Y. Kitaoka Nagoya Math. J. Vol. 95 (1984), 73-84

DIRICHLET SERIES IN THE THEORY OF SIEGEL MODULAR FORMS

YOSHIYUKI KITAOKA

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space H_m of degree m. In the case of m=2 Kaufhold [1] evaluated them. Here we treat the general cases by a different method.

For a rational matrix R we denote the product of denominators of elementary divisiors of R by $\nu(R)$. For a half-integral symmetric matrix $T^{(n)}$ we put

$$b(s, T) = \sum_{s} \nu(R)^{-s} e(\sigma(TR))$$
,

where R runs over $n \times n$ rational symmetric matrices modulo 1 and σ means the trace, and e(z) is $\exp(2\pi iz)$. If $\operatorname{Re} s > n+1$, then b(s,T) is absolutely convergent. For a rational symmetric matrix R there is a unique decomposition $R \equiv \sum R_p \mod 1$ where R_p is a rational symmetric matrix such that $\nu(R_p)$ is a power of prime p. Therefore we have a decomposition

$$b(s, T) = \prod b_p(s, T),$$

 $b_p(s, T) = \sum \nu(R)^{-s} e(\sigma(TR)).$

where R runs over rational symmetric matrices modulo 1 such that $\nu(R)$ is a power of prime p. Our aim is to give $b_p(s,T)$ in a form easy to see. Shimura [7] also treats $b_p(s,T)$ in a more general situation. $b_p(s,T)$ here is a special case α_0 , Case SP in [7]. His results about α_0 are weaker than ours.

Generalized confluent hypergeometric functions in the Fourier expansion of the non-analytic Eisenstein series are investigated by Shimura [6].

The author would like to thank Professor G. Shimura who read the

Received April 22, 1983.

first version of this paper and offered suggestions.

Theorem 1. Let $T_1^{(n-1)}$ be a half-integral symmetric matrix and $T^{(n)} = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$. Then we have

$$b_{\nu}(s,T) = (1-p^{-s})(1+p^{1-s})(1-p^{n+1-2s})^{-1}b_{\nu}(s-1,T_1)$$
.

We prepare some lemmas to prove this theorem. Put $C(k; p) = \{C \in M_k(\mathbb{Z}) | |C| \text{ is a power of } p\}$ and

$$\Lambda_k = \{ S \in M_k(\mathbf{Z}) | {}^t S = S \}.$$

The following lemma is known ([1], [5]).

LEMMA 1.
$$b_p(s, T) = \sum |C|^{-s} e(\sigma(TC^{-1}D))$$
,

where C, D run over $SL_n(Z)\backslash C(n;p)$, $\{D\in M_n(Z)|C^{-1}D={}^t(C^{-1}D) \text{ and } (C,D) \text{ is primitive}\} \mod C\Lambda_n$ respectively.

$$\prod_{k=0}^{n-1} (1-p^{k-s})^{-1} b_p(s,T) = \sum |C|^{-s} e(\sigma(TC^{-1}D))$$
 ,

where C, D run over $SL_n(Z)\backslash C(n;p)$, $\{D\in M_n(Z)|C^{-1}D={}^t(C^{-1}D)\} \bmod C\Lambda_n$ respectively.

The next lemma is easy.

Lemma 2. As representatives of $SL_n(\mathbf{Z})\backslash C(n;p)$ we can choose

$$C = \begin{pmatrix} C_1^{(n-1)} & 0 \\ C_2 & C_4 \end{pmatrix}$$
,

where C_1 , C_4 and C_3 run oner $SL_{n-1}(Z)\backslash C(n-1;p)$, C(1;p) and $M_{1,n-1}(Z)$ mod $M_{1,n-1}(Z)C_1$ respectively.

Lemma 3. For $C=\begin{pmatrix} C_1^{(n-1)}&0\\ C_3&C_4\end{pmatrix}\in C(n;p)$ we can choose as representatives of $\{D\in M_n(Z)|C^{-1}D={}^t(C^{-1}D)\} \ \mathrm{mod}\ CA_n$

$$D=egin{pmatrix} D_1^{(n-1)} & D_2 \ D_3 & D_4 \end{pmatrix}$$
 ,

 $\begin{array}{lll} \textit{where} \;\; D_{\scriptscriptstyle 1}, \; D_{\scriptscriptstyle 2} \;\; \textit{and} \;\; D_{\scriptscriptstyle 4} \;\; \textit{run} \;\; \textit{over} \;\; \{D_{\scriptscriptstyle 1} \in M_{\scriptscriptstyle n-1}(\boldsymbol{Z}) | C_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}D_{\scriptscriptstyle 1} = {}^t(C_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}D_{\scriptscriptstyle 1})\} \, \text{mod} \;\; C_{\scriptscriptstyle 1} \Lambda_{\scriptscriptstyle n-1}, \\ \{D_{\scriptscriptstyle 2} \in M_{\scriptscriptstyle n-1,1}(\boldsymbol{Z}) | C_{\scriptscriptstyle 4}{}^tD_{\scriptscriptstyle 2} + C_{\scriptscriptstyle 3}{}^tD_{\scriptscriptstyle 1} \in M_{\scriptscriptstyle 1,\,n-1}(\boldsymbol{Z}){}^tC_{\scriptscriptstyle 1}\} \, \text{mod} \;\; C_{\scriptscriptstyle 1} M_{\scriptscriptstyle n-1,1}(\boldsymbol{Z}) \;\;\; \textit{and} \;\;\; \boldsymbol{Z} \, \text{mod} \;\; \boldsymbol{C}_{\scriptscriptstyle 4} \\ \textit{respectively} \;\; \textit{and} \;\; \textit{then} \;\; D_{\scriptscriptstyle 3} = (C_{\scriptscriptstyle 4}{}^tD_{\scriptscriptstyle 2} + C_{\scriptscriptstyle 3}{}^tD_{\scriptscriptstyle 1}){}^tC_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}. \end{array}$

Proof. Since
$$C^{-1}=egin{pmatrix} C_1^{-1} & 0 \ -C_4^{-1}C_3C_1^{-1} & C_4^{-1} \end{pmatrix}$$
, we have

$$C^{-1}D = egin{pmatrix} C_1^{-1}D_1 & C_1^{-1}D_2 \ - C_4^{-1}(C_3C_1^{-1}D_1 - D_3) & - C_4^{-1}(C_3C_1^{-1}D_2 - D_4) \end{pmatrix}.$$

Since $C^{-1}D$ is symmetric, $C_1^{-1}D_1$ is symmetric and $D_3=(C_4{}^tD_2+C_3{}^tD_1){}^tC_1^{-1}$. For an integral symmetric matrix $S=\begin{pmatrix}S_1^{(n-1)}&S_2\\{}^tS_2&S_2\end{pmatrix}$,

$$CS = egin{pmatrix} C_1 S_1 & C_1 S_2 \ C_3 S_1 + C_4{}^t S_2 & C_3 S_2 + C_4 S_4 \end{pmatrix} \;\; ext{holds} \;.$$

From these follows easily our lemma.

The next lemma is an immediate corollary.

LEMMA 4. Let $C_1 \in C(n-1;p)$, $D_1 \in M_{n-1}(Z)$ and $C_4 \in C(1;p)$. Denote by $x(C_1, D_1, C_4)$ the number of elements of the set

$$\{D_2\in M_{n-1,1}(Z) mod C_1M_{n-1,1}(Z), \ C_3\in M_{1,\,n-1}(Z) mod M_{1,\,n-1}(Z)C_1 \ such \ that \ C_4{}^tD_2 + C_3{}^tD_1\in M_{1,\,n-1}(Z){}^tC_1 \}$$
 .

Then the number of $C = \begin{pmatrix} C_1 & 0 \\ C_3 & C_4 \end{pmatrix}$, $D = \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix}$ where C_3 , D run over $M_{1,\,n-1}(Z) \bmod M_{1,\,n-1}(Z)C_1$, $\{D \in M_n(Z) \bmod CA_n | C^{-1}D = {}^{\iota}(C^{-1}D)\}$ respectively is $C_4x(C_1,\,D_1,\,C_4)$.

LEMMA 5. Let R be a rational symmetric matrix and $C_i^{-1}D_i = R$ for C_i , $D_i \in M_n(Z)$ (i = 1, 2). If (C_1, D_1) is primitive then $(C_2, D_2) = W(C_1, D_1)$ for some $W \in M_n(Z)$.

Proof. This is well known [5]).

LEMMA 6. Let $W \in C(n-1;p)$, $C_4 \in C(1;p)$, $C_1 \in C(n-1;p)$ and $D_1 \in M_{n-1}(Z)$ such that $C_1^{-1}D_1$ is symmetric and (C_1,D_1) is primitive. Then we have

$$x(WC_1, WD_1, C_4) = |WC_1| \prod_{i=1}^{n-1} (C_4, w_i),$$

where $\{w_i\}$ is the set of elementary divisors of W.

Proof. Let $A_1, B_1 \in M_{n-1}(Z)$ such that $\begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix} \in Sp_{n-1}(Z)$. Suppose $z^tD_1 = w^tC_1$ for $z, w \in M_{1, n-1}(Z)$; then $z = z({}^tD_1A_1 - {}^tB_1C_1) = w^tC_1A_1 - {}^tB_1C_1$

 $z^{t}B_{1}C_{1}=(w^{t}A_{1}-z^{t}B_{1})C_{1}\in M_{1,\,n-1}(Z)C_{1}.$ Conversely, suppose $z=xC_{1}$ for $z,\,x\in M_{1,\,n-1}(Z)$; then $z^{t}D_{1}=xC_{1}{}^{t}D_{1}=xD_{1}{}^{t}C_{1}\in M_{1,\,n-1}(Z){}^{t}C_{1}.$ Thus we have proved that for $z\in M_{1,\,n-1}(Z)$

$$z^t D_1 \in M_{1, n-1}(Z)^t C_1$$
 iff $z \in M_{1, n-1}(Z) C_1$.

Next we show that for $D_2 \in M_{n-1,1}(Z)$ there exists $C_3 \in M_{1,n-1}(Z)$ such that $C_4{}^tD_2 + C_3{}^t(WD_1) \in M_{1,n-1}(Z){}^t(WC_1)$ iff $C_4{}^tD_2{}^tW^{-1} \in M_{1,n-1}(Z)$. The "only if" part is trivial. Suppose $C_4{}^tD_2{}^tW^{-1} = y \in M_{1,n-1}(Z)$; then $y - yA_1{}^tD_1 = -yB_1{}^tC_1$ implies $C_4{}^tD_2 + (-yA){}^t(WD_1) = -yB_1{}^t(WC_1) \in M_{1,n-1}(Z){}^t(WC_1)$. Hence we can take $-yA_1$ as C_3 .

Lastly suppose that $D_2 \in M_{n-1,1}(Z)$, $C_{3,i} \in M_{1,n-1}(Z)$ satisfy

$$C_4{}^tD_2 + C_{3,i}{}^t(WD_1) \in M_{1,n-1}(Z){}^t(WC_1) \qquad (i=1,2),$$

then $(C_{3,1}-C_{3,2})^tD_1\in M_{1,n-1}(\mathbf{Z})^tC_1$ and then $C_{3,1}-C_{3,2}\in M_{1,n-1}(\mathbf{Z})C_1$. Therefore

$$x(WC_1, WD_1, C_4)$$

$$= |W| \sharp \{D_2 \in M_{n-1,1}(Z) \bmod WC_1 M_{n-1,1}(Z) | C_4^{\ t} D_2^{\ t} W^{-1} \in M_{1, n-1}(Z) \}.$$

Let $W = UW_0V$ where

$$U,\ V\in GL_n(\pmb{Z}),\quad W_0=egin{bmatrix} w_1\ &\ddots\ &w_{n-1} \end{bmatrix} \ \ ext{and} \ \ \ ext{put}\ \ ^tD_2^{\ t}U^{-1}=(y_1,\ \cdots,y_{n-1})\ .$$

$$^tD_{\scriptscriptstyle 2}{}^tW^{\scriptscriptstyle -1}=(\cdots,y_{\scriptscriptstyle i}/w_{\scriptscriptstyle i},\,\cdots)^tV^{\scriptscriptstyle -1}$$
 implies

$$egin{aligned} x(WC_1,\,WD_1,\,C_4) \ &= |\,W\,|\,\sharp \{(y_1,\,\cdots,\,y_{n-1}) \in M_{1,\,n-1}(Z)\,\mathrm{mod}\,M_{1,\,n-1}(Z)^t\,C_1^{\ t}\,VW_0\,|\,C_4y_i \equiv 0\,\mathrm{mod}\,w_i\} \ &= |\,W\,|\,[M_{1,\,n-1}(Z)\colon\,M_{1,\,n-1}(Z)^t\,C_1^{\ t}\,VW_0]/ \ &\qquad \qquad [M_{1,\,n-1}(Z)\colon\,\{(y_1,\,\cdots,\,y_{n-1}) \in M_{1,\,n-1}(Z)\,|\,y_i \equiv 0\,\mathrm{mod}\,w_i/(C_4,\,w_i)\}] \ &= |\,C_1W\,|\,\Pi\,\left(C_4,\,w_i\right)\,. \end{aligned}$$

Proof of Theorem 1. From above lemmas follows that

$$\prod_{k=0}^{n-1} (1 - p^{k-s})^{-1} b_p(s, T)$$

$$= \sum_{k=0}^{n-1} |C_1|^{-s} C_4^{1-s} e(\sigma(T_1 C_1^{-1} D_1)) x(C_1, D_1, C_4),$$

where C_1 , D_1 , C_4 run over $SL_{n-1}(Z)\setminus C(n-1;p)$, $\{D_1\in M_{n-1}(Z) \bmod C_1\Lambda_{n-1}|C_1^{-1}D_1={}^t(C_1^{-1}D_1)\}$ and C(1;p) respectively

$$= \sum |WC_1|^{-s} C_4^{1-s} e(\sigma(T_1C_1^{-1}D_1)) x(WC_1, WD_1, C_4),$$

where C_1 , D_1 , C_4 run over the same set as above with an additional condition that (C_1,D_1) is primitive, and W runs over $SL_{n-1}(Z)\setminus C(n-1;p)$

$$=\sum |C_1|^{1-s}e(\sigma(T_1C_1^{-1}D_1))\cdot\sum |W|^{1-s}C_4^{1-s}\prod (C_4,w_i)$$
,

where C_1 , D_1 , C_4 , W run over the above set and $\{w_i\}$ is the set of elementary divisors of W.

Thus we have proved that $b_p(s, T)b_p(s-1, T_1)^{-1}$ is independent of T_1 . Hence by the formula of $b_p(s, 0)$ ([7]) or evaluating $b_p(s, T)$, $b_p(s, T_1)$ for

$$T_{\scriptscriptstyle 1} = rac{1}{2} egin{bmatrix} 0 & 1 & & & & & \ 1 & 0 & & & & \ & \ddots & & & & \ & & 0 & 1 & & \ & & 1 & 0 \end{pmatrix} \quad ext{or} \quad rac{1}{2} egin{bmatrix} 0 & 1 & & & & \ 1 & 0 & & & \ & & \ddots & & \ & & & 0 & 1 \ & & & 1 & 0 \ & & & & 2 \end{pmatrix}$$

similarly to the proof of the next theorem we have $b_p(s, T)b_p(s-1, T_1)^{-1} = (1 - p^{-s})(1 + p^{1-s})(1 - p^{n+1-2s})^{-1}$.

Corollary 1. Let $T^{(n)}=\begin{pmatrix} T_1^{(n-r)}&0\\0&0\end{pmatrix}$ $(1\leq r< n)$ be a half-integral symmetric matrix. Then we have

$$egin{aligned} b_{\it p}(s,T) &= (1-p^{-s})(1+p^{r-s}) \prod\limits_{0 < i \leq \min{(r-1, \lceil n/2
ceil)}} (1-p^{2i-2s}) \ & imes \prod\limits_{\max{(r, \lceil n/2
ceil+1) \leq j \leq \lceil (n+r)/2
ceil}} (1-p^{2j-2s})^{-1} \ & imes \prod\limits_{n+1 \leq k \leq n+r} (1-p^{k-2s})^{-1} b_{\it p}(s-r,T_{\scriptscriptstyle 1}) \ , \end{aligned}$$

where [] means the Gauss' symbol.

Proof. By induction it is easy to see

$$egin{aligned} b_{\it p}(s,\,T) &= (1-p^{\it -s})(1+p^{\it r-s}) \prod\limits_{0 < \it i < \it r} (1-p^{\it 2\it i -2\it s}) \ &\cdot \prod\limits_{\it n+1 \le \it j \le \it n+r} (1-p^{\it j -2\it s})^{\it -1} b_{\it p}(s-\it r,\,T_{\it 1}) \,. \end{aligned}$$

From this follows our formula.

Corollary 2. Let $O^{(n)}$ be the $n \times n$ zero matrix. Then we have

$$egin{aligned} b_{\it p}(s,\it O^{(n)}) &= (1-p^{-s}) \prod\limits_{\substack{0 < k \le \lceil n/2
ceil \ 2 \le j \le 2n}} (1-p^{2k-2s}) \ &\cdot \{ (1-p^{n-s}) \prod\limits_{\substack{n+1 \le j < 2n \ 2j \ j}} (1-p^{j-2s}) \}^{-1} \,. \end{aligned}$$

Proof. $b_p(s, O^{(1)}) = (1 - p^{-s})(1 - p^{1-s})^{-1}$ is easy to see. Applying Corollary 1 to r = n - 1, $T = O^{(n)}$ we get

$$b_p(s, O^{(n)}) = (1 - p^{-s})(1 - p^{n-s})^{-1} \prod_{1 \le k \le n-1} \{(1 - p^{2k-2s})(1 - p^{n+k-2s})^{-1}\}$$
.

From this follows our formula.

Remark. In Corollary 1 there is a cancellation

$$(1+p^{r-s})(1-p^{2j-2s})^{-1}=(1-p^{r-s})^{-1} \quad (j=r) \quad \text{if } r \geq \lfloor n/2 \rfloor + 1.$$

In the rest of this paper we will show that $b_p(s, T)$ is a polynomial in p^{-s} for regular half-integral symmetric matrices T.

Put
$$E_n = \{S = (s_{ij}) \in M_n(Z_p) | S = {}^tS, \ s_{ii} \in 2Z_p \ (1 \le i \le n) \}$$
 and

$$H_s = egin{bmatrix} 0 & 1 & & & & \ 1 & 0 & & & & \ & \ddots & & & \ & & 0 & 1 \ & & 1 & 0 \ \end{pmatrix} \in E_{zs}$$
 .

For $N \in E_n$ we put

$$lpha(N,\,H_s;\,p^\iota) = \{T \in M_{2s,\,n}({m Z}_p/(p^\iota)) \,|\, H_s[T] \,-\, N \in p^\iota E_n \} \,, \ B(N,\,H_s;\,p^\iota) = \{T \in lpha(N,\,H_s;\,p^\iota) \,|\, T \colon ext{primitive} \} \,.$$

Lemma 7. Let $N\in E_n$ with $|N|\neq 0$ and $G\in GL_n({m Q}_p)\cap M_n({m Z}_p)$. If t> ord |N|, we have

$$egin{aligned} (p^t)^{n(n+1)/2-2sn} \sharp \{T \in lpha(N,H_s;p^t) \, | \, M_{2s,n}(Z_p) \ni TG^{-1} \colon \ primitive \} \ &= (p^{\operatorname{ord}_p \, |G|})^{n-2s+1} p^{n(n+1)/2-2sn} \sharp B(N[G^{-1}],\,H_s;\,p) \;. \end{aligned}$$

Proof. Let $T \in M_{2s,n}(Z_p)$ and suppose that $H_s[T] - N \in p^t E_n$ and $T_1 = TG^{-1}$ is primitive. Then $H_s[T] = N + p^t C$ holds for some $C \in E_n$ and $H_s[T] \equiv N \mod p^t$. Hence $|H_s[T_1]| |G|^2 \equiv |N| \mod p^t$ holds and $2 \operatorname{ord}_p |G| \leqq \operatorname{ord}_p |N| < t$ follows from $\operatorname{ord}_p |N| < t$. Denote by C_1, \dots, C_a the representatives of the set $\{p^t \overline{C}[G^{-1}] | \overline{C} \in E_n\} \mod p^t E_n$, then we have $H_s[T_1] = N[G^{-1}] + p^t C[G^{-1}] \equiv N[G^{-1}] + C_k \mod p^t E_n$. Conversely suppose that $T_1 \in M_{2s,n}(Z_p)$ and T_1 is primitive and $H_s[T_1] \equiv N[G^{-1}] + C_k \mod p^t E_n$, then we have $H_s[T_1G] \equiv N \mod p^t E_n$. Therefore we get

$$\sharp \{T \in M_{2s,\,n}(\pmb{Z}_p) mod p^t M_{2s,\,n}(\pmb{Z}_p) G | H_s[T] - N \in p^t E_n, \ TG^{-1} \colon ext{primitive} \} \ = \sum_{k=1}^a \sharp B(N[G^{-1}] \, + \, C_k, \, H_s; \, p^t) \, .$$

Since C_k is in pE_n , by virtue of 2.2 in [2] we have

$$egin{aligned} (p^t)^{n(n+1)/2-2s\,n} \sharp B(N[G^{-1}] + C_k, H_s; p^t) \ &= p^{n(n+1)/2-2s\,n} \sharp B(N[G^{-1}] + C_k, H_s; p) \ &= p^{n(n+1)/2-2s\,n} \sharp B(N[G^{-1}], H_s; p) \;. \end{aligned}$$

Let p^{a_1}, \dots, p^{a_n} be elementary divisors of G, then from the definition of a follows immediately

$$egin{aligned} a &= \#[\{p^t(c_{ij}p^{-a_i-a_j}) \, | \, (c_{ij}) \in E_n\} mod p^t E_n] \ &= (p^{\mathrm{ord}_p|G|})^{n+1} \,. \end{aligned}$$

Thus we have

$$egin{aligned} &(p^{\operatorname{ord}_p\mid G\mid})^{2s}\sharp\{T\inlpha(N,H_s;\,p^t)\,|\,M_{2s,\,n}(Z_p)\ni TG^{-1}\colon ext{ primitive}\}\ &=(p^{\operatorname{ord}_p\mid G\mid})^{n+1}(p^{-t})^{n(n+1)/2-2s}np^{n(n+1)/2-2s}n\sharp B(N[G^{-1}],H_s;\,p)\;. \end{aligned}$$

As a corollary we get

LEMMA 8. Let $N \in E_n$ with $|N| \neq 0$ and $t > \operatorname{ord}_n |N|$. Then we have

$$egin{aligned} (p^t)^{n(n+1)/2-2s\,n} \sharp lpha(N,H_s;\,p^t) \ &= \sum \, (p^{\operatorname{ord}_p[G]})^{n+1-2s} p^{n(n+1)/2-2s\,n} \sharp B(N[G^{-1}],\,H_s;\,p) \end{aligned}$$

where G runs over $GL_n(\mathbf{Z}_p)\setminus\{GL_n(\mathbf{Q}_p)\cap M_n(\mathbf{Z}_p)\}.$

Proof. Let $T \in \alpha(N, H_s; p^t)$ and suppose that TG^{-1} is primitive for $G \in GL_n(\mathbf{Q}_p) \cap M_n(\mathbf{Z}_p)$. For any matrix $T_1 \equiv T \mod p^t$ T_1G^{-1} is also primitive since $2 \operatorname{ord}_p |G| < t$ as in the proof of the previous lemma. If TG_1^{-1} , TG_2^{-1} are primitive for $G_i \in GL_n(\mathbf{Q}_p) \cap M_n(\mathbf{Z}_p)$, then $G_1G_2^{-1} \in GL_n(\mathbf{Z}_p)$ since $TG_1^{-1}(G_1G_2^{-1}) = TG_2^{-1}$. Now Lemma 7 completes the proof of Lemma 8.

Let $H = \mathbb{Z}/(p)[e, f]$ be a quadratic space over $\mathbb{Z}/(p)$ such that q(e) = q(f) = 0, b(e, f) = 1(q(x + y) - q(x) - q(y) = b(x, y)), and $\overline{H}_s = \bot_s H$. For a quadratic space N over $\mathbb{Z}/(p)$ we put

$$B(N, \overline{H}_s) = \sharp \{ \text{isometries form } N \text{ to } \overline{H}_s \}.$$

If $N \in E_n$, then

$$q(x_{\scriptscriptstyle 1},\,\cdots,\,x_{\scriptscriptstyle n})=rac{1}{2}N \left[egin{array}{c} x_{\scriptscriptstyle 1}\ dots\ x_{\scriptscriptstyle n} \end{array}
ight]$$

makes a quadratic space N' over Z/(p) corresponding to N and $\sharp B(N, H_s; p) = B(N', \overline{H}_s)$ holds.

Lemma 9. Let N be a quadratic space over Z/(p) and dim N=n. Let $N=N_1 \perp N_2$ where N_2 is a maximal totally singular subspace, that is, N_2 has a maximal dimension among the subspaces in N such that $q(N_2)=0$. Put dim $N_1=d$ and $\varepsilon=1$ if N_1 is isometric to \overline{H}_k for some k or d=0, otherwise $\varepsilon=-1$. Then for a sufficiently large s we have

$$p^{n(n+1)/2-2s\,n}B(N,\overline{H}_s) \ = egin{cases} (1-p^{-s})(1+arepsilon p^{n-d/2-s}) & \prod\limits_{1 \leq i \leq n-d/2-1} (1-p^{2i-2s}) & 2\,|\,d\,, \ (1-p^{-s}) & \prod\limits_{1 \leq i \leq n-(d+1)/2} (1-p^{2i-2s}) & 2
end{cases} \ .$$

Proof. Let p be an odd prime. This follows from the proof of Lemma 1 in [2]. For a sufficiently large s there is an isometry u from N into \overline{H}_s . Let M be the orthogonal complement of $u(N_1)$ in \overline{H}_s . By the theorem of Witt the isometry class of M is independent of the choice of u. Then we have

$$B(N, \overline{H}_s) = B(N_1, \overline{H}_s)B(N_2, M)$$
,

where $B(N_2, M)$ is the number of isometries from N_2 into M. Then it is known ([8], [2]).

$$egin{aligned} p^{d(d+1)/2-2sd}B(N_1,\overline{H}_s)\ &=egin{cases} (1-p^{-s})(1+arepsilon p^{d/2-s})\prod_{1\leq k\leq d/2-1}(1-p^{2k-2s}) & 2\!\mid\! d>0\ ,\ (1-p^{-s})\prod_{1\leq k\leq (d-1)/2}(1-p^{2k-2s}) & 2\!\nmid\! d\ ,\ \end{pmatrix} \ p^{-(2s-d)\cdot(n-d)+(n-d)\cdot(n-d+1)/2}B(N_2,M)\ &=egin{cases} \prod\limits_{0\leq k\leq n-d-1}\{(1-arepsilon p^{n-s-d/2-k-1})(1+arepsilon p^{n-s-d/2-k})\} & 2\!\mid\! d\ ,\ \prod\limits_{0\leq k\leq n-d-1}\{(1-p^{2n-2s-d-1-2k}) & 2\!\nmid\! d\ . \end{cases} \end{aligned}$$

From this follows our formula. Similarly we get the same formulas for p=2. There is nothing to change in the above proof for an odd prime p. Let T be a half-integral symmetric matrix with $|T| \neq 0$. Put

$$b_{p}(s, T; p^{t}) = \sum_{R \mod p^{t}} \nu(p^{-t}R)^{-s} e(\sigma(T(p^{-t}R))),$$

where R runs over integral symmetric matrices mod p^t . Then it is known ([4]) that for a natural number s

$$egin{aligned} b_{\it p}(s,\,T;\,p^{\it t}) &= (p^{\it t})^{n\,(n\,+\,1)/2\,-\,2\,n\,s} \sharp \{K^{\,(n,\,2\,s)} mod p^{\it t} \,|\, p^{\it -\,t}(rac{1}{2}H_{\it s}[^{\it t}K]\,+\,T) \in 2^{\it -\,1}E_{\it n}\} \ &= (p^{\it t})^{n\,(n\,+\,1)/2\,-\,2\,n\,s} \sharp lpha(-\,2T,\,H^{\it s}\,;\,p^{\it t})\,. \end{aligned}$$

By definition $b_p(s,T;p^t)$ is a polynomial in p^{-s} . On the other hand by virtue of Lemma 8,9 there exists a polynomial f(x,T) which depends only on T such that $b_p(s,T;p^t)=f(p^{-s},T)$ if s, t are sufficiently large integers. Hence we have $b_p(s,T;p^t)=f(p^{-s},T)$ for any $s\in C$, and $b_p(s,T)=f(p^{-s},T)$ as $t\to\infty$.

Thus we have proved

Theorem 2. Let $T^{(n)}$ be a half-integral symmetric matrix with $|T| \neq 0$. Then we have

$$b_{\it p}(s,\,T) = \sum\limits_{\it G} \, (p^{{
m ord}_{\it p}|\it G|})^{n+1-2s} a(-\,T[G^{\scriptscriptstyle -1}],\,s)$$
 ,

where G runs over $GL_n(\mathbf{Z}_p)\setminus\{GL_n(\mathbf{Q}_p)\cap M_n(\mathbf{Z}_p)\}$ and a(T,s) is defined as follows. If T is not half-integral, a(T,s)=0. If T is half-integral, we define a quadratic space N over $\mathbf{Z}/(p)$ with dim N=n by

$$q(x_{\scriptscriptstyle 1},\, \cdots,\, x_{\scriptscriptstyle n}) = T \left[egin{array}{c} x_{\scriptscriptstyle 1} \ dots \ x_{\scriptscriptstyle n} \end{array}
ight] mod p, \quad and \quad N = N_{\scriptscriptstyle 1} \perp N_{\scriptscriptstyle 2}$$

where N_2 is a maximal totally singular subspace. Put $d = \dim N_1$ and $\varepsilon = 1$ if N_1 is a hyperboile space or d = 0, otherwise $\varepsilon = -1$. Then we set

$$a(T,s) = egin{cases} (1-p^{-s})(1+arepsilon p^{n-d/2-s}) \prod\limits_{1 \leq i \leq n-d/2-1} (1-p^{2l-2s}) & 2\,|\,d\,, \ (1-p^{-s}) \prod\limits_{1 \leq i \leq n-(d+1)/2} (1-p^{2l-2s}) & 2\!
ot|\,d\,. \end{cases}$$

In the above formula for $b_p(s, T)$ G runs over a finite set.

Corollary. (i) Let $O^{(n)}$ be the $n \times n$ zero matrix. Then

$$b_{\it p}(s,\it O^{(\it n)})=(1-p^{-\it s})\prod\limits_{0< k \leq \lfloor n/2 \rfloor} (1-p^{2\it k-2\it s}) \{(1-p^{\it n-\it s})\prod\limits_{\substack{n+1 \leq j < 2n \ 2j \neq \it s}} (1-p^{\it j-2\it s})\}^{-\it 1}$$
 .

Let $T^{(n)}=egin{pmatrix} T_1^{(n-r)}&0\0&0 \end{pmatrix}$ be a half-integral symmetric matrix with $|T_1|
eq 0$ (0' $\leq r < n$).

(ii) If p does not divide $|2T_1|$, then

$$egin{aligned} b_{\it p}(s,\,T) &= (1-p^{-s}) \prod\limits_{1 \leq j \leq \lfloor n/2 \rfloor} (1-p^{2j-2s}) \prod\limits_{n+1 \leq k \leq n+r} (1-p^{k-2s})^{-1} \ & imes \left\{ & (1-arepsilon(T_{\it l})p^{(n+r)/2-s})^{-1} & 2 \!\mid\! n-r \,, \ & 2 \!\nmid\! n-r \,. \end{aligned}
ight.$$

where $\varepsilon(T_1) = 1$ if T_1 corresponds to a hyperbolic space over Z/(p), and $\varepsilon(T_1) = -1$ otherwise, i.e., $\varepsilon(T_1) = (((-1)^{(n-r)/2}|2T_1|)/p)$ (Kronecker symbol).

(iii) If n-r is odd, then

$$egin{aligned} b_{p}(s,\,T) &= (polynomial\ in\ p^{-s})(1-p^{-s}) \prod\limits_{1 \leq j \leq \lceil n/2 \rceil} (1-p^{2j-2s}) \ & imes \prod\limits_{n+1 \leq k \leq n+r} (1-p^{k-2s})^{-1} \,. \end{aligned}$$

(iv) If n - r is even, then

$$egin{aligned} b_{\it p}(s,\,T) &= (\it polynomial\ in\ p^{-s}) imes (1-\eta p^{(n+r)/2-s})^{-1} (1-p^{-s}) \ & imes \prod\limits_{1 \leq j \leq \lfloor n/2 \rfloor} (1-p^{2j-2s}) \prod\limits_{n+1 \leq k \leq n+r} (1-p^{k-2s})^{-1} \,, \end{aligned}$$

where η is defined as follows:

If there is an integral matrix $G^{(n-r)}$ such that $T_1[G^{-1}]$ is half-integral and $|2T_1[G^{-1}]|$ is not divided by p, then

$$\eta = \varepsilon(T_1[G^{-1}]) \quad (in (ii)).$$

(η is uniquely determined by T_1).

Otherwise $\eta = 0$.

Especially $\eta = 0$ if $\operatorname{ord}_{p} |2T_{1}|$ is odd.

Proof. (i) is already proved. (ii) follows from Corollary 1 and Theorem 2. Let $T_2^{(n-r)}$ be a half-integral matrix with $|T_2| \neq 0$. If n-r is odd or $p||2T_2|$, then $a(T_2, s)$ is divided by

$$(1-p^{-s})\prod_{1\leq i\leq \lceil (n-r)/2\rceil} (1-p^{2i-2s}).$$

(iii) and (iv) for $\eta=0$ follow from this and Corollary 1 and Theorem 2. Suppose that there is an integral matrix $G^{(n-r)}$ such that $T_1[G^{-1}]$ is half-integral and $|2T_1[G^{-1}]|$ is not divided by p. Then

$$a(T_{\scriptscriptstyle 1}[G^{\scriptscriptstyle -1}],s) = (1-p^{\scriptscriptstyle -s})(1+arepsilon(T_{\scriptscriptstyle 1}[G^{\scriptscriptstyle -1}])p^{\scriptscriptstyle (n-r)/2-s})\prod_{1\leq i\leq (n-r)/2-1}(1-p^{2i-2s})$$
 .

The coset $G_{n-r}(Z_p)G$ is not necessarily unique, but $\varepsilon(T_1[G^{-1}])$ depends only on T_1 . Taking these terms into account, we complete the proof of the case $\eta \neq 0$.

Remark 1. Let n=2k be an even integer and $T^{(n)}$ a half-integral symmetric regular matrix. Let $L=Z_p[e_1,\,\cdots,e_n]$ be a free module over

and define a bilinear form $B(e_i, e_j)$ on it by $(B(e_i, e_j)) = 2T$. Then there an integral matrix G such that $T[G^{-1}]$ is half-integral and $p \nmid |2T[G^{-1}]|$ and only if there is a unimodular lattice M such that $M \supset L$ and the rm of M is $2\mathbb{Z}_p$. A corresponding matrix to M is diag $[1, \dots, 1, \delta] \ni \mathbb{Z}_p^{\times}$ if $p \neq 2$,

$$\begin{cases} \operatorname{diag}\left[\binom{0}{1} \ 0\right), \cdots, \binom{0}{1} \ 0 \end{cases} \\ \operatorname{or} & \text{if } p = 2. \\ \operatorname{diag}\left[\binom{0}{1} \ 0\right), \cdots, \binom{0}{1} \ 0\right), \binom{2}{1} \ 2\right] \end{cases}$$

t $|2T| = p^a \cdot u$ ($p \nmid u$). Then there is an integral matrix G such that G^{-1}] is half-integral and $p \nmid |2T[G^{-1}]|$ if and only if the following condins hold:

- (i) a is even,
- (ii) if $p \neq 2$, then the Hasse invariant is 1,
- (iii) if p=2, then $(-1)^k u \equiv 1 \mod 4$ and the Hasse invariant is $(-1)^{k(k+1)/2}$ if $(-1)^k u \equiv 1 \mod 8$, $(-1)^{k(k+1)/2+1}$ if $(-1)^k u \equiv 5 \mod 8$. Free the Hasse invariant S is defined as follows: Taking a regular matrix such that $2T[H] = \text{diag } [d_1, \dots, d_n]$, we put

$$S = \prod\limits_{1 \leq i \leq n} \left(d_i, \prod\limits_{1 \leq j \leq i} d_j
ight),$$

here (,) is the Hilbert symbol of degree 2 on Q_p^{\times} . S is uniquely deterned by T.

Remark 2. Let K be a finite extension field over the p-adic rational imber field Q_p , O the maximal order of K and (δ) the different of K over $(\delta \in K)$. For $x \in K$ we denote by $|x|_K$ the normalized valuation of x. In a prime element π of K we have $|\pi|_K^{-1} = \sharp(O/(\pi))$. Let R be a symptoric matrix in $M_n(K)$. Then R is decomposed as $R = C^{-1}D$ such that $\binom{*}{T}D \in Sp_n(O)$ and we put $\nu(R) = |\det C|_K^{-1}$. This is well-defined. For $mather Q_p$ we put $mather Q(x) = \exp(2\pi i)$ (the fractional part of mather x). Let mather x be a half-tegral matrix, that is, mather x = ma

$$b(s, T) = \sum \nu(R)^{-s} e(\operatorname{tr}_{K/Q_p} (\sigma(TR)\delta^{-1}))$$
,

here R runs over $\{R \in M_n(K) | R = {}^t R\} \mod O$. Then all theorems and

corollaries hold for b(s, T) instead of $b_p(s, T)$ with the following minor changes:

- (i) p should be $|\pi|_K^{-1}$.
- (ii) In Theorem 2 G runs over $GL_n(O)\setminus\{GL_n(K)\cap M_n(O)\}$ and $p^{\operatorname{ord}_p \mid G\mid}$ should be $|\det G|_K^{-1}$ and a quadratic form q should be defined over $O/(\pi)$ (also in Corollary).

Conjecture 6.3 for $\lambda = 0$, Case SP in [7] where the denominator can be solved therein does not necessarily refer to the reduced denominator.

Remark 3. Let T be a half-integral symmetric binary regular matrix. Denote by t^* the discriminant of $Q(\sqrt{-|T|})$ and let α be the integer such that $p^{2\alpha}|||2T|/t^*$. Then from the explicit formula of $b_p(s,T)$ ([1], [3]) follows that $b_p(s,pT) - p^{2-s}b_p(s,T)$ does not depend on T itself but only on α , (t^*/p) (Kronecker symbol). A weaker assertion holds for the function α_1 (Case SP) defined in [7] from [3].

REFERENCES

- [1] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2. Grades, Math. Ann., 137 (1959), 454-476.
- [2] Y. Kitaoka, Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127-146.
- [3] —, A note on local densities of quadratic forms, Nagoya Math. J., 92 (1983), 145-152.
- [4] H. Maaß, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk., 34 (1964), no. 7.
- [5] —, Siegel's modular forms and Dirichlet series, Lecture Notes in Mathematics, vol. 216. Berlin, Heidelberg, New York, Springer 1971.
- [6] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302.
- [7] —, On Eisenstein series, to appear in Duke Math. J.
- [8] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-606.

Department of Mathematics Faculty of Science Nagoya University Chikusa-ku, Nagoya 464 Japan