a/q + z)| 
 Pn+ε

(
P−4 + q2|z|2 + q2P−6 + q−1 min

{
1,

1
|z|P 3

})(n−σ′−1)/16

,

where

σ′ = σ′(F (0), G(0)) := dim
{

x ∈ Pn−1
C : Rank

(∇F (0)(x)
∇G(0)(x)

)
< 2
}

, (8.1)

and f (0) and g(0) are defined to be the top forms of F and G, respectively. However, we may use
Lemma 2.3 to conclude that σ′ ≤ σ(f (0), g(0)) + 1. Hence, we arrive at the following.

Proposition 8.1 (Weyl/Weyl). Let F , G be cubic polynomials such that

‖f (0)‖, ‖g(0)‖ � 1,

and σ(F (0), G(0)) = σ. Then,

|K(a/q + z)| 
 Pn+ε

(
P−4 + q2|z|2 + q2P−6 + q−1 min

{
1,

1
|z|P 3

})(n−σ−2)/16

.

We now aim to bound the exponential sum,

T (q, z) :=
∑∗

a

∑
x∈Zn

ω(x/P )e([a1/q + z1]F (x) + [a2/q + z2]G(x))

that we get after performing van der Corput differencing once. In this case, F and G are quadratic
polynomials such that ‖f (0)‖, ‖g(0)‖ 
 H, for some 1 ≤ H ≤ P . The aforementioned work of Lee
has also kept an explicit dependence of the dependence on H throughout the Weyl differencing
process. In particular, the following lemma is a direct consequence of [Lee11, Equation (3.20)].
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Proposition 8.2 (van der Corput/Weyl). Let F , G be quadratic polynomials such that

‖f (0)‖, ‖g(0)‖ ≤ H,

and let σ := σ(f (0), g(0)). Then,

|T (a, q, z)| 
 Pn+ε

(
P−2 + q2H2|z|2 + q2P−4 + q−1H2 min

{
1,

1
H|z|P 2

})(n−σ−2)/4

.

We refer the readers not familiar with the function field version to the first author’s PhD
thesis [Nor00a, Section 6] for a detailed proof of this result.

9. Minor arcs estimate

In this Section, we will combine all of the approaches we have been developing throughout this
paper to finally prove Proposition 3.3. In particular, we aim to show that, provided that F, G
intersect smoothly, and n ≥ 39, we have

Sm = O(Pn−6−δ),

for some δ > 0. To achieve this, we will split the q sum of Sm into square-free, cube-free square,
fourth power-free cube and fourth power-full parts (b1, b2, b3, q4, respectively), and further split
these sums into O(P ε) dyadic ranges. In particular, we will be focusing on the sum

DP (R, t, R) :=
2R1∑

b1=R1

2R2∑
b2=R2

2R3∑
b3=R3

2R4∑
q4=R4

∑∗

a

∫
t
|z|
t

|K(a/q + z)| dz,

where R := (R1, R2, R3, R4) and

q = b1b2b3q4, R < q ≤ 2R, Ri < bi ≤ 2Ri, i ∈ {1, 2, 3}, R4 < q4 ≤ 2R4, (9.1)

(the latter is apparent from the definition of DP (R, t, R), but it will be helpful to be able to
reference this later). From the definition of Sm, we need only consider DP (R, t, R) when

R ≤ Q, R1R2R3R4 � R, 0 ≤ t ≤ (RQ1/2)−1. (9.2)

Likewise, we must also either have

R ≥ PΔ or t ≥ P−3+Δ. (9.3)

Now, upon bounding K(a/q + z) trivially for t ≤ P−5, we see that

Sm 
 P ε max
R,R,t

(9.2),(9.3), t>P−5

DP (R, t, R) + O(Pn−7). (9.4)

Our aim in this section is to show that DP (R, t, R) 
 Pn−6−δ for some δ > 0, as this is sufficient
to bound our minor arcs by Pn−6−δ by (9.4). Note that this is equivalent to proving that

logP (DP (R, t, R)) := BP (φ, τ, φ) ≤ n − 6 − δ, (9.5)

for some δ > 0, and for P sufficiently large (so that the implied constant in (9.4) becomes
negligible), where

φ := logP (R), τ := logP (t), logP (Ri) := φi, i ∈ {1, 2, 3, 4}. (9.6)

Finally, as mentioned in § 3 we will choose

Q � P 3/2,

813

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


M. Northey and P. Vishe

from this point onwards (this choice will be explained in § 9.3.1). With this last bit of setup, we are
now ready to start the process of bounding Sm. We will do this by applying a total of five different
bounds based on different combinations of van der Corput differencing, Weyl differencing and
Poisson summation to bound DP (R, t, R) for different ranges of R and t. In each range, we will
take the minimum of all available bounds. To do so for all possible values of R and t is incredibly
complicated. Therefore, instead of the tedious process of manually comparing and simplifying
these bounds, a route which is traditionally taken, we take the idea of automating this process
as in [MV19] one step further. We will directly feed these bounds into the existing Min-Max
algorithm in Mathematica and obtain an explicit value of the minimum value of our bounds
on the Minor arcs. We have also verified this value using an open-source algorithm [Nor00b]
designed by the first author. In its current form, this algorithm is significantly less efficient than
the inbuilt one in Mathematica, but it allowed the authors to double check the bounds coming
from this inbuilt function.

Throughout this section, we will use the following lemma.

Lemma 9.1. Let q = b1b2 · · · bkqk+1, where bi is the ith power, (i + 1)th powerfree part of q and
let qk+1 be the (k + 1)th power-full part of q. Then

2Ri∑
bi=Ri

i∈{1,..., k}

2Rk+1∑
qk+1=Rk+1

ba1
1 ba2

2 · · · bak
k q

ak+1

3 

k+1∏
i=1

R
ai+1/i
i ,

for every a1, . . . , ak+1 ≥ 0.

The proof of this lemma is standard, and is similar to [BH09, Lemma 20] so we omit it here.
This lemma enables us to get away with using slightly worse exponential sum bounds for the
perfect square and cube-full parts of q (a close inspection of the bounds found in § 5 will show
that our bounds in these cases are indeed worse). We have stated Lemma 9.1 in this level of
generality because it will be useful for us when considering the singular series of the major arcs.
We will spend the remainder of this section finding our final bounds for the minor arcs in the
case when F ,G are non-singular.

9.1 Averaged van der Corput/Poisson
In this section, we will find a bound for BP (φ, τ, φ) := logP (DP (R, t, R)) by combining the
improved averaged van der Corput differencing process with Poisson summation. We will aim
to show that BP (φ, τ, φ) ≤ n − 6 − δ for some δ > 0, provided that n is sufficiently large. By
Lemma 4.5, we have

DP (R, t, R) 
ε,N P−N +
∑

q,(9.1)

H−n/2+1Pn/2−1+εq((HP 2)−1 + t)2

×
(

max
z

∑
|h|
H

|Th(q, z)|
)1/2

, (9.7)

where
t ≤ |z| 
 max{P ε(HP 2)−1, t}. (9.8)

By Proposition 7.2 we have

∑
h
H

|Th(q, z)| 
 q2Pn+ε

{
1 +

n−1∑
η=0

Yη

}
, (9.9)
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where

Yη(q, b1, b3, q4, |z|) :=
Hn−η

q(n−η)/2
b−1
1 (V n−η + b

1/2
1 b

1/3
3 q

1/2
4 V n−η−1 + b

1/2
1 b

(n−η)/3
3 q

(n−η)/2
4 ) (9.10)

for η ∈ {0, . . . , n − 2},
Yn−1 :=

H

q1/2
b−1
1 (b1/2

1 V + b
1/2
1 b

1/3
3 q

1/2
4 ), (9.11)

and by (5.9),
V (q, |z|) := 1 + qP ε−1 max{1,

√
HP 2|z|}. (9.12)

Up until now, we have assumed that 1 ≤ H 
 P was some arbitrary parameter (coming from
the van der Corput differencing process) which we could choose freely. However, we did not
explicitly make this choice due to our arguments in the previous sections being valid for any
such H. From this point onward, the choice of H becomes relevant for our bounds so we will
define H as follows:

H(q) := max{P 10/(n−2)+ε′ , P 2/(n+2)+ε′q6/(n+2)}. (9.13)

Our choice of H is informed by the fact that we desire H to be as small as possible in order to
minimise the size of Y0 in (9.9) whilst also making H large enough to suppress the contribution
coming from the ‘1’ term in (9.9) (note the large negative power of H in (9.7)). This is the ideal
way to choose H due to Lemma 9.2, which we will see later.

We will now continue the bounding process. We first recall that |z| 
 max{P ε(HP 2)−1, t}
by (9.8) and note that V (q, |z|) 
 V (q, t) (up to a relabeling of ε) in the range of z that we have.
This is because by (9.12)

V (q, |z|) = 1 + qP ε−1 max{1,
√

HP 2|z|} 
 1 + qP ε−1 max{1,
√

HP 2 · P ε(HP 2)−1,
√

HP 2t}

 1 + qP 2ε−1 max{1,

√
HP 2t}

= V (q, t). (9.14)

Hence, by (9.7) (assuming N is chosen sufficiently large):

DP (R, t, R) 

∑

q,(9.1)

H−n/2+1Pn−1+εq2((HP 2)−1 + t)2
(

1 +
n−1∑
η=0

Yη(q, b1, b3, q4, t)
)1/2


 Pn−1+ε
2Ri∑

bi=Ri
i∈{1,2,3}

2R4∑
q4=R4

R2H−n/2+1((HP 2)−1 + t)2(1 + Y0 + · · · + Yn−1)1/2 (9.15)


 Pn−1+εRR
1/2
1 R2H−n/2+1((HP 2)−1 + t)2(1 + Y0 + · · · + Yn−1)1/2, (9.16)

where R := R
1/2
1 R

1/2
2 R

1/3
3 R

1/4
4 , H = H(R), V = V (R, t) and Yi = Yi(R, R1, R3, R4, t) in

(9.15)–(9.16). For the most part, we will continue to use H, V and Yi instead of H(R), V (R, t)
and Yi(R, R1, R3, R4, t) to avoid making the algebra more complicated than it already is. The
final assertion is by Lemma 9.1.

We will start by simplifying the right-most bracket.

Lemma 9.2. For every R, R1, R3, R4, t satisfying (9.2), we have

(1 + Y0 + · · · + Yn−1) 
 (1 + Y0).
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Proof. For this proof, we will introduce the following sequence:

Y ′
η :=

Hn−η

R(n−η)/2
R−1

1 (Rη/n
1 V n−η + R

1/2
1 R

1/3−η/3n
3 R

1/2−η/2n
4 V n−η−1+η/n

+ R
1/2
1 R

(n−η)/3
3 R

(n−η)/2
4 ).

We will prove that this sequence has the following three properties:

(1) Yη 
 Y ′
η for every η ∈ {0, . . . , n − 1};

(2) Y ′
0 = Y0, and Y ′

n � 1;
(3)

∑n
η=0 Y ′

η is a sum of three geometric series.

Verifying these three facts is sufficient to complete the proof since properties (1) and (2)
imply that (1 + Y0 + · · · + Yn−1) 
 (Y ′

0 + · · · + Y ′
n−1 + Y ′

n), property (3) implies that (Y ′
0 +

· · · + Y ′
n−1 + Y ′

n) 
 (Y ′
0 + Y ′

n), and property (2) implies that (Y ′
0 + Y ′

n) = (1 + Y0).
For property (1), we note that the term outside of the bracket of Y ′

η is equal to the analogous
term in Yη. It therefore suffices to bound each term in the bracket of Yη from above by a term
in Y ′

η: we clearly have V n−η ≤ R
η/n
1 V n−η when η ∈ {1, . . . , n − 2} and R

1/2
1 V ≤ R

(n−1)/n
1 V for

every n ≥ 1. The third term of Yη and Y ′
η coincide with each other for every η ∈ {1, . . . , n − 1}.

As for the middle term,

R
1/2
1 R

1/3
3 R

1/2
4 V n−η−1 ≤ R

1/2
1 R

1/3−η/3n
3 R

1/2−η/2n
4 V n−η−1+η/n

if and only if V ≥ R
1/3
3 R

1/2
4 . However, if V < R

1/3
3 R

1/2
4 , then

R
1/2
1 R

1/3
3 R

1/2
4 V n−η−1 ≤ R

1/2
1 R

(n−η)/3
3 R

(n−η)/2
4 ,

which is the third term of Y ′
η. Hence, we have Yη 
 Y ′

η.
Property (2) is trivial so we will move to verifying property (3). Again, we will go term by

term: let

Y ′
η,1 :=

Hn−η

R(n−η)/2
R−1

1 · Rη/n
1 V n−η.

Then
Y ′

η+1,1 = HR−1/2R
1/n
1 V −1Y ′

η,1.

If we similarly define Y ′
η,2 and Y ′

η,3 in the obvious way, then we see that

Y ′
η+1,2 = HR−1/2R

−1/3n
3 R

−1/2n
4 V −1+1/nY ′

η,1, Y ′
η+1,3 = HR−1/2R

−1/3n
3 R

−1/2n
4 Y ′

η,3.

Hence, we may represent
∑Y ′

η as a sum of three geometric series, as required. This completes
the proof. �

We may use Lemma 9.2 to conclude that

DP (R, t, R) 
 Pn−1+εRR
1/2
1 R2H−n/2+1((HP 2)−1 + t)2(1 + Y0)1/2. (9.17)

We now aim to simplify this expression further by showing that V n ≤ R1/2R
1/3
3 R

1/2
4 V n−1 or,

equivalently, that V ≤ R1/2R
1/3
3 R

1/2
4 . Doing this, will let us show the following.

Lemma 9.3. Let Q = P 3/2 and let H and V be defined as above. If n ≥ 23, then

V ≤ R1/2.

In particular,

Y0 ≤ R(1−n)/2R−1
1 Hn(R1/2V n−1 + R

n/3−1/2
3 R

(n−1)/2
4 ).
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Proof. As mentioned we will first prove that V ≤ R1/2. Recall that

V = V (R, t) = 1 + RP−1+ε max{1, H(R)P 2t}1/2.

We clearly have 1 ≤ R1/2.
When V = RP−1+ε, we note that R > P 1−ε otherwise RP−1+ε ≤ 1, and so V cannot be

equal to RP−1+ε. Furthermore, we see that R ≤ Q = P 3/2 or, equivalently, P−1 ≤ R−2/3. Hence,
provided that ε is chosen small enough so that P ε ≤ R1/6, then we also have P−1+ε < R−1/2.
Since R > P 1−ε, ε < 0.1 would suffice for example.

Finally, we consider when V = RP−1+ε(H(R)P 2t)1/2. In this case, since t ≤ (RQ1/2)−1,

V ≤ R1/2Q−1/4P ε max{P 5/(n−2)+ε, P 1/(n+2)R3/(n+2)}.

But since R ≤ Q, P < Q (and 5/(n − 2) > 4/(n + 2)), we have

V < R1/2Q5/(n−2)+ε−1/4 < R1/2,

provided n ≥ 23.
This concludes the proof that V ≤ R1/2. For the second statement of the lemma, we start

by noting that V n ≤ R1/2V n−1, and so by (9.10) and (9.2):

Y0(R, R1, R3, R4, t) :=
Hn

Rn/2
R−1

1 (V n + R
1/2
1 R

1/3
3 R

1/2
4 V n−1 + R

1/2
1 R

n/3
3 R

n/2
4 )

≤ Hn

Rn/2
R−1

1 (V n + R1/2V n−1 + R1/2R
n/3−1/2
3 R

(n−1)/2
4 )


 Hn

Rn/2
R−1

1 (R1/2V n−1 + R1/2R
n/3−1/2
3 R

(n−1)/2
4 )

= R(1−n)/2R−1
1 Hn(V n−1 + R

n/3−1/2
3 R

(n−1)/2
4 ). �

Hence, if we let

X1(R, R3, R4, t) = X1 := R(1−n)/2H(R)nV (R, t)n−1, (9.18)

X2(R, R3, R4) = X2 := R(1−n)/2R
n/3−1/2
3 R

(n−1)/2
4 H(R)n, (9.19)

then we now may Lemma 9.3 and (9.17) to bound DP (R, t, R) as follows:

DP (R, t, R) 
 Pn−1+εRR2H−n/2+1((HP 2)−1 + t)2(R1 + X1 + X2)1/2)


 Pn−1+εR5/2H(2−n)/2 max{(HP 2)−1, t}2 max{R,X1,X2}1/2. (9.20)

Finally, note that DP (R, t, R) 
 Pn−6−δ for some δ > 0 if logP (DP (R, t, R)) ≤ n − 6 − δ (pro-
vided P is chosen large enough) and so it is sensible to consider bounding BP (φ, τ, φ) :=
logP (DP (R, t, R)). By (9.20) and upon letting R := Pφ, Ri := Pφi , t := P τ , we have

BP (φ, τ, φ) ≤ logP (Pn−1+εR5/2H(2−n)/2 max{(HP 2)−1, t}2 max{R,X1,X2}1/2)

= n − 1 + ε +
5φ

2
+

(2 − n)
2

· logP (H) + 2 max{−2 − logP (H), τ}

+
1
2

max{φ, logP (X1), logP (X2)} + logP (C), (9.21)

817

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


M. Northey and P. Vishe

where C is the implied constant in (9.20). If P is made to be sufficiently large, logP (C) can be
absorbed into ε. Hence (recalling (9.13)–(9.12), (9.18)–(9.19)), if we set

Ĥ(φ) := max
{

10
n − 2

+ ε′,
2

n + 2
+ ε′ +

6φ

n + 2

}
, (9.22)

V̂ (φ, τ) := max
{

0,−1 + φ, φ +
τ + Ĥ(φ)

2

}
, (9.23)

τ brac(φ, τ) := max{−2 − Ĥ(φ), τ}, (9.24)

X brac(φ, τ, φ3, φ4) := max
{

φ,
(1 − n)φ

2
+ n Ĥ(φ) + (n − 1) V̂ (φ, τ),

(1 − n)φ
2

+
(

n

3
− 1

2

)
φ3 +

(n − 1)φ4

2
+ n Ĥ(φ)

}
, (9.25)

(for some small ε′ > 0 that we may choose freely), then (9.21) gives us the following.

Lemma 9.4. Let n be fixed, and

BAV/P (φ, τ, φ3, φ4) := n − 1 +
5φ

2
+

(2 − n)
2

Ĥ(φ) + 2τ brac(φ, τ) +
1
2
X brac(φ, τ, φ3, φ4).

Then BAV/P (φ, τ, φ3, φ4) is a continuous, piecewise linear function, and for every ε > 0, there is
a sufficiently large P such that

BP (φ, τ, φ) ≤ BAV/P (φ, τ, φ3, φ4) + ε,

for every φ ∈ [0, 3/2], φi ∈ [0, φ], φ1 + φ2 + φ3 + φ4 = φ and τ ∈ [−5,−φ − 0.75].

The naming convention used is to make it easier to parse the algorithm’s input. For example,
τ brac and Ĥ correspond to Tau bracket and H Poisson, respectively, in the algorithm’s code.

9.1.1 The limiting case. In this subsection, we will briefly illustrate why we should expect
the condition n ≥ 39 to appear in Proposition 3.3 (or, equivalently, why we should expect
DP (R, t, R) 
 Pn−6−δ to be true for n ≥ 39). In general, we expect the limiting condition on n
to be determined by the so-called ‘generic case’ for (R, t, R), which is

R = Q = P 3/2, τ = (RQ1/2)−1 = P−9/4, R1 = R = P 3/2, R2 = R3 = R4 = 1.

This is the case where R is as large as possible and is square-free, and t is as large as possible.
In this case, we expect the averaged van der Corput/Poisson bound to dominate over the other
bounds since it is our main bound. We will therefore pinpoint which component of (9.20) domi-
nates and then solve this part by hand. When we do this, we will see that the condition n ≥ 39
arises naturally.

First, it is easy to check via the definitions of H and V (9.13)–(9.12) that when R � P 3/2,
t � P−9/4, R1 = R, R2 = R3 = R4 = 1, we have

H = max{P 10/(n−2)+ε′ , P 11/(n+2)+ε′}, (9.26)

V = P 1/2 max{1, P 10/(n−2)−1/4+ε′ , P 11/(n+2)−1/4+ε′}1/2

= P 3/8+ε′/2 max{P 1/8, P 5/(n−2), P 11/2(n+2)}. (9.27)

Note that when n ≤ 42, it is easy to check that P 10/(n−2)−1/4+ε′ ≥ P 11/(n+2)−1/4+ε′ > 1, and when
n ≥ 42 we have P 10/(n−2)−1/4+ε′ , P 11/(n+2)−1/4+ε′ < 1. It makes sense, therefore, to consider the
cases n ≤ 42 and n > 42 separately so that we can simplify H and V further. We will just
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consider n ≤ 42 here to avoid repetition, as the purpose here is to only illustrate the expected
limit of our bounds.

When n ≤ 42, then by (9.26) and (9.27), we have

H = P 10/(n−2)+ε′ , V = P 3/8+5/(n−2)+ε′/2. (9.28)

We aim to insert these values into the right-hand side of (9.20), but we will first perform some
simplifications. In particular, we note that

max{(HP 2)−1, t} = max{P−2−10/(n−2)−ε′ , P−9/4} = P−9/4, (9.29)

since n ≤ 42. Similarly by (9.18)–(9.19), we see that X1 > X2 since R3 = R4 = 1 and V > 1.
Hence,

max{R,X1,X2} = max{R, R(1−n)/2 · P 10n/(n−2)+nε′ · P 3(n−1)/8+5(n−1)/(n−2)+(n−1)ε′/2}
= max{P 3/2, P 3(1−n)/4+10n/(n−2)+3(n−1)/8+5(n−1)/(n−2)+ε′}
= max{P 3/2, P 3(1−n)/8+(15n−5)/(n−2)+ε′}
= P 3/2, (9.30)

provided that n ≥ 38.8111 · · · + ε′. In other words, as long as n ≥ 39 and ε′ is chosen small enough,
we have max{R,X1,X2} = R = P 3/2. Inserting (9.28)–(9.30) into (9.20) gives the following:

DP (R, t, R) 
 Pn−1+εR5/2H(2−n)/2 max{(HP 2)−1, t}2 max{R,X1,X2}1/2

= Pn−1+ε · P 15/4 · P [(2−n)/2]×[10/(n−2)+ε′] · P−9/2 · P 3/4

= Pn−1+18/4−5−9/2+ε−(n−2)ε′/2

= Pn−6−δ(ε,ε′),

where δ > 0 provided that ε is chosen sufficiently small with respect to ε′ (and n > 2).

9.2 Pointwise van der Corput/Poisson
Next, we will find a bound for BP (φ, τ, φ) by combining the improved Pointwise van der Corput
differencing process with Poisson summation. This time, we may assume |z| � t. By Lemma 4.1
and Proposition 7.2, the fact that the Yis are a geometric series, and Lemmas 9.2–9.3 (using the
same values for Y, V, H), we have

DP (R, t, R) 

∑

q,(9.1)

∫
|z|�t

H(q)−n/2Pn/2q

( ∑
h
H

|Th(q, z)|
)1/2

dz


 Pn+ε
∑

q,(9.1)

∫
|z|�t

H(q)−n/2q2(1 + Y0(q, b1, q3, |z|))1/2 dz


 Pn+ε
∑

q,(9.1)

t2H(R)−n/2R2(1 + Y0(R, R1, R3, t))1/2


 Pn+εRt2H(R)−n/2R2(R1 + X1 + X2)1/2


 Pn+εR5/2t2H(R)−n/2(R + X1 + X2)1/2, (9.31)
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where the Xis are defined as in (9.18)–(9.19). Taking logs and recalling the definitions
(9.22)–(9.25) gives us

BP (φ, τ, φ) ≤ n + ε +
5φ

2
+ 2τ − n

2
Ĥ +

1
2
X brac + logP (C),

where C is the implied constant in (9.31). Hence, we arrive at the following.

Lemma 9.5. Let n be fixed, logP DP (R, t, R) := BP (φ, τ, φ), and

BPV/P (φ, τ, φ3, φ4) := n +
5φ

2
+ 2τ − n

2
Ĥ +

1
2
X brac.

Then BPV/P (φ, τ, φ3, φ4) is a continuous, piecewise linear function, and for every ε > 0, there is
a sufficiently large P such that

BP (φ, τ, φ) ≤ BPV/P (φ, τ, φ3, φ4) + ε,

for every φ ∈ [0, 3/2], φi ∈ [0, φ], φ1 + φ2 + φ3 + φ4 = φ and τ ∈ [−5,−φ − 0.75].

9.3 Averaged van der Corput/Weyl
We will now find a bound for BP (φ, τ, φ) using the averaged van der Corput differencing process
discussed in § 4, followed by one Weyl differencing step as in § 8. By Lemma 4.5 (upon choosing
N to be sufficiently large), we have

DP (R, t, R) 
ε,N P−N +
∑

q,(9.1)

H−n/2+1Pn/2−1+εq((HP 2)−1 + t)2

×
(

max
t≤|z|≤2t+2(HP 2−ε)−1

∑
|h|
H

|Th(q, z)|
)1/2

. (9.32)

We may now use Proposition 8.2 and (9.1)–(9.2) to bound Th(q, z) as follows:

|Th(q, z)| 
 R2Pn+ε

(
P−2 + H2R2|z|2 + R2P−4 + R−1H2 min

{
1,

1
H|z|P 2

})(n−σ∞(h)−2)/4

.

(9.33)
Next, we note that t ≤ |z| ≤ 2(t + (HP 2−ε)−1) and so we wish apply a similar idea to (9.14) to
replace |z| with t in (9.33): indeed, we see that

H2R2|z|2 
 H2R2t2 + P εH2R2(HP 2)−2 = H2R2t2 + H2P ε−4,

with H2P ε−4 equalling the third term of (9.33) (up to a relabelling ε), and

min
{

1,
1

H|z|P 2

}
= max{1, HP 2|z|}−1 
 max{1, HP 2t, P ε}−1 
 max{1, HP 2t}−1.

Hence, after relabelling ε, we see that

|Th(q, z)| 
 R2Pn+ε

(
P−2 + H2R2t2 + R2P−4 + R−1H2 min

{
1,

1
HtP 2

})(n−σ∞(h)−2)/4

.

(9.34)
In this subsection, we will choose

H � max{R1/6, (RtP 2)1/5}. (9.35)

Here H is chosen so as to simplify the bounds here, as will be evident from our subsequent results.
Note H = (RtP 2)1/5 when t ≥ (HP 2)−1, and H = R1/6 when t ≤ (HP 2)−1. This is convenient
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for us since considering these two cases for t separately is natural due to the min bracket in
(9.34).

Before we substitute (9.34) back into (9.32), we will simplify this expression significantly
using the following lemma.

Lemma 9.6. Let q � R ≤ Q, Q = P 3/2, |z| � t ≤ (qQ1/2)−1 and |h| 
 H, where H is defined as

in (9.35). Finally, let σ∞(h) := s∞(F (0)
h , G

(0)
h ). Then

Th(q, z) 
 R2Pn+ε

(
R−1H2 min

{
1,

1
HtP 2

})(n−σ∞(h)−2)/4

.

Proof. First we will assume that t > (HP 2)−1. In this case the right-most term simplifies to
H/(RtP 2). Before we get into the proof that H/(RtP 2) dominates all other terms, we will show
the for our choice of H (see (9.35)), the following is true:

H 
 P 1/4. (9.36)

Indeed,

H � (RtP 2)1/5 
 Q−1/10P 2/5 � P 2/5−3/20 = P 1/4.

This will be useful to us as we attempt to show that H/(RtP 2) dominates all other terms for
every value of t and R. We now turn to proving this. Going from left to right in the bracket of
(9.34), we first see that

P−2 
 H

RtP 2
⇔ H � Rt.

But, we know that t ≤ (RQ1/2)−1, and so Rt 
 1. We certainly have that H � 1, and so H � Rt
must be true. Next,

H2R2t2 
 H

RtP 2
⇔ HR3t3P 2 
 1.

Using the fact that H 
 P 1/4 by (9.36), and Q � P 3/2 and Rt 
 Q−1/2 by the assumptions in
the lemma, we see that

HR3t3P 2 
 P 1/4Q−3/2P 2 � P 9/4(P−3/2)3/2 = 1,

as required. Finally,

R2P−4 
 H

RtP 2
⇔ H � R3tP−2.

This one has a few more steps. Recall that we are trying to show the dominance of the right
term for every t and R. By our choice of H and the fact that t 
 (RQ1/2)−1, R ≤ Q, we have

R3tP−2 
 H = (RtP 2)1/5 ∀t, R ⇔ R14/5t4/5P−12/5 
 1 ∀t, R

⇔ max{R}7 max{t}2P−6 
 1, ⇔ Q7(RQ−1/2)−2P−6 
 1

⇔ Q4P−6 
 1, ⇔ Q 
 P 3/2,

which is true. Hence, for our choices of H and Q, we have shown that H2R−1 min{1, (HtP 2)−1)} =
H/(RtP 2) dominates over all other terms in the expression for every R ≤ Q � P 3/2 and
(HP 2)−1 ≤ t ≤ (RQ1/2)−1.
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A similar set of arguments can be used in the case that t < (HP 2)−1. In this case, we have
H = R1/6, and

H2R−1 min{1, (HtP 2)−1)} = H2R−1 = R−2/3.

Again going from left to right in the bracket of (9.34):

P−2 
 H2R−1 = R−2/3 ⇔ P 2 � R2/3 ⇔ R 
 P 3,

which is true since R ≤ Q � P 3/2. Next,

H2R2t2 
 H2R−1 ⇔ R(Rt)2 
 1 ⇔ RQ−1 
 1 ⇔ R 
 Q,

which is again true by our assumptions from the lemma. We used the fact that Rt ≤ Q−1/2 since
t ≤ (RQ1/2)−1. Finally,

R2P−4 
 H2R−1 = R−2/3 ⇔ R8/3 
 P 4 ⇔ R 
 P 3/2.

This is also true since R ≤ Q � P 3/2. Hence, we have shown that H2R−1 min{1, (HtP 2)−1)} =
H2R−1 dominates over all other terms in the expression for every R ≤ Q � P 3/2 and t ≤
(HP 2)−1. This completes the proof of the lemma. �

We could now substitute the results from Lemma 9.6 into (9.32) directly, but the expression
is rather complicated so we will instead just focus on the h sum inside of the integral for now.
Our treatment of it will be analogous to the proof of the h sum bound in § 7, but it will be a
much simpler process this time around. The reason for our choice of H will also become apparent
as we deal with this sum. We aim to show the following.

Lemma 9.7. Let q � R ≤ Q, Q = P 3/2, |z| � t ≤ (qQ1/2)−1 and |h| 
 H, where H is defined as
in (9.35). Then ∑

|h|
H

|Th(q, z)| 
n R2Pn+εH.

In particular, we save a factor of Hn over the trivial bound.

Proof. We will again consider the cases when t ≥ (HP 2)−1 and t ≤ (HP 2)−1 separately. Starting
with t ≥ (HP 2)−1 first: by Lemma 9.6, we have

∑
|h|
H

|Th(q, z)| 
 R2Pn+ε
n−1∑
i=−1

∑
|h|
H

σ∞(h)=i

(
H

RtP 2

)(n−i−2)/4


 R2Pn+ε max
−1≤i≤n−1

#{|h| 
 H |σ∞(h) = i}
(

H

RtP 2

)(n−i−2)/4


 R2Pn+ε max
−1≤i≤n−1

Hn−i−1

(
H

RtP 2

)(n−i−2)/4

, (9.37)

by Lemma 7.1. Recall that when t ≥ (HP 2)−1, we have H � (R|t|P 2)1/5. This value for H has
been chosen specifically so that H = (H/(RtP 2))−1/4 when t > (HP 2)−1. The reason for doing
this is so that the product within the max bracket in (9.37) will become H. Indeed, substituting
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this value for H into (9.37) gives

∑
|h|
H

|Th(q, z)| 
 R2Pn+ε max
−1≤i≤n−1

(RtP 2)(n−i−1)/5

(
1

(RtP 2)4/5

)(n−i−2)/4

= R2Pn+ε max
−1≤i≤n−1

(RtP 2)(n−i−1)/5(RtP 2)−(n−i−2)/5

= R2Pn+ε(RtP 2)1/5

= R2Pn+εH.

In theory, it would be nice if we could choose H to be even larger, so that we get something
smaller than R2Pn+εH. However, if one chooses H to be larger than this value, then Lemma 9.6
becomes false (in particular, the term H2R2t2 dominates when H > P 1/4). This is therefore the
optimal choice for H when t > (HP 2)−1.

The argument in the case the t ≤ (HP 2)−1 is almost identical. Recall that when t ≤ (HP 2)−1,
we have H � R1/6. By Lemma 9.6, we have

∑
|h|
H

|Th(q, z)| 
 R2Pn+ε
n−1∑
i=−1

∑
|h|
H

σ∞(h)=i

(
H2R−1

)(n−i−2)/4


 R2Pn+ε max
−1≤i≤n−1

#{|h| 
 H |σ∞(h) = i}R−(n−i−2)/6


 R2Pn+ε max
−1≤i≤n−1

Hn−i−1R−(n−i−2)/6


n R2Pn+εR1/6 
 R2Pn+εH,

by Lemma 7.1, and by the fact that when t ≤ (HP 2)−1, we have H � R1/6. This value for H has
again been chosen specifically so that Hn−i−1R−(n−i−1)/6 = 1 for every i. when t > (HP 2)−1.
For the same reasons as before, we cannot choose H to be larger than this without causing other
issues, and so this makes our choice of H in (9.35) optimal for our situation. �

Substituting the result of Lemma 9.7 back into (9.32) gives

DP (R, t, R) 
 Pn−1+ε
∑

q,(9.1)

H−n/2+3/2R2((HP 2)−1 + t)2.

Finally, we split the R sum into its cube-free and cube-full components, and use Lemma 9.1 as
follows:

DP (R, t, R) 
 Pn−1+ε
2R1∑

b1=R1

2R2∑
b2=R2

2R3∑
b3=R3

2R4∑
q4=R4

R2H(R, t)(3−n)/2((H(R, t)P 2)−1 + t)2


 Pn−1+εR3R
−1/2
2 R

−2/3
3 R

−3/4
4 H(R, t)(3−n)/2((H(R, t)P 2)−1 + t)2


 Pn−1+εR3R
−2/3
3 R

−3/4
4 H(R, t)(3−n)/2((H(R, t)P 2)−1 + t)2. (9.38)

Therefore, upon setting R := Pφ, Ri := Pφi , t := P τ and (recall (9.35))

Ĥ Weyl(φ, τ) := max
{

φ

6
,
2 + φ + τ

5

}
, (9.39)

τ brac(φ, τ) := max{−2 − Ĥ Weyl(φ, τ), τ}, (9.40)
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we have

BP (φ, τ, φ) ≤ n − 1 + ε + 3φ − 2φ3

3
− 3φ4

4
+ logP (C) +

(3 − n)
2

Ĥ Weyl(φ, τ) + 2τ brac(φ, τ),

where C is the implied constant in (9.38). Hence, if P is chosen to be sufficiently large, we may
absorb logP (C) into ε, giving us the following.

Lemma 9.8. Let n be fixed, and

BAV/W (φ, τ, φ3, φ4) := n − 1 + 3φ − 2φ3

3
− 3φ4

4
+

(3 − n)
2

Ĥ Weyl(φ, τ) + 2τ brac(φ, τ).

Then BAV/W (φ, τ, φ3, φ4) is a continuous, piecewise linear function, and for every ε > 0, there is
a sufficiently large P such that

BP (φ, τ, φ) ≤ BAV/W (φ, τ, φ3, φ4) + ε,

for every φ ∈ [0, 3/2], φi ∈ [0, φ], φ1 + φ2 + φ3 + φ4 = φ and τ ∈ [−5,−φ − 0.75].

9.3.1 Explaining the choice of Q. As an aside, we will briefly explain our choice of Q � P 3/2,
as promised in § 3. We see in the proof of Lemma 9.6, that the optimal choice for Q is P 3/2. In
particular, if we choose any other value for Q, then we cannot simplify the Weyl bound to such
a large extent. We normally optimise our choice for Q based on our main bound, which in this
case is the averaged van der Corput/Poisson bound. This value for Q turns out to be

Q � P 4(n+3)/3(n−2),

which is the choice of Q that guarantees HP 2|z| 
 1 for every z (optimising our V term), where
H and V are defined as in (9.13)–(9.12). In the range of n that we are considering, this value is
largest when n = 39, giving us Q � P 1.5135..., which is very close to the optimal choice for the
van der Corput/Weyl bounds. In the end, the authors chose Q � P 3/2 because it is simpler and
it makes the van der Corput/Weyl bounds significantly easier to work with. Most importantly,
this choice does not cause any issues for our Poisson bounds, since it is ‘almost’ optimal.

9.4 Pointwise van der Corput/Weyl
In this subsection, we will find a bound for BP (φ, τ, φ) by using Pointwise van der Corput
differencing, followed by one Weyl step. We start by applying Lemma 4.1 to DP (R, t, R):

DP (R, t, R) 

∑

q,(9.1)

∫
|z|�t

H−n/2Pn/2q

( ∑
h
H

|Th(q, z)|
)1/2

dz.

Upon setting H := max{q1/6, (qtP 2)1/5} again, we may use Lemma 9.7 and Proposition 8.2 to
conclude that

DP (R, t, R) 
 Pn+ε
∑

q,(9.1)

∫
|z|�t

H(q, t)(1−n)/2q2 dz


 Pn+εR3R
−2/3
3 R

−3/4
4 t2H(R, t)(1−n)/2. (9.41)

Hence, upon recalling (9.39), we have

BP (φ, τ, φ) ≤ n + ε + 3φ − 2φ3

3
− 3φ4

4
+ 2τ + logP (C) +

1 − n

2
Ĥ Weyl(φ, τ),

where C is the implied constant in (9.41). Therefore, if P is chosen to be sufficiently large, we
may absorb logP (C) into ε, giving us the following.
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Lemma 9.9. Let n be fixed, and

BPV/W (φ, τ, φ3, φ4) := n + 3φ + 2τ − 2φ3

3
− 3φ4

4
+

1 − n

2
Ĥ Weyl(φ, τ).

Then BPV/W (φ, τ, φ3, φ4) is a continuous, piecewise linear function, and for every ε > 0, there is
a sufficiently large P such that

BP (φ, τ, φ) ≤ BPV/W (φ, τ, φ3, φ4) + ε,

for every φ ∈ [0, 3/2], φi ∈ [0, φ], φ1 + φ2 + φ3 + φ4 = φ and τ ∈ [−5,−φ − 0.75].

9.5 Weyl
In this subsection, we will find a bound for BP (φ, τ, φ) by using Weyl differencing twice. We
start by applying Proposition 8.1 to DP (R, t, R):

DP (R, t, R) 
 Pn+ε
∑

q,(9.1)

∑∗

a

∫
|z|�t

(
P−4 + q2|z|2 + q2P−6 + q−1 min

{
1,

1
|z|P 3

})(n−1)/16

dz.

First, it is easy to use (9.1)–(9.3) to check that

max{P−4, q2P−6} ≤ q−1 min{1, (|z|P 3)}−1.

Hence,

DP (R, t, R) 
 Pn+ε
∑

q,(9.1)

∑∗

a

∫
|z|�t

(
q2|z|2 + q−1 min

{
1,

1
|z|P 3

})(n−1)/16

dz


 Pn+ε
∑

q,(9.1)

q2t2
(

q2t2 + q−1 min
{

1,
1

tP 3

})(n−1)/16


 Pn+ε
∑

q,(9.1)

q2t2
(

q2t2 + q−1 min
{

1,
1

tP 3

})(n−1)/16


 Pn+εR3R
−2/3
3 t2

(
R2t2 + R−1 min

{
1,

1
tP 3

})(n−1)/16

. (9.42)

As usual, we are interested in logP (DP (R, t, R)) since this will be piecewise linear. The bound
above gives

BP (φ, τ, φ) ≤ n + ε + 3φ + 2τ − 2φ3

3
− 3φ4

4
+ logP (C)

+
n − 1
16

max{2φ + 2τ, −φ + min{0,−3 − τ}},

where logP (C) is the implied constant in (9.42). Therefore, upon setting

Weyl brac(φ, τ) := max{2φ + 2τ, −φ + min{0,−3 − τ}}, (9.43)

we arrive at the following bound for BP :

Lemma 9.10. Let n be fixed, logP DP (R, t, R) := BP (φ, τ, φ) and

BWeyl(φ, τ, φ3, φ4) := n + 3φ + 2τ − 2φ3

3
− 3φ4

4
+

n − 1
16

Weyl brac(φ, τ).
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Then BWeyl(φ, τ, φ3, φ4) is a continuous, piecewise linear function, and for every ε > 0, there is
a sufficiently large P such that

BP (φ, τ, φ) ≤ BWeyl(φ, τ, φ3, φ4) + ε,

for every φ ∈ [0, 3/2], φi ∈ [0, φ], φ1 + φ2 + φ3 + φ4 = φ and τ ∈ [−5,−φ − 0.75].

9.6 Proof of Proposition 3.3
Recall that our ultimate goal is to show that

Sm 
 Pn−6−δ,

for some δ > 0, for every n ≥ 39. This is equivalent to having

logP (Sm) < n − 6.

We assume that ρ is chosen sufficiently small to facilitate average van der Corput differencing
bounds. We may now use all of the previous subsections to bound logP (Sm) by a continuous,
piecewise linear function in three variables: by (9.4), we have

logP (Sm) ≤ logP (c1) + ε + max
φ,φ,τ

(9.2),(9.3), τ>P−5

{BP (φ, τ, φ), n − 7},

where c1 is the implied constant. We clearly have that logP (c1) + ε + n − 7 ≤ n − 6 − ε for
sufficiently large P , so we will assume that this is the case. Hence, by Lemmas 9.8–9.5, we
have

logP (Sm) ≤ ε + max
{

min
(φ,τ,φ3,φ4)∈D1∪D2

{BAV/P (φ, τ, φ3, φ4), BPV/P (φ, τ, φ3, φ4),

BAV/W (φ, τ, φ3, φ4), BPV/W (φ, τ, φ3, φ4),

BWeyl(φ, τ, φ3, φ4)}, n − 6 − 2ε

}
, (9.44)

where

D1 := {(φ, τ, φ3, φ4) ∈ R3 : Δ ≤ φ ≤ 3/2, 0 ≤ φ3 ≤ φ, −5 ≤ τ ≤ −φ − 3/4},
D2 := {(φ, τ, φ3, φ4) ∈ R3 : 0 ≤ φ ≤ Δ, 0 ≤ φ3 ≤ φ, −3 + Δ ≤ τ ≤ −φ − 3/4}.

Since D1 and D2 are convex polytopes and the function which we have bounded logP (Sm) is
continuous and piecewise linear for every n ∈ N. Each region on which this function is linear is
a convex polytope. It is well known that extremum value of such a function must be taken at a
vertex of one of these polytopes. Therefore, one may numerically compute the exact maxima in
(9.44). We compute this maxima two different ways and check that both values coincide.

The first way is to use an inbuilt Min-Max function in Mathematica that compares the two
bounds. This algorithm can be found in Appendix 10.1. An executable version of code can also
be found in the first author’s Github page [Nor00b].

We have also verified this using an open-source Python-based algorithm (this can be found
in [Nor00b]).

After taking ε′ = 0.0001 (see (9.22)), Δ = 1/7 − 0.001, both numerical verifications proves
that

logP (Sm) ≤ n − 6.00185

for every (φ, τ, φ3, φ4) ∈ D1 ∪ D2, provided that 39 ≤ n ≤ 48. The limiting case is when n = 39,
φ = 3/2, τ = −2.25 and φ2 = φ3 = φ4 = 0. When n ≥ 49, we may instead refer to Birch [Bir61].
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10. Major arcs

Finally, we will complete the proof of Theorems 1.1–1.2 by showing that

SM = CXPn−6 + O(Pn−6−δ),

where

SM =
∑

q≤PΔ

q∑∗

a

∫
|z|<P−3+Δ

K(a/q + z) dz, (10.1)

and CX is a product of local densities. Let

S(R) :=
R∑

q=1

q−n

q∑∗

a

Sa,q, J(R) :=
∫
|z|<R

∫
Rn

ω(x)e(z1F (x) + z2G(x)) dx dz,

where

Sa,q :=
∑

x mod q

eq(a1F (x) + a2G(x)),

and

S := lim
R→∞

S(R), J = lim
R→∞

J(R),

if the limits exist. In the following, let σ denote the dimension of the singular locus of the
complete intersection X. For our application here we only need to establish the σ = −1 case.
However, a general version is equally straightforward. We will start by showing the following.

Lemma 10.1. Assume that n − σ ≥ 34 and that S is absolutely convergent, satisfying

S(R) = S + Oφ(R−φ).

Then provided that we have Δ ∈ (0, 1/7),

SM = SJPn−6 + Oφ(Pn−6−δ).

We note that under the assumption (1.3), it remains to check that SJ > 0. Checking that
S > 0 follows a standard line of reasoning, as in [Bir61, Lemma 7.1], and makes use of the fact
that S is absolutely convergent. To show that J > 0, it will suffice to show that J(R) � 1 for
sufficiently large values of R. This is again a standard argument and can be easily derived from
the argument outlined in numerous sources including [BDH15, Section 8]. A rigorous proof of
SJ > 0 under the conditions of Lemma 10.1 is obtained in the first author’s PhD thesis [Nor00a].
We refer the reader to [Nor00a, Section 13], should they wish to see a full proof.

Following the proof found in [BH09], the first step towards proving Lemma 10.1 is to show
that

K(α) = q−nPnSa,qI(zP 3) + O(Pn−1+2Δ), (10.2)

where

I(t) :=
∫

Rn

ω(x)e(t1F (x) + t2G(x)) dx,

for t ∈ R2. In order to achieve this, we need to be able to separate the dependence of K(α) on
a from its dependence on z. Write x = u + qv, where u runs over the complete set of residues

827

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


M. Northey and P. Vishe

modulo q and recall that α = a/q + z. Then

K(α) =
∑

u mod q

eq(a1F (u) + a2G(u))
∑
v∈Z

Φu(v), (10.3)

where

Φu(v) := ω

(
u + qv

P

)
e(z1F (u + qv) + z2G(u + qv)).

In order to have it so that a and z are independent from each other, we will replace our v sum
with a crude integral estimate which has no dependence on u. In particular, upon defining

NP,q,u :=
{

m̂ ∈ Zn

∣∣∣∣ω
(

u + qm

P

)
�≡ 0, for m ∈ m̂ + [0, 1]n

}
,

we can use the fact that Φu(v + x) = Φu(v) + O(maxy∈[0,1]n |∇Φu(v + y)|) for any x ∈ [0, 1]n, to
conclude the following:∣∣∣∣

∫
Rn

Φu(v) dv −
∑
v∈Zn

Φu(v)
∣∣∣∣ ≤ #NP,q,u max

v̂∈NP,q,u

∣∣∣∣
∫

v̂+[0,1]n
Φu(v) dv − Φu(v̂)

∣∣∣∣

 #NP,q,u max

v̂∈NP,q,u

max
y∈[0,1]n

|∇Φu(v̂ + y)|. (10.4)

In order to simplify (10.4), we note that if ωP,q,u(v) := ω([u + qv]/P ), then for any u ∈ (Z/qZ)n,
v ∈ Supp(ωP,q,u), and i ∈ {1, . . . , n}, we have

|∂iΦu(v)| ≤ |∂iωP,q,u(v)| + |ωP,q,u(v)(z1∂iF (u + qv) + z2∂iG(u + qv))|

 q/P + |z|qP 2, (10.5)

by the chain rule, since ω ∈ Wn (see (3.13)), F and G are cubic forms, and |v| 
 P/q since
v ∈ Supp(ωP,q,u). Furthermore, by the definition of ω (see (1.4)), we note that the points in
NP,q,u must lie within an n-dimensional cube with sides of order 1 + P/q ≤ 2P/q. Hence, by
(10.4)–(10.5), we have∣∣∣∣

∫
Rn

Φu(v) dv −
∑
v∈Zn

Φu(v)
∣∣∣∣
 Pnq−n(q/P + q|z|P 2)

= Pn−1q1−n + |z|Pn+2q1−n,

since the points in NP,q,u lie within an n-dimensional cube with sides of order 1 + P/q ≤ 2P/q.
Therefore, upon setting Px = u + qv, we arrive at the following expression for

∑
v Φu(v):

∑
v∈Zn

Φu(v) =
Pn

qn

∫
Rn

ω(x)e(z1P
3F (x) + z2P

3G(x)) dx + O(Pn−1q1−n + |z|Pn+2q1−n).

We can therefore conclude that

K(α) = Pnq−nSa,qI(zP 3) + O(Pn−1q + |z|Pn+2q) (10.6)

by (10.3). Since |z| ≤ P−3+Δ and q ≤ PΔ, we can now conclude that (10.2) is indeed true.
Furthermore, by substituting (10.2) into SM and, for the error term, noting that the major arcs
have measure O(P−6+5Δ) (P−6+2Δ from the integrals, P 3Δ from the sums), we conclude that

SM = Pn−6S(PΔ)J(PΔ) + O(Pn−7+7Δ). (10.7)

828

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


On the Hasse principle for complete intersections

Since we have assumed S(R) = S + Oφ(R−φ) for some φ > 0, we can replace S(PΔ) with S

leading us to
SM = Pn−6SJ(PΔ) + Oφ(Pn−7+7Δ + Pn−6−Δφ). (10.8)

We will prove that this assumption is true in the next section. We now aim to show that we can
replace J(PΔ) with J. In order to do this, we need J to exist, and |J − J(PΔ)| to be sufficiently
small. Now, it is easy to see that

J − J(R) =
∫
|t|≥R

I(t) dt,

and so this motivates us to find a bound for the size of I(t). We will show the following.

Lemma 10.2. Let

σ := dim SingC(XF , XG).

Then

I(t) 
 min{1, |t|σ+1−n/16+ε}.
Proof. We will again follow the same procedure as in [BH09]. Here I(t) 
 1 is trivial since
|I(t)| ≤ meas(Supp(ω)) for every t. For the second estimate, we can assume |t| > 1. Then on
taking a = 0, q = 1 in (10.6) we get

K(α) = PnO(|α|P 3) + O((|α|P 3 + 1)Pn−1),

for any P ≥ 1. Likewise, for |α| < P−1, we can also use Proposition 8.1 with a = 0, q = 1, to
conclude that

K(α) 
 Pn+ε(|α|P 3)(σ+1−n)/16.

Hence, for such α, we may set t = αP 3 and combine these estimates to get

I(t) 
 |t|(σ+1−n)/16P ε + |t|P−1,

when 1 < |t| < P 2. Finally, we note that this is true for every P ≥ 1 and I(t) does not depend
on P at all. Hence, we can choose P = |t|(16+n−σ−1)/16 to reach our second estimate of I(t). �

We can now use Lemma 10.2 to conclude that

J − J(R) =
∫
|t|≥R

I(t) dt 

∫ ∞

R
min{1, r(σ+1−n)/16+ε}r dr 
 R(33+σ−n)/16+ε.

For n − σ ≥ 34, this shows that J is absolutely convergent. Finally, replacing J(PΔ) by J in
(10.8) gives us

SM = SJPn−6 + Oφ(Pn−7+7Δ + Pn−6−Δφ + Pn−6−Δ/16+ε),

which is permissible for Lemma 10.1 provided that Δ ∈ (0, 1/7), φ > 0 and ε > 0 is taken to be
sufficiently small.

10.1 Convergence of the singular series
Finally, we turn to the issue of showing that the singular series

∞∑
q=1

q−n
∑∗

a

Sa,q

converges absolutely, and obeys the assumption made in Lemma 10.1. In particular, we will show
the following.
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Theorem 10.3. Assume n − σ ≥ 35. Then S is absolutely convergent. Furthermore, there is
some φ > 0 such that

S(R) = S + Oφ(R−φ).

To see that S converges for n − σ ≥ 35, we will again adopt the approach of Browning and
Heath Brown in [BH09]. We start by noting that

S = q−n

q∑∗

a

Sa,q

is a multiplicative function of q, and so it follows that S is absolutely convergent if and only if∏
p(1 +

∑∞
k=1 ap(k)) is, where

ap(k) := p−kn

pk∑∗

a

|Sa,pk |.

But by taking logs, this is equivalent to
∑

p

∑∞
k=1 ap(k) converging. Now by Proposition 8.1 with

a = 0, q = pk, |z| < P−3+Δ, ω = χ, we have that

ap(k) 
 pk(2+(σ+1)/16−n/16)+ε, (10.9)

for any k ≥ 1, and so this enables us to establish that S converges absolutely provided that
n − σ ≥ 50. We can use (10.9) far more effectively than this if we are more careful: we will
assume that n − σ ≥ 35 from now on. Then by (10.9), we have

∑
p

∑
k≥16

ap(k) 

∑

p

p33+σ−n+ε <
∞∑

m=1

m−2+ε 
 1,

assuming ε > 0 is sufficiently small. We now need to show that
∑

p

∑
1≤k≤15 also converges. For

2 ≤ k ≤ 15, we will use [BH09, Lemma 25]. This shows that

Sa,pk 
k p(k−1)n+sp(a1F+a2G)+1.

Hence,

∑
p

15∑
k=2

ap(k) 

∑

p

15∑
k=2

pk(2−n)p(k−1)n+sp(a1F+a2G)+1 =
∑

p

15∑
k=2

p2k+1−n+sp(a1F+a2G).

But by Lemma 2.3, we have sp(a1F + a2G) ≤ sp(F, G) + 1. Furthermore, since F and G are
fixed, sp(F, G) = σ for all but finitely many primes, and so by increasing the size of the implicit
multiplicative constant if necessary, we have that

∑
p

15∑
k=2

p2k+2−n+σ 

∑

p

p32−n+σ 
 1,

since we have assumed n − σ ≥ 35.
All that is left to check is k = 1. By Lemma 7 in [BH09], we have∑

p

ap(1) 

∑

p

p2−n/2+(sp(a1F+a2G)+1)/2 

∑

p

p3−n/2+σ/2 
 1.

830

https://doi.org/10.1112/S0010437X23007698 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007698


On the Hasse principle for complete intersections

This enables us to establish Theorem 10.3. Finally, we will follow the approach used in [MV19]
to prove that there exists some φ > 0 such that

S(R) = S + Oφ(R−φ).

We will continue to work under the assumption that n − σ ≥ 35. First, let

Sq :=
q∑∗

a

q∑
x

eq(a1F (x) + a2G(x)).

Then, we have

|S − S(R)| ≤
∑
q≥R

q−n|Sq|. (10.10)

We will split q into several of its multiplicative components and bound each component
separately. Let

bi :=
∏
pi||q

pi, qi :=
∏
pe||q
e≥i

pe.

Then q = qk
∏k−1

i=1 bi for every k (e.g. q = b1b2q3). Recall that by Lemma 9.1, we have the following
for any R1, . . . , Rk > 0:

∑
b1∼R1,...,bk−1∼Rk−1

qk∼Rk

1 

k∏

i=1

R
1/i
i . (10.11)

We will use k = 16. Now

|Sq| ≤ |Sq16 |
15∏
i=1

|Sbi |.

We will bound each of these in turn:

|Sq16 | 
 q
(15n+σ+1)/16+ε
16

by Proposition 8.1. For b3, . . . , b15, we split bk into prime powers and use Lemma 25 from [BH09]:

|Spk | 

pk∑∗

a

p(k−1)n+sp(a1F+a2G)+1 
 p(k−1)n+σ+2+2k

for p � 1. Hence, for k ∈ {3, . . . , 15},

|Sbk
| 
 b

2+((k−1)n+σ+2)/k
k .

Finally, for b1, b2, we use Lemma 7 from [BH09]. By following the same argument as for
Sb3 , . . . , Sb15, we get

|Sbk
| 
 b

2+(n+σ+2)/2
k ,
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for k ∈ {1, 2}. Hence,

|Sq| 
 q2+ε(b1b2)(n+σ+2)/2b
(2n+σ+2)/3
3 · · · b(14n+σ+2)/15

15 ,

or, equivalently,

|Sq| 
 q2+n+ε

(b1b2)(m−1)/2b
(m−1)/3
3 · · · b(m−1)/15

15 q
m/16
16

,

where m = n − σ − 1. Therefore, by (10.10), we have

|S − S(R)| 

∑

b1···b15q16≥R

(b1b2)2+ε−(m−1)/2b
2+ε−(m−1)/3
3 · · · b2+ε−(m−1)/15

15 q
2+ε−m/16
16



∑

b1···b15q16≥R

(b1b2)(5+ε−m)/2b
(7+ε−m)/3
3 · · · b(31+ε−m)/15

15 q
(32+ε−m)/16
16 .

When m ≥ 34, we clearly have

|S − S(R)| 

∑

b1···b15q16≥R

(b1b2)−29/2+εb
−27/3+ε
3 · · · b−3/15+ε

15 q
−2/16+ε
16


 R−1/16+2ε
∑

b1···b15q16≥R

(b1b2)−1−εb
−1/3−ε
3 · · · b−1/15−ε

15 q
−1/16−ε
16

< R−1/16+2ε
∞∑

b1,...,b15,q16=1

(b1b2)−1−εb
−1/3−ε
3 · · · b−1/15−ε

15 q
−1/16−ε
16 ,

and this sum converges by (10.11). Hence, we conclude that

S = S(R) + O(R−φ),

where φ = 1/16 − ε, provided that n − σ ≥ 35.
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Appendix A. Mathematica code

Here, we will include the Mathematica code that verifies our minor arcs bound. An executable
version of this can be found at [Nor00b].
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