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Abstract

If a solvable problem is currently unsolved, then something important to a solution is most likely being overlooked. From
this simple observation we derive the obscure features hypothesis: every innovative solution is built upon at least one com-
monly overlooked or new (i.e., obscure) feature of the problem. By using a new definition of a feature as an effect of an
interaction, we are able to accomplish five things. First, we are able to determine where features come from and how to
search for new ones. Second, we are able to construct mathematical arguments that the set of features of an object is not
computably enumerable. Third, we are able to characterize innovative problem solving as looking for a series of interactions
that produce the desired effects (i.e., the goal). Fourth, we are able to construct a precise problem-solving grammar that is
both human and machine friendly. Fifth, we are able to devise a visual and verbal problem-solving representation that both
humans and computers can contribute to as they help counteract each other’s problem-solving weaknesses. We show how
computers can counter some of the known cognitive obstacles to innovation that humans have. We also briefly discuss ways
in which humans can return the favor. We conclude that a promising process for innovative problem solving is a human–
computer collaboration in which each partner assists the other in unearthing the obscure features of a problem.

Keywords: Artificial Intelligence; Creativity and Ideation; Design Creativity; Human–Computer Interaction; Innovation;
Man–Machine Systems

1. INTRODUCTION

Artificial Intelligence, especially through the 1980s, at-
tempted to get machines to perform many cognitive tasks
on their own. For problem solving that required innovation,
these attempts were mostly unsuccessful, with the possible
but debatable exceptions of Lenat’s work on AM and EUR-
ISKO (Lenat & Brown, 1984; Ritchie & Hanna, 1984). A
new theory of cognitive innovation, the obscure features hy-
pothesis (OFH), articulates a key foundation that all innova-
tive solutions are built upon at least one obscure feature of
the problem (McCaffrey, 2012). Based on a new definition
of a feature of an object (i.e., specifically, an effect of an in-
teraction between the object and other entities), we are able to
demonstrate several results. We articulate the origin of fea-
tures and a method to find new ones. We show that the set
of features of an object is not computably enumerable. Be-
cause neither computer nor human can list out all features
of an object, we move to devise a representation that is easy
for both humans and computers to contribute to in ways

that counter each other’s weaknesses. The representation con-
sists of a problem-solving grammar and visualization method
that is both human and machine friendly. The overall result is
a human–computer interface that produces a human–machine
partnership that is potentially more innovative than either
partner working alone.

2. THE OBSCURE FEATURES HYPOTHESIS FOR
INNOVATIVE PROBLEM SOLVING

If a solvable problem is currently unsolved, something crucial
to the solution is being overlooked. If a solvable problem has
been unsolved by the problem-solving community for an ex-
tended period of time, then the something that is being over-
looked is either infrequently noticed or never-before noticed
(i.e., obscure). Further, we will call all somethings that can be
either noticed or unnoticed features. Other authors use a vari-
ety of terms: attributes, properties, aspects, behaviors (Gero,
1990), resources (Altshuller, 1996), and relations. Based on
this reasoning, the OFH, originally presented in McCaffrey
(2012), can be stated as follows: all innovative solutions to
a problem are built upon at least one obscure feature of the
problem. The OFH approach leads to a systematic derivation
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of innovation-enhancing techniques by following these steps:
articulate a wide panoply of possible types of features, dis-
close why humans tend to overlook certain features types,
and construct techniques to help humans unearth the obscure
members of these feature types.

In contrast to the OFH, previous psychological theories fall
short of becoming systematic. The representation change view
(Ohlsson, 1992; Knoblich et al., 1999) proposed that solving a
problem that requires innovation necessitates a change in the
problem’s representation. These researchers, however, never
specified an array of possible types of representation change,
the cognitive inhibitions to noticing various representation
changes, and techniques to uncover hidden representation
changes. Similarly, the distant association view (Mednick,
1962) stated that solving problems requiring innovation in-
volves leveraging an association that is semantically distant
from the concepts of the problem. Followers of this approach
never articulated a multitude of the types of associations, cog-
nitive reasons why certain types of associations are overlooked,
and techniques to help bring forth the overlooked elements of
those types at the appropriate semantic distance.

In the engineering field, TRIZ, a theory of inventive prob-
lem solving (Altshuller, 1996), uses a category system of 39
types of features and a matrix of contradictions that occur
when a solution needs to resolve an apparent conflict between
the desired values of two of the features (e.g., faster accelera-
tion in a car and better gas mileage; Rantanen & Domb,
2008). The matrix focused on techniques (i.e., principles, in
the TRIZ vernacular) that could be used to try to overcome
a contradiction and construct a solution that allowed both fea-
tures to simultaneously reach their desired outcomes. Many
tools have been developed under the TRIZ umbrella since
its early days of focusing on contradictions between two fea-
tures (Rantanen & Domb, 2008), but one commonality be-
tween OFH and early TRIZ is their focus on features. OFH
creates techniques to unearth commonly overlooked features
while early TRIZ crafted techniques to overcome contradic-
tions that occur when the desired values of two features
seem impossible to achieve simultaneously.

Finally, the core activity of finding obscure features of a
problem bears some resemblance to the problem explored
in machine intelligence of finding missing data, missing fea-
tures, and missing values (Mitchell, 1997).

In the next section, we proceed to define a feature of an ob-
ject as an effect of an interaction between the object and other
entities. This definition permits us to do several things. First,
it allows us to understand where features come from and de-
velop a method to search for new features. Second, the defi-
nition permits rigorous arguments to be made on the nonenu-
merability of the set of features of an object. Third, it allows
us to describe problem solving as searching for a sequence of
interactions among objects that produce the effects articulated
by the goal. Fourth, it allows us to create a problem-solving
syntax and visualization method that is both human and ma-
chine friendly so that humans and computers can easily col-
laborate when problem solving together.

3. NIETZSCHE’S DEFINITION OF FEATURE

Building upon the philosopher Nietzsche, a feature of an object
is the effect of an interaction of the object with other entities:
objects, materials, energies (e.g., electrical), and forces (e.g.,
gravity). As Nietzsche states: “The features of a thing are effects
on other ‘things’: if one removes other ‘things,’ then a thing has
no features” (Nietzsche, 1901/1968). From this vantage point,
no feature is intrinsic to the object, and consequently no feature
remains the same in all circumstances. For example, mass and
length are strong candidates for being intrinsic to the object
and unchanged in all circumstances. Special relativity theory in-
forms us, however, that as the speed of an object increases, its
length contracts and its mass increases (Einstein, 1920/2004).
Length and mass, seemingly strong candidates for being intrin-
sic, actually result from an interaction: in this case, an interac-
tion between an object traveling a certain speed and a measuring
device in a frame of reference. From more recent science news,
there is another reason why mass may not be intrinsic. A parti-
cle’s mass appears to be the result of an interaction between the
particle and Higgs bosons (Ellis et al., 2015).

No feature of an object remains the same in all circum-
stances. An object’s color certainly changes as circumstances
change and is the result of an interaction among the object,
light, the human eye, the visual cortex, and other things.
Not even the existence of the object remains the same in all
circumstances, because the object can be destroyed in some
circumstances. In looser terms, a feature “does not belong”
to the object but “belongs” to an interaction in which the ob-
ject participates. We cannot know the object “in itself” but
only what effects it produces during interactions.

Some interactions could be considered direct while others
indirect. A distant star emits light, so detection of light by the
human eye could be considered a direct interaction between
the star and the human eye. Adding a telescope adds an inter-
mediary in this chain of interactions and makes the interaction
more indirect. Planets encircling distant stars do not emit
light, so their detection needs to be even more indirect. Sev-
eral ways have been devised, including the following method.
When a planet travels between the star and the observing tele-
scope, it blocks a tiny amount of starlight, and this variation
can be detected (Mason, 2010). This slight variation in the
starlight provides evidence of the presence of a planet. There
are also several other methods that could be used to provide
corroborating evidence of the planet’s presence (Mason,
2010). In sum, these examples suggest that the difference be-
tween direct and indirect interactions is one of gradations and
not a binary distinction. Further, these examples make clear
that every effect of an interaction needs some kind of sensor
to detect it (e.g., the human eye or a telescope).

Other approaches that are in line with Nietzsche’s defini-
tion of feature include Suchman (1987), who argued that fea-
tures are not abstract and universal but rather relative to agents
and their situations.

The history of a feature’s definition in the psychological
and engineering literatures reveals definitions that remain
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vague. A review paper on the concept of a feature in the psy-
chological literature used this definition: “any elementary
property of a distal stimulus that is an element of cognition,
an atom of psychological processing” (Schyns et al., 1998).
This definition relies on an understanding of property, which
is left undefined. Further, it assumes that a feature corre-
sponds to some small unit of cognition. However, depending
on the task at hand, humans switch what is elemental in their
thinking. For a carpenter, a piece of wood might be the unit of
conception. A physicist, however, might conceive of wood at
a level of atoms, subatomic particles, subatomic strings, or
other units that physicists may one day posit. Depending on
the task, humans easily alter what is the unit of cognition.
One moment we may conceive of an atom as a unity and
then next moment as a multiplicity (i.e., a collection of sub-
atomic particles). Further, this definition does not tell us where
new features come from and, consequently, does not yield a
method to unearth new features when we are trying to be in-
novative. Finally, this definition of a feature does not lead to
quantification arguments about the number of possible fea-
tures. For these reasons, we find the current definitions
from the psychology literature to be unsatisfactory for the
study of innovation.

A review paper on features in the engineering literature re-
veals that all definitions are some variation on the following:
“information sets that refer to aspects of form or other attri-
butes of a part” (Salomons et al., 1993). The unspecified no-
tions of “form” and “attribute” in this definition leave it at a
vague level. Further, this definition does not tell us where
new features come from, how to uncover new features, or
how to quantify the number of possible features.

In the upcoming sections, we will leverage our definition
of feature to accomplish multiple things. First, our definition
sheds light on where features come from and leads to a
method to search for new features. This conclusion is impor-
tant for innovation as innovative solutions are built upon
commonly overlooked and new features (i.e., obscure). Sec-
ond, it allows us to attempt to quantify an object’s features
and determine whether or not that set is computably enumer-
able. Third, it allows us to characterize problem solving as a
search for a sequence of interactions among objects that sat-
isfy the desired effects of the goal. Fourth, it results in a pre-
cise problem-solving grammar that is simultaneously human
and machine friendly. Fifth, it makes possible a visual inter-
face through which humans and computers can collabora-
tively innovate together; and where computers help counter-
act human weaknesses to uncovering obscure features and
humans do the same for computers.

4. WHERE DO NEW FEATURES COME FROM?

The Nietzschian definition of a feature tells us where features
come from. More important, it hints at where new features
come from, which leads to a method to search for new fea-
tures. If features come from interactions, then new features
come from new interactions. Simply interact the object with

things it has never interacted with before and see if new fea-
tures emerge. Because innovative solutions are built upon ob-
scure features (i.e., commonly overlooked as well as new fea-
tures), having a way to look for new features is important for
systematizing the invention process. Instead of relying on ac-
cident and serendipity, a more methodical approach of inter-
acting together previously uninteracted things could produce
new features and ultimately lead to new inventions on a more
regular basis.

Science is replete with stories of new features of objects
emerging after interacting the objects with things they have
never interacted with before. Superconductivity in ceramics,
for example, emerged from interacting a specific ceramic ma-
terial with electricity at a near-absolute-zero temperature (van
Delft & Kes, 2010). Superinsulation, the opposite of super-
conductivity, was accidentally discovered in 2008 by interact-
ing a different ceramic material with electricity in similarly
extreme temperature conditions (Vinokur et al., 2008).

The same principle works for common objects in less ex-
treme conditions. Interacting a common object with other ob-
jects that it may have never interacted with before can produce
new effects (i.e., features). If we interact a light plastic chair
with a person in a canoe who has lost the oars, then the chair
can become an oar (i.e., turn the chair upside down, grab a
couple of legs, and start rowing). If we interact this same chair
with a short delicate plant that cannot stand a great deal of di-
rect sunlight, then the chair can become a source of shade for
the plant. If we interact this chair with a pile of styrofoam pel-
lets that we need to move, then by grabbing one chair handle
with one hand and a chair leg with another hand we can begin
to shovel the pellets out of the way. Creating an extensive list
of objects for the plastic chair to interact with will likely pro-
duce new effects and thus new features of the chair.

5. NONENUMERABILITY OF AN OBJECT’S
FEATURES

Given the definition of an object’s features as the effects of
interactions between the object and other entities, we will ad-
dress the sizes of various sets: entities to interact with, inter-
actions that the object can participate in, ways for two objects
to interact, uses of a particular interaction involving the ob-
ject, and ultimately features of an object.

Along this path of reasoning, we will show that the set of
possible interactions that an object can participate in is not
computably enumerable. However, even if this set were com-
putably enumerable, this just means that a computer could list
out the interactions so they could be explored for possible ef-
fects. We will also show that when examining a particular in-
teraction, a computer might not be able to derive all of the ef-
fects of that interaction. Thus, even if the set of interactions
were computably enumerable, the set of features still may
not be.

We will consider an entity to be either an object, material,
energy, or force. There is a fairly short list of forces (e.g.,
gravity) and types of energy (i.e., acoustic, biological, human,
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chemical, electrical, electromagnetic, hydraulic, magnetic,
mechanical, pneumatic, radioactive, and thermal; Hirtz
et al., 2002), which grows slowly as our understanding of
the physical universe deepens. For example, as dark energy
and dark matter become better understood, new members
may be added to the lists of energy and force. Because these
lists grow slowly, we will focus on the faster growing lists of
objects and materials. There is often an ambiguity between a
material and an object. The wax of a candle is a material, but
formed properly, the material becomes an object: a candle-
stick. Velvet is a material, but any amount of velvet can be
considered a piece of velvet (i.e., an object). For this reason,
in our arguments we will focus on the number of objects and
subsume materials into the set of objects as many materials
can easily be made into an object.

5.1. Number of possible objects grows daily

The number of different types of objects grows regularly with
no end in sight. Descriptions of new objects are submitted daily
to patent offices around the world. Each new object is unique,
which means it is associated with a unique set of effects that it
can produce in interactions. Our object of interest could interact
with any object in this growing list of new types of objects and
produce new effects, which translates into a potentially ever-
growing number of features for our initial object. We are never
sure whether tomorrow a new type of object will be invented
that interacts with our object of interest and produces a new ef-
fect. The search never ends for new effects as new types of ob-
jects emerge each day for our object of interest to interact with.

5.2. Nonenumerable set of interactions

Let us briefly assume that this expansion of new objects con-
tinues unimpeded forever, resulting in a countably infinite set
of novel types of objects. Given our object of interest, how
many subsets of novel objects are there to interact it with, con-
sidered over all time and into the future? As the number of
subsets of a countably infinite set is uncountably infinite,
the number of interactions to examine involving our object
of interest is not computably enumerable. No Turing machine
could search through this set of interactions even if it was al-
lowed to run for an infinite amount of time.

Is the assumption of a countably infinite set of novel ob-
jects plausible? According to Kauffman (2008), there is a pe-
numbra of the adjacent possible that surrounds the space of
what is actual. For our purposes, this penumbra represents
the objects that are most likely to be invented next. Given
this view, as the space of what is actually invented continues
to expand, there seems to be no a priori reason why the sur-
rounding space of the adjacent possible would not always ex-
ist. Further, there seems to be no a priori reason why nonob-
vious, novel, and useful (and thus patentable) objects could
not continue to be invented without limit.

With the assumption of a countably infinite number of new
objects, we easily reach the conclusion of a nonenumerable

set of interactions to search through. However, even if we
do not make this assumption and fix the number of novel ob-
jects at some large but finite number, we can still reach the
conclusion (presented in the next section) that the number
of possible interactions is so large that for all practical pur-
poses it is still computably nonenumerable.

5.3. Combinatorial explosion of possible interactions

Suppose we have our particular object of interest and there are
10 million other types of objects currently in the world. This is
a low estimate given that the US Patent Database alone issued
its nine millionth patent on April 7, 2015 (USPTO Database,
2016). Our estimate of 10 million objects makes our calcula-
tions easy, although currently it leaves out patents in patent of-
fices from other countries, trade secrets which are in no patent
database, as well as the vast set of natural (e.g., stone) and com-
mon (e.g., ball) types of objects that are also not contained in
any patent database. If we also included unique patents from
other countries, trade secrets, as well as natural and common
objects, the combinatorial explosion would become even
greater. For the purposes of our mathematical arguments, how-
ever, it is better to keep our estimate of objects low. It is less
controversial to round up to 10 million from the current number
in the US Patent Database than make a wilder, higher estimate
that includes objects from other patent databases, trade secrets,
as well as common and natural objects. Even with a low esti-
mate of objects, however, the number of possible interactions
becomes astronomically large, so large as to be computation-
ally unexplorable. Thus, this low estimate is sufficient to
make our mathematical point.

Given this working estimate of 10 million types of objects,
if we consider our object of interest interacting with each of
the 10 million objects separately, then we need to look at
10 million different interactions. However, this assumes
that an interaction between just two objects is sufficient for
our search. To reveal superconductivity in a ceramic object,
for example, we could not just interact the ceramic with some-
thing that produces electricity alone or with something that
produces an extremely cold temperature alone. We needed
to interact the ceramic object with both the electricity-produc-
ing object and the object producing extremely cold tempera-
tures at the same time that we are using an object to measure
the resistance of the ceramic material to the flow of the elec-
tricity. Therefore, we must consider the interaction of more
than two objects at a time.

In general, let us consider the size of our space of possible
interactions. Suppose our system includes n objects. The num-
ber of subsets for the number n is 2n. Considering the case of
n ¼ 10 million entails 210;000;000 possible subsets of these 10
million objects that could interact with our chosen object.
How big is this number? Given that there are approximately
2240 atoms in the universe (which is less than but approximate
to the usual estimate given in base 10, which is 1080), 210;000;000

is a huge number! Therefore, the number of subsets far exceeds
the number of atoms in the universe.

T. McCaffrey and L. Spector4

https://doi.org/10.1017/S0890060416000524 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000524


Let us consider whether a computer could process the set of
subsets if allowed to run for the entire age of the universe. The
universe is estimated to be about 14 billion years old. In sec-
onds, this is approximately 4�1017 s. Converting to base 2,
we get approximately 4�1017 ¼ 4�(5�2) 17 . 4�(4�2)17

¼ 2�2� (2�2�2)17 ¼ 253 s that the universe has existed.
If we had the ability to process each subset in 1 s, then we

would need to process 210;000;000/253 ¼ 29;999;947 subsets each
second during the entire history of the universe in order to ex-
plore all the subsets. Of course, this is impossible, so explor-
ing and processing this entire space of subsets is for all prac-
tical purposes uncomputable.

However, we usually do not deal with an extremely large
number of objects interacting at one time. Usually, we deal
with a modest number. For example, let us consider a human
engineer who is considering interactions between the chosen
object and between one and five objects at a time (i.e.,
5-element sets) from a total set of the 10 million available.
Thus, in terms from combinatorics, we will consider the
sum of (10 million choose 1) þ (10 million choose 2) þ
(10 million choose 3) þ (10 million choose 4) þ (10 million
choose 5), which is on the order of 1027.

If a computer were processing these subsets from the be-
ginning of the universe (i.e., 4�1017 s), then it would have
to process approximately 1027/1017 ¼ 1010 subsets per sec-
ond. As of June 2015, the fastest computer was the Tianhe-
2 supercomputer; it processes 3.386�1016 floating-point op-
erations per second (Top500 Lists, 2015). Our computations
will require slight adjustments as supercomputers grow faster
and will require major adjustments on the day that quantum
computation takes hold. For now, the Tianhe-2 computer
will give us a sense of the magnitude of the feature space
of an object. If the Tianhe-2 supercomputer had existed since
the beginning of the universe and the processing of each sub-
set required executing just one instruction, then the Tianhe-2
supercomputer would be up to the task of examining the in-
teractions of up to five objects. Of course, the Tianhe-2 super-
computer has not existed since the beginning of the universe,
and examining a single subset requires executing more than
one instruction. In the next section, we will show that there
are so many different ways that objects can possibly interact
that the list of possible interactions of two objects might
very well be nonenumerable in itself. Thus far, we have as-
sumed that given a set of objects, it is obvious how they
should interact.

In a more realistic timeframe, computers have existed from
the 1950s until now, which is approximately 2�109 s. There-
fore, if a computer were processing these subsets from the
time of the invention of a computer, it would have to process
approximately 1027/109 ¼ 1018 subsets per second for ap-
proximately 70 years. If the Tianhe-2 supercomputer had
existed 70 years ago, it would not be quite up to the task of
examining 1018 subsets per second for 70 years.

If we wanted to process all 1027 subsets in just 1 year, a
computer would have to process 1027/107 ¼ 1020 subsets
per second for an entire year (as there are 3 � 107 s in a

year). Again, the Tianhe-2 supercomputer is not quite up to
the task. It would take 10,000 (i.e., 104) Tianhe-2 supercom-
puters running in parallel to accomplish this task. Hence,
for current computing speeds and for advances in speed in
the near future, the task of examining 1027 subsets of interact-
ing objects is so large that it is for all practical purposes
uncomputable.

Again, we have made two significant simplifying assump-
tions in our calculations. First, we assumed that a subset of in-
teracting objects could be inspected by executing just one
floating-point operation. This is an unreasonable assumption.
Second, given just one of these subsets of interacting objects,
we assumed that it is easy to determine all the ways that these
objects could interact. The number of different ways that one
of these subsets of objects could interact might itself be non-
enumerable. To get a sense of this possibility, in the next sec-
tion we will consider all the possible ways that two objects
could interact with each other.

5.4. Many ways for objects to interact

Given even two objects, there are many ways that the two
could interact. For example, consider two common objects:
a ceramic coffee cup and a checker, the small round disk
usually made from plastic or wood that is used in the game
of checkers. Placing a checker underneath the cup will most
likely keep the cup from touching the table, thus serving as
a kind of coaster (although moisture will still make it onto
the table). If the cup is hot, the checker beneath it will act
as a kind of trivet, keeping the heat of the cup from damaging
the table. However, there are many other ways that a checker
and a coffee cup could interact. A checker could be held in the
fingertips and used to stir the liquid inside the cup. In a similar
way, a held checker could also be used to scoop off the skin of
hot cocoa. A checker could be rattled inside a shaken cup to
make a startling noise. A checker could be propped under the
lip of an upside down cup to make a trap for a mouse. In es-
sence, there are many ways that a cup and a checker could in-
teract. People with different areas of expertise may very well
suggest different ways of interacting the two items. No one
person could probably list out every possible way. Working
together, many people could add to the list of interactions,
but more than likely, the list will always be incomplete. To
list out all possible ways of interacting, we would have to con-
sider the aspects mentioned in the next paragraph and, possi-
bly, other aspects that we have overlooked.

For the moment, let us just consider all the ways that the
coffee cup and checker might interact by themselves (without
bringing in other objects or human hands to manipulate the
objects). Can we enumerate all the ways that a checker and
a coffee cup might interact by themselves alone? First, we
must specify every spatial position that the cup and checker
could be in relative to each other. Second, we need to consider
every possible type of movement (e.g., linear, nonlinear, or
spinning at various angles), speed, and acceleration/decelera-
tion that each object could undergo. Third, we need to include
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different lighting conditions, heating conditions, radiation
conditions, barometric pressures, humidity conditions, and,
for some applications, gravity strengths, as well as other types
of conditions that we are probably forgetting. If one believes
that any one of these variables is a continuous variable and
thus needs to be measured by a true real number with unlim-
ited number of digits, then the number of possible ways to in-
teract these two objects in these conditions is truly nonenu-
merable. Even if all of these variables are measured by real
numbers with a finite number of digits, still the number of
possible conditions that the objects are interacting within is
incredibly large and difficult to approximate.

Are all these digits in precision necessary when counting
the number of interactions? Are two interactions really differ-
ent when they differ in the 100th digit of a variable, for exam-
ple? In most cases, probably not, but phase transitions are an-
other matter. It is crucially important that, as one nears phase
transitions (e.g., liquid water becoming gas as the temperature
approaches a critical point or superconductive materials
achieving zero electrical resistance when cooled below a crit-
ical temperature), small changes in one variable can result in a
large discontinuous change in another variable. In the search
for new effects, small changes in certain variables may occa-
sionally reveal sudden new phase transitions that produce
drastically different effects. Not knowing beforehand that a
phase transition is approaching would mean that two interac-
tions that differ by a small degree on a variable could lead to
quite distinctive effects.

At the very least, the many possible ways that two objects
could interact in a plethora of conditions adds orders of mag-
nitude to the calculations in our previous section. Each of the
subsets of objects may interact in an incredibly large number
of ways, quite possibly a nonenumerable number of ways.

Thus, our estimates of the 1010 subsets processed per sec-
ond from the beginning of the universe, the 1018 subsets per
second since the invention of the computer, and the 1020 sub-
sets per second for a year each need to be increased by at least
several orders of magnitude. This increase would make our
calculations of the previous section even more uncomputable.
At most, the number of possible interactions between two ob-
jects may become computably nonenumerable by itself.

5.5. Number of uses of an effect

Besides the question of the enumerability of a set of interac-
tions, another important issue is the number of uses an effect
of an interaction might have. An interaction produces effects.
An effect of an interaction is useful if the effect satisfies a hu-
man goal. We will consider a goal to be a set of desired ef-
fects. In our example of the checker leaning against a cup,
if the goal is either interact the checker with the cup or lean
the checker against the cup, then the goal is trivially satisfied.
Therefore, any interaction and any effect can be trivially said
to be useful as it fulfills at least one goal and perhaps more.

In a less trivial sense, how many uses does an effect of an
interaction have? We will describe several ways to expand in-

teractions so that the effect satisfies a goal. Each of these ways
seems to make the effect useful in an unlimited number of
ways. Thus, we will suggest that an effect can have an unlim-
ited number of uses.

First, what appears to be a useless effect for one person, say
leaning a checker against a cup, for example, may be useful
for another person: the checker may mark this cup as belong-
ing to a certain person so as not to confuse this cup with an-
other one. In other words, any effect could be used as a sign of
something else. The leaning checker is useful because of the
meaning that is projected onto it by some person. Notice that
during this projection of meaning, the interaction was ex-
panded from just the checker leaning against the cup to include
other people, each of whom might own the cup.

Second, let us expand the interaction to be part of a larger
causal chain that is useful. As one example, a checker leaning
against a cup could be said to be holding a broken chip of the
cup in place while glue dries the chip permanently in place.
The leaning checker is now deemed to be useful because it
is holding a drying chip in place. As another example, the
leaning checker could be steadying the coffee cup from slid-
ing across a tabletop as a cruise ship gently rolls on the waves.
The leaning checker is now useful because it prevents the cup
from sliding. The leaning checker could be used to block
some crucial information from view in the newspaper that
the cup and checker are resting upon. By interacting the cup
with the leaning checker and just about any other entity
(e.g., object or energy), one could most probably devise a
use for the leaning checker. For example, as the checker leans
against the cup at an angle, a strong light could cast a shadow
on our cup–checker pair and project the perfectly shaped tri-
angle onto the table so a math lesson could be taught. A par-
ent might consider his or her child’s music to be too loud if
the music causes the cup and checker to vibrate so much
that the leaning checker falls. There seems to be no inherent
limit to the number of causal chains involving other entities
that could be constructed, each of which gives the leaning
checker a different use.

In these examples, the distinction is emerging between the
world of physical causality involving interacting objects and
the world of human goals. It seems that every interaction be-
tween objects is just a physical interaction that produces phys-
ical effects that have no inherent usefulness on their own. To
make an interaction useful, we need to take an additional step:
set the interaction within the realm of human goals. Perhaps,
it will be obvious how the interaction is useful (i.e., which ef-
fect of the interaction satisfies a human goal). Perhaps, we
will need to explicitly make the interaction useful by employ-
ing at least one of two methods: consider the effect of an in-
teraction to be a sign of something else (e.g., the leaning
checker is a sign of who owns the cup), or embed the effect
in a larger causal chain that is deemed useful (e.g., the leaning
checker is holding a drying chip in place). By using these two
techniques and perhaps others, we can create a potentially un-
limited number of uses for the leaning checker. We can never
be sure that our list of uses is complete. Tomorrow, a new
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object or material could be invented that could trigger the
construction of a new causal sequence that leads to a new
use for the checker leaning against the cup.

5.6. Automatic derivation of an effect from an
interaction

Can a computer automatically derive effects given a set of en-
tities and how they are interacting? It depends on whether a
theory exists that can predict those particular effects. For ex-
ample, general relativity predicted that light would not always
travel in straight lines, but would warp when passing by mas-
sive objects (Einstein, 1920/2004). This prediction was veri-
fied by Arthur Eddington in 1919 during a total solar eclipse.
Light from stars nearly behind our sun relative to the Earth
passed through the sun’s gravitational field and became visi-
ble during the eclipse at a position predicted by general rela-
tivity (Kennefick, 2009). In contrast, dark matter was postu-
lated as a type of matter that has gravitational effects but does
not interact with the entire electromagnetic spectrum (Trim-
ble, 1987). As galactic clusters did not have enough mass
to account for their orbital speeds, dark matter was hypothe-
sized to exist as a way to add sufficient gravity to correct for
this discrepancy (Zwicky, 1937). The existence of dark mat-
ter is far from settled as some scientists are attempting to ac-
count for the observable aberrations through more standard
theories (Kroupa et al., 2010; Angus, 2013).

In the case of dark matter, empirical observation was ahead
of theory, so no theory predicted the existence of dark matter
or foresaw the need to alter standard theories to account for
the empirical discrepancy. In brief, automatic derivation of
a new entity was not possible because empirical observation
was required to introduce the need for a new entity. Further,
knowing the effect of gravity on the orbiting speeds of galac-
tic clusters was insufficient to fully determine the interaction
that produced this effect. If empirical observation is ahead of
theory, then the theory is missing members of at least one of
the following categories (and maybe multiple categories): en-
tities, interactions, and effects. If all present theories are insuf-
ficient, then no algorithm exists that can name and predict the
needed entities, interactions, and effects.

5.7. Summary

Given that a feature of an object is an effect of an interaction
between the object and other entities (i.e., objects, materials,
energies, and forces), there are several conclusions about the
sizes of various sets. First, because the number of new objects
grows daily, the number of objects to interact with steadily
grows, and thus we are never sure that some future interaction
with a new object will not yield a new effect (i.e., feature) for
our object of interest. Second, if the growth of new objects
continues unimpeded through all of time, then the number
of objects is countably infinite and the number of potential in-
teractions becomes uncountably infinite (and thus nonenu-
merable). Third, even if we fix the number of objects at its

current number today, still the number of possible interactions
is incredibly large and thus practically nonenumerable.
Fourth, given just two objects, there is an incredibly large
number of ways these two objects could interact: a nonenu-
merable set of ways if we believe in continuous variables
and an incredibly large and unspecified number even if these
variables are treated as discrete. Fifth, given a particular effect
of an interaction between two objects, the number of uses for
this effect is seemingly without an inherent limit. Sixth, em-
pirical fact can, at times, be ahead of a theory’s ability to de-
rive certain effects and thus ahead of an algorithm’s ability to
derive those effects.

The search for obscure (i.e., commonly overlooked and
new) features is crucial in the ongoing quest for innovation.
The nonenumerability of the set of interactions involving an
object means that neither human nor machine can list them
out. If no theory is sufficient to predict a certain effect, then
no algorithm exists that can derive that effect from currently
known entities and interactions. As humans and machines
have different search biases, this means that humans are still
useful for empirical observation and theory construction,
which includes positing entities and crafting interactions to
help explain unaccounted for effects. Given this state of
things, we opt to devise a collaboration model of innovation
between humans and computers in which computers counter-
act human weaknesses to innovation and humans return the
favor. Toward this end, we craft a human- and machine-
friendly problem-solving grammar and visualization method.
Implemented with the grammar and visualization method will
be techniques that counteract known human cognitive obsta-
cles to innovation.

6. HUMAN–MACHINE-FRIENDLY SYNTAX FOR
PROBLEM SOLVING

The Nietzschean definition of feature immediately leads to an
understanding of the concepts necessary for problem solving
and a precise syntax for expressing those concepts. This prob-
lem-solving syntax is language-like so it is human friendly
and sufficiently structured so that it is easily machine parsa-
ble. Basically, problem solving can be described as a search
for a sequence of interactions among entities (i.e., objects,
materials, energies, and forces) that produces the effects ar-
ticulated by the goal. In these terms, a goal is a set of desired
effects. An interaction is an event in which a group of entities
influence each other. Effects are produced when a set of en-
tities mutually influence each other. A feature is synonymous
with an effect.

From this interrelated set of concepts, we can construct a
grammar to describe the problem-solving process. Using
the Extended Backus–Naur Form (EBNF; Aho et al. 1986),
which is a compact notation mostly used to define the syntax
of computer programming languages, we introduce the
EBNF notation as needed. In EBNF, the “::¼” symbol means
“is defined as.” An item superscripted with a “þ” means that
there can be one or more occurrences of that item. Because a
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goal is a nonempty set of desired effects, it can be notated as
goal ::¼ effectþ (see Fig. 1).

A person can have a goal if he or she is not currently satis-
fied with something about the world. In other words, either a
change is desired (e.g., reduce concussions in football play-
ers) or a change is looming and one wants things to stay the
same (e.g., maintain brain health in football players during
and after an impact). In the world of engineering, it is well
established that any goal can be expressed by an action
verb (Hirtz et al., 2002). The verb reduce, for example, ex-
presses the change wanted in a goal, and the verb maintain ex-
presses the desire for no change.

Building on Hirtz et al. (2002), almost any goal can be
phrased in the form verb nounPhrase prepositionalPhrases
(McCaffrey & Krishnamurty, 2014; McCaffrey et al.,
2014). The noun phrase of the articulated goal (e.g., concus-
sions and brain health) describes what needs to be changed
(or left unchanged). The prepositional phrases (e.g., in foot-
ball players and in football players during and after an im-
pact) describe important relationships and constraints.

In EBNF notation, an item superscripted with a “*” means
that there can be zero or more occurrences of that item. As an
effect might at times be described without any relationships
or constraints (e.g., reduce concussions), and thus no prepo-
sitional phrases, the official syntax would consist of effect ::¼
verb nounPhrase prepositionalPhrase* (see Fig. 1).

Because feature and effect are synonymous terms, they use
the same syntax. However, a shorthand syntax can be used in
certain cases. For example, instead of describing a football
helmet’s weight as the effect of interacting the football’s hel-
met mass with the Earth’s gravity, the adjective heavy might
suffice as the feature’s description in this context. Further, a

helmet’s chin strap is a part of the helmet, and thus a feature,
so a simple noun phrase chin strap can be used to express it.
In the EBNF syntax, a straight line represents logical OR, so
feature ::¼ effect j adjective j nounPhrase (see Fig. 1).

Finally, straight brackets indicate that the item inside the
brackets is optional. Words in bold represent key words that
appear literally in the strings of the grammar. EBNF also con-
tains other notational symbols that are not required for our
problem-solving syntax.

In sum, the above syntax covers the concepts that are needed
for problem solving. The syntax is language-like in that expres-
sions are worded in ways that are natural for English speakers to
understand. The syntax is sufficiently structured so that the
phrases are easily machine parsable. Because the problem solv-
ing grammar is both human and computer friendly, it serves as a
language through which humans and computers can collabo-
rate while problem solving together. In the next section, we
add a visual component that will make human–computer col-
laboration even easier during problem solving.

7. VISUALIZING PROBLEM SOLVING

A common way to envision problem solving is to conceive of it
as a back-and-forth process between top-down problem fram-
ing and bottom-up problem solving (Rittel & Webber, 1984;
Simon, 1995). Problem framing refines the goal by improving
upon its specificity and accuracy. In our view, problem solving
includes uncovering little-known features of the available ob-
jects followed by interacting them together to accomplish the
desired effects expressed by the goal. We will segment the
problem solving process into two subprocesses: uncovering lit-
tle-known features and devising interactions to produce rele-
vant effects. This three-way division (one for problem framing
and two for problem solving) is compatible with the function–
behavior–structure (FBS) model (Gero, 1990; Gero & Kannen-
giesser, 2004). In the FBS framework, function (F) tells us
what the object is for, behavior (B) tells us what the object
does, and structure (S) tells us what the object is.

In the problem-solving process, we generally know what
the object will be for, but we do not yet have the object
(a kind of abductive reasoning; Dorst, 2011). In other words,
we generally know the desired function, but we do not yet
know the specifics of its behavior and structure. In problem
solving, FBS becomes goal–interactions–entities, with ob-
jects being just one type of entity. Function (F) corresponds
to the set of effects that we want the object to accomplish
(i.e., the goal). Behavior (B) corresponds to the set of interac-
tions that produce those desired effects (i.e., satisfy the goal).
Finally, structure (S) corresponds to the set of features of an
object, including its parts.

During problem solving, people generally switch between
refining the goal, uncovering features of the objects, and devis-
ing interactions. Based on Figure 2, goal refinement grows
downward while feature unconcealment grows upward.
When the proper interactions are devised, the two networks be-
come connected and the problem has its first possible solution.Fig. 1. Problem-solving syntax.
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Figure 2 shows the bidirectional graph on the left and the
syntax that corresponds to each graph component on the right.
The grammar matches up nicely with the graph, except for
one minor adjustment. In the graph, the dotted lines convey
which entities (including objects) and features are involved
in an interaction, so the grammar does not need to list these
explicitly. For an interaction on the graph, the grammar
only needs to express the relevant effect(s) produced by
that interaction.

In the next section, we will work through a concrete prob-
lem-solving example in order to illustrate how the graph and
the syntax work together.

8. EXAMPLE INVOLVING HUMAN OBSTACLES
TO INNOVATION

Humans have certain biases that inhibit innovation, as do ma-
chines. Using our problem-solving graph and grammar in
Figure 2, we will illustrate how humans and machines might
help each other solve an illustrative problem called the two
rings problem (McCaffrey, 2012). Humans created machines,
so the inhibitive biases possessed by humans might be passed
on to the machines they create. Although human and ma-
chines biases are probably correlated, humans can create tech-
niques that help counteract their own biases and blind spots.
As a mundane example, humans have created spell checkers
to overcome our propensity to overlook such things as double
occurrences of small words (e.g., “encyclopedia of of knowl-
edge”) and certain commonly inverted letters (e.g., “neice”
instead of “niece”). As we will soon show, humans can
only list about eight synonyms of a verb, while a computer
can easily list out as many synonyms as there are in a the-
saurus. Further, software named Analogy Finder (McCaffrey,
2013) can conduct searches to find adaptable solutions to a
problem (i.e., analogous solutions) that are outside an

individual person’s areas of expertise. In contrast, as we
have seen in Section 5.6, humans can help machines over-
come limits to the features that they can list out about an ob-
ject. When there is inadequate theory to predict some of the
effects of an interaction, then humans are useful for carrying
out the interaction, measuring its effects, and recording those
effects for the computer.

In the two rings problem, two 6-in. steel rings weighing 3
lb each need to be fastened together in a figure-eight config-
uration so that when one ring of the configuration is picked
up, the other ring will securely come along as well. To accom-
plish the fastening, all one has to work with is a long candle, a
match, and a 2-in. cube of steel. The rings are too heavy for
melted wax to securely bond them together, so a solution re-
lies on noticing that the wick is a string that, when extricated
from the wax, can tie the rings together.

Initially, we enter the goal at the top of our problem-solv-
ing diagram (Fig. 3). The available entities (objects, in this
case) are placed at the bottom of the diagram.

Next, for the goal verb fasten, software looks up its more spe-
cific synonyms (i.e., hyponyms) from WordNet (Miller, 1995).
Each hyponym of a general verb like fasten suggests a specific
way to enact the fastening (e.g., weld, staple, clip, tie). Humans
tend to be able to list only 8 (plus or minus 2.8) synonyms of
verbs (McCaffrey & Spector, 2012), while the verb fasten has
61 hyponyms and 33 hypernyms (i.e., more general synonyms
such as attach, adjust, and change). A simple look up of hypo-
nyms in WordNet can help counteract a human obstacle to in-
novation called narrow verb associations (McCaffrey & Spec-
tor, 2012). WordNet is a general dictionary, however, and, for
the purposes of technical innovation, may need to be supple-
mented with other sources such as technical dictionaries.
Figure 4 shows a few of the hyponyms of fasten.

It is crucial for this problem that the verb tie is a hyponym of
fasten. For each hyponym, if a human or machine systematically

Fig. 2. Three areas of problem solving.
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addressed whether there was any object or part available that
could enact that verb (e.g., weld, staple, clip, tie, etc.), this could
possibly lead to uncovering the fact that the wick is a string that
could tie the rings together.

If the machine representation of candle contained the fea-
ture that a wick is a string and the representation of string con-
tained the feature that strings tie things, then the machine can
easily make the suggestion that the wick can be used to tie the
rings together (McCaffrey & Spector, 2011a, 2011b).

For this example, however, we will assume that the machine
is just learning the features of these objects. Once learned, the
machine will remember them. However, because an object has
a nonenumerable number of features, any object’s representa-
tion will always be incomplete. Humans can perhaps help fill
in some of the features missing from the representation that the
machine is currently unable to infer.

Continuing with the two rings problem, we switch from
working top-down to working bottom-up. Humans have trou-

Fig. 3. Initial setup for two rings problem.

Fig. 4. Goal grows downward with hyponyms.
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ble solving the two rings problem because of functional fix-
edness (Duncker, 1945), which is the tendency to fixate on
the common function of an object or a part. McCaffrey
(2012) devised a highly effective technique, the generic parts
technique (GPT), to overcome functional fixedness. People
using the GPT solved 67% more problems suffering from
functional fixedness than a control group.

By analyzing all problems used in the psychology literature
that suffer from functional fixedness, McCaffrey (2012) dis-
covered that the solution to all these problems involved un-
covering at least one key obscure feature of the objects of the
problem, and the types of features that were crucial to solving
these problems were the material makeup, shape, and size of
the object (or one of its parts). Further, McCaffrey (2012) de-
vised a method to systematically uncover these important fea-
ture types. The GPT method involves constructing a parts tree
for each object of the problem (see Fig. 5) by asking two
questions. First, does your description imply a use? If so, re-
describe it in a more generic manner by describing it in terms
of its material, shape, and size. Second, can what you are de-
scribing be further decomposed into parts? If so, create a new
level of the diagram for the next decomposition. Breaking an
object into its parts is a step that had been known for some
time (Knoblich et al. 1999). However, redescription in a ge-
neric manner is the novel contribution of the GPT.

For example, in Figure 5, we initially break a candle into its
two parts: wax and wick. Working on wick first, the word
wick implies a use (i.e., burning to emit light), so we rede-
scribe it, in this case, in terms of its material makeup: string.
Up until this point of the graph, people are consistent in how
they break down the candle (i.e., wax, wick, and string). From
this point onward, however, people’s descriptions begin to
differ. For example, the word string implies a use: tying
things together. Consequently, we again redescribe it in terms
involving material, shape, and size. Long, interwoven fibrous
strands is one possible description while tangled threads
could be another. Because long, interwoven fibrous strands
does not imply a use, we are done with this branch of the parts

tree. However, tangled threads could imply a use related to
sewing, so it should be redescribed more generically.

Because the word wax in this context has a close associa-
tion with a candle’s use, in order to be cautious, we will create
a generic description based on one possible shape and mate-
rial of the wax (e.g., cylindrically shaped lipids is one possi-
ble description). People may vary in their description of the
material of wax, such as beeswax, which could imply a use
for eating or cooking (e.g., use beeswax instead of butter or
cooking oil) and thus require a further breakdown into
more generic terms. In the light of innovation, these varia-
tions in description are not troublesome. Rather, they lead
to more ideas for uses of a candle and its parts, especially
when the various descriptions by different people are com-
piled together in one graph. Overall, the GPT systematically
strips away the implied uses and reveals more of the “raw ob-
ject” from which new uses can be devised.

In the two rings problem, we begin to apply the GPT to all of
the available objects. For brevity’s sake, we start with the can-
dle. The machine guides the human through the GPT by asking
questions such as “Does your description imply a use?” and
“Can this be decomposed further?” In this example, after the
human enters string, he or she almost always has an aha mo-
ment on how to solve the problem (McCaffrey, 2011). If not,
then the machine intersects the set of all the hyponyms of
the goal verb fasten with the set of verbs related to the uses
of all the objects and their parts. If the string’s representation
contains the effect tie things (i.e., in the form verb nounPhrase),
then, as shown in Figure 6, the machine is able to make a sug-
gestion that the candle’s wick might be able to tie the rings to-
gether (McCaffrey & Spector, 2011a, 2011b).

Of course, once this conclusion is reached, a new goal be-
comes necessary: extricate the wick from the wax. None of
our human subjects had difficulty figuring out how to scrape
the wax away either on the edge of the steel cube or the edge
of a table (McCaffrey, 2012). However, if necessary, a new
diagram can be started with the new goal: extricate wick
from wax.

In sum, the two rings problem shows how the machine can
help humans overcome narrow verb associations with hypo-
nym look-ups (McCaffrey & Spector, 2012) and functional
fixedness with the GPT (McCaffrey, 2012). In turn, humans
can potentially help the machine fill in some of the incomple-
teness in its representations (McCaffrey & Spector, 2011a,
2011b).

9. A REAL-WORLD EXAMPLE: REDUCE
CONCUSSIONS

Whereas the previous section focused on a problem com-
monly given in psychology experiments, this section will
show how to apply and adapt our techniques to a real-world
problem: reduce concussions in football players.

Starting with the verb and noun phrase of the goal, reduce
concussions, McCaffrey and Pearson (2015) used their soft-
ware, Analogy Finder (McCaffrey, 2013), to first generate aFig. 5. Generic parts diagram for candle.
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wide-ranging list of goal phrases. Analogy Finder uses syno-
nyms from WordNet (Miller, 1995) and the verbs for expres-
sing engineering goals from Hirtz et al. (2002) to generate ex-
tensive lists: lessen impact, weaken crash, soften jolt, reduce
energy, absorb energy, minimize force, exchange forces, sub-
stitute energy, oppose energy, repel energy, decrease momen-
tum, and so forth. In the graph of Figure 7, this list grows
downward from the initial goal. Relevant entities (i.e., objects
and energies, in this case) are listed across the bottom. The
various energies come from the 12 types of energy listed in
Hirtz et al. (2002). In the context of concussions, different
goal phrasings returned different numbers of search results
in Google (McCaffrey & Pearson, 2015). At the time, “con-
cussion repel energy” was one of the phrases with the least
number of Google search results, which was an indication
that repelling energy was an underexplored avenue in the con-
text of concussions. Analogy Finder was then used to search
the US Patent database for analogous solutions to the given
problem. Specifically, Analogy Finder returns patents that
achieve results articulated by the verb–noun pairs. In this
way, patents are returned from many different fields, but
each returned patent achieves the same or a similar function
as that expressed by the original goal (i.e., reduce concus-
sions). Using the results of the Google searches, the Analogy
Finder results, and the bidirectional graph of Figure 7, a con-
nection was noticed between the underexplored phrase repel
energy and magnets. The idea was then proposed to magne-
tize all helmets with the same pole so that they repelled
each other when in close proximity (Marks, 2015; McCaffrey

& Pearson, 2015). In initial testing with models, the helmets
both decelerated and slightly altered direction so head-on col-
lisions turned into glancing blows. After approaching the pa-
tent office, it was discovered that someone else had submitted
the same idea just weeks before we did. Nevertheless, this ex-
ercise demonstrated the potential of our process when work-
ing on a real-world problem.

The Analogy Finder software has interesting connections
to other design by analogy methods, as well as functional
modeling, and these relationships are explored in McCaffrey
and Krishnamurty (2014) and McCaffrey et al. (2014).

In sum, systematically rephrasing the goal led to many di-
verse avenues to explore, each with slightly different nuances.
Google searches suggested which avenues had already been
heavily explored and which underexplored. Analogy Finder
found many relevant patents from other fields that could pos-
sibly be adapted to solve the original problem. The systematic
listing of many possible energy types ensured that no type of
energy was completely ignored. Together, these processes
greatly broadened the search for relevant ideas that could ad-
dress this tough problem.

10. CONCLUSIONS AND FUTURE WORK

The OFH gives a clear focal point for innovative problem
solving: namely, an innovative solution relies on uncovering
one or more obscure features of the problem. The set of fea-
tures of an object is equivalent to the set of the effects of in-
teractions that the object can be involved in. The origin of a

Fig. 6. The key insight for the two rings problem.
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feature is an interaction, so new features come from new inter-
actions. To search for new features, interact the object with
entities (i.e., objects, materials, energies, and forces) that it
has never interacted with before.

Depending on assumptions made, the set of interactions is
either not computably enumerable (assuming a countably in-
finite number of new objects) or practically nonenumerable
(assuming a large but finite number of objects). Conse-
quently, the search for new features that may emerge from in-
teractions is either truly uncomputable or practically uncom-
putable. Thus, neither human nor machine can list out all the
features of an object. Any representation of an object is in-
complete.

Further, empirical results may be ahead of any current the-
ory’s ability to account for them. In this case, no algorithm
will be able to derive these effects, as well as all the possible
interactions and entities involved in producing these effects.
Thus, unaccounted for empirical results are another way to re-
veal the incompleteness of a description.

Given the above uncomputability and the various human
weaknesses to innovating (e.g., narrow verb associations,
functional fixedness, and analogy blindness, which is coun-
teracted by Analogy Finder), we opt for humans and compu-
ters to collaborate when innovating. Computers can help
overcome human weaknesses, and humans can return the fa-
vor. To this end, we crafted a problem-solving grammar and
visualization method that is designed to be easy for both

humans and computers to use. In this way, both humans
and computers can contribute to the same representation of
the problem and assist each other in countering each other’s
problem-solving weaknesses.

Research has named other human cognitive obstacles to in-
novation not named in this paper that machines can help with.
For example, design fixation (Jansson & Smith, 1991) states
that when asked to create innovative designs, humans tend to
fixate on the features of designs shown to them even though
this limits their creativity. McCaffrey and Spector (2012) de-
vised an effective countertechnique that helps humans shift
their focus to types of features they are currently ignoring.
A countertechnique has also been developed to help humans
overcome assumption blindness (McCaffrey & Krishnamurty,
2014).

Our arguments about the sizes of various sets and their un-
computability give some theoretical sense to the boundaries
faced by computation during innovation. However, the inno-
vation system that we are developing, which focuses on how
humans and machines can search together for obscure fea-
tures, should most likely suffice for many practical problems.
We will empirically test this statement after the innovation
system is fully implemented. All the techniques mentioned
in this paper are in the process of being implemented in a soft-
ware system with funding from National Science Foundation
Grant 1534740. Once the software is implemented, experiments
are planned to test its influence on ideation, problem solving,

Fig. 7. Problem-solving graph for reduce concussions.
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innovation, and creativity. Future research will also compare our
completed innovation system with other methods used in
knowledge engineering and machine intelligence.

As innovation research continues both on the human and
machine sides, further obstacles to innovation will most cer-
tainly be uncovered. Hopefully, techniques for counteracting
those obstacles will also be discovered. The eventual result
will most likely be a partnership, a human–machine synergy,
which is more innovative than either partner working alone.
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