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QUANTUM RECONSTRUCTION FOR FANO BUNDLES
ON PROJECTIVE SPACE

ANDREW STRANGEWAY

Abstract. We present a reconstruction theorem for Fano vector bundles on

projective space which recovers the small quantum cohomology for the projec-

tivization of the bundle from a small number of low-degree Gromov–Witten

invariants. We provide an extended example in which we calculate the quantum

cohomology of a certain Fano 9-fold and deduce from this, using the quantum

Lefschetz theorem, the quantum period sequence for a Fano 3-fold of Picard

rank 2 and degree 24. This example is new, and is important for the Fanosearch

program.

§1. Introduction

We say that a vector bundle E is Fano if the total space of the projec-

tivization, X := P(E), is a Fano manifold. In this article we study rank r

Fano vector bundles on n-dimensional projective space Pn. It is well known

that the ring H•(X;Z) has two integer generating classes, p and ξE , given

by the tautological bundle on P
n and the relative tautological bundle on the

projectivization P(E), respectively. These are canonical up to twisting of E

by O(d), d ∈ Z.

The Mori cone of X has precisely two extremal rays R1,R2 ⊂ NEX ⊂
H2(X;R). We make the assumption on the bundle E (see Assumption 1)

that the primitive generators of the rays R1, R2 form an integer basis of

H2(X;Z). We label this basis by A1, A2.

Without loss of generality, we may take A2 to be the class of a line in the

fiber. The representative for A1 is less clear and indeed it is possible that

it may not be represented by an algebraic curve (see [20, Question 3 and

Example 4]). It is not clear whether for Fano bundles Assumption 1 always

holds, although there exist counterexamples for Fano varieties in general.
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2 A. STRANGEWAY

It follows from Assumption 1 that there exists d ∈ Z such that for X :=

P(E ⊗O(d)), the basis A1,A2 of H2(X;Z) is dual to the basis p, ξE⊗O(d)

of H2(X;Z). In the following we will assume that E is normalized in this

manner, and we will denote the tautological class by ξ without reference to

the corresponding bundle.

Given Assumption 1, we determine the Gromov–Witten invariants with

target class represented by curves in the fiber of the bundle map. This gener-

alizes some early results of Qin and Ruan [25]. We then impose an additional

assumption on our normalized bundle (see Assumption 2): that r+1+ c1 >

0, where c1(E) = c1p. This assumption is essentially an assumption on the

rank of the bundle, and holds automatically in the case r > n. Assumption 2

ensures that quantum multiplication of two classes α,β ∈ H•(X;Z) with

deg(α) + deg(β) ≤ n has no quantum corrections determined by Gromov–

Witten invariants with class aA1 + bA2, with a and b both nonzero.

We show (see Theorem 1) that for a Fano bundle E satisfying Assump-

tions 1 and 2, the small quantum cohomology of X is determined by the

Gromov–Witten invariants with class A ∈H2(X) of degree −K ·A≤ n+1.

This gives us good control over the invariants required to determine the

quantum cohomology. To place such a condition seems reasonable, as evi-

dence suggests that low-rank Fano bundles are split (see [2]). The projec-

tivization of a split bundle on P
n is toric, so the quantum cohomology is

determined by an existing theory of Givental [14, Theorem 0.1].

In the second part of this article, we provide an extended example,

using Theorem 1 to calculate the quantum cohomology for the Fano 9-fold

P(
∧2ΩP4), the projectivization of second wedge of the cotangent bundle

on P
4. From the quantum multiplication data we produce the small

J -function, following Guest in [17] and [18]. We observe in the J -function

some tantalizing traces of modularity, in the form of the Apéry numbers.

We apply the quantum Lefschetz theorem (see [10, Theorem 2, Corol-

lary 6]) to the result for the 9-fold to compute the quantum period for the

rank 2 Fano 3-fold No. 17 in the Mori–Mukai list (see [23, Table 2]), which

can be given as a complete intersection in the total space of the projec-

tivized bundle. This result is important in the classification of Fano 3-folds

as carried out in the Fanosearch program (see [8]).

While preparing the first draft of this paper, the method we describe

here was the only way to obtain the quantum cohomology of this Fano

3-fold. More recently, Coates, Corti, Galkin, Golyshev, and Kasprzyk have

shown that the quantum period of this Fano 3-fold can be computed using
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QUANTUM RECONSTRUCTION FOR FANO BUNDLES 3

abelian/nonabelian correspondence (see [6]). Nonetheless the method pre-

sented here is less taxing than the alternative approach, and the methods

presented in this article also apply to more general Fano bundles.

§2. Notation and assumptions

Throughout this article we will use Fulton’s convention for projectivized

bundles; we regard P(E) as the bundle of 1-dimensional linear subspaces in

the fibers of E, not 1-dimensional quotients. Since we work exclusively with

cohomology in even degree, we say that α has degree n/2 if α ∈Hn.

2.1. Fano bundles and extremal rays

A vector bundle E is defined to be Fano if its projectivization, P(E), is a

Fano manifold. Let E → P
n be a Fano bundle of rank r. Let p= c1(OPn(1))

be the hyperplane class on P
n, and let ξE = c1(OP(E)(1)) be the relative

hyperplane class on P(E). We will write ci(E) = cip
i for the Chern classes

of E.

Let X = P(E), and let P :X → P
n be the projection map. We have that

the anticanonical class is given by

−KX = (n+ 1)p+ c1(E) + rξE .

Note that while it might appear that −KX depends on the normalization of

E, one can easily check that for E′ =E⊗O(d), c1(E
′) = c1(E)+ rdp, while

ξ′E = ξE − dp.

We fix a basis for H•(X;Z), φ1, . . . , φr(n+1), generated as a ring by 1, p,

and ξE . This basis is given lexicographic ordering where we take p before

ξE . Let (·, ·) denote the intersection pairing on cohomology, so that (α,β) =∫
M α∪ β. We denote φi the basis dual to φi defined by this paring. We will

regularly denote the cup product of cohomology classes implicitly.

As X is the projectivization of a vector bundle over projective space, the

Mori cone of X , NEX , has exactly two extremal rays R1,R2 (see [7, p. 25]).

We may take primitive generators of the rays A1,A2 ∈H2(X;Z) such that

R1 = R+A1 and R2 = R+A2. Up to a choice of ordering, A2 is represented

by a line in the fiber of P : A2 = PD(pnξr−2). The form that A1 takes in

general is less clear and, as we noted in the Introduction, it may not be

representable as an algebraic curve. We will make the following assumption

on the generators of the extremal rays of X .
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4 A. STRANGEWAY

Assumption 1. We assume the following equivalent conditions:

• A1,A2 ∈H2(X;Z) form an integral basis,

• p ·A1 = 1.

Assumption 1 implies that A1 = PD[pn−1ξr−1
E + (k + c1)p

nξr−2
E ] for some

integer k. A sufficient condition for Assumption 1 to hold is if the class A1

is realized by rational curves corresponding to lines in the base Pn. This

occurs when A1 is the class of a section of P |� for �⊂ P
n a line. Note that �

need not be a generic line: unless the bundle is uniform it is reasonable to

expect that any line realizing A1 will be some jumping line for the vector

bundle E (see [1]). In greater generality one might expect that A1 would

be the class of a section of P |C , for some curve C of degree greater than 1,

that is, corresponding to a jumping conic or higher-degree rational curve.

This would contravene Assumption 1. At present we do not have examples

of such a situation, although we have no general statement to rule it out.

Given Assumption 1, it trivially follows that

p ·A1 = 1, p ·A2 = 0,

ξE ·A1 = k, ξE ·A2 = 1.

By choosing the basis p, (ξ − kp), this product becomes diagonal. This

is equivalent to twisting E by O(k), which does not change P(E). For the

rest of this article, we assume that E is normalized in this way so that the

product is diagonalized, that is,

p ·A1 = 1, p ·A2 = 0,

ξE ·A1 = 0, ξE ·A2 = 1.

Under these conditions we are therefore free to assume that E is normal-

ized such that A1 = PD[pn−1ξr−1
E + c1p

nξr−2
E ] and A2 = PD(pnξr−2), and

we do so in what follows, dropping the subscript E on ξ. Note that this

normalization implies that ξ is nef while ξ − p is not.

Since E is a Fano bundle, −KX = (n+1+c1)p+rξ is ample. We therefore

have

(1) −Kx ·A1 = n+ 1+ c1 > 0.

With this normalization fixed, we will later also make the following assump-

tion.

Assumption 2. It holds that E satisfies r+ 1+ c1 > 0.
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QUANTUM RECONSTRUCTION FOR FANO BUNDLES 5

This assumption is essentially a condition on the rank of the bundle and is

fulfilled if r > n (combining this with (1), Assumption 2 follows easily). The

purpose of this assumption will be made more transparent in the following

section, as it pertains to the degree of certain quantum corrections.

We will denote by P and Ξ the extremal contractions given by the linear

systems induced by p and ξ, respectively:

X
Ξ

P

Y

Pn

2.2. Gromov–Witten and quantum cohomology

We briefly review some aspects of Gromov–Witten theory to fix nota-

tion. In the following, we use the fact that A1,A2 form an integer basis for

H2(X;Z).

Let X0,n,aA1+bA2 denote the moduli space of n-pointed genus 0 stable

maps to X of image class aA1 + bA2 from curves of genus 0 with n marked

points (see [21], [12]). There are evaluation maps evi :X0,n,aA1+bA2 →X,1≤
i ≤ n and, given cohomology classes α1, αn ∈ H•(X), we define genus 0

Gromov–Witten invariants as

〈α1, . . . , αn〉X0,n,aA1+bA2
:=

∫
[X0,n,aA1+bA2

]vir
ev∗1α1 ∧ · · · ∧ ev∗nαn,

where [X0,n,aA1+bA2 ]
vir is the virtual fundamental class of X0,n,aA1+bA2 (see

[22], [4], [3]). Recall that the virtual dimension of X0,n,aA1+bA2 is

dimvir(X0,n,aA1+bA2) = dim(X)− 3 + n−K · (aA1 + bA2).

The small quantum product on a manifold M is a deformation of the

usual (classical) product in cohomology. The deformation takes the form

of quantum corrections, which are governed by genus 0 Gromov–Witten

invariants.

Let Λ :=C[H2(X;Z)], an element of which is a finite sum
∑

d∈H2(X;Z) λdq
d,

with symbols multiplying as follows: qd1qd2 = qd1+d2 . We let q1 = qA1 and

q2 = qA2 be the elements of Λ associated to A1 and A2 corrections, respec-

tively.

We consider the small quantum product as the following operation:

� :H•(X;C)×H•(X;C)→H•(X;C)⊗Λ
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6 A. STRANGEWAY

with

α � β =

(n+1)r∑
i=1

∑
a,b≥0

〈α,β,φi〉X0,3,aA1+bA2
φiqa1q

b
2.

We define d1 = deg(q1) =−K ·A1 = n+ 1+ c1 and d2 = deg(q2) =−K ·
A2 = r. With this definition, the quantum product makes H•(X,Λ) into a

graded ring. This fact, which is a simple consequence of the virtual dimen-

sion of X0,n,aA1+bA2 , constrains the degree of image class for the Gromov–

Witten invariants associated to quantum corrections based on the degree

of the classes being multiplied. We will often refer to the degree-preserving

nature of quantum multiplication by little more than for degree reasons. To

calculate small quantum multiplication by p and ξ, we need only consider

two-point invariants, due to the divisor axiom (see [3]).

Note that Assumption 2 implies that d1 + d2 > n, so the quantum mul-

tiplication of two classes α,β ∈H•(X;Z) with deg(α) + deg(β)≤ n has no

quantum corrections determined by Gromov–Witten invariants with class

aA1 + bA2, with a and b both nonzero.

§3. Reconstruction theorem for Fano bundles

Lemma 1. Let X = P(E) for E → Y , a Fano bundle (not necessarily on

P
n) of rank r, and let Y be smooth of dimension n. Let ξ be the relative

hyperplane class on X, let π :X → Y be the induced bundle map, and let

A = PD(pnξr−2) be the extremal curve corresponding to lines in the fiber

of π. The Gromov–Witten invariants of type 〈α,β〉X0,2,kA vanish for k ≥ 2.

Furthermore, 〈α,β〉X0,2,A = π∗α · π∗β.
Proof. This result generalizes [25, Lemmas 3.6 and 3.7].

We demonstrate that, for k ≥ 2, there do not exist any rational curves

of class kA which satisfy the intersection properties given by α and β.

Connected curves of the class kA are restricted to live in a single fiber of π.

Since we require that the curve intersects PD(α) and PD(β), such a curve

may only exist if PD(α) and PD(β) both intersect a common fiber of π. We

provide a dimension-counting argument to show that no such common fiber

exists.

The virtual dimension of X0,2,kA is

dimvir(X0,2,kA) = dim(X)− 3 + 2+ k deg(qA) = n+ r− 2 + kr.

If k ≥ 2, then, for degree reasons, we only get nonzero invariants if deg(α)+

deg(β) = n+ r− 2 + kr ≥ n+ r− 2 + 2r.

https://doi.org/10.1215/00277630-2817545 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2817545


QUANTUM RECONSTRUCTION FOR FANO BUNDLES 7

Letting s and t be the dimensions of PD(α) and PD(β), respectively, we

have s + t ≤ n + r − 2r < n. This implies that PD(α) and PD(β) do not

intersect in a common fiber of π; in particular, π∗PD(α) and π∗PD(β) do

not intersect generically in Y . Since there are no rational curves with the

correct intersection properties, the associated Gromov–Witten invariants

vanish.

The Gromov–Witten invariants 〈α,β〉X0,2,A count genuine lines in the

fibers of π which intersect sufficiently generic cycles representing the classes

PD(α) and PD(β). The fibers are projective space, and it is well known

that the only nonzero, two-point invariants for projective space encode the

fact that there is exactly one line between two points (see, e.g., [19]). So we

can rephrase the issue here: we wish to count fibers of P which contain a

point of the cycle representing PD(α) and a point of the cycle representing

PD(β). This can be calculated via the ordinary intersection product after

pushdown by P , as stated.

Note that if α,β are elements of the basis {φi},

〈α,β〉0,2,A2 =

{
1 if α= pn−lξr−1, β = pnξr−1,1≤ l≤ n,

0 otherwise.

We prove two reconstruction lemmas, which together allow us to produce

the full quantum cohomology for X from a small number of input Gromov–

Witten invariants. Note that throughout we are heavily reliant upon the

assumption that the product between divisor classes and extremal curve

classes is diagonal. The ξ-lemma tells us that if we have the quantum mul-

tiplication of a class by p, then we know for free the multiplication of the

same class by ξ. The p-lemma says that if we know ξ � pkξl, then we get

p�pk−1ξl+1. Note that once we have determined quantum multiplication by

divisor classes, we have determined the entirety of quantum cohomology, so

we restrict our interest to quantum multiplication by divisors. Since quan-

tum multiplication is distributive, we need consider only multiplication of

basis elements.

Lemma 2 (ξ-lemma). Assume that for some i, k, with i ≥ k, p � pkξi−k

is known. We can then calculate ξ � pkξi−k with no geometric (i.e., mod-

uli space) calculation. Put differently, we already have sufficient Gromov–

Witten invariants to calculate the quantum corrections in ξ � pkξi−k.
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8 A. STRANGEWAY

Proof. For degree reasons, the quantum corrections in p � pkξd−k are

determined by (and hence determine) all Gromov–Witten invariants of the

form

〈α,β〉X0,2,aA1+bA2
,

with ad1 + bd2 ≤ i+ 1 and a≥ 1.

Likewise, the quantum corrections for ξ �pkξi−k are determined by invari-

ants of the form

〈α,β〉X0,2,aA1+bA2
,

with ad1 + bd2 ≤ i+ 1 and b≥ 1.

It is clear that the only Gromov–Witten invariants required to determine

the quantum corrections in ξ � pkξi−k, which are not already determined by

p � pkξi−k, are 〈α,β〉X0,2,A2
, which are given by Lemma 1.

Lemma 3 (p-lemma). Assume that all quantum multiplication by divisor

classes of classes of degree at most i − 1 is known. Further, assume that

ξ �pk+1ξi−k−1, i−k−1≥ 0, is known. Then we can calculate p�pkξi−k with

no geometric calculation. Note that for i≥ n+1 and k = n, ξ �pn+1ξi−n−1 =

0, since pn+1 = 0.

Proof. Since quantum cohomology is both associative and commutative,

we can use the knowledge of multiplication in lower degree to make the

following manipulations:

p � pkξi−k = p � (ξ � pkξi−k−1 − f2q2)

= ξ � pk+1ξi−k−1 + ξ � f1q1 − p � f2q2

= pk+1ξi−k + known quantum corrections,

where f1 is the quantum correction from p � pkξi−k−1 and f2 the correction

from ξ �pkξi−k−1. Note that these are of degree i−d1 and i−d2, respectively,

so their multiplication by divisors is, by assumption, known. At each step the

quantum corrections are all known and governed by invariants we already

have, since they are necessarily of lower degree.

For degree reasons, quantum multiplication, by divisor classes, of classes

of degree i≤ n is completely determined by the Gromov–Witten invariants

of the form 〈α,β〉X0,2,A2
and 〈α,β〉X0,2,kA1

for kd1 ≤ n+ 1. Note in particular

that there can be no corrections coming from 〈α,β〉X0,2,A1+A2
invariants.
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QUANTUM RECONSTRUCTION FOR FANO BUNDLES 9

Every basis element of degree i ≥ n+ 1 is divisible by ξ, so we can apply

the p-lemma, the proof of which requires that we divide out a factor of ξ.

In the process of producing an algorithm from Lemmas 2 and 3 to carry

out the reconstruction process, we consider cohomology classes as vectors

in the lexicographical basis φi. Quantum multiplication by the basis classes

p and ξ can be considered as left multiplication of cohomology vectors by

r(n+ 1)× r(n+ 1) matrices Mp and Mξ, respectively.

With this viewpoint in mind, we see that the preceding lemmas can be

reinterpreted.

Lemma 4 (p-lemma as linear algebra). Given the ith column of Mp, then

the ith column of Mξ may be determined by linear algebra.

Lemma 5 (ξ-lemma as linear algebra). Assume that the first i columns

of Mp and Mq have been determined; then the (i+1) column of Mp can be

determined using linear algebra.

Theorem 1. Let X = P(E) with E → P
n be a Fano bundle of rank r,

such that r+ c1(E)> 0. The quantum cohomology of X can be reconstructed

from two sets of Gromov–Witten invariants: those already determined by

Lemma 1 and those of the form 〈pi, α〉X0,2,kA1
for 0 ≤ i ≤ n, α ∈H•(X;Z)

and kd1 ≤ n + 1. Phrased differently, the quantum multiplication can be

reconstructed from the multiplication p � pi for 0< i≤ n.

Proof. The proof proceeds by the construction of an algorithm. We alter-

nately apply Lemma 3 followed by Lemma 2 to calculate the multiplication

for all basis elements following the lex ordering. We produce this algorithm

in pseudocode below. Note that the invariants stated in the hypothesis are

precisely those which define the multiplication p � pi for 0≤ i≤ n.

We first describe in words roughly how the algorithm proceeds. Assume

that the multiplication of classes of degree at most i − 1 is determined.

Consider the first basis element of degree i (under lexicographical ordering).

The class is then necessarily of the form pi if i≤ n or pnξi−n if i > n. In the

first case we are in the special case of Lemma 3 (pn+1 = 0) and we obtain

p � pnξi−n. In the second case we have p � pi by hypothesis.

We are now in a position to apply Lemma 2, to obtain the ξ multiplication

of this class. One can easily check that we can now apply both lemmas to the

next basis element in degree i and so on. After obtaining the multiplication

data for classes of degree i, we repeat the process for degree i+ 1 (again,

either obtaining the p multiplication as a special case of the p-lemma or
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10 A. STRANGEWAY

knowing it by hypothesis). We repeat until we obtain the full quantum

multiplication data.

The input for the reconstruction process is a pair of r(n+ 1)× r(n+ 1)

matrices Mp and Mξ. In Mp, the columns corresponding to multiplication

p�pi for 0≤ i≤ n are known, and we initialize the unknown entries as zero.

We can initialize Mξ as the zero matrix. By convention, we label arrays with

the first entry given index 1. We may think of the reconstruction process as

giving an algorithm to fill in the rest of the matrices Mp and Mξ.

The result of Lemma 3 can usefully be written as

p � pkξi−k = ξ � p � pkξi−k−1 − p � (ξ � pkξi−k−1 − pkξi−k).

We use this form in the algorithm as it lends itself easily to calculation by

matrix multiplication.

We define the following functions for use in our pseudocode. Let

numelts(d) be the number of basis elements φi in degrees less than or equal

to d:

numelts(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2(d+ 1)(d+ 2) for d≤ n and d≤ r− 1,

d+ 1+ n(d+ n
2 + 1

2) for d > n and d≤ r− 1,

d+ 1+ (r− 1)(d− r
2 + 1) for d≤ n and d > r− 1,

(d+ 1)(1− d
2 ) + n(d− n

2 + 1
2)

+ (r− 1)(d− r
2 + 1) for d > n and d > r− 1.

Let I(a, b) be the position that paξb appears in the basis of H•(X), when

given lexicographical ordering. This is given by

I(a, b) =

{
numelts(a+ b− 1) + (b+ 1) for a+ b≤ n,

numelts(a+ b− 1) + (n− 1 + a) for a+ b > n.

Finally we define the term function, which extracts from a polynomial

the term specified along with the corresponding coefficient. It is given by

the expression Term(polynomial,monomial) (e.g., Term(5x2+3xy+2x+1,

x) = 2x).

Let C be an r-vector with C[i] :=−ci(E); we use the entries to −ci(E)

to determine the form ξr takes.

We produce the following algorithm.

https://doi.org/10.1215/00277630-2817545 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2817545


QUANTUM RECONSTRUCTION FOR FANO BUNDLES 11

## d loops over all the degrees to calculate

for d= 0→ r+ n do

## We loop over all classes in degree d

## using the numelts function to determine the number of classes in

degree d

for k = 0→ (numelts(d)− numelts(d− 1)− 1) do

## amax := a and bmin := b determine the exponent of elements

in the degree.

a := min(d,n)

b := max(d− n,0)

## test to see if p-lemma should be applied

## to rule out columns corresponding to multiplication of pd

if d > n or k > 0 then

HOLD :=MξMpV(a−k,b+k−1)−Mp(MξV(a−k,b+k−1)−V(a−k,b+k))

## the following loop copies HOLD into the appropriate col-

umn of Mp

for j = 1→ (n+ 1) ∗ r do

P [j, I(a− k, b+ k)] := HOLD[j]

end for

end if

## Applying ξ-lemma

## (can improve on the bound s)

for s= 1→ (n+ 1)r do

## Extracting the quantum corrections from the relevant

## p multiplication. We just pull out the data

## from the corresponding column in Mp

## Note the important factor 1
s

## from the divisor axiom

for j = 1→ (n+ 1)r do

Mξ

[
j, I(a− k, b+ k)

]
:=Mξ

[
j, I(a− k, b+ k)

]
+

1

s
Term

(
Mp

[
j, I(a− k, b+ k)

]
, s
)

end for

end for
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12 A. STRANGEWAY

## Testing for special case where class = pαξ r−1

if b+ k = r− 1 then

## Insert additional quantum correction in special case

Mξ[I(a− k,0), I(a− k, b+ k)] := q2

## Insert classical multiplication in special case

## i.e. copy across some Chern classes

## Note that we shift the entries as we copy them to account

## for the powers of p that our class includes

## s is restricted so that we account for the vanishing of pn+1

for s= 1→ n+ r− 1− d do

Mξ[I(a− k+ s, r− s), I(a− k, b+ k)] :=C[s]

end for

else

## Insert classical multiplication in generic case

Mξ[I(a− k, b+ k+ 1), I(a− k, b+ k)] := 1

end if

end for

end for

3.1. Special cases

There are two special cases in which Theorem 1 can be significantly

strengthened. The first is when the second extremal contraction realizes

X as the projectivization of a vector bundle on some other space, the sec-

ond when the contraction realizes X as the blowup of some smooth space

in a smooth locus. In both cases, the entire quantum cohomology is deter-

mined by counting lines in the fibers of the two extremal maps P and Ξ. We

first prove a lemma regarding the Gromov–Witten invariants of a blowup

of a smooth subvariety in a smooth ambient space.

Lemma 6. Let Y be a smooth algebraic variety of dimension n, let Z ⊂ Y

be a smooth, connected subvariety of codimension r ≥ 2, and let X := BlZY

be the blowup of Y along Z. Let A1 be the extremal ray contracted by the

blow-up map Ξ :X → Y . We have that A1 is the class of a line in the fiber

of the exceptional divisor D of the blowup. Then, for any α1, α2 ∈H•(X;Z),
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with deg(α1) + deg(α2) = dimvir(X0,2,kA1),

〈α1, α2〉X0,2,kA1
=

{
Ξ|∗ι∗α1 ·Ξ|∗ι∗α2 k = 1,

0 k ≥ 2,

where Ξ| is the restriction of Ξ to D ⊂ X, the exceptional divisor of the

blowup, and ι :D ↪→X is the embedding of D in X.

Proof. We summarize the geometry of the situation in the following dia-

gram:

D
ι

Ξ|

X

Ξ

Z Y

Note that D = P(NZ/Y ) is the projectivization of the normal bundle to Z

in Y , so we are in a similar situation to that discussed in Lemma 1.

We first prove vanishing for k ≥ 2 using a push-pull argument.

Consider the following diagram of morphisms:

X0,2,kA1 X ×X D×Z D

pt

ev1 × ev2

P

P

The Gromov–Witten invariant 〈α1, α2〉0,2,kA1 is given by

P∗
(
[X0,2,kA1 ]

vir ∩ (ev1 × ev2)
∗(α1 � α2)

)
.

Since P is the map to a point, the above is an integral as expected.

If we can show that the integrand vanishes, we have shown vanishing for

the Gromov–Witten invariant. We factor P through the above diagram as

P ◦ (ev1 × ev2), since the map to a point is unique. We manipulate this

expression using the projection formula (see [11, p. 34]):

P∗
(
[X0,2,kA1 ]

vir ∩ (ev1 × ev2)
∗(α1 � α2)

)
= P ∗

(
(ev1 × ev2)∗[X0,2,kA1 ]

vir ∩ (α1 � α2)
)
.

Since connected curves of class kA1 are restricted to a single fiber of

Ξ|, it is clear that the image (ev1 × ev2)(X0,2,kA1) lies in D ×Z D, which
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has dimension n+ r− 2. The pushforward of the virtual fundamental class,

(ev1 × ev2)∗[X0,2,kA1 ]
vir, is supported on this set. On the other hand, the

virtual dimension of X0,2,kA1 is n− 1+ k(r− 1); in particular, for k ≥ 2 the

virtual dimension is at least n+2r−3. Since the virtual dimension is greater

than the dimension of the set on which the pushforward is supported, (ev1×
ev2)∗[X0,2,kA1 ]

vir vanishes and so too does the Gromov–Witten invariant.

We now prove that the invariants 〈α1, α2〉X0,2,A1
can be calculated as

claimed. The class A1 is irreducible and reduced and can only be repre-

sented as a line in the fiber of the exceptional locus, hence the moduli

space of holomorphic maps P1 →X with target class A1 is compact and of

expected dimension. In particular, the moduli space X0,0,A1 is given by the

Grassmann bundle of lines in the fiber of P(NZ/Y ). It is smooth and of the

expected dimension n+ r− 4. The Gromov–Witten invariants are therefore

enumerative and can be calculated by counting curves of class A1 on which

the insertion classes are supported.

This is identical to the problem of counting lines in fibers over the excep-

tional locus on which ι∗α1 and ι∗α2 are supported. As the exceptional divisor

is the blowup of the normal bundle, we are in the cases of Lemma 1 and are

counting common fibers of Ξ in the support of ι∗α1 and ι∗α2. This counting

is carried out by pushdown via Ξ and intersection in the cohomology of the

base. This yields the claimed formula.

In the above discussion we have proved the following corollary to Theo-

rem 1.

Corollary 1. Let X = P(E) with E → P
n be a Fano bundle satisfying

Assumptions 1 and 2 and with the second extremal contraction Ξ : P(E)→ Y

given by either

(1) the projectivization of a bundle E′ → Y ,

(2) the blowup of a smooth subvariety Z inside smooth Y ;

then the quantum cohomology of X can be reconstructed from the Gromov–

Witten invariants of the form 〈α,β〉0,2,A1 and 〈α,β〉0,2,A2 . These Gromov–

Witten invariants are determined by Lemmas 1 and 6.

§4. The geometry of rank 2 Fano 3-fold No. 17

Our aim is to compute the quantum period sequence of M , the rank 2

Fano 3-fold No. 17 in Mori and Mukai [23]. The 3-fold M can be embedded
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as a complete intersection in X = P(E) for some Fano bundle E, which we

now describe.

Fix a vector space V � C
5 with P

4 := P(V ). Let E := Ω2
P(V )(2) be the

second wedge of the bundle of holomorphic differentials on P
4, twisted by

O(2). LetX be the total space P(E). We can naturally viewX as the blowup

of the Plücker embedding of the Grassmannian G(2, V �)⊂ P(
∧2 V �).

As above, let P be the canonical map induced by X ’s bundle structure,

and let Ξ be the contraction induced by the second extremal ray. We illus-

trate this in the following diagram:

X
Ξ

P

P

(∧2 V �
)

P(V )

4.1. Cohomology and extremal rays of X

The ordinary cohomology of X is determined by the Chern classes of E,

which are easily obtained from the following exact sequence of bundles, tak-

ing the second wedge of the Euler sequence on P(V ). By abuse of notation,

we refer by V � ⊗O to the trivial V � bundle on P(V ):

(2) 0→E →
2∧
V � ⊗O v�−→ V � ⊗O(1)→O(2)→ 0.

Here v� denotes the contraction by the vector v ∈ V representing the

point in P(V ). From (2) it is clear that X embeds into P(V )× P(
∧2 V �)∼=

P
4 × P

9. The total Chern class is c(E) = 1− 3p+ 5p2 − 5p3 and hence

(3) H•(X) =
C[p, ξ]

(p5, ξ6 − 3pξ5 + 5p2ξ4 − 5p3ξ3)
.

We check that ξ is nef and prove that E is a Fano bundle.

Lemma 7. It holds that ξ is nef.

Proof. Since ξ is the relative hyperplane on P(E), it is a quotient of P ∗E�.

We have that E� is generated by global sections (one sees this by dualizing

(2)) so ξ is also generated by global sections and is therefore nef.
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Since −KX = 6ξ + 2p, and both p and ξ are nef, we see that −KX is

ample; X is Fano.

In H2(X,Z) we fix classes A1,A2. Recall that A2 is the class of a line

in the fiber P :X → P(V ). In this example, A1 is the class of a line in an

exceptional fiber of Ξ :X → P(
∧2 V �) and is isomorphic, by P , to a generic

line in P
n. We have

p ·A1 = 0, ξ ·A1 = 1, p ·A2 = 1, ξ ·A2 = 0

from which follow A1 =PD(p3ξ5 − 3p4ξ4) and A2 =PD(p4ξ4).

Lemma 8. The classes A1,A2 generate the extremal rays of the Mori

cone.

Proof. Both p and ξ are nef, so, given the homology class aA1 + bA2 of

any curve T, we have a= ξ ·T ≥ 0 and b= p ·T ≥ 0. On the other hand, both

A1 and A2 are contained in the Mori cone and therefore form the extremal

rays.

The following discussion shows that X is given by the blowup of P(
∧2 V �)

along the Plücker embedding of G(2, V �).

A point [w] ∈ P(
∧2 V �) is represented by a 2-form w. The fiber Ξ−1([w])

over this point consists of the subset of points of P(V ) which are represented

by a vector v annihilated by w. Considering w as an antisymmetric 5× 5

matrix A : V → V �, it is clear that w is generically of rank 4, that is, there

is a 1-dimensional space of vectors v annihilated by w. So, generically, the

fiber Ξ−1([w]) is a point. When w drops ranks it must be rank 2, since we

throw away the 0-form upon projectivization. Where w is of rank 2, the

fiber is a P
2. The locus of rank-2 forms corresponds to those elements of∧2 V � which are decomposable to w1 ∧w2, where w1,w2 are 1-forms. This

is exactly the Plücker embedding of G(2, V �) ↪→ P(
∧2 V �) as a codimension

3 subvariety. Hence X is isomorphic to the blowup of G(2, V �)⊂ P(
∧2 V �).

Lemma 9. The rational map P(
∧2 V �) ��� P(V ) is given by the linear

system of quadrics containing G(2, V �).

Proof. The map sends a 2-form w, thought of as an antisymmetric 5× 5

matrix A : V → V �, to its kernel. By a version of the Cramer rule, we can

describe the map explicitly by sending A to the vector of 4× 4 Pfaffians:

pf(A) =
(
pf0(A), . . . ,pf4(A)

)
.
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The statement then reduces to the fact that these Pfaffians generate the

ideal of G(2, V )⊂ P(
∧2 V �).

4.2. M as a complete intersection in P(E)

We denote by M the Fano 3-fold No. 17 in the Mori–Mukai list of rank 2

Fano 3-folds (see [23]). According to Mori and Mukai, M is the blowup of

a 3-dimensional quadric Q⊂ P
4 with center Γ⊂Q, a nonsingular curve of

genus 1 and degree 5.

Lemma 10. We have that M is a complete intersection of type p∩ ξ5 in

P(E).

Proof. It is well known that the Plücker embedding G(2, V �) ↪→ P(
∧2 V �)

is of degree 5. Using adjunction, one can easily check that the curve given by

the complete intersection of five general hyperplanes with the Grassmannian

has trivial canonical bundle and hence is genus 1,

Γ = h1 ∩ · · · ∩ h5 ∩G(2, V �)⊂ h1 ∩ · · · ∩ h5 ∼= P
4,

all of this taking place in the natural ambient P(
∧2 V �). Since Ξ: X →

P(
∧2 V �) is the blowup of P(

∧2 V �) along the Plücker embedding of

G(2, V �), the discussion makes it clear that M is the complete intersec-

tion

M =Ξ∗(h1)∩ · · ·Ξ∗(h5)∩ Q̃⊂X,

where Q̃ is the proper transform of a quadric containing G(2, V �), that is,

by Lemma 9, a section of p.

Corollary 2. Let −KM = (p+ ξ)|X .

§5. The quantum cohomology of X and M

In this section we use the reconstruction theorem (Theorem 1) to cal-

culate the quantum cohomology of X . By passing to a certain generating

function—the J -function—of X , we use quantum Lefschetz (see [10]) to

obtain information about the quantum cohomology of M .

Since X = P(E) is the projectivization of a Fano bundle and the extremal

contraction Ξ is the blowup ofG(2,5)⊂ P
9, the quantum cohomology follows

from Corollary 1.
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We make use of the Schubert calculus for G(2,5), following notational

conventions from [16]. In particular, let σi be the ith Chern class of the

tautological quotient bundle Q on G(2, V �). For example, σ1 is the class of

the Schubert cell of lines which intersect a given plane.

Let N be the normal bundle to the embedding of G(2, V �) in P(
∧2 V �).

The exceptional divisor D is given by the projectivization of N . The normal

bundle to the embedding into P(
∧2 V �) is given by Q�(2σ1), though for the

sake of convenient relations in cohomology we will work instead with Q� (of

course P(N) and P(Q�) are isomorphic). The cohomology of this bundle is

given by

H•(
P(Q�)

)
=

H•(G(2, V �))[η]

(η3 − σ1η2 + σ2η− σ3)
,

where η is the relative hyperplane class of P(Q�).

The following diagram describes the geometry of the situation:

P(Q�)
ι

Ξ|

X

Ξ

G(2, V �) P(
∧2 V �)

For the purpose of calculation, note that ι∗ξ = σ1 and ι∗p= η.

Theorem 2. We have

QH•(X) =
C[p, ξ, q1, q2]

(R1,R2)
,

where

R1 = p�5 − q21p+ 2q21ξ + 2q1p
�3 − 2q1p

�2 � ξ − q1p � ξ
�2 − q1ξ

�3

and where

R2 = ξ�6 − 3p � ξ�5 + 5p�2 � ξ�4 − 5p�3 � ξ�3 − q2 − 5q1p � ξ
�3 + 10q1ξ

�4.

Proof. Quantum multiplication is determined by Corollary 1. From [26,

Theorem 2.2], all that then remains is to evaluate the relations of the clas-
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sical cohomology (3), replacing classical multiplication with quantum mul-

tiplication, from which the statement follows.

5.1. Quantum differential structure

Our ultimate goal is to compute the J -function (see [13]), a generating

function for certain genus 0 Gromov–Witten invariants, of M . As M is a

complete intersection in X , we will use the quantum Lefschetz theorem (see

[10, Theorem 2, Corollary 6]), which expresses certain genus 0 Gromov–

Witten invariants of M in terms of invariants of the ambient space X . The

input that we need for the quantum Lefschetz theorem is the J -function of

X as well as the direct sum of line bundles which describe M as a complete

intersection. In this section we describe a method to obtain an arbitrary

number of terms in the power series expansion of the J -function of X , by

solving a system of differential equations, called the quantum differential

equations for X . Here we follow closely the excellent articles [17] and [18]

by Guest.

Recall from Section 2 that φ1, . . . , φ30 is the lexicographical basis of

H•(X;Z) in p and ξ, with φ1, . . . , φ30 the dual basis given by the intersec-

tion pairing. The J -function of X is the function H2(X;C)→H•(X;C)⊗
C[[1/z]] defined by

JX(t) = et/z
(
1 +

30∑
ε=1

∑
a,b≥0

ed·t
〈 φε

z(z −ψ)

〉X
0,1,aA1+bA2

)
,

where we expand 〈 φε

z(z−ψ)〉0,1,aA1+bA2 as
∑

k≥0 〈φεψk〉0,1,aA1+bA2
1

zk+2 .

Since t ∈H2(X,C) is nilpotent as an element of H•(X), the expression

et/z makes sense in H•(X)⊗C[[1/z]].

By writing t ∈H2(X;C) as t = t0 + t1p+ t2ξ, we regard the J -function

as a function of q1 = et1 , q2 = et2 :

JX(q) = q
p/z
1 q

ξ/z
2

(
1 +

30∑
ε=1

∑
a,b≥0

qa1q
b
2

〈 φε

z(z −ψ)

〉
0,1,aA1+bA2

)
.

Here q
p/z
1 = exp(p log q1/z) = exp(tp/z).

The function JX satisfies a system of differential operators called quantum

differential operators (see [18]). Let Mp(q),Mξ(q) denote the matrices of

quantum multiplication by p and ξ with respect to the basis φ1, . . . , φ30,

which are easily obtained from Corollary 1 and the discussion above. The

reader may find Mp(q),Mξ(q) in the Appendix.
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Consider the system of differential equations

zq1
∂

∂q1
s=Mp(q)s,

zq2
∂

∂q2
s=Mξ(q)s,

where s is a vector-valued function of t ∈H2(X;C) (or equivalently, a mul-

tivalued vector function of q1, q2).

This system admits a fundamental solution matrix, the rows of which are

given by vectors Ji:

S =

⎛⎜⎜⎜⎝
− − J1 − −
− − J2 − −

...

− − J30 − −

⎞⎟⎟⎟⎠ .

The row vector J30 is the expansion of the J -function as a vector-valued

function in H•(X;C)⊗ C[[1/z]] in terms of the basis φ1, . . . , φ30. The dif-

ferential system is equivalent to sixty differential equations in J1 through

J30. By solving for the rows J1 through J29 in terms of J30, we are left with

thirty-one differential equations in JX . By applying Gröbner basis tech-

niques, we find a generating set for the ideal formed by these equations in

the Weyl algebra. These (nonunique) differential equations are quantum dif-

ferential equations and define JX up to scalar. Using the Rosenfeld–Gröbner

tool in the differential algebra package of Maple 16, we obtain the following

result.

Lemma 11. The ideal of quantum differential operators for X is generated

by

Δ1 =D10
2 − q2D

4
1 − 2q2D

3
1D2 − 4q2D

2
1D

2
2 − 3q2D1D

3
2 − q2D

4
2

− 2q1q2D
2
1 − 2zq2D

3
1 − 2zq1q2D1D2 − 8zq2D

2
1D2 − 3q1q2D

2
2

(4)
− 9zq2D1D

2
2 − 4zq2D

3
2 − q21q2 − 4zq1q2D1 − 4z2q2D

2
1 − 7zq1q2D2

− 9z2q2D1D2 − 6z2q2D
2
2 − 5z2q1q2 − 3z3q2D1 − 4z3q2D2 − z4q2,

Δ2 =D1D
7
2 − 2D8

2 + 5q2D
2
1 + 5q2D1D2 + 2q2D

2
2 + 5q1q2 + 5zq2D1

(5)
+ 4zq2D2 + 2z2q2,
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Δ3 = 5D3
1D

3
2 − 5D2

1D
4
2 + 3D1D

5
2 −D6

2 + 5q1D1D
3
2 − 10q1D

4
2 + q2,(6)

Δ4 =D5
1 + 2q1D

3
1 − 2q1D

2
1D2 − q1D1D

2
2 − q1D

3
2 + q21D1 + 2zq1D

2
1

(7)
− 2q21D2 − 3zq1D1D2 − 2zq1D

2
2 + z2q1D1 − 2z2q1D2,

where Di = zqi
∂
∂qi

.

Corollary 3. We have that J satisfies Δ1J =Δ2J =Δ3J =Δ4J = 0.

The identity component of J , denoted J0, is a power series in q1 and q2,

that is, J0 = (J,φ0) =
∑

i,j≥0 ci,jq
i
1q

j
2. The differential system gives recursion

relations for the coefficients in this power series. The coefficients are fixed

by demanding that c0,0 = 1. We can find J0 up to arbitrary order, and by

observation of finite terms try to find a general solution for the coefficients

ci,j which solves the differential system. Such a solution, however, has not

been forthcoming. We present the coefficients ci,j for i ≤ 7, j ≤ 7 in the

following matrix A = (ai,j). We have cleared the denominators by setting

ai+1,j+1 = i!2j!6ci,j :

A :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

0 5 20 51 104 185 300 455

0 4 73 447 1756 5320 13539 30373

0 0 90 1445 10904 55220 216110 703955

0 0 36 2148 33001 282085 1690515 7926751

0 0 0 1500 54500 819005 7606080 51405305

0 0 0 400 50350 1447150 21460825 211463875

0 0 0 0 24500 1590050 39750270 584307365

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We remark that the coefficients are all zero below the leading slant diag-

onal. Additionally, in the form presented where we have cleared denomina-

tors, the leading diagonal ai,i is given by the Apéry numbers (see [24]), so

we expect that a closed formula may be hard to find. The occurrence of the

Apéry numbers here may indicate hidden modular symmetries of J0 (see

[5], [27]). Golyshev has observed a striking connection between the quan-

tum differential equations for Fano 3-folds of Picard rank 1 and modular

forms (see [15]), and it is possible that this connection persists to the case

of higher Picard rank.

5.2. The regularized quantum period sequence for M

As we noted in the preceding section, given a complete intersection M ⊂
X , quantum Lefschetz (see [10]) allows us to calculate part of the JM from
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JX and the Chern classes of the line bundles defining the intersection. In our

example, we are only interested in the identity component of the J -function;

quantum Lefschetz provides the entirety of J0
M from J0

X . Our aim is not to

explain how quantum Lefschetz works, but how one uses it in practical

examples.

With this in mind, we briefly outline the process of applying quantum

Lefschetz. The following statements hold for any ambient space X and com-

plete intersection M .

Let E =
⊕

Li be the direct sum of line bundles corresponding to M ,

and let ρi = c1(Li) be the first Chern class of the line bundle summands.

Given the J -function of X , JX(t, z) =
∑

d∈H2(X) Jd(t, z)q
d, one forms the

hypergeometric modification

IX,M (t, z) =
∑
d

Jd(t, z)q
d
∏
i

ρi·d∏
k=1

(ρi + kz).

We also consider a formal function (with same domain and target) JX,M (t,

z), defined in [10], which has the property

e(E)JX,M (j∗u, z) = j�JM (u, z),

where e(E) =
∏

i ρi is the Euler class of the bundle E . The relation between

JM and JX is indirectly realized by the mirror map, which relates IX,M to

JX,M . The mirror map is determined by comparing the asymptotics of the

expressions. Considered as a power series in z−1, JX,M is the unique function

with the form JX,M = z + t + O(z−1). We may write IX,M in the form

F (t)z+G0(q, t)φ0+
∑r

i=1G
i(t)φi+O(z−1). By homogeneity considerations

writing IX,M in this form is practicable, even in the case that JX is only

known up to finite order in q, as in the case in point. The mirror map is

given by

(8)
IM,X

F (t)
= JX,M

(G0(q, t)

F (t)
φ0 +

r∑
i=1

Gi(t)

F (t)
φi, z

)
= e

G0(q,t)
F (t)

φ0JX,M (τ, q),

where τ =
∑r

i=1
Gi(t)
F (t) φi. The second equality follows from the string equation

and the definition of J .

The procedure may be summarized as follows.

(1) Calculate JX .
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(2) Produce the hypergeometric modification IX,M .

(3) Calculate the mirror map from the asymptotics of IX,M .

(4) Produce JX,M from IX,M using the mirror map.

Note that we do not obtain the entirety of JM by comparison with JX,M :

some information is lost in the pushforward. However, we can recover the

full identity component J0
M by following the described method with J0

X ,

since pushforward of the identity is cup with the Euler class.

We now return to our particular example and previous definitions for

M ⊂ X = P(Ω2(2)) and, proceeding as above, produce JX . As described

in Section 4.2, M is a complete intersection in X given by the intersec-

tion of one hyperplane of class PD(p) by 5 of PD(ξ). The hypergeometric

modification of JX =
∑

a,b Ja,b(t, z)q
a
1q

b
2 is given by

IX,M (t, z) =
∑
a,b

Ja,b(t, z)q
a
1q

b
2

a∏
k=1

(p+ kz)
b∏

k=1

(ξ + kz)5.

Restricting our attention to the identity component J0
X =

∑
i,j ci,jq

i
1q

j
2 , we

have I0X,M = (IX,M , φ0) =
∑

i,j di,jq
i
1q

j
2, with di,j = ci,ji!(j!)

5.

If we set the degree of deg(z) = 1 and deg(ti) = 1− deg(φi), JX is known

to be homogeneous of degree 1. One can see that in our example the only

possible contributions to the mirror map come from the identity component,

J0
X , and in particular we need only consider c0,0, c1,0, c0,1. We find that

F (t) = 1, G0(q, t) = 1+ q2, G
1(t) =G2(t) = 1.

Lemma 12. The mirror map is given by

JM,X(τ0, t1, t2, z) = IM,X(t0, t1, t2, z),

where τ0 = t0 + q1. We can more conveniently write this as

JM,X(t0, t1, t2, z) = e−q1IM,X(t0, t1, t2, z).

To produce the quantum period sequence from J0
M , we restrict t to the

anticanonical direction in H2(M ;C). As previously stated, −KM = p+ ξ,

and so restricting to the anticanonical direction has the effect of setting

q1 = q2 = q = et. The effect on J0
M is to collapse the sum to a power series

in one variable with coefficients di =
∑

j+k=i cj,k. The first ten terms in

the period sequence are: 1, 0, 10, 42, 414, 3300, 29890, 275940, 2608270,

25305000.
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Since it is known that J0
M satisfies quantum differential equations, the

period sequence also does. Given sufficient entries in the power series of the

period sequence, we may find the differential operator which annihilates the

sequence.

The Picard–Fuchs operator for the regularized period sequence of M is

given by

−17727940t9D4 − 47452732t8D4 − 177279400t9D3 − 51239477t7D4

− 400876912t8D3 − 620477900t9D2 − 28719434t6D4

− 363088702t7D3 − 1218943172t8D2 − 886397000t9D

− 8782543t5D4 − 169273876t6D3 − 958664473t7D2

− 1562482112t8D− 425470560t9 − 1322684t4D4

− 42555106t5D3 − 384463114t6D2 − 1102964660t7D

− 696963120t8 − 37187t3D4 − 5281118t4D3 − 80112855t5D2

− 392394560t6D− 456149412t7 + 13026t2D4 − 238966t3D3

− 7132816t4D2 − 69331328t5D− 148485888t6 + 995tD4

− 11442t2D3 − 3879t3D2 − 4318688t4D− 22881836t5

− 24D4 − 2278tD3 + 16030t2D2 + 146332t3D− 928456t4

+ 24D3 + 35tD2 + 9600t2D+ 76072t3 + 1920t2,

(9)

where D = t d
dt .

This matches the Picard–Fuchs operator predicted by the mirror polytope

in [9].

Appendix. Quantum multiplication matrices
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http://oeis.org/A005259 (accessed 8 September 2014).

[25] Z. Qin and Y. Ruan, Quantum cohomology of projective bundles over Pn,
Trans. Amer. Math. Soc. 350, no. 9 (1998), 3615–3638. MR 1422617.
DOI 10.1090/S0002-9947-98-01968-0.

[26] B. Siebert and G. Tian, On quantum cohomology rings of Fano manifolds and a
formula of Vafa and Intriligator, Asian J. Math. 1 (1997), 679–695. MR 1621570.
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